{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 5.2 Essential Functionality(主要功能)\n",
    "\n",
    "接下来介绍pandas中的一些主要功能,这里只介绍一些经常用到的。\n",
    "\n",
    "# 1 Reindexing(重新索引)\n",
    "\n",
    "pandas中一个重要的方法是reindex,已实施在创建object的时候遵照一个新的index。如下例:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "import pandas as pd"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 3,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "d    4.5\n",
       "b    7.2\n",
       "a   -5.3\n",
       "c    3.6\n",
       "dtype: float64"
      ]
     },
     "execution_count": 3,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj = pd.Series([4.5, 7.2, -5.3, 3.6], index=['d', 'b', 'a', 'c'])\n",
    "obj"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "在series上调用reindex能更改index,如果没有对应index的话会引入缺失数据:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a   -5.3\n",
       "b    7.2\n",
       "c    3.6\n",
       "d    4.5\n",
       "e    NaN\n",
       "dtype: float64"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj2 = obj.reindex(['a', 'b', 'c', 'd', 'e'])\n",
    "obj2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "在处理时间序列这样的数据时,我们可能需要在reindexing的时候需要修改值。method选项能做到这一点,比如设定method为ffill:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0      bule\n",
       "2    purple\n",
       "4    yellow\n",
       "dtype: object"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj3 = pd.Series(['bule', 'purple', 'yellow'], index=[0, 2, 4])\n",
    "obj3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0      bule\n",
       "1      bule\n",
       "2    purple\n",
       "3    purple\n",
       "4    yellow\n",
       "5    yellow\n",
       "dtype: object"
      ]
     },
     "execution_count": 6,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj3.reindex(range(6), method='ffill')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "对于DataFrame,reindex能更改row index,或column index。reindex the rows:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "import numpy as np"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "frame = pd.DataFrame(np.arange(9).reshape(3, 3),\n",
    "                     index=['a', 'c', 'd'],\n",
    "                     columns=['Ohio', 'Texas', 'California'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Ohio</th>\n",
       "      <th>Texas</th>\n",
       "      <th>California</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>3</td>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>d</th>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Ohio  Texas  California\n",
       "a     0      1           2\n",
       "c     3      4           5\n",
       "d     6      7           8"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Ohio</th>\n",
       "      <th>Texas</th>\n",
       "      <th>California</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>3.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>5.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>d</th>\n",
       "      <td>6.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>8.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Ohio  Texas  California\n",
       "a   0.0    1.0         2.0\n",
       "b   NaN    NaN         NaN\n",
       "c   3.0    4.0         5.0\n",
       "d   6.0    7.0         8.0"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame2 = frame.reindex(['a', 'b', 'c', 'd'])\n",
    "frame2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "更改columns index:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "states = ['Texas', 'Utah', 'California']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Texas</th>\n",
       "      <th>Utah</th>\n",
       "      <th>California</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>1</td>\n",
       "      <td>NaN</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>4</td>\n",
       "      <td>NaN</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>d</th>\n",
       "      <td>7</td>\n",
       "      <td>NaN</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Texas  Utah  California\n",
       "a      1   NaN           2\n",
       "c      4   NaN           5\n",
       "d      7   NaN           8"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.reindex(columns=states)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "reindex的参数:\n",
    "\n",
    "![](http://oydgk2hgw.bkt.clouddn.com/pydata-book/x0pq4.png)\n",
    "\n",
    "还可以使用loc更简洁的reindex:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>Texas</th>\n",
       "      <th>Utah</th>\n",
       "      <th>California</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>1.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>c</th>\n",
       "      <td>4.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>5.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>d</th>\n",
       "      <td>7.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>8.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   Texas  Utah  California\n",
       "a    1.0   NaN         2.0\n",
       "b    NaN   NaN         NaN\n",
       "c    4.0   NaN         5.0\n",
       "d    7.0   NaN         8.0"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.loc[['a', 'b', 'c', 'd'], states]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 2 Dropping Entries from an Axis (按轴删除记录) \n",
    "\n",
    "对于series,drop回返回一个新的object,并删去你制定的axis的值:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0.0\n",
       "b    1.0\n",
       "c    2.0\n",
       "d    3.0\n",
       "e    4.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj = pd.Series(np.arange(5.), index=['a', 'b', 'c', 'd', 'e'])\n",
    "obj"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0.0\n",
       "b    1.0\n",
       "d    3.0\n",
       "e    4.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 17,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "new_obj = obj.drop('c')\n",
    "new_obj"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0.0\n",
       "b    1.0\n",
       "e    4.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj.drop(['d', 'c'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "对于DataFrame,index能按行或列的axis来删除:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 21,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "      <th>three</th>\n",
       "      <th>four</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          one  two  three  four\n",
       "Ohio        0    1      2     3\n",
       "Colorado    4    5      6     7\n",
       "Utah        8    9     10    11\n",
       "New York   12   13     14    15"
      ]
     },
     "execution_count": 21,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.DataFrame(np.arange(16).reshape(4, 4),\n",
    "                    index=['Ohio', 'Colorado', 'Utah', 'New York'],\n",
    "                    columns=['one', 'two', 'three', 'four'])\n",
    "data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "行处理:如果a sequence of labels(一个标签序列)来调用drop,会删去row labels(axis 0):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "      <th>three</th>\n",
       "      <th>four</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          one  two  three  four\n",
       "Utah        8    9     10    11\n",
       "New York   12   13     14    15"
      ]
     },
     "execution_count": 22,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.drop(['Colorado', 'Ohio'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "列处理:drop列的话,设定axis=1或axis='columns':"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 23,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>three</th>\n",
       "      <th>four</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>4</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>8</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>12</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          one  three  four\n",
       "Ohio        0      2     3\n",
       "Colorado    4      6     7\n",
       "Utah        8     10    11\n",
       "New York   12     14    15"
      ]
     },
     "execution_count": 23,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.drop('two', axis=1)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 24,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>three</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>0</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>4</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>8</td>\n",
       "      <td>10</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>12</td>\n",
       "      <td>14</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          one  three\n",
       "Ohio        0      2\n",
       "Colorado    4      6\n",
       "Utah        8     10\n",
       "New York   12     14"
      ]
     },
     "execution_count": 24,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.drop(['two', 'four'], axis='columns')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "drop也可以不返回一个新的object,而是直接更改series or dataframe in-place:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 25,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0.0\n",
       "b    1.0\n",
       "d    3.0\n",
       "e    4.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 25,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj.drop('c', inplace=True)\n",
    "obj"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 3 Indexing, Selection, and Filtering(索引,选择,过滤)\n",
    "\n",
    "series indexing(obj[...]) 相当于numpy的array indexing, 而且除了整数,还可以使用series的index:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 35,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0.0\n",
       "b    1.0\n",
       "c    2.0\n",
       "d    3.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 35,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj = pd.Series(np.arange(4.), index=['a', 'b', 'c', 'd'])\n",
    "obj"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 36,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1.0"
      ]
     },
     "execution_count": 36,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj['b']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 37,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1.0"
      ]
     },
     "execution_count": 37,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj[1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 38,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "c    2.0\n",
       "d    3.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 38,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj[2:4]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 39,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "b    1.0\n",
       "a    0.0\n",
       "d    3.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 39,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# 选中行\n",
    "obj[['b', 'a', 'd']]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 40,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "b    1.0\n",
       "d    3.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 40,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj[[1, 3]]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 41,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0.0\n",
       "b    1.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 41,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj[obj < 2]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "用label来slicing(切片)的时候,和python的切片不一样的在于,会包括尾节点:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 42,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "b    1.0\n",
       "c    2.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 42,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj['b':'c']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "可以直接给选中的label更改值:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 43,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0.0\n",
       "b    5.0\n",
       "c    5.0\n",
       "d    3.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 43,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj['b':'c'] = 5\n",
    "obj"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "而对于DataFrame,indexing可以通过一个值或序列,选中一个以上的列:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 44,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "      <th>three</th>\n",
       "      <th>four</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          one  two  three  four\n",
       "Ohio        0    1      2     3\n",
       "Colorado    4    5      6     7\n",
       "Utah        8    9     10    11\n",
       "New York   12   13     14    15"
      ]
     },
     "execution_count": 44,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data = pd.DataFrame(np.arange(16).reshape((4, 4)),\n",
    "                    index=['Ohio', 'Colorado', 'Utah', 'New York'],\n",
    "                    columns=['one', 'two', 'three', 'four'])\n",
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 45,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Ohio         1\n",
       "Colorado     5\n",
       "Utah         9\n",
       "New York    13\n",
       "Name: two, dtype: int64"
      ]
     },
     "execution_count": 45,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data['two']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 46,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>three</th>\n",
       "      <th>one</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>2</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>6</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>10</td>\n",
       "      <td>8</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>14</td>\n",
       "      <td>12</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          three  one\n",
       "Ohio          2    0\n",
       "Colorado      6    4\n",
       "Utah         10    8\n",
       "New York     14   12"
      ]
     },
     "execution_count": 46,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[['three', 'one']]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "dataframe的indexing有一些比较特别的方式。比如通过布尔数组:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 47,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "      <th>three</th>\n",
       "      <th>four</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          one  two  three  four\n",
       "Ohio        0    1      2     3\n",
       "Colorado    4    5      6     7"
      ]
     },
     "execution_count": 47,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[:2]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 48,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "      <th>three</th>\n",
       "      <th>four</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          one  two  three  four\n",
       "Colorado    4    5      6     7\n",
       "Utah        8    9     10    11\n",
       "New York   12   13     14    15"
      ]
     },
     "execution_count": 48,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[data['three'] > 5]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "行选择的语法格式`data[:2]`是很方便的。给`[]`里传入一个list的话,可以选择列。\n",
    "\n",
    "另一种方法是用boolean dataframe:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 50,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "      <th>three</th>\n",
       "      <th>four</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>True</td>\n",
       "      <td>True</td>\n",
       "      <td>True</td>\n",
       "      <td>True</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>True</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "      <td>False</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "            one    two  three   four\n",
       "Ohio       True   True   True   True\n",
       "Colorado   True  False  False  False\n",
       "Utah      False  False  False  False\n",
       "New York  False  False  False  False"
      ]
     },
     "execution_count": 50,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data < 5"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 51,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "      <th>three</th>\n",
       "      <th>four</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>0</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          one  two  three  four\n",
       "Ohio        0    0      0     0\n",
       "Colorado    0    5      6     7\n",
       "Utah        8    9     10    11\n",
       "New York   12   13     14    15"
      ]
     },
     "execution_count": 51,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data[data < 5] = 0\n",
    "data"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## Selection with loc and iloc(用loc和iloc来选择)\n",
    "\n",
    "对于label-indexing on rows, 我们介绍特别的索引符,loc and iloc. 这两个方法能通过axis labels(loc)或integer(iloc),来选择行或列。\n",
    "\n",
    "一个列子,选中一行多列by label:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 55,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "      <th>three</th>\n",
       "      <th>four</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>0</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "      <td>11</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "      <td>15</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          one  two  three  four\n",
       "Ohio        0    0      0     0\n",
       "Colorado    0    5      6     7\n",
       "Utah        8    9     10    11\n",
       "New York   12   13     14    15"
      ]
     },
     "execution_count": 55,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 52,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "two      5\n",
       "three    6\n",
       "Name: Colorado, dtype: int64"
      ]
     },
     "execution_count": 52,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.loc['Colorado', ['two', 'three']]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "同iloc实现相同的效果:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 53,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "four    11\n",
       "one      8\n",
       "two      9\n",
       "Name: Utah, dtype: int64"
      ]
     },
     "execution_count": 53,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.iloc[2, [3, 0, 1]]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 54,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "one       8\n",
       "two       9\n",
       "three    10\n",
       "four     11\n",
       "Name: Utah, dtype: int64"
      ]
     },
     "execution_count": 54,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.iloc[2] # 一行"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 56,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>four</th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>7</td>\n",
       "      <td>0</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>11</td>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          four  one  two\n",
       "Colorado     7    0    5\n",
       "Utah        11    8    9"
      ]
     },
     "execution_count": 56,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.iloc[[1, 2], [3, 0, 1]]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "indexing函数也能用于切片,不论是single labels或lists of labels:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 57,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Ohio        0\n",
       "Colorado    5\n",
       "Utah        9\n",
       "Name: two, dtype: int64"
      ]
     },
     "execution_count": 57,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.loc[:'Utah', 'two']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 58,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>one</th>\n",
       "      <th>two</th>\n",
       "      <th>three</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>0</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>8</td>\n",
       "      <td>9</td>\n",
       "      <td>10</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>New York</th>\n",
       "      <td>12</td>\n",
       "      <td>13</td>\n",
       "      <td>14</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          one  two  three\n",
       "Colorado    0    5      6\n",
       "Utah        8    9     10\n",
       "New York   12   13     14"
      ]
     },
     "execution_count": 58,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "data.iloc[:, :3][data.three > 5]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "pandas中有很多用于选择和重新选择数据的方法:\n",
    "\n",
    "![](http://oydgk2hgw.bkt.clouddn.com/pydata-book/bwadf.png)\n",
    "\n",
    "![](http://oydgk2hgw.bkt.clouddn.com/pydata-book/lc2uc.png)\n",
    "\n",
    "注意:当设计padnas的时候,作者发现frame[:, col]这样的语法是比较冗长的,因为这是会被经常用到的一个功能。作者把一些indexing的功能(lable or integer)集成在了ix这个方法上。实际中,因为这种label和integer都可以用的方式很方便,于是pandas team设计了loc和ilco来实现label-based和integer-based indexing.\n",
    "\n",
    "虽然ix indexing依然错在,但是已经过时,不推荐使用。\n",
    "\n",
    "# 4 Integer Indexes(整数索引)\n",
    "\n",
    "一些新手再用integer来index的时候,总是会被绊倒。因为这种方法和python用于list和tuple的indexing方法不同。\n",
    "\n",
    "比如,你不希望下面的代码出现error:\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 59,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "ser = pd.Series(np.arange(3.))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 60,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    0.0\n",
       "1    1.0\n",
       "2    2.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 60,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ser"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 61,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "ename": "KeyError",
     "evalue": "-1",
     "output_type": "error",
     "traceback": [
      "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[0;31mKeyError\u001b[0m                                  Traceback (most recent call last)",
      "\u001b[0;32m<ipython-input-61-3cbe0b873a9e>\u001b[0m in \u001b[0;36m<module>\u001b[0;34m()\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0mser\u001b[0m\u001b[0;34m[\u001b[0m\u001b[0;34m-\u001b[0m\u001b[0;36m1\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[0;32m/Users/xu/anaconda/envs/py35/lib/python3.5/site-packages/pandas/core/series.py\u001b[0m in \u001b[0;36m__getitem__\u001b[0;34m(self, key)\u001b[0m\n\u001b[1;32m    581\u001b[0m         \u001b[0mkey\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mcom\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0m_apply_if_callable\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mkey\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    582\u001b[0m         \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0;32m--> 583\u001b[0;31m             \u001b[0mresult\u001b[0m \u001b[0;34m=\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mindex\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0mget_value\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0mkey\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m\u001b[1;32m    584\u001b[0m \u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m    585\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0;32mnot\u001b[0m \u001b[0mlib\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0misscalar\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mresult\u001b[0m\u001b[0;34m)\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32m/Users/xu/anaconda/envs/py35/lib/python3.5/site-packages/pandas/indexes/base.py\u001b[0m in \u001b[0;36mget_value\u001b[0;34m(self, series, key)\u001b[0m\n\u001b[1;32m   1978\u001b[0m         \u001b[0;32mtry\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1979\u001b[0m             return self._engine.get_value(s, k,\n\u001b[0;32m-> 1980\u001b[0;31m                                           tz=getattr(series.dtype, 'tz', None))\n\u001b[0m\u001b[1;32m   1981\u001b[0m         \u001b[0;32mexcept\u001b[0m \u001b[0mKeyError\u001b[0m \u001b[0;32mas\u001b[0m \u001b[0me1\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[1;32m   1982\u001b[0m             \u001b[0;32mif\u001b[0m \u001b[0mlen\u001b[0m\u001b[0;34m(\u001b[0m\u001b[0mself\u001b[0m\u001b[0;34m)\u001b[0m \u001b[0;34m>\u001b[0m \u001b[0;36m0\u001b[0m \u001b[0;32mand\u001b[0m \u001b[0mself\u001b[0m\u001b[0;34m.\u001b[0m\u001b[0minferred_type\u001b[0m \u001b[0;32min\u001b[0m \u001b[0;34m[\u001b[0m\u001b[0;34m'integer'\u001b[0m\u001b[0;34m,\u001b[0m \u001b[0;34m'boolean'\u001b[0m\u001b[0;34m]\u001b[0m\u001b[0;34m:\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n",
      "\u001b[0;32mpandas/index.pyx\u001b[0m in \u001b[0;36mpandas.index.IndexEngine.get_value (pandas/index.c:3332)\u001b[0;34m()\u001b[0m\n",
      "\u001b[0;32mpandas/index.pyx\u001b[0m in \u001b[0;36mpandas.index.IndexEngine.get_value (pandas/index.c:3035)\u001b[0;34m()\u001b[0m\n",
      "\u001b[0;32mpandas/index.pyx\u001b[0m in \u001b[0;36mpandas.index.IndexEngine.get_loc (pandas/index.c:4018)\u001b[0;34m()\u001b[0m\n",
      "\u001b[0;32mpandas/hashtable.pyx\u001b[0m in \u001b[0;36mpandas.hashtable.Int64HashTable.get_item (pandas/hashtable.c:6610)\u001b[0;34m()\u001b[0m\n",
      "\u001b[0;32mpandas/hashtable.pyx\u001b[0m in \u001b[0;36mpandas.hashtable.Int64HashTable.get_item (pandas/hashtable.c:6554)\u001b[0;34m()\u001b[0m\n",
      "\u001b[0;31mKeyError\u001b[0m: -1"
     ]
    }
   ],
   "source": [
    "ser[-1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "看到了,pandas在整数索引上可能会出错。这里我们有一个index包括0,1,2,但是猜测用户想要什么是很困难的:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 62,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    0.0\n",
       "1    1.0\n",
       "2    2.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 62,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ser"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "另一方面,如果用非整数来做index,就没有歧义了:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 63,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "2.0"
      ]
     },
     "execution_count": 63,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ser2 = pd.Series(np.arange(3.), index=['a', 'b', 'c'])\n",
    "ser2[-1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": true
   },
   "source": [
    "为了保持连贯性,如果axis index里包含integer,那么选择数据的时候,就会是label-orented. 为了更精确地选择,使用`loc`(for label)或`ilco`(for integers):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    0.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 64,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ser[:1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    0.0\n",
       "1    1.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 65,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ser.loc[:1]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    0.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 67,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "ser.iloc[:1]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 5 Arithmetic and Data Alignment (算数和数据对齐)\n",
    "\n",
    "pandas一个有用的feature就是,不同index的obejct之间的算数计算。如果两个object相加,但他们各自的index并不相同,最后结果得到的index是这两个index的合集:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "s1 = pd.Series([7.3, -2.5, 3.4, 1.5], index=['a', 'c', 'd', 'e'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "s2 = pd.Series([2.1, 3.6, -1.5, 4, 3.1], index=['a', 'c', 'e', 'f', 'g'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    7.3\n",
       "c   -2.5\n",
       "d    3.4\n",
       "e    1.5\n",
       "dtype: float64"
      ]
     },
     "execution_count": 70,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    2.1\n",
       "c    3.6\n",
       "e   -1.5\n",
       "f    4.0\n",
       "g    3.1\n",
       "dtype: float64"
      ]
     },
     "execution_count": 71,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    9.4\n",
       "c    1.1\n",
       "d    NaN\n",
       "e    0.0\n",
       "f    NaN\n",
       "g    NaN\n",
       "dtype: float64"
      ]
     },
     "execution_count": 72,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "s1 + s2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "这种数据对齐的方式(internal data alignment)引入了很多缺失值在没有陈赫的位置上。这些缺失值会被用在之后的算数计算中。\n",
    "\n",
    "在DataFrame中,数据对齐同时发生在行和列上:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df1 = pd.DataFrame(np.arange(9.).reshape((3, 3)), columns=list('bcd'),\n",
    "                   index=['Ohio', 'Texas', 'Colorado'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df2 = pd.DataFrame(np.arange(12.).reshape((4, 3)), columns=list('bde'),\n",
    "                   index=['Utah', 'Ohio', 'Texas', 'Oregon'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>3.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>5.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>6.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>8.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "            b    c    d\n",
       "Ohio      0.0  1.0  2.0\n",
       "Texas     3.0  4.0  5.0\n",
       "Colorado  6.0  7.0  8.0"
      ]
     },
     "execution_count": 79,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 80,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>3.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>5.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>6.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>8.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>9.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>11.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          b     d     e\n",
       "Utah    0.0   1.0   2.0\n",
       "Ohio    3.0   4.0   5.0\n",
       "Texas   6.0   7.0   8.0\n",
       "Oregon  9.0  10.0  11.0"
      ]
     },
     "execution_count": 80,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "相加的结果就是两个DataFrame,行和列的合集:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 81,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Colorado</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>3.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>6.0</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>9.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>12.0</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "            b   c     d   e\n",
       "Colorado  NaN NaN   NaN NaN\n",
       "Ohio      3.0 NaN   6.0 NaN\n",
       "Oregon    NaN NaN   NaN NaN\n",
       "Texas     9.0 NaN  12.0 NaN\n",
       "Utah      NaN NaN   NaN NaN"
      ]
     },
     "execution_count": 81,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1 + df2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "因为'c'和'e'列都不在两个DataFrame里,所有全是缺失值。对于行,即使有相同的,但列不一样的话也会是缺失值。\n",
    "\n",
    "如果两个DataFrame相加,而且没有column和row,结果会全是null:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 82,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df1 = pd.DataFrame({'A': [1, 2]})\n",
    "df2 = pd.DataFrame({'B': [3, 4]})"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 83,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>A</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   A\n",
       "0  1\n",
       "1  2"
      ]
     },
     "execution_count": 83,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 84,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>B</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   B\n",
       "0  3\n",
       "1  4"
      ]
     },
     "execution_count": 84,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 85,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>A</th>\n",
       "      <th>B</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "    A   B\n",
       "0 NaN NaN\n",
       "1 NaN NaN"
      ]
     },
     "execution_count": 85,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1 - df2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Arithmetic methods with fill values (带填充值的算数方法)\n",
    "\n",
    "对于上面那些缺失值,我们想要填上0:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 88,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "df1 = pd.DataFrame(np.arange(12.).reshape((3, 4)), \n",
    "                   columns=list('abcd'))\n",
    "\n",
    "df2 = pd.DataFrame(np.arange(20.).reshape((4, 5)), \n",
    "                   columns=list('abcde'))\n",
    "\n",
    "df2.loc[1, 'b'] = np.nan"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 89,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>7.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>11.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     a    b     c     d\n",
       "0  0.0  1.0   2.0   3.0\n",
       "1  4.0  5.0   6.0   7.0\n",
       "2  8.0  9.0  10.0  11.0"
      ]
     },
     "execution_count": 89,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 90,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>4.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>5.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>7.0</td>\n",
       "      <td>8.0</td>\n",
       "      <td>9.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>10.0</td>\n",
       "      <td>11.0</td>\n",
       "      <td>12.0</td>\n",
       "      <td>13.0</td>\n",
       "      <td>14.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>15.0</td>\n",
       "      <td>16.0</td>\n",
       "      <td>17.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>19.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "      a     b     c     d     e\n",
       "0   0.0   1.0   2.0   3.0   4.0\n",
       "1   5.0   NaN   7.0   8.0   9.0\n",
       "2  10.0  11.0  12.0  13.0  14.0\n",
       "3  15.0  16.0  17.0  18.0  19.0"
      ]
     },
     "execution_count": 90,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "不使用添加方法的结果:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 91,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>9.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>13.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>18.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>24.0</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "      a     b     c     d   e\n",
       "0   0.0   2.0   4.0   6.0 NaN\n",
       "1   9.0   NaN  13.0  15.0 NaN\n",
       "2  18.0  20.0  22.0  24.0 NaN\n",
       "3   NaN   NaN   NaN   NaN NaN"
      ]
     },
     "execution_count": 91,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1 + df2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "使用fill_value:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 92,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>4.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>9.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>13.0</td>\n",
       "      <td>15.0</td>\n",
       "      <td>9.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>18.0</td>\n",
       "      <td>20.0</td>\n",
       "      <td>22.0</td>\n",
       "      <td>24.0</td>\n",
       "      <td>14.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>15.0</td>\n",
       "      <td>16.0</td>\n",
       "      <td>17.0</td>\n",
       "      <td>18.0</td>\n",
       "      <td>19.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "      a     b     c     d     e\n",
       "0   0.0   2.0   4.0   6.0   4.0\n",
       "1   9.0   5.0  13.0  15.0   9.0\n",
       "2  18.0  20.0  22.0  24.0  14.0\n",
       "3  15.0  16.0  17.0  18.0  19.0"
      ]
     },
     "execution_count": 92,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1.add(df2, fill_value=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "下表中就有很多这样灵活的算数方法:\n",
    "\n",
    "![](http://oydgk2hgw.bkt.clouddn.com/pydata-book/y0rr4.png)\n",
    "\n",
    "每一个都有一个配对的,以 r 开头,意思是反转:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 93,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>inf</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.500000</td>\n",
       "      <td>0.333333</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.250000</td>\n",
       "      <td>0.200000</td>\n",
       "      <td>0.166667</td>\n",
       "      <td>0.142857</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.125000</td>\n",
       "      <td>0.111111</td>\n",
       "      <td>0.100000</td>\n",
       "      <td>0.090909</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          a         b         c         d\n",
       "0       inf  1.000000  0.500000  0.333333\n",
       "1  0.250000  0.200000  0.166667  0.142857\n",
       "2  0.125000  0.111111  0.100000  0.090909"
      ]
     },
     "execution_count": 93,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "1 / df1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 94,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>inf</td>\n",
       "      <td>1.000000</td>\n",
       "      <td>0.500000</td>\n",
       "      <td>0.333333</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>0.250000</td>\n",
       "      <td>0.200000</td>\n",
       "      <td>0.166667</td>\n",
       "      <td>0.142857</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0.125000</td>\n",
       "      <td>0.111111</td>\n",
       "      <td>0.100000</td>\n",
       "      <td>0.090909</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          a         b         c         d\n",
       "0       inf  1.000000  0.500000  0.333333\n",
       "1  0.250000  0.200000  0.166667  0.142857\n",
       "2  0.125000  0.111111  0.100000  0.090909"
      ]
     },
     "execution_count": 94,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1.rdiv(1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "在reindex(重建索引)的时候,也可以使用fill_value:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 95,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>4.0</td>\n",
       "      <td>5.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>8.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>11.0</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     a    b     c     d  e\n",
       "0  0.0  1.0   2.0   3.0  0\n",
       "1  4.0  5.0   6.0   7.0  0\n",
       "2  8.0  9.0  10.0  11.0  0"
      ]
     },
     "execution_count": 95,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df1.reindex(columns=df2.columns, fill_value=0)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### Operations between DataFrame and Series (DataFrame和Series之间的操作)\n",
    "\n",
    "先举个numpy的例子帮助理解,可以考虑成一个二维数组和它的一行:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 98,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[  0.,   1.,   2.,   3.],\n",
       "       [  4.,   5.,   6.,   7.],\n",
       "       [  8.,   9.,  10.,  11.]])"
      ]
     },
     "execution_count": 98,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr = np.arange(12.).reshape((3, 4))\n",
    "arr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 99,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 0.,  1.,  2.,  3.])"
      ]
     },
     "execution_count": 99,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 100,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[ 0.,  0.,  0.,  0.],\n",
       "       [ 4.,  4.,  4.,  4.],\n",
       "       [ 8.,  8.,  8.,  8.]])"
      ]
     },
     "execution_count": 100,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "arr - arr[0]"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "可以看到,这个减法是用在了每一行上。这种操作叫broadcasting,在Appendix A有更详细的解释。DataFrame和Series的操作也类似:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 101,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "frame = pd.DataFrame(np.arange(12.).reshape((4, 3)),\n",
    "                     columns=list('bde'),\n",
    "                    index=['Utah', 'Ohio', 'Texas', 'Oregon'])\n",
    "series = frame.iloc[0]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 102,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>3.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>5.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>6.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>8.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>9.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>11.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          b     d     e\n",
       "Utah    0.0   1.0   2.0\n",
       "Ohio    3.0   4.0   5.0\n",
       "Texas   6.0   7.0   8.0\n",
       "Oregon  9.0  10.0  11.0"
      ]
     },
     "execution_count": 102,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 103,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "b    0.0\n",
       "d    1.0\n",
       "e    2.0\n",
       "Name: Utah, dtype: float64"
      ]
     },
     "execution_count": 103,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "series"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "可以理解为series的index与dataframe的列匹配,broadcasting down the rows(向下按行广播):"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 104,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>0.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>3.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>6.0</td>\n",
       "      <td>6.0</td>\n",
       "      <td>6.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>9.0</td>\n",
       "      <td>9.0</td>\n",
       "      <td>9.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          b    d    e\n",
       "Utah    0.0  0.0  0.0\n",
       "Ohio    3.0  3.0  3.0\n",
       "Texas   6.0  6.0  6.0\n",
       "Oregon  9.0  9.0  9.0"
      ]
     },
     "execution_count": 104,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame - series"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "如果一个index既不在DataFrame的column中,也不再series里的index中,那么结果也是合集:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 105,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "      <th>f</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>0.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>3.0</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>3.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>6.0</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>6.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>9.0</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>9.0</td>\n",
       "      <td>NaN</td>\n",
       "      <td>12.0</td>\n",
       "      <td>NaN</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          b   d     e   f\n",
       "Utah    0.0 NaN   3.0 NaN\n",
       "Ohio    3.0 NaN   6.0 NaN\n",
       "Texas   6.0 NaN   9.0 NaN\n",
       "Oregon  9.0 NaN  12.0 NaN"
      ]
     },
     "execution_count": 105,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "series2 = pd.Series(range(3), index=['b', 'e', 'f'])\n",
    "frame + series2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "如果想要广播列,去匹配行,必须要用到算数方法:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 106,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>3.0</td>\n",
       "      <td>4.0</td>\n",
       "      <td>5.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>6.0</td>\n",
       "      <td>7.0</td>\n",
       "      <td>8.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>9.0</td>\n",
       "      <td>10.0</td>\n",
       "      <td>11.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          b     d     e\n",
       "Utah    0.0   1.0   2.0\n",
       "Ohio    3.0   4.0   5.0\n",
       "Texas   6.0   7.0   8.0\n",
       "Oregon  9.0  10.0  11.0"
      ]
     },
     "execution_count": 106,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "series3 = frame['d']\n",
    "frame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 107,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Utah       1.0\n",
       "Ohio       4.0\n",
       "Texas      7.0\n",
       "Oregon    10.0\n",
       "Name: d, dtype: float64"
      ]
     },
     "execution_count": 107,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "series3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 108,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>-1.0</td>\n",
       "      <td>0.0</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          b    d    e\n",
       "Utah   -1.0  0.0  1.0\n",
       "Ohio   -1.0  0.0  1.0\n",
       "Texas  -1.0  0.0  1.0\n",
       "Oregon -1.0  0.0  1.0"
      ]
     },
     "execution_count": 108,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.sub(series3, axis='index')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "axis参数就是用来匹配轴的。在这个例子里是匹配dataframe的row index(`axis='index` or `axis=0`),然后再广播。\n",
    "\n",
    "# 6 Function Application and Mapping (函数应用和映射)\n",
    "\n",
    "numpy的ufuncs(element-wise数组方法)也能用在pandas的object上:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 110,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>-0.810435</td>\n",
       "      <td>0.194448</td>\n",
       "      <td>-0.705901</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>-0.886275</td>\n",
       "      <td>0.553640</td>\n",
       "      <td>1.066754</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>0.189898</td>\n",
       "      <td>-0.056108</td>\n",
       "      <td>-0.159926</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>0.448303</td>\n",
       "      <td>0.439650</td>\n",
       "      <td>-1.351029</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "               b         d         e\n",
       "Utah   -0.810435  0.194448 -0.705901\n",
       "Ohio   -0.886275  0.553640  1.066754\n",
       "Texas   0.189898 -0.056108 -0.159926\n",
       "Oregon  0.448303  0.439650 -1.351029"
      ]
     },
     "execution_count": 110,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame = pd.DataFrame(np.random.randn(4, 3), columns=list('bde'), \n",
    "                     index=['Utah', 'Ohio', 'Texas', 'Oregon'])\n",
    "frame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 111,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>0.810435</td>\n",
       "      <td>0.194448</td>\n",
       "      <td>0.705901</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>0.886275</td>\n",
       "      <td>0.553640</td>\n",
       "      <td>1.066754</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>0.189898</td>\n",
       "      <td>0.056108</td>\n",
       "      <td>0.159926</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>0.448303</td>\n",
       "      <td>0.439650</td>\n",
       "      <td>1.351029</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "               b         d         e\n",
       "Utah    0.810435  0.194448  0.705901\n",
       "Ohio    0.886275  0.553640  1.066754\n",
       "Texas   0.189898  0.056108  0.159926\n",
       "Oregon  0.448303  0.439650  1.351029"
      ]
     },
     "execution_count": 111,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.abs(frame)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "另一个常用的操作是把一个用在一维数组上的函数,应用在一行或一列上。要用到DataFrame中的apply函数:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 112,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "b    1.334579\n",
       "d    0.609748\n",
       "e    2.417783\n",
       "dtype: float64"
      ]
     },
     "execution_count": 112,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "f = lambda x: x.max() - x.min()\n",
    "frame.apply(f)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "这里函数f,计算的是一个series中最大值和最小值的差,在frame中的每一列,这个函数被调用一次。作为结果的series,它的index就是frame的column。\n",
    "\n",
    "如果你传入`axis='column'`用于apply,那么函数会被用在每一行:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 113,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Utah      1.004883\n",
       "Ohio      1.953030\n",
       "Texas     0.349825\n",
       "Oregon    1.799333\n",
       "dtype: float64"
      ]
     },
     "execution_count": 113,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.apply(f, axis='columns')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "像是sum, mean这样的数组统计方法,DataFrame中已经集成了,所以没必要用apply。\n",
    "\n",
    "apply不会返回标量,只会返回一个含有多个值的series:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 114,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "def f(x): \n",
    "    return pd.Series([x.min(), x.max()], index=['min', 'max'])"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 116,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>-0.810435</td>\n",
       "      <td>0.194448</td>\n",
       "      <td>-0.705901</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>-0.886275</td>\n",
       "      <td>0.553640</td>\n",
       "      <td>1.066754</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>0.189898</td>\n",
       "      <td>-0.056108</td>\n",
       "      <td>-0.159926</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>0.448303</td>\n",
       "      <td>0.439650</td>\n",
       "      <td>-1.351029</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "               b         d         e\n",
       "Utah   -0.810435  0.194448 -0.705901\n",
       "Ohio   -0.886275  0.553640  1.066754\n",
       "Texas   0.189898 -0.056108 -0.159926\n",
       "Oregon  0.448303  0.439650 -1.351029"
      ]
     },
     "execution_count": 116,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 115,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>min</th>\n",
       "      <td>-0.886275</td>\n",
       "      <td>-0.056108</td>\n",
       "      <td>-1.351029</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>max</th>\n",
       "      <td>0.448303</td>\n",
       "      <td>0.553640</td>\n",
       "      <td>1.066754</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "            b         d         e\n",
       "min -0.886275 -0.056108 -1.351029\n",
       "max  0.448303  0.553640  1.066754"
      ]
     },
     "execution_count": 115,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.apply(f)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "element-wise的python函数也能用。假设想要格式化frame中的浮点数,变为string。可以用apply map:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 117,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": [
    "format = lambda x: '%.2f' % x"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 118,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>b</th>\n",
       "      <th>d</th>\n",
       "      <th>e</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>Utah</th>\n",
       "      <td>-0.81</td>\n",
       "      <td>0.19</td>\n",
       "      <td>-0.71</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Ohio</th>\n",
       "      <td>-0.89</td>\n",
       "      <td>0.55</td>\n",
       "      <td>1.07</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Texas</th>\n",
       "      <td>0.19</td>\n",
       "      <td>-0.06</td>\n",
       "      <td>-0.16</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>Oregon</th>\n",
       "      <td>0.45</td>\n",
       "      <td>0.44</td>\n",
       "      <td>-1.35</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "            b      d      e\n",
       "Utah    -0.81   0.19  -0.71\n",
       "Ohio    -0.89   0.55   1.07\n",
       "Texas    0.19  -0.06  -0.16\n",
       "Oregon   0.45   0.44  -1.35"
      ]
     },
     "execution_count": 118,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.applymap(format)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "applymap的做法是,series有一个map函数,能用来实现element-wise函数:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 119,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "Utah      -0.71\n",
       "Ohio       1.07\n",
       "Texas     -0.16\n",
       "Oregon    -1.35\n",
       "Name: e, dtype: object"
      ]
     },
     "execution_count": 119,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame['e'].map(format)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 7 Sorting and Ranking (排序)\n",
    "\n",
    "按row或column index来排序的话,可以用sort_index方法,会返回一个新的object:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 120,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    1\n",
       "b    2\n",
       "c    3\n",
       "d    0\n",
       "dtype: int64"
      ]
     },
     "execution_count": 120,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj = pd.Series(range(4), index=['d', 'a', 'b', 'c'])\n",
    "obj.sort_index()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "在DataFrame,可以用index或其他axis来排序:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 123,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>d</th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>three</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>one</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       d  a  b  c\n",
       "three  0  1  2  3\n",
       "one    4  5  6  7"
      ]
     },
     "execution_count": 123,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame = pd.DataFrame(np.arange(8).reshape((2, 4)),\n",
    "                     index=['three', 'one'],\n",
    "                     columns=['d', 'a', 'b', 'c'])\n",
    "frame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 124,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>d</th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>one</th>\n",
       "      <td>4</td>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>three</th>\n",
       "      <td>0</td>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       d  a  b  c\n",
       "one    4  5  6  7\n",
       "three  0  1  2  3"
      ]
     },
     "execution_count": 124,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.sort_index()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 125,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "      <th>d</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>three</th>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "      <td>3</td>\n",
       "      <td>0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>one</th>\n",
       "      <td>5</td>\n",
       "      <td>6</td>\n",
       "      <td>7</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       a  b  c  d\n",
       "three  1  2  3  0\n",
       "one    5  6  7  4"
      ]
     },
     "execution_count": 125,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.sort_index(axis=1)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "默认是升序,可以设置降序:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 126,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>d</th>\n",
       "      <th>c</th>\n",
       "      <th>b</th>\n",
       "      <th>a</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>three</th>\n",
       "      <td>0</td>\n",
       "      <td>3</td>\n",
       "      <td>2</td>\n",
       "      <td>1</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>one</th>\n",
       "      <td>4</td>\n",
       "      <td>7</td>\n",
       "      <td>6</td>\n",
       "      <td>5</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "       d  c  b  a\n",
       "three  0  3  2  1\n",
       "one    4  7  6  5"
      ]
     },
     "execution_count": 126,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.sort_index(axis=1, ascending=False)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "通过值来排序,用sort_values方法:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 127,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "2   -3\n",
       "3    2\n",
       "0    4\n",
       "1    7\n",
       "dtype: int64"
      ]
     },
     "execution_count": 127,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj = pd.Series([4, 7, -3, 2])\n",
    "obj.sort_values()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "缺失值会被排在最后:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 128,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4   -3.0\n",
       "5    2.0\n",
       "0    4.0\n",
       "2    7.0\n",
       "1    NaN\n",
       "3    NaN\n",
       "dtype: float64"
      ]
     },
     "execution_count": 128,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj = pd.Series([4, np.nan, 7, np.nan, -3, 2])\n",
    "obj.sort_values()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "对于一个DataFrame,可以用一列或多列作为sort keys。这样的话,只需要把一列多多列的名字导入到sort_values即可:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 129,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0</td>\n",
       "      <td>-3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   a  b\n",
       "0  0  4\n",
       "1  1  7\n",
       "2  0 -3\n",
       "3  1  2"
      ]
     },
     "execution_count": 129,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame = pd.DataFrame({'b': [4, 7, -3, 2], 'a': [0, 1, 0, 1]})\n",
    "frame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 130,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0</td>\n",
       "      <td>-3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   a  b\n",
       "2  0 -3\n",
       "3  1  2\n",
       "0  0  4\n",
       "1  1  7"
      ]
     },
     "execution_count": 130,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.sort_values(by='b')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "多列排序的话,传入一个list of names:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 131,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0</td>\n",
       "      <td>-3</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>4</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1</td>\n",
       "      <td>2</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>7</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   a  b\n",
       "2  0 -3\n",
       "0  0  4\n",
       "3  1  2\n",
       "1  1  7"
      ]
     },
     "execution_count": 131,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.sort_values(by=['a', 'b'])"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "ranking(排名)是给有效的数据分配数字。rank方法能用于series和DataFrame,rank方法默认会给每个group一个mean rank(平均排名)。rank 表示在这个数在原来的Series中排第几名,有相同的数,取其排名平均(默认)作为值:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 133,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    7\n",
       "1   -5\n",
       "2    7\n",
       "3    4\n",
       "4    2\n",
       "5    0\n",
       "6    4\n",
       "dtype: int64"
      ]
     },
     "execution_count": 133,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj = pd.Series([7, -5, 7, 4, 2, 0, 4])\n",
    "obj"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 138,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "1   -5\n",
       "5    0\n",
       "4    2\n",
       "3    4\n",
       "6    4\n",
       "0    7\n",
       "2    7\n",
       "dtype: int64"
      ]
     },
     "execution_count": 138,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj.sort_values()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 136,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    6.5\n",
       "1    1.0\n",
       "2    6.5\n",
       "3    4.5\n",
       "4    3.0\n",
       "5    2.0\n",
       "6    4.5\n",
       "dtype: float64"
      ]
     },
     "execution_count": 136,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj.rank()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "在obj中,4和4的排名是第4名和第五名,取平均得4.5。7和7的排名分别是第六名和第七名,则其排名取平均得6.5。\n",
    "\n",
    "rank也可以根据数据被观测到的顺序来设定:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 141,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    7\n",
       "1   -5\n",
       "2    7\n",
       "3    4\n",
       "4    2\n",
       "5    0\n",
       "6    4\n",
       "dtype: int64"
      ]
     },
     "execution_count": 141,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 137,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    6.0\n",
       "1    1.0\n",
       "2    7.0\n",
       "3    4.0\n",
       "4    3.0\n",
       "5    2.0\n",
       "6    5.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 137,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj.rank(method='first')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "这里没有给0和2(指两个数字7)赋予average rank 6.5,而是给第一个看到的7(label 0)设置rank为6,第二个看到的7(label 2)设置rank为7。\n",
    "\n",
    "也可以设置降序:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 142,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0    2.0\n",
       "1    7.0\n",
       "2    2.0\n",
       "3    4.0\n",
       "4    5.0\n",
       "5    6.0\n",
       "6    4.0\n",
       "dtype: float64"
      ]
     },
     "execution_count": 142,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "# Assign tie values the maximum rank in the group\n",
    "obj.rank(ascending=False, method='max')"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "dataframe 可以根据行或列来计算rank:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 143,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>0</td>\n",
       "      <td>4.3</td>\n",
       "      <td>-2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1</td>\n",
       "      <td>7.0</td>\n",
       "      <td>5.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>0</td>\n",
       "      <td>-3.0</td>\n",
       "      <td>8.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>1</td>\n",
       "      <td>2.0</td>\n",
       "      <td>-2.5</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "   a    b    c\n",
       "0  0  4.3 -2.0\n",
       "1  1  7.0  5.0\n",
       "2  0 -3.0  8.0\n",
       "3  1  2.0 -2.5"
      ]
     },
     "execution_count": 143,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame = pd.DataFrame({'b': [4.3, 7, -3, 2],\n",
    "                      'a': [0, 1, 0, 1],\n",
    "                      'c': [-2, 5, 8, -2.5]})\n",
    "frame"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 144,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>a</th>\n",
       "      <th>b</th>\n",
       "      <th>c</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>0</th>\n",
       "      <td>2.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>1</th>\n",
       "      <td>1.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>2.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>2</th>\n",
       "      <td>2.0</td>\n",
       "      <td>1.0</td>\n",
       "      <td>3.0</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>3</th>\n",
       "      <td>2.0</td>\n",
       "      <td>3.0</td>\n",
       "      <td>1.0</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "     a    b    c\n",
       "0  2.0  3.0  1.0\n",
       "1  1.0  3.0  2.0\n",
       "2  2.0  1.0  3.0\n",
       "3  2.0  3.0  1.0"
      ]
     },
     "execution_count": 144,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "frame.rank(axis='columns') # columns表示列与列之间的排序(即每一行里数据间的排序)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "![](http://oydgk2hgw.bkt.clouddn.com/pydata-book/6xv9c.png)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# 8 Axis Indexes with Duplicate Labels (有重复label的轴索引)\n",
    "\n",
    "我们看到的所有例子都有unique axis labels(index values),唯一的轴标签(索引值)。一些pandas函数(reindex),需要label是唯一的,但这并是不强制的。比如下面有一个重复的索引:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 145,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0\n",
       "a    1\n",
       "b    2\n",
       "b    3\n",
       "c    4\n",
       "dtype: int64"
      ]
     },
     "execution_count": 145,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj = pd.Series(range(5), index=['a', 'a', 'b', 'b', 'c'])\n",
    "obj"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "index的is_unique特性能告诉我们label是否是唯一的:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 146,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "False"
      ]
     },
     "execution_count": 146,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj.index.is_unique"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "数据选择对于重复label则表现有点不同。如果一个label有多个值,那么就会返回一个series, 如果是label只对应一个值的话,会返回一个标量:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 147,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "a    0\n",
       "a    1\n",
       "dtype: int64"
      ]
     },
     "execution_count": 147,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj['a']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 148,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "4"
      ]
     },
     "execution_count": 148,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "obj['c']"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "这个选择的逻辑也应用于DataFrame:"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 149,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>-0.314526</td>\n",
       "      <td>-1.313861</td>\n",
       "      <td>0.823529</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>a</th>\n",
       "      <td>0.994028</td>\n",
       "      <td>-0.442338</td>\n",
       "      <td>-0.846985</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>-1.340453</td>\n",
       "      <td>-0.031612</td>\n",
       "      <td>0.044791</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>-0.919341</td>\n",
       "      <td>-0.409164</td>\n",
       "      <td>-1.297257</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          0         1         2\n",
       "a -0.314526 -1.313861  0.823529\n",
       "a  0.994028 -0.442338 -0.846985\n",
       "b -1.340453 -0.031612  0.044791\n",
       "b -0.919341 -0.409164 -1.297257"
      ]
     },
     "execution_count": 149,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df = pd.DataFrame(np.random.randn(4, 3), index=['a', 'a', 'b', 'b'])\n",
    "df"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 150,
   "metadata": {
    "collapsed": false
   },
   "outputs": [
    {
     "data": {
      "text/html": [
       "<div>\n",
       "<table border=\"1\" class=\"dataframe\">\n",
       "  <thead>\n",
       "    <tr style=\"text-align: right;\">\n",
       "      <th></th>\n",
       "      <th>0</th>\n",
       "      <th>1</th>\n",
       "      <th>2</th>\n",
       "    </tr>\n",
       "  </thead>\n",
       "  <tbody>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>-1.340453</td>\n",
       "      <td>-0.031612</td>\n",
       "      <td>0.044791</td>\n",
       "    </tr>\n",
       "    <tr>\n",
       "      <th>b</th>\n",
       "      <td>-0.919341</td>\n",
       "      <td>-0.409164</td>\n",
       "      <td>-1.297257</td>\n",
       "    </tr>\n",
       "  </tbody>\n",
       "</table>\n",
       "</div>"
      ],
      "text/plain": [
       "          0         1         2\n",
       "b -1.340453 -0.031612  0.044791\n",
       "b -0.919341 -0.409164 -1.297257"
      ]
     },
     "execution_count": 150,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "df.loc['b']"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": true
   },
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "anaconda-cloud": {},
  "kernelspec": {
   "display_name": "Python [py35]",
   "language": "python",
   "name": "Python [py35]"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.5.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 0
}