
Using Google Earth Engine With Colab

Eric Xia, GIS and Data Asst, Brown University

February 20, 2024
https://libguides.brown.edu/gis_data_tutorials/google_earth_engine

1 Introduction
Google Earth Engine is a planetary-scale platform for satellite imagery and related datasets, avail-
able at no cost for academic and personal use. The most commonly used datasets includes satellite
imagery from the LANDSAT, SENTINEL, and MODIS programs. However, there are hundreds
of other geospatial datasets accessible, including atmospheric, weather and climate data, geological
classifications, vegetation indices, and DEMs.

While Earth Engine provides an invaluable source of data, it can be difficult to integrate the
custom Javascript editor into the research process. This tutorial uses the Python Google Earth
Engine API in conjunction with Google Colab, an online code editor that makes it easy to create
and share notebooks. Using Colab, we will demonstrate how to access and display satellite imagery
from Google Earth Engine. Then, we will perform some basic geoprocessing on the resulting
images. Finally, we will export the data to Google Drive.

In order to use the Google Earth Engine API, your account needs to have permission to create
Google Cloud Projects, which some organizations (like Brown University) do not permit. In these
cases, it is recommended that you use a personal non-organizational account. Otherwise, you can
also obtain noncommercial access without creating a Cloud Project by completing this signup form.

Registering for GEE
Go to https://earthengine.google.com/, and
click Get Started. Register your project, selecting
Unpaid Usage, and Academia & Research. Create a new
Google Cloud Project. You can configure it however you
want, but make a note of the Project ID. Confirm your
Cloud Project information; you should be taken to a
scripting editor under the Cloud Project you have created.

Although we won’t be using the online code editor, the setup here is necessary for notebook
authentication and initialization.

1

https://libguides.brown.edu/gis_data_tutorials/google_earth_engine
https://signup.earthengine.google.com/#!/no_redirect
https://earthengine.google.com/


GEE Authentication in Google Colab
If you want to follow along, go to https://colab.research.google.com and make a new note-
book. If you want to just run the code, open this notebook and select File > Save a Copy in Drive.
Each section of code below is a separate block.

Our code will mainly use two libraries. ee is the Python API for Google Earth Engine, while
geemap provides essential add-ons for working with Google Earth Engine. Among other things,
this includes a version of the Google Earth Engine map we saw in the editor above. Run a code cell
with the following contents:

import ee
import geemap

Now, go ahead and authenticate Earth Engine.

ee.Authenticate()
ee.Initialize(project="GOOGLE-CLOUD-PROJECT-ID")

With the ID for the project you set up previously, you should be able to run through the authentication
and initialization process. If Google alerts you that the app is unverified, click continue: you’ll be
authoring the client app in the notebook! Also, make sure to leave read-only scope unchecked.

Import Data from Google Drive
Let’s now mount Google Drive and display some vector data with geemap. At the bottom of the
right toolbar, expand the Files menu and then click Mount Drive , or run the following cell.

from google.colab import drive
drive.mount('/content/drive')

Now, we can upload any kind of geospatial data and interact with it in Colab. In My Drive, make a
new folder named ’Earth Engine Colab’. Upload this GeoJSON file of Rhode Island to the newly
created folder.

E. Xia 2 Brown University

https://colab.research.google.com
https://colab.research.google.com/drive/1GTXrtGPaVLqLcmzsRXUPsowUyGn8wKD9?usp=sharing
https://raw.githubusercontent.com/Brown-University-Library/geodata_earthengine/main/data/rhodeisland.geojson


We can now view the polygon as a layer on the geemap map:

import json
path = "../content/drive/MyDrive/Earth Engine Colab/rhodeisland.geojson"
region = geemap.geojson_to_ee(path)

map = geemap.Map()
map.centerObject(region, 9)
map.addLayer(region, {}, 'region')
map

You should see the following display in the notebook:

Retrieve Raster Data
The raster images on Google Earth Engine are often in several bands. A band is a matrix of values
for a certain variable, where each variable corresponds to a pixel (square area). These variables
might correspond to the average rainfall, or surface temperature at a given time. More routinely,
RGB images are composed of red, blue, and green bands, which are the visible portion of the
electromagnetic spectrum. On the left, you can see how a raster is made of several bands.

Satellites like LANDSAT take images by sensing reflected light from the Earth’s surface. On
the right, you can see the reflected light by wavelength, and the bands which the satellite captures.
The acronyms are for sensors on different Landsat satellites; the numbers are for the bands gathered
by respective sensors. Note that the lower bands are RGB, while the higher ones are infrared.

E. Xia 3 Brown University



1 2

The data we’re using here is 1:30M scale, which means each pixel in a band represents a 30 x 30
meter square area. We’ll be using the LANDSAT 8 Tier 1 Surface Reflectance dataset. In Google
Earth Engine, a set of images is known as an ImageCollection.

landsat_8 = ee.ImageCollection('LANDSAT/LC08/C02/T1_TOA');

The line above imports the ImageCollection. However, landsat_8 is a set of images; there’s no
way to visualize them all at once. We want to display a single image. Let’s first filter by location,
using the centroid of the state region:

centroid = region.geometry().centroid(maxError=1)
spatialFiltered = landsat_8.filterBounds(centroid)

And then filter by date:

startDate = '2015-01-01';
endDate = '2015-12-31'
temporalFiltered = spatialFiltered.filterDate(startDate, endDate);

We’ve filtered our collection for location and date, but it still can’t be displayed, as our data varies
by time. To get a single image out of the ImageCollection, we can use first() or reduce(). For
example, we can sort by cloud cover and take the least cloudy one.

cloudless = temporalFiltered.sort('CLOUD_COVER').first();

In Colab and other interactive environments, you can inspect variables by running cells with the
variable name on its own line (this is also useful for debugging). Here, we can see cloudless is a
specific Image from the LANDSAT 8 collection, with 17 bands and 112 properties:

cloudless

1Source: https://gisgeography.com/spatial-data-types-vector-raster/
2Source: https://landsat.gsfc.nasa.gov/about/technical-details/

E. Xia 4 Brown University

https://developers.google.com/earth-engine/datasets/catalog/LANDSAT_LC08_C02_T1_TOA
https://gisgeography.com/spatial-data-types-vector-raster/
https://landsat.gsfc.nasa.gov/about/technical-details/


Aside from retrieving individual images, can also get composites of all of the images in the time
range by running functions over our collection. Think about the differences between taking the
pixel-wise mean, median, and the minimum/maximum across a time range. Which one is best for
avoiding clouds?

mean = temporalFiltered.reduce(ee.Reducer.mean());
median = temporalFiltered.reduce(ee.Reducer.median());
min = temporalFiltered.reduce(ee.Reducer.min());

Displaying Rasters
When visualizing map data, Google Earth Engine needs instructions on how it should be displayed.
For any multi-band image, it will default to displaying B1, B2, and B3 as red, blue, and green.
It will also stretch them to a [0,1] range. When applied to the LANDSAT data, which has dif-
ferent band numbering, this results in a bad image. To display an RGB composite – what we
would recognize as satellite imagery – we need to specify the actual corresponding bands in the
LANDSAT data. To figure this out, we read the metadata on the Google Earth Engine Catalog page:

It tells us we should display bands B4, B3, and B2 as red, blue, green, and to set the max value to
0.3. With the following code, our image displays as expected:

visParams = {'bands': ['B4', 'B3', 'B2'], 'max': 0.3};
map.addLayer(cloudless, visParams, 'true-color composite');
map

E. Xia 5 Brown University



Perform Operations on Raster Data
Let’s go ahead and create a NDVI band for the data. NDVI stands for Normalized Difference
Vegetation Index, and is defined as follows, where NIR is the near-infrared band and RED is the
red band:

NDVI =
NIR− RED
NIR+ RED

NDVI is an important estimate of the health and density of vegetation in a particular region. Ver-
dant, green land reflect much less red light and much more near-infrared light than barren land,
so the difference NIR − RED varies with the quantity of vegetation present. However the total
intensity NIR+ RED can vary, so we normalize the index by dividing this quantity out.

We first define a NDVI function, which takes an image and calculates the per-pixel NDVI.

Then, we map the function over our ImageCollection with Google Earth Engine’s map() func-
tion. This time, we reduce the collection with max(), to create a greenest pixel composite. There
are other ways of compositing NDVI over time, such as using qualityMosaic or taking 95 percentile
values, which we won’t cover here.

def addNDVI(image):
ndvi = image.normalizedDifference(['B5', 'B4']).rename('NDVI');
return image.addBands(ndvi);

withNDVI = temporalFiltered.map(addNDVI)

E. Xia 6 Brown University

https://developers.google.com/earth-engine/apidocs/ee-imagecollection-qualitymosaic


max = withNDVI.reduce(ee.Reducer.max());

Displaying the max Image should display the following maximum NDVI for the entire year:

vizParams = {'bands': ['NDVI_max'], 'min': -1, 'max': 1,
'palette': ['white', 'green']};
map.addLayer(max, vizParams, 'Greenest pixel composite');
map

Export Data to Drive
We’ve created an NDVI band for our ImageCollection. The final step is to export the data to Google
Drive. To do this, we use batch.Export.image.toDrive. We only want the NDVI band, and we
want to clip the polygon exported to the region we defined.

The parameters are the image, the coordinate reference system for LANDSAT (EPSG:4326, or
WGS84), a region to clip to, a description (the filename of the output file), and a destination folder.
There is also a scale parameter where you should provide the LANDSAT meters per pixel (30
meters).

task = ee.batch.Export.image.toDrive(
image=max.select('NDVI_max'),
crs='EPSG:4326',
region=region.geometry(),
description=f'NDVI_max_{startDate}_{endDate}',
folder='Earth Engine Colab',
scale=30);

task.start()

E. Xia 7 Brown University



Make sure to specify the region parameter! If you don’t specify a region, the output TIFF file can
be very large, and the task can take a very long time to complete.

To check on the status of the task, you can use task.status():

task.status()

After the export is complete and you’ve downloaded the resulting geoTIFF, you can view the NDVI
data in QGIS through Layer > Data Source Manager > Raster. Below is the data visualized with
the YlGn color ramp.

To summarize, we registered a Cloud Project for Google Earth Engine and set up Google Colab to
work with it. Then, we imported vector data from Google Drive, retrieved raster data filtered by
spatial and temporal data, and did some basic processing on the data. Finally, we exported new
raster data back to the Drive.

References
Google Earth Engine can be difficult to work with. To protect datasets from unauthorized uses,
client-side operations (like print()) within map() functions are prohibited, which canmake under-
standing what’s being retrieved difficult. Below, I list some helpful resources. Some use Javascript
instead of Python, but for scripting purposes switching between the two is usually straightforward.

• Official Introduction to Google Earth Engine’s Python API

• Official Earth Engine JavaScript API Tutorials

• A collection of 300+ examples for using Earth Engine and the geemap Python package

• Google Earth Engine Beginner’s Cookbook (Javascript)

• Time Series Modeling with Google Earth Engine (Javascript)

E. Xia 8 Brown University

https://developers.google.com/earth-engine/tutorials/community/intro-to-python-api
https://developers.google.com/earth-engine/tutorials/tutorials
https://github.com/giswqs/earthengine-py-examples
https://developers.google.com/earth-engine/tutorials/community/beginners-cookbook#adding_a_layer_to_the_map
https://developers.google.com/earth-engine/tutorials/community/time-series-modeling

	Introduction
	Registering for GEE
	GEE Authentication in Google Colab
	Import Data from Google Drive
	Retrieve Raster Data
	Displaying Rasters
	Perform Operations on Raster Data
	Export Data to Drive
	References


