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Preface

CALFEM® is an interactive computer program for teaching the finite element method
(FEM). The name CALFEM is an abbreviation of ” Computer Aided Learning of the Finite
Element Method”. The program can be used for different types of structural mechanics
problems and field problems.

CALFEM, the program and its built-in philosophy have been developed at the Division of
Structural Mechanics, Lund University, starting in the late 70’s. Many coworkers, former
and present, have been engaged in the development at different stages, of whom we might
mention

Per-Erik Austrell Hakan Carlsson Ola Dahlblom
Susanne Heyden Jonas Lindemann Anders Olsson
Karl-Gunnar Olsson Kent Persson Anders Peterson
Hans Petersson Matti Ristinmaa Goran Sandberg
Erik Serrano Per-Anders Wernberg

This release represents the latest development of CALFEM. The functions for finite element
applications are all MATLAB functions (.m-files) as described in the MATLAB manual.
We believe that this environment increases the versatility and handling of the program
and, above all, the ease of teaching the finite element method.

Lund, December 14, 2022

The authors
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1 Introduction

The computer program CALFEM is a MATLAB toolbox for finite element applications.
This manual concerns mainly the finite element functions, but it also contains descriptions
of some often used MATLAB functions.

The finite element analysis can be carried out either interactively or in a batch oriented
fashion. In the interactive mode the functions are evaluated one by one in the MATLAB
command window. In the batch oriented mode a sequence of functions are written in a file
named .m-file, and evaluated by writing the file name in the command window. The batch
oriented mode is a more flexible way of performing finite element analysis because the
.m-file can be written in an ordinary editor. This way of using CALFEM is recommended
because it gives a structured organization of the functions. Changes and reruns are also
easily executed in the batch oriented mode.

A command line consists typically of functions for vector and matrix operations, calls to
functions in the CALFEM finite element library or commands for workspace operations.
An example of a command line for a matrix operation is

C=A+PF

where two matrices A and B’ are added together and the result is stored in matrix C .
The matrix B’ is the transpose of B. An example of a call to the element library is

Ke = springle(k)

where the two-by-two element stiffness matrix K¢ is computed for a spring element with
spring stiffness k, and is stored in the variable Ke. The input argument is given within
parentheses ( ) after the name of the function. Some functions have multiple input argu-
ments and/or multiple output arguments. For example

[lambda, X] = eigen(K, M)

computes the eigenvalues and eigenvectors to a pair of matrices K and M. The output
variables - the eigenvalues stored in the vector lambda and the corresponding eigenvectors
stored in the matrix X - are surrounded by brackets [ | and separated by commas. The
input arguments are given inside the parentheses and also separated by commas.

The statement
help  function

provides information about purpose and syntax for the specified function.
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The available functions are organized in groups as follows. Each group is described in a
separate chapter.

Groups of functions

General purpose
commands for managing variables, workspace, output etc

Matrix functions for matrix handling
Material functions for computing material matrices

Element functions for computing element matrices and element forces

System functions for setting up and solving systems of equations
Statement
functions for algorithm definitions

Graphics functions for plotting
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2 General purpose functions

The general purpose functions are used for managing variables and workspace, control of
output etc. The functions listed here are a subset of the general purpose functions described
in the MATLAB manual. The functions can be divided into the following groups

Managing commands and functions
help Online documentation
type List .m-file
what Directory listing of .m-, .mat- and .mex-files
. Continuation
% Write a comment line

Managing variables and the workspace
clear Remove variables from workspace
disp Display variables in workspace on display screen
load Retrieve variable from disk and load in workspace
save Save matrix bank variable on disk
who, List directory of variables in workspace
whos

Working with files and controlling the command window
diary Save session in a named file
echo Control output on the display screen
format Control the output display format
quit Stop execution and exit from the CALFEM program

3 GENERAL PURPOSE



clear

Purpose:

Remove variables from workspace.

Syntax:

clear

clear namel name2 names ...
Description:

clear removes all variables from workspace.

clear namel name2 names ... removes specified variables from workspace.

Note:

This is a MATLAB built-in function. For more information about the clear function,
type help clear.
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diary

Purpose:

Save session in a disk file.

Syntax:

diary filename
diary off
diary on

Description:

diary filename writes a copy of all subsequent keyboard input and most of the resulting
output (but not graphs) on the named file. If the file filename already exists, the
output is appended to the end of that file.

diary off stops storage of the output.

diary on turns it back on again, using the current filename or default filename diary
if none has yet been specified.

The diary function may be used to store the current session for later runs. To make
this possible, finish each command line with semicolon ’;” to avoid the storage of
intermediate results on the named diary file.

Note:

This is a MATLAB built-in function. For more information about the diary function,
type help diary.
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disp

Purpose:

Display a variable in matrix bank on display screen.
Syntax:

disp(A)
Description:

disp(A) displays the matrix A on the display screen.

Note:

This is a MATLAB built-in function. For more information about the disp function,
type help disp.
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echo

Purpose:

Control output on the display screen.

Syntax:
echo on
echo off
echo
Description:
echo on turns on echoing of commands inside Script-files.
echo off turns off echoing.

echo by itself, toggles the echo state.

Note:

This is a MATLAB built-in function. For more information about the echo function,
type help echo.
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format

Purpose:

Control the output display format.

Syntax:
See the listing be

Description:

low.

format controls the output format. By default, MATLAB displays numbers in a short
format with five decimal digits.

Command Result
format short 5 digit scaled fixed point

format long

15 digit scaled fixed point

format short e 5 digit floating point

format long e

Note:

16 digit floating point

Example

3.1416

3.14159265358979
3.1416e+-000
3.141592653589793e+000

This is a MATLAB built-in function. For more information about the format func-
tion, type help format.
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help

Purpose:

Display a description of purpose and syntax for a specific function.

Syntax:

help function name

Description:

help provides an online documentation for the specified function.

Example:

Typing
>> help springle

yields

Ke=springle(ep)

PURPOSE
Compute element stiffness matrix for spring (analog) element.

INPUT: ep = [k]; spring stiffness or analog quantity.

OUTPUT: Ke : stiffness matrix, dim(Ke)= 2 x 2

Note:

This is a MATLAB built-in function. For more information about the help function,
type help help.
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load

Purpose:

Retrieve variable from disk and load in workspace.

Syntax:
load filename
load filename.ext
Description:
load filename retrieves the variables from the binary file filename.mat.

load filename.ext reads the ASCII file filename.ext with numeric data arranged in m
rows and n columns. The result is an m-by-n matrix residing in workspace with the
name filename, i.e. with the extension stripped.

Note:

This is a MATLAB built-in function. For more information about the load function,
type help load.
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quit

Purpose:
Terminate CALFEM session.

Syntax:
quit
Description:

quit filename terminates the CALFEM without saving the workspace.

Note:

This is a MATLAB built-in function. For more information about the quit function,
type help quit.
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save

Purpose:

Save workspace variables on disk.

Syntax:

save filename
save filename variables
save filename variables -ascii

Description:

save filename writes all variables residing in workspace in a binary file named file-
name.mat

save filename variables writes named variables, separated by blanks, in a binary file
named filename.mat

save filename variables -ascii writes named variables in an ASCII file named filename.

Note:

This is a MATLAB built-in function. For more information about the save function,
type help save.
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type

Purpose:
List file.

Syntax:
type filename

Description:

type filename lists the specified file. Use path names in the usual way for your
operating system. If a filename extension is not given, .m is added by default. This
makes it convenient to list the contents of .m-files on the screen.

Note:

This is a MATLAB built-in function. For more information about the type function,
type help type.
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what

Purpose:

Directory listing of .m-files, .mat-files and .mex-files.

Syntax:

what
what dirname

Description:
what lists the .m-files, .mat-files and .mex-files in the current directory.
what dirname lists the files in directory dirname in the MATLAB search path. The
syntax of the path depends on your operating system.

Note:

This is a MATLAB built-in function. For more information about the what function,
type help what.
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who, whos

Purpose:

List directory of variables in matrix bank.

Syntax:
who
whos
Description:
who lists the variables currently in memory.

whos lists the current variables and their size.

Examples:
who

Your variables are:

A B C

K M X

k lambda

whos

name size elements bytes density complex
A 3-by-3 9 72 Full No
B 3-by-3 9 72 Full No
C  3-by-3 9 72 Full No
K 20-by-20 400 3200 Full No
M 20-by-20 400 3200 Full No
X 20-by-20 400 3200 Full No
k  1-by-1 1 8 Full No

lambda  20-by-1 20 160 Full No

Grand total is 1248 elements using 9984 bytes

Note:

These are MATLAB built-in functions. For more information about the functions,
type help who or help whos.
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Purpose:

Continuation.

Syntax:

Description:

An expression can be continued on the next line by using ... .

Note:
This is a MATLAB built-in function.
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%

Purpose:

Write a comment line.

Syntax:

% arbitrary text

Description:

An arbitrary text can be written after the symbol %.

Note:
This is a MATLAB built-in character.
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GENERAL PURPOSE
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3 Matrix functions

The group of matrix functions comprises functions for vector and matrix operations and
also functions for sparse matrix handling. MATLAB has two storage modes, full and sparse.
Only nonzero entries and their indices are stored for sparse matrices. Sparse matrices are
not created automatically. But once initiated, sparsity propagates. Operations on sparse
matrices produce sparse matrices and operations on a mixture of sparse and full matrices
also normally produce sparse matrices.

The following functions are described in this chapter:

Vector and matrix operations
[]()= Special characters
" Special characters
; Create vectors and do matrix subscripting
+ — %/  Matrix arithmetic
abs Absolute value
det Matrix determinant
diag Diagonal matrices and diagonals of a matrix
inv Matrix inverse
length Vector length
max Maximum element(s) of a matrix
min Minimum element(s) of a matrix
ones Generate a matrix of all ones
size Matrix dimensions
sqrt Square root
sum Sum of the elements of a matrix
Zeros Generate a zero matrix

Sparse matrix handling
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spy Visualize sparsity structure
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(1O ="

R

Purpose:

Special characters.

Syntax:

[10)

Y

Description:

Examples:

Brackets are used to form vectors and matrices.

Parentheses are used to indicate precedence in arithmetic expressions and to
specify an element of a matrix.

Used in assignment statements.

Matrix transpose. X' is the transpose of X. If X is complex, the apostrophe
sign performs complex conjugate as well. Do X." if only the transpose of the
complex matrix is desired

Decimal point. 314/100, 3.14 and 0.314el are all the same.
Comma. Used to separate matrix subscripts and function arguments.

Semicolon. Used inside brackets to end rows. Used after an expression to
suppress printing or to separate statements.

By the statement

a=2

the scalar a is assigned a value of 2. An element in a matrix may be assigned a value
according to

A(2,5) =3

The statement

D=1[12;3 4]

results in matrix

o-[13

stored in the matrix bank. To copy the contents of the matrix D to a matrix E, use

E=D

The character ’ is used in the following statement to store the transpose of the matrix
A in a new matrix F

Note:

F=A

These are MATLAB built-in characters.

MATRIX
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Purpose:

Create vectors and do matrix subscripting.

Description:

The colon operator uses the following rules to create regularly spaced vectors:

j: k isthesameas[j,j+ 1, .., k]
j:i:kisthesameas [, j+1i,j+ 2i, ..., k]

The colon notation may also be used to pick out selected rows, columns, and elements
of vectors and matrices:

A( :,j) is the j :th column of A
A(i,: ) is thei :th row of A
Examples:
The colon ;" used with integers
d=1:4
results in a row vector
d=[123 4]

stored in the workspace.

The colon notation may be used to display selected rows and columns of a matrix on
the terminal. For example, if we have created a 3-times-4 matrix D by the statement

D=[d; 2xd; 3x%d]
resulting in

1 2 3 4

D=2 4 6 8

369

—

2
columns three and four are displayed by entering
D(:,3:4)

resulting in

3 4
D(:,3:4)=|6 8
9 12

In order to copy parts of the D matrix into another matrix the colon notation is used
as

E(3:4,2:3)=D(1:2,3:4)
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Assuming the matrix E was a zero matrix before the statement is executed, the result
will be

O O O o
S W o o
o ~ O O
O O O o

Note:
This is a MATLAB built-in character.
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+ =%/

Purpose:

Matrix arithmetic.

Syntax:

A+ B
A—-B
AxB
A/s

Description:

Matrix operations are defined by the rules of linear algebra.

Examples:

An example of a sequence of matrix-to-matrix operations is
D=A+B-C

A matrix-to-vector multiplication followed by a vector-to-vector subtraction may be
defined by the statement

b=c—Axx
and finally, to scale a matrix by a scalar s we may use

B=A/s

Note:
These are MATLAB built-in operators.
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abs

Purpose:

Absolute value.

Syntax:
B=abs(A)

Description:
B=abs(A) computes the absolute values of the elements of matrix A and stores them
in matrix B.

Examples:

Assume the matrix

7 4
=[5 5]
The statement D=abs(C) results in a matrix
7 4
=[5 3]

stored in the workspace.

Note:

This is a MATLAB built-in function. For more information about the abs function,
type help abs.
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det

Purpose:

Matrix determinant.

Syntax:
a=det(A)
Description:

a=det(A) computes the determinant of the matrix A and stores it in the scalar a.

Note:

This is a MATLAB built-in function. For more information about the det function,
type help det.
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diag

Purpose:

Diagonal matrices and diagonals of a matrix.

Syntax:
M=diag(v)
v=diag(M)

Description:

For a vector v with n components, the statement M=diag(v) results in an n x n
matrix M with the elements of v as the main diagonal.

For a n x n matrix M, the statement v=diag(M) results in a column vector v with n
components formed by the main diagonal in M.
Note:

This is a MATLAB built-in function. For more information about the diag function,
type help diag.
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full

Purpose:

Convert sparse matrices to full storage class.

Syntax:
A=full(S)

Description:
A=full(S) converts the storage of a matrix from sparse to full. If A is already full,
full(A) returns A.

Note:

This is a MATLAB built-in function. For more information about the full function,
type help full.

27 MATRIX



inv

Purpose:

Matrix inverse.

Syntax:
B=inv(A)

Description:

B=inv(A) computes the inverse of the square matrix A and stores the result in the
matrix B.

Note:

This is a MATLAB built-in function. For more information about the inv function,
type help inv.
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length

Purpose:

Vector length.
Syntax:

n=length(x)
Description:

n=length(x) returns the dimension of the vector x.

Note:

This is a MATLAB built-in function. For more information about the length function,
type help length.

29 MATRIX



max

Purpose:

Maximum element(s) of a matrix.

Syntax:
b=max(A)

Description:

For a vector a, the statement b=max(a) assigns the scalar b the maximum element
of the vector a.

For a matrix A, the statement b=max(A) returns a row vector b containing the
maximum elements found in each column vector in A.

The maximum element found in a matrix may thus be determined by
c=max(max(A)).

Examples:

Assume the matrix B is defined as
—7 4
Y

The statement d=max(B) results in a row vector

d=|-3 4]

The maximum element in the matrix B may be found by e=max(d) which results in
the scalar e = 4.

Note:

This is a MATLAB built-in function. For more information about the max function,
type help max.
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Purpose:

Minimum element(s) of a matrix.

Syntax:
b=min(A)
Description:

For a vector a, the statement b=min(a) assigns the scalar b the minimum element of
the vector a.

For a matrix A, the statement b=min(A) returns a row vector b containing the min-
imum elements found in each column vector in A.

The minimum element found in a matrix may thus be determined by c=min(min(A)).

Examples:

Assume the matrix B is defined as
—7 4
S

The statement d=min(B) results in a row vector

d=|-7 —8|
The minimum element in the matrix B is then found by e=min(d), which results in
the scalar e = —8.
Note:

This is a MATLAB built-in function. For more information about the min function,
type help min.
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ones

Purpose:

Generate a matrix of all ones.
Syntax:

A=ones(m,n)
Description:

A=ones(m,n) results in an m-times-n matrix A with all ones.

Note:

This is a MATLAB built-in function. For more information about the ones function,
type help ones.
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size

Purpose:

Matrix dimensions.

Syntax:
d=size(A)
[m,n]=size(A)
Description:

d=size(A) returns a vector with two integer components, d=[m,n], from the matrix
A with dimensions m times n.

[m,n]=size(A) returns the dimensions m and n of the m x n matrix A.

Note:

This is a MATLAB built-in function. For more information about the size function,
type help size.
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sparse

Purpose:

Create sparse matrices.

Syntax:
S=sparse(A)
S=sparse(m,n)

Description:

S=sparse(A) converts a full matrix to sparse form by extracting all nonzero matrix
elements. If S is already sparse, sparse(S) returns S.

S=sparse(m,n) generates an m-times-n sparse zero matrix.

Note:

This is a MATLAB built-in function. For more information about the sparse function,
type help sparse.
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spy

Purpose:

Visualize matrix sparsity structure.

Syntax:
spy(S)
Description:

spy(S) plots the sparsity structure of any matrix S. S is usually a sparse matrix, but
the function also accepts full matrices and the nonzero matrix elements are plotted.

Note:

This is a MATLAB built-in function. For more information about the spy function,
type help spy.
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sqrt

Purpose:

Square root.

Syntax:
B=sqrt(A)

Description:

B=sqrt(A) computes the square root of the elements in matrix A and stores the result
in matrix B.

Note:

This is a MATLAB built-in function. For more information about the sqrt function,
type help sqrt.
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sum

Purpose:

Sum of the elements of a matrix.

Syntax:
b=sum(A)

Description:

For a vector a, the statement b=sum(a) results in a scalar a containing the sum of
all elements of a.

For a matrix A, the statement b=sum(A) returns a row vector b containing the sum
of the elements found in each column vector of A.

The sum of all elements of a matrix is determined by c=sum(sum(A)).

Note:

This is a MATLAB built-in function. For more information about the sum function,
type help sum.
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zeros

Purpose:

Generate a zero matrix.
Syntax:

A=zeros(m,n)
Description:

A=zeros(m,n) results in an m-times-n matrix A of zeros.

Note:

This is a MATLAB built-in function. For more information about the zeros function,
type help zeros.
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4 Material functions

The group of material functions comprises functions for constitutive models. The available
models can treat linear elastic and isotropic hardening von Mises material. These material
models are defined by the functions:

Material property functions
hooke Form linear elastic constitutive matrix
mises Compute stresses and plastic strains for isotropic hardening
von Mises material
dmises Form elasto-plastic continuum matrix for isotropic hardening
von Mises material

39 MATERIAL



hooke

Purpose:

Compute material matrix for a linear elastic and isotropic material.

Syntax:
D = hooke(ptype,E,v)

Description:
hooke computes the material matrix D for a linear elastic and isotropic material.
The variable ptype is used to define the type of analysis.

plane stress.

plane strain.

axisymmetry.
three dimensional analysis.

ptype =

=~ W N

The material parameters E and v define the modulus of elasticity £ and the Poisson’s
ratio v, respectively.

For plane stress, ptype=1, D is formed as

1 v 0

D: E 1% 1 O
1—0? 00 1—v

2

For plane strain, ptype=2 and axisymmetry, ptype=3, D is formed as

1—-v v v 0

E v 1—v v 0

:(1+1/)(1—21/) v v 1—v 0
0 0 0 +(1—2v)

For the three dimensional case, ptype=4, D is formed as

[1—v v v 0 0 0 ]
v 1—v v 0 0 0
E v v 1—v 0 0 0
P=mra=2] o o o ll-22) 0 0
0 0 0 0 3(1—-2) 0

. 0 0 0 0 0 i(1-2v)
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mises

Purpose:
Compute stresses and plastic strains for an elasto-plastic isotropic hardening von
Mises material.

Syntax:
[es,deps,st|=mises(ptype,mp,est,st)

Description:

mises computes updated stresses es, plastic strain increments deps, and state variables
st for an elasto-plastic isotropic hardening von Mises material.

The input variable ptype is used to define the type of analysis, cf. hooke. The vector
mp contains the material constants

mp=[Evh]

where FE is the modulus of elasticity, v is the Poisson’s ratio, and h is the plastic
modulus. The input matrix est contains trial stresses obtained by using the elas-
tic material matrix D in plants or some similar s-function, and the input vector st
contains the state parameters

st =[yioycepy ]

at the beginning of the step. The scalar yi states whether the material behaviour
is elasto-plastic (yi=1), or elastic (yi=0). The current yield stress is denoted by o,
and the effective plastic strain by e’ ;.

The output variables es and st contain updated values of es and st obtained by
integration of the constitutive equations over the actual displacement step. The
increments of the plastic strains are stored in the vector deps.

If es and st contain more than one row, then every row will be treated by the com-
mand.

Note:

It is not necessary to check whether the material behaviour is elastic or elasto-plastic,
this test is done by the function. The computation is based on an Euler-Backward
method, i.e. the radial return method.

Only the cases ptype=2, 3 and 4, are implemented.
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dmises

Purpose:
Form the elasto-plastic continuum matrix for an isotropic hardening von Mises ma-
terial.

Syntax:
D=dmises(ptype,mp,es,st)

Description:

dmises forms the elasto-plastic continuum matrix for an isotropic hardening von Mises
material.

The input variable ptype is used to define the type of analysis, cf. hooke. The vector
mp contains the material constants

mp=[Evh]

where FE is the modulus of elasticity, v is the Poisson’s ratio, and h is the plastic
modulus. The matrix es contains current stresses obtained from plants or some
similar s-function, and the vector st contains the current state parameters

st =[yioycepy ]

where yi=1 if the material behaviour is elasto-plastic, and yi=0 if the material
behaviour is elastic. The current yield stress is denoted by oy, and the current
effective plastic strain by 7.

Note:
Only the case ptype=2 is implemented.
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5 Element functions

5.1 Introduction

The group of element functions contains functions for computation of element matrices
and element forces for different element types. The element functions have been divided
into the following groups

Spring element

Bar elements

Heat flow elements

Solid elements

Beam elements

Plate element

For each element type there is a function for computation of the element stiffness matrix
K¢. For most of the elements, an element load vector f¢ can also be computed. These
functions are identified by their last letter -e.

Using the function assem, the element stiffness matrices and element load vectors are
assembled into a global stiffness matrix K and a load vector f. Unknown nodal values of
temperatures or displacements a are computed by solving the system of equations Ka = f
using the function solveq. A vector of nodal values of temperatures or displacements for a
specific element is formed by the function extract.

When the element nodal values have been computed, the element flux or element stresses
can be calculated using functions specific to the element type concerned. These functions
are identified by their last letter -s.

For some elements, a function for computing the internal force vector is also available.
These functions are identified by their last letter -f.
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5.2 Spring element

The spring element, shown below, can be used for the analysis of one-dimensional spring
systems and for a variety of analogous physical problems.

MW —

Quantities corresponding to the variables of the spring are listed in Table 1.

Problem type Spring | Nodal dis- | Element | Spring
stiffness | placement force force
Spring k u P N
EA
Bar A U P N
Thermal conduction % T H H
DA _
Diffusion 7 c H H
. L 1 _
Electrical circuit I U 1 1
kA _
Groundwater flow A 10) H H
D4 _
Pipe network 17;8,“ 7 P H H

Table 1: Analogous quantities



Interpretations of the spring element

Problem type

Quantities

Designations

Spring

SR

spring stiffness
displacement
element force
spring force

Bar

E A

SRR

length

modulus of elasticity
area of cross section
displacement
element force
normal force

Thermal
conduction

TN >

length

thermal conductivity
temperature

element heat flow
internal heat flow

Diffusion

Sssv S

length

diffusivity

nodal concentration
nodal mass flow
element mass flow

Electrical
circuit

~N~N T

resistance
potential
element current
internal current

Ground-
water
flow

mmﬁSKFN

length
permeability
piezometric head
element water flow
internal water flow

Pipe
network
(laminar

flow)

p>

Tt R g~

length

pipe diameter
viscosity

pressure

element fluid flow
internal fluid flow

Table 2: Quantities used in different types of problems
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The following functions are available for the spring element:

Spring functions

springle  Compute element matrix
springls  Compute spring force

ELEMENT 46



Spring element springle

Purpose:

Compute element stiffness matrix for a spring element.

Syntax:
Ke=springle(ep)

Description:
springle provides the element stiffness matrix Ke for a spring element.

The input variable
ep=[Fk]
supplies the spring stiffness k or the analog quantity defined in Table 1.

Theory:

The element stiffness matrix K¢, stored in Ke, is computed according to

. [k —k
-

where k is defined by ep.
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springls Spring element

Purpose:

Compute spring force in a spring element.

AN

Syntax:
es=springls(ep,ed)
Description:

springls computes the spring force es in a spring element.

The input variable ep is defined in springle and the element nodal displacements ed
are obtained by the function extract.

The output variable
es=[N]
contains the spring force N, or the analog quantity.

Theory:

The spring force N, or analog quantity, is computed according to

N:k(UQ_U]_)
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5.3 Bar elements

Bar elements are available for one, two, and three dimensional analysis.

One dimensional bar elements

barle Compute element matrix
barls Compute normal force
barlwe Compute element matrix for bar element with elastic support
barlws Compute normal force for bar element with elastic support
Two dimensional bar elements
bar2e Compute element matrix
bar2s Compute normal force
bar2ge Compute element matrix for geometric nonlinear element
bar2gs Compute normal force and axial force for geometric nonlinear ele-
ment
Three dimensional bar elements
bar3e Compute element matrix
bar3s Compute normal force
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barle One dimensional bar element

Purpose:

Compute element stiffness matrix for a one dimensional bar element.

U %)
= '
) X ()

Syntax:

Ke=barle(ex,ep)
[Ke,fe]=barle(ex,ep,eq)

Description:

barle provides the element stiffness matrix Ke for a one dimensional bar element.
The input variables

ex =[x x| ep=[FE A]
supply the element nodal coordinates x; and x5, the modulus of elasticity E, and
the cross section area A.
The element load vector fe can also be computed if uniformly distributed load is
applied to the element. The optional input variable

€q = { dz }
then contains the distributed load per unit length, ¢z.

Ox

= — — — — — ]
> X

X

Theory:

The element stiffness matrix K¢, stored in Ke, is computed according to

. Dpal 1 -1
o

where the axial stiffness Dgy and the length L are given by
DEA:EA, L:l'g—l'l

The element load vector ff, stored in fe, is computed according to

_e_QCfL ]-
=[]
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One dimensional bar element barls

Purpose:

Compute normal force in a one dimensional bar element.

[ [ \

Syntax:

es=barls(ex,ep,ed)
es=barls(ex,ep,ed,eq)
[es,edi]=barls(ex,ep,ed,eq,n)
[es,edi,eci]=Dbarls(ex,ep,ed,eq,n)

Description:
barls computes the normal force in the one dimensional bar element barle.

The input variables ex and ep are defined in barle and the element nodal displace-
ments, stored in ed, are obtained by the function extract. If distributed load is applied
to the element, the variable eq must be included. The number of evaluation points
for normal force and displacement are determined by n. If n is omitted, only the
ends of the bar are evaluated.

The output variables

N(0) u(0) 0
N(Z2) u(Z) T
es = : edi = : eci = :
N(Zp-1) w(Tp_1) Tp_1
N(L) u(L) L

contain the normal force, the displacement, and the evaluation points on the local
Z-axis. L is the length of the bar element.

Theory:

The nodal displacements in local coordinates are given by

ao— |
Uz

The transpose of a® is stored in ed.

The displacement u(Z) and the normal force N(Z) are computed from

u(z) = Na° + u,(z)

N(z) = DpsBa® + N,(z)
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One dimensional bar element

barls
where
N=[1z|Cc'=[1-% 7]
_ 1
B:[o 1}01:5[—1 1}

Np(f) = —(qz (573 - g)

in which Dga, L, and gz are defined in barle and

|
1
L

SN =

|
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One dimensional bar element with elastic support barlwe

Purpose:

Compute element stiffness matrix for a one dimensional bar element with elastic
support.

EA Ky

o X T )

Syntax:

Ke=barlwe(ex,ep)
[Ke,fe]=barlwe(ex,ep,eq)

Description:

barlwe provides the element stiffness matrix Ke for a one dimensional bar element
with elastic support. The input variables

ex =[x x| ep=[E Ak;]
supply the element nodal coordinates x; and x5, the modulus of elasticity F, the

cross section area A and the stiffness of the axial springs k;.
The element load vector fe can also be computed if uniformly distributed load is
applied to the element. The optional input variable
€q = { dz }
then contains the distributed load per unit length, ¢z.

Ox

[ — — — — — — ]
> X

X

Theory:
The element stiffness matrix K¢, stored in Ke, is computed according to
K=K+ K¢
_ D 1 -1
K=" [ -1 1 ]
11
K = koL [ 5 ]
6 3

where the axial stiffness D4 and the length L are given by
DEA:EA, L:l'g—l'l

The element load vector ff, stored in fe, is computed according to

_e_qi’L 1
=]
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barlws One dimensional bar element with elastic support

Purpose:

Compute normal force in a one dimensional bar element with elastic support.

[ [ \

Syntax:

es=barlws(ex,ep,ed)
es=barlws(ex,ep,ed,eq)
[es,edi]=Dbarlws(ex,ep,ed,eq,n)
[es,edi,eci]=Dbarlws(ex,ep,ed,eq,n)

Description:

barlws computes the normal force in the one dimensional bar element barlwe.

The input variables ex and ep are defined in barlwe and the element nodal displace-
ments, stored in ed, are obtained by the function extract. If distributed load is applied
to the element, the variable eq must be included. The number of evaluation points
for normal force and displacement are determined by n. If n is omitted, only the
ends of the bar are evaluated.

The output variables

N(0) u(0) 0
N(Zf’g) U(Zf’g) Zf'g
es = : edi = : eci =
N(fn—l) U(fn_l) jn—l
N(L) u(L) L]

contain the normal force, the displacement, and the evaluation points on the local
Z-axis. L is the length of the bar element.

Theory:

The nodal displacements in local coordinates are given by

a=| ™
Uz

The transpose of a® is stored in ed.

The displacement u(Z) and the normal force N(Z) are computed from

u(z) = Na° + u,(z)

N(z) = DpsBa® + N,(z)

ELEMENT o4



One dimensional bar element with elastic support barlws

where
N=[1z|Cc'=[1-% 7]
1
B:[o 1}01:5[—1 1}
— _ _2 T
i) = ey [ =5 25 o g (-

Np(®) = ks | 25L 32=L [ Clat — g, (7 - )

in which Dga, L, k; and gz are defined in barlwe and

O‘|
1
L

= =

|
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bar2e Two dimensional bar element

Purpose:

Compute element stiffness matrix for a two dimensional bar element.

Syntax:
Ke=bar2e(ex,ey,ep)
[Ke,fe]=bar2e(ex,ey,ep,eq)
Description:

bar2e provides the global element stiffness matrix Ke for a two dimensional bar ele-
ment.

The input variables

ex = [x1 X2 |

ey=[y1 v2] P =[EA]

supply the element nodal coordinates z1, y1, x2, and ys, the modulus of elasticity F,
and the cross section area A.

The element load vector fe can also be computed if uniformly distributed axial load
is applied to the element. The optional input variable

ca=[n]

then contains the distributed load per unit length, ¢z.

Theory:
The element stiffness matrix K¢, stored in Ke, is computed according to
K‘=GTK°G
where
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Two dimensional bar element bar2e
y L
X
where the axial stiffness Dgy and the length L are given by
Dpa=FEA; L= \/($2 —11)% + (Y2 — y1)?
and the transformation matrix G contains the direction cosines
n7:$2—$1 n7:92—y1
Tz I YT I
The element load vector ff, stored in fe, is computed according to
fle — GT fle
where
fe qi’L ]-
b
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bar2s

Two dimensional bar element

Purpose:

Compute normal force in a two dimensional bar element.

Syntax:

es=bar2s(ex,ey,ep,ed)

es=bar2s(ex,ey,ep,ed,eq)

[es,edi]=Dbar2s(ex,ey,ep,ed,eq,n)
[es,edi,eci]=Dbar2s(ex,ey,ep,ed,eq,n)

Description:

bar2s computes the normal force in the two dimensional bar element bar2e.

The input variables ex, ey, and ep are defined in bar2e and the element nodal dis-
placements, stored in ed, are obtained by the function extract. If distributed loads
are applied to the element, the variable eq must be included. The number of evalua-
tion points for section forces and displacements are determined by n. If n is omitted,
only the ends of the bar are evaluated.

The output variables

N (0)
N(zy)

N(f‘n—l)
N(L)

edi =

u(fn—l)

u(L)

eci =

jn—l

L

contain the normal force, the displacement, and the evaluation points on the local
Z-axis. L is the length of the bar element.

Theory:

The nodal displacements in global coordinates

ae:[ul Uo U3 U4]T

are also shown in bar2e. The transpose of a° is stored in ed.
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Two dimensional bar element

bar2s

The nodal displacements in local coordinates are given by

a‘ = Ga*

where the transformation matrix G is defined in bar2e.

The displacement u(Z) and the normal force N(Z) are computed from

uw(z) = Na® +u,(z)

N(Z) = DgaBa® +N,(2)

where
N=[1z|Cc'=[1-% 7]
1
B:[o 1}01:5[—1 1}

Np(j) = —(qz (f - g)

where Dgy, L, gz are defined in bar2e and

O]
1
L

SN =

|
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bar2ge Two dimensional bar element

Purpose:

Compute element stiffness matrix for a two dimensional geometric nonlinear bar.

Syntax:
Ke=bar2ge(ex,ey,ep,Qx)

Description:

bar2ge provides the element stiffness matrix Ke for a two dimensional geometric
nonlinear bar element.

The input variables

ex =[x 2|

ey=1[vy1 ¥2] ep=[F4]

supply the element nodal coordinates x1, y;, 2, and ys, the modulus of elasticity F,
and the cross section area A. The input variable

QXZ[Q;?:]

contains the value of the axial force, which is positive in tension.

Theory:
The global element stiffness matrix K¢, stored in Ke, is computed according to
K‘=GTK°G
where
1 0 —1 0 0 0 0 0
re DEA 0 0 0 0 Qi 0 1 0 —1
K==7"1-1 0o 1 ol"Z o o 0o o
0 0 0 0 0 —1 0 1
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Two dimensional bar element

bar2ge

Nez  Nyz 0 0
Neg  Nyg 0 0
0 0 ngz Nyz
0 0 nuy Ny

G—:

where the axial stiffness D4 and the length L are given by

Dpa=FEA; L= \/($2 —11)% + (Y2 — y1)?
and the transformation matrix G contains the direction cosines

T2 — I . Y=
L Myr = ey =

Ngz = Nyg =
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bar2gs Two dimensional bar element

Purpose:

Compute axial force and normal force in a two dimensional bar element.

Syntax:
[es,Qx]=Dbar2gs(ex,ey,ep,ed)
[es,Qx]=Dbar2gs(ex,ey,ep,ed,eq)
[es,Qx,edi]=bar2gs(ex,ey,ep,ed,eq,n)
[es,Qx,edi,eci]=Dbar2gs(ex,ey,ep,ed,eq,n)

Description:

bar2gs computes the normal force in the two dimensional bar elements bar2g.

The input variables ex, ey, and ep are defined in bar2ge and the element nodal
displacements, stored in ed, are obtained by the function extract. The number of
evaluation points for section forces and displacements are determined by n. If n is
omitted, only the ends of the bar are evaluated.

The output variable Qx contains the axial force (0; and the output variables

N(0) u(0) [0 ]
N(‘/EQ) U(Zf‘g) To
es = : edi = eci =
N(i‘n—l) u(i‘n—l) jn—l
N(L) u(L) L]

contain the normal force, the displacement, and the evaluation points on the local
Z-axis. L is the length of the bar element.

Theory:
The nodal displacements in global coordinates are given by
e T
a = [Ul Uo U3 U4]

The transpose of a® is stored in ed. The nodal displacements in local coordinates are
given by

a‘=@Ga°
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Two dimensional bar element bar2gs

where the transformation matrix G is defined in bar2ge. The displacements associ-
ated with bar action are determined as

The displacement u(Z) and the normal force N(Z) are computed from

u(r) = Najg,,

N(z) = DpaBaj,,

Il
—_
Kl
| I
Q
N
Il
—_
|
]
il
| I

B=|0 1}01:%[—1 1]

where Dg4 and L are defined in bar2ge and

_ 1 0
L L
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bar3e Three dimensional bar element

Purpose:

Compute element stiffness matrix for a three dimensional bar element.

(X2,Y2:125)

E,A

(Xp,Y1,21)

Syntax:
Ke=bar3e(ex,ey,ez,ep)
[Ke,fe]=bar3e(ex,ey,ez,ep,eq)
Description:

bar3e provides the global element stiffness matrix Ke for a three dimensional bar
element.

The input variables
ex =[x1 X2 |
ey:[x1 Xz] eP:[EA]
ez=[y1 y2]

supply the element nodal coordinates xq, y1, 21, %2, y2, and 2z, the modulus of
elasticity E, and the cross section area A.

The element load vector fe can also be computed if uniformly distributed axial load
is applied to the element. The optional input variable

€q = { 4z }
then contains the distributed load per unit length, ¢z.

Theory:
The element stiffness matrix K¢, stored in Ke, is computed according to
K*=GTKe G
where

_ D — _ _ _
Ke _ 2BA 1 1 G_ Nez Nyz Nz 0 0 0
0 0 0 Ngz Nyz MNaz
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Three dimensional bar element

bar3e

where the axial stiffness Dgy and the length L are given by

Dpa=FA; L= \/(% —21)? + (Y2 —y1)* + (22 — 21)?
and the transformation matrix G contains the direction cosines

To — I Y= 22!
Ngz = L nyi - L Neyz = L

The element load vector ff, stored in fe, is computed according to
fle — GT fle

where
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bar3s Three dimensional bar element

Purpose:

Compute normal force in a three dimensional bar element.

Syntax:
es=bar3s(ex,ey,ez,ep,ed)
es=bar3s(ex,ey,ez,ep,ed,eq)
[es,edi]=Dbar3s(ex,ey,ez,ep,ed,eq,n)
[es,edi,eci]=Dbar3s(ex,ey,ez,ep,ed,eq,n)

Description:

bar3s computes the normal force in a three dimensional bar element bar3e.

The input variables ex, ey, and ep are defined in bar3e and the element nodal displace-
ments, stored in ed, are obtained by the function extract. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only
the ends of the bar are evaluated.

The output variables

N(0) u(0) 0
N(j2) u(:f?) To
es = : edi = : eci = :
N(i‘n—l) u(i‘n—l) jn—l
N(L) u(L) I L |

contain the normal force, the displacement, and the evaluation points on the local
z-axis. L is the length of the bar element.

Theory:

The nodal displacements in global coordinates are given by
e T
a’=[u; us uz uy us ug

The transpose of a is stored in ed.
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Three dimensional bar element

bar3s

The nodal displacements in local coordinates are given by

a‘ = Ga“

where the transformation matrix G is defined in bar3e.

The displacement u(Z) and the normal force N(Z) are computed from

uw(z) = Na® +u,(z)

N(Z) = DgaBa® +N,(2)

where

Il
—_
Kl
| I
Q
N
Il
—_
|
]
il
| I

Np(T) = G (973 - %)
where Dgy, L, gz are defined in bar3e and

-4

S =
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5.4 Heat flow elements

Heat flow elements are available for one, two, and three dimensional analysis. For one
dimensional heat flow the spring element springl is used.

A variety of important physical phenomena are described by the same differential equa-
tion as the heat flow problem. The heat flow element is thus applicable in modelling differ-
ent physical applications. Table 3 below shows the relation between the primary variable
a, the constitutive matrix D, and the load vector f; for a chosen set of two dimensional
physical problems.

Problem type a D f; | Designation

Heat flow T Az s Ay Q | T = temperature
Az » Ay = thermal
conductivity

() = heat supply

Groundwater flow | ¢ ks, ky, @ | ¢ = piezometric
head

k., k, = perme-
abilities

() = fluid supply

St. Venant torsion | ¢ 20 | ¢ = stress function

G.y, G.; = shear
moduli

© = angle of torsion
per unit length

Table 3: Problem dependent parameters
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Heat flow elements

LE T, T,

flw2te flw2qe
flw2ide

Ts

flw2i8e flw3i8e

2D heat flow functions

flw2te Compute element matrices for a triangular element
flw2ts Compute temperature gradients and flux
flw2qe Compute element matrices for a quadrilateral element
flw2gs Compute temperature gradients and flux
flw2ide Compute element matrices, 4 node isoparametric element
flw2ids Compute temperature gradients and flux
flw2i8e Compute element matrices, 8 node isoparametric element
flw2i8s Compute temperature gradients and flux

3D heat flow functions
flw3i8e Compute element matrices, 8 node isoparametric element
flw3i8s Compute temperature gradients and flux
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flw2te Two dimensional heat flow elements

Purpose:

Compute element stiffness matrix for a triangular heat flow element.

Ts
(X3,Y3)

T, (X2,Y>)
(X.y1)

Syntax:
Ke=flw2te(ex,ey,ep,D)
[Ke,fe]=flw2te(ex,ey,ep,D,eq)
Description:

flw2te provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a triangular heat flow element.

The element nodal coordinates x1, y;, xo etc, are supplied to the function by ex
and ey, the element thickness ¢ is supplied by ep and the thermal conductivities (or
corresponding quantities) k,,, k,, etc are supplied by D.

kxm kﬂ?
ep=[t] D:[k ky]

ex =[x Ty T3]
ey=1[y1 Y2 3]

yr vy

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq=[Q]
where @) is the heat supply per unit volume.

Theory:

The element stiffness matrix K and the element load vector f], stored in Ke and fe,
respectively, are computed according to

Ke=(CH [B'DBtdA C!
e [

= H [ N OtdA

=" [ NTQ

with the constitutive matrix D defined by D.

The evaluation of the integrals for the triangular element is based on the linear
temperature approximation 7'(z,y) and is expressed in terms of the nodal variables
Tl, T2 and T3 as

T(z,y) = N%® =N C'a*
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Two dimensional heat flow elements flw2te

where
B 1 1 Y T1
N=[1uzy] C=1|1 23 y a‘=| T,
1 x3 wys T3
and hence it follows that
9
_ - 010 ox
B=VN= [ 0 01 1 V= 0
dy

Evaluation of the integrals for the triangular element yields
K=CYB" DBC'tA

=y

where the element area A is determined as

AzldetC
2
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flw2ts Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in a triangular heat flow element.

Syntax:
[es,et]=flw2ts(ex,ey,D,ed)

Description:

flw2ts computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a triangular heat flow element.

The input variables ex, ey and the matrix D are defined in flw2te. The vector ed
contains the nodal temperatures a® of the element and is obtained by the function
extract as

ed= (@) =TT Ty Ty]

The output variables

es=q" =[q q]

or or
et = (VD = | =— —
(VT) [ or 0Oy ]
contain the components of the heat flux and the temperature gradient computed in
the directions of the coordinate axis.

Theory:
The temperature gradient and the heat flux are computed according to
VI =BC!a“
q=-DVT

where the matrices D, B, and C are described in flw2te. Note that both the tem-
perature gradient and the heat flux are constant in the element.
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Two dimensional heat flow elements filw2qe

Purpose:

Compute element stiffness matrix for a quadrilateral heat flow element.

T, T,
(X4:Y4) (X3,Y3)
y
(X1,Y1)
T (X2Y-)
T,

Syntax:

Ke=flw2qe(ex,ey,ep,D)
[Ke,fe]=flw2qe(ex,ey,ep,D,eq)

Description:

flw2qge provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a quadrilateral heat flow element.

The element nodal coordinates xi, y;, =2 etc, are supplied to the function by ex
and ey, the element thickness ¢ is supplied by ep and the thermal conductivities (or
corresponding quantities) k,, ky, etc are supplied by D.

k:t:t kx
ep=[t] D:[k ky]

ex =[x Ty T3 T4 |
ey=[y1 Y2 ¥s Va]

yr vy

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq=[Q]
where () is the heat supply per unit volume.

Theory:

In computing the element matrices, a fifth degree of freedom is introduced. The
location of this extra degree of freedom is defined by the mean value of the coordinates
in the corner points. Four sets of element matrices are calculated using flw2te. These
matrices are then assembled and the fifth degree of freedom is eliminated by static
condensation.
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filw2qgs Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in a quadrilateral heat flow element.

Syntax:

[es,et]=flw2qs(ex,ey,ep,D,ed)
[es,et]=flw2qs(ex,ey,ep,D,ed,eq)

Description:

flw2gs computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a quadrilateral heat flow element.

The input variables ex, ey, eq and the matrix D are defined in flw2qge. The vector ed
contains the nodal temperatures a® of the element and is obtained by the function
extract as

ed:(ae)T:[Tl T2 T3 T4]

The output variables

es:qT:[qqu]

(V1) [ oT 8T]

dr Oy
contain the components of the heat flux and the temperature gradient computed in
the directions of the coordinate axis.

Theory:

By assembling four triangular elements as described in flw2te a system of equations
containing 5 degrees of freedom is obtained. From this system of equations the
unknown temperature at the center of the element is computed. Then according to
the description in flw2ts the temperature gradient and the heat flux in each of the
four triangular elements are produced. Finally the temperature gradient and the
heat flux of the quadrilateral element are computed as area weighted mean values
from the values of the four triangular elements. If heat is supplied to the element,
the element load vector eq is needed for the calculations.
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Two dimensional heat flow elements flw2ide

Purpose:

Compute element stiffness matrix for a 4 node isoparametric heat flow element.

T, Ty
(X4:Ya) (X3,Y3)

> (X2,Y-)

Syntax:
Ke=flw2i4e(ex,ey,ep,D)
[Ke,fe]=flw2i4e(ex,ey,ep,D,eq)
Description:

flw2ide provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a 4 node isoparametric heat flow element.

The element nodal coordinates x1, y;, xo etc, are supplied to the function by ex and
ey. The element thickness ¢t and the number of Gauss points n

(n x n) integration points, n =1,2,3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) k.., k;, etc are supplied by D.

ex =[x Ty T3 T4 ]

kacac kxy
ey=1[% Yo Ys Y|

ep=[tn] D:[k .

yr vy

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq=[Q]

where () is the heat supply per unit volume.
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flw2ide Two dimensional heat flow elements

Theory:

The element stiffness matrix K and the element load vector f}, stored in Ke and fe,
respectively, are computed according to

Ke:/BeTDBetdA
A
ff:/NeTQtdA

A

with the constitutive matrix D defined by D.

The evaluation of the integrals for the isoparametric 4 node element is based on a
temperature approximation 7'(£,n), expressed in a local coordinates system in terms
of the nodal variables T}, T5, T3 and T} as

T(¢,n) = Nea®
where
Ne=[Nf N§ N Ne|  a*=[Ty Tb Ts Ty ]"
The element shape functions are given by
1 1
Ni=1(1-8(1-n) Ni=1(1+61-n)

N=laroen  Ni=ia-ga+y

4 4
The B¢-matrix is given by
9 9
e _onNe— | 97 | ne gyt | 9 e
B¢ = VN° = ﬁ N¢=(J") ﬁ N
dy on
where J is the Jacobian matrix
or 0
g | 9 on
|9y Oy
9§ On

Evaluation of the integrals is done by Gauss integration.
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Two dimensional heat flow elements flw2i4s

Purpose:

Compute heat flux and temperature gradients in a 4 node isoparametric heat flow
element.

Syntax:
[es,et,eci]=flw2i4s(ex,ey,ep,D,ed)

Description:

flw2ids computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a 4 node isoparametric heat flow element.

The input variables ex, ey, ep and the matrix D are defined in flw2i4e. The vector ed
contains the nodal temperatures a® of the element and is obtained by extract as

ed= (@) =Ty T Ty T, ]

The output variables

[ 4% g, 1
2 2
es=q’ = qx q_y
2 n2
a g
[ oT'  oT' ]
ox oy
oT?  oT? 1 N
_ — — T
et= (VD' =| Ox Yy eci = 2
8T:”2 8T:"2 e e
L 9r 9y |

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw2ide.

Theory:

The temperature gradient and the heat flux are computed according to
VT =B°a°
q=-DVT

where the matrices D, B¢, and a® are described in flw2i4e, and where the integration
points are chosen as evaluation points.
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flw2i8e Two dimensional heat flow elements

Purpose:

Compute element stiffness matrix for an 8 node isoparametric heat flow element.

Syntax:
Ke=flw2i8e(ex,ey,ep,D)
[Ke,fe]=flw2i8e(ex,ey,ep,D,eq)
Description:

flw2i8e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for an 8 node isoparametric heat flow element.

The element nodal coordinates x1, y;, xo etc, are supplied to the function by ex and
ey. The element thickness ¢t and the number of Gauss points n

(n x n) integration points, n =1,2,3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) k.., k;, etc are supplied by D.

ex=|[xy Ty T3 ... xg]

kxw kacy
ey=1[y1 Y2 Ys ... Ys]

ep=1[tn] D:[k .

yr vy

If the scalar variable eq is given in the function, the vector fe is computed, using

eq=[Q]

where () is the heat supply per unit volume.
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Two dimensional heat flow elements flw2i8e

Theory:

The element stiffness matrix K and the element load vector f}, stored in Ke and fe,
respectively, are computed according to

Ke:/BeTDBetdA
A
ff:/NeTQtdA

A

with the constitutive matrix D defined by D.

The evaluation of the integrals for the 2D isoparametric 8 node element is based on a
temperature approximation 7'(£,n), expressed in a local coordinates system in terms
of the nodal variables T to Ty as

T(&n) = Na*
where
Ne=[Nf N§ NS ... N¢]  a*=[T0 b Ty ... Tx]"
The element shape functions are given by
Ni=L1-O0-miern) N = (- -n)
Ny =040 -mA-&+n)  N=s(0+O0 )
Ni= 21+ tn)(1-E—n)  Ni= (1-)+n)
Ni=—(0-04mte—n No=s0-0 )

The B®matrix is given by

9 9
e __ e __ 8x e __ Ty—1 a£ e
B¢ = VNF°¢ = 2 N¢=(J") 2 N
Jy on
where J is the Jacobian matrix
or 0
g | 9 on
|9y Oy
0§ On

Evaluation of the integrals is done by Gauss integration.
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flw2i8s Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in an 8 node isoparametric heat flow
element.

Syntax:
[es,et,eci]=flw2i8s(ex,ey,ep,D,ed)

Description:

flw2i8s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in an 8 node isoparametric heat flow element.

The input variables ex, ey, ep and the matrix D are defined in flw2i8e. The vector ed
contains the nodal temperatures a® of the element and is obtained by the function
extract as

ed:(ae)T:[Tl T2 T3 Tg]

The output variables

a q,
2 2
es=q’ = q‘” q_y
@ g
[ or'  or' ]
ox Jy
oT?  oT? 1 U1
— T a_ a . P Y2
et = (VD' =| Oz dy eci = ,
: 9 : 9 Tp2  Yn2
orm™ or"
L Ox oy |

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw2i8e.

Theory:

The temperature gradient and the heat flux are computed according to
VT =B°a°
q=-DVT

where the matrices D, B¢, and a® are described in flw2i8e, and where the integration
points are chosen as evaluation points.
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Three dimensional heat flow elements flw3i8e

Purpose:

Compute element stiffness matrix for an 8 node isoparametric element.

Syntax:

Ke=flw3i8e(ex,ey,ez,ep,D)
[Ke,fe]=flw3i8e(ex,ey,ez,ep,D,eq)

Description:

flw3i8e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for an 8 node isoparametric heat flow element.

The element nodal coordinates x1, y1, 21 2 etc, are supplied to the function by ex,
ey and ez. The number of Gauss points n

(n X n x n) integration points, n =1,2,3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) k,,, kyy etc are supplied by D.

ex=|[xy Ty T3 ... Xg] krw kuy Koo
ey=1[y Y2 ys --. Ys] ep=[n] D=k Ky ky
ez=1[2 20 23 ... 23] koo Koy ks

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq=[Q]
where () is the heat supply per unit volume.
Theory:

The element stiffness matrix K¢ and the element load vector f], stored in Ke and fe,
respectively, are computed according to

W:/B”DB%V
174

ﬁ:/N”Qm/
1%
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flw3i8e Three dimensional heat flow elements

with the constitutive matrix D defined by D.

The evaluation of the integrals for the 3D isoparametric 8 node element is based on
a temperature approximation 7'(§,n, (), expressed in a local coordinates system in
terms of the nodal variables T3 to Tx as

T(€,n,¢) = N-a“

where
Ne=[Nf N NS ... N¢]  a*=[T0 b Ty ... Tx]"
The element shape functions are given by
Ni=g(1-00-n(1-0 Nj= 1+ -n)(1-0)
Ni= (14141 -0  Ni=(1-1+m1-0)
Ne=(0-1-n+0)  Ny= 1+ -1 +Q)

Ni= 14U+ +0) N =1-1+n)1+Q)

The B®matrix is given by

- a - - g -
O 73
B —vN = | O N¢ = (J5)™! 9 N©
dy on
0 9
L 9z | L ¢
where J is the Jacobian matrix
o0& On OC
y_|9% 9% 9y
N o0& On OC
L 0¢ On OC

Evaluation of the integrals is done by Gauss integration.
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Three dimensional heat flow elements flw3i8s

Purpose:
Compute heat flux and temperature gradients in an 8 node isoparametric heat flow
element.

Syntax:
[es,et,eci]=flw3i8s(ex,ey,ez,ep,D,ed)

Description:

flw3i8s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in an 8 node isoparametric heat flow element.

The input variables ex, ey, ez, ep and the matrix D are defined in flw3i8e. The vector
ed contains the nodal temperatures a® of the element and is obtained by the function
extract as

ed:(ae)T:[Tl T2 T3 Tg]

The output variables

@ a4

es = T = @ 4 ¢

Tl3 TLS 7;3

G @ 4

[ ort ort or' ]
Ox dy 0z

or? or* oT? oy A
_ a a a_ x z
et=(VT)T =| Oz dy 0z eci=| . y.Q N

afng afng afng e e

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw3i8e.

Theory:

The temperature gradient and the heat flux are computed according to
VT =B°a°
q=-DVT

where the matrices D, B¢, and a® are described in flw3i8e, and where the integration
points are chosen as evaluation points.
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5.5 Solid elements

Solid elements are available for two dimensional analysis in plane stress (panels) and plane
strain, and for general three dimensional analysis. In the two dimensional case there are
a triangular three node element, a quadrilateral four node element, two rectangular four
node elements, and quadrilateral isoparametric four and eight node elements. For three
dimensional analysis there is an eight node isoparametric element.

The elements are able to deal with both isotropic and anisotropic materials. The triangular
element and the three isoparametric elements can also be used together with a nonlinear
material model. The material properties are specified by supplying the constitutive matrix
D as an input variable to the element functions. This matrix can be formed by the functions
described in Section 4.
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Solid elements

plange
Ug U
U, U
[
u, VA
Uy Us
planre
plantce

plani4e

U, /"8—’
L0 )

plani8e

soli8e
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2D solid functions

plante Compute element matrices for a triangular element

plants Compute stresses and strains

plantf Compute internal element forces

plange Compute element matrices for a quadrilateral element
plangs Compute stresses and strains

planre Compute element matrices for a rectangular Melosh element
planrs Compute stresses and strains

plantce  Compute element matrices for a rectangular Turner-Clough element
plantcs  Compute stresses and strains

plani4de  Compute element matrices, 4 node isoparametric element
plani4s Compute stresses and strains
plani4f Compute internal element forces

plani8e Compute element matrices, 8 node isoparametric element
plani8s Compute stresses and strains
plani8f Compute internal element forces

3D solid functions

soli8e Compute element matrices, 8 node isoparametric element
soli8s Compute stresses and strains
soli8f Compute internal element forces

ELEMENT 86



Two dimensional solid elements plante

Purpose:

Compute element matrices for a triangular element in plane strain or plane stress.

(*X2.¥2)

Syntax:

Ke=plante(ex,ey,ep,D)
[Ke,fe]=plante(ex,ey,ep,D,eq)

Description:

plante provides an element stiffness matrix Ke and an element load vector fe for a
triangular element in plane strain or plane stress.

The element nodal coordinates x1,y;, x5 etc. are supplied to the function by ex and
ey. The type of analysis ptype and the element thickness ¢ are supplied by ep,

ptype = 1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 x 3) to (6 x 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex =[x Ty x3]

ep = |ptype t
ey =11 vs us) p = [ptype t]

Dll D12 DlS D14

[Di5] [Dis]
DQl D22 D23 D24 [D25] [D26]

D D D
5| Do Du Dolorbpe| P Ds Dss Ds [Dy] [Dss]
Do D D Dy Di Dy Dus [Dis] [Dag]
[Ds1] [Ds2] [Dss] [Dsa] [Dss] [Dse]
| [De1] [De2] [Des] [Dea] [Des] [Des]
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plante Two dimensional solid elements

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

ba
=[]
Y

containing loads per unit volume, b, and b,, is then given.

Theory:

The element stiffness matrix K and the element load vector f], stored in Ke and fe,
respectively, are computed according to

K° = (C )T / B'DBtdAC!
A
fr=(CY! /NTbtdA
A

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the triangular element is based on a linear dis-
placement approximation u(z,y) and is expressed in terms of the nodal variables u;,
U2, ..., Ug aS

u(z,y) =N°a*=NC'a°

where
| ug < |1 x y 000
“‘luy] N_[OOley
[ 1 1 Y 0 0 0- _Ul_
0 0 0 1 1 Y U9
. 1.]72 Yo 0 0 0 e Uus
C=10 0 01 2 | > |u
1.]73 Ys 0 O 0 Us
_0 0 0 1 T3 Ys | L Us |

The matrix B is obtained as

. i
E 0

_ -~ ~ 0
B =VN where V= 0 —
dy

9 9
L Jy Oz |

If a larger D-matrix than (3 x 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 x 3) matrix by static condensation using o,, = 0,, = 0,, = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.
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Two dimensional solid elements plante

If a larger D-matrix than (3 x 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 x 3) matrix using €,, = 7., = 7, = 0. This implies that a
(3 x 3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals for the triangular element yields
K=(C"YB DBC'tA

At
ff:?[bx by by b, by b, ]

where the element area A is determined as

1 1 AT
Azadet 1 x5 1o

1 3 y3
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plants Two dimensional solid elements

Purpose:

Compute stresses and strains in a triangular element in plane strain or plane stress.

Syntax:

[es,et]=plants(ex,ey,ep,D,ed)

Description:

plants computes the stresses es and the strains et in a triangular element in plane
strain or plane stress.

The input variables ex, ey, ep and D are defined in plante. The vector ed contains
the nodal displacements a® of the element and is obtained by the function extract as

ed:(ae)T:[ul Uy ... UG]

The output variables

es=o0’ =]

Ozz Oyy 0] Ozy [022] [Uyz”

"=

et=¢ Exax Eyy [5,22] Yy [’Y:EZ] [’sz]]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress ., # 0, and for plane strain o, # 0.

Theory:

The strains and stresses are computed according to
e=BC!'a*
o= De

where the matrices D, B, C and a° are described in plante. Note that both the
strains and the stresses are constant in the element.
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Two dimensional solid elements plantf

Purpose:
Compute internal element force vector in a triangular element in plane strain or
plane stress.

Syntax:
ef=plantf(ex,ey,ep,es)

Description:

plantf computes the internal element forces ef in a triangular element in plane strain
or plane stress.

The input variables ex, ey and ep are defined in plante, and the input variable es is
defined in plants.

The output variable
ef =" =[fufo ... fi]
contains the components of the internal force vector.

Theory:

The internal force vector is computed according to

fe = (C’l)T/ B ot dA
A

where the matrices B and C are defined in plante and o is defined in plants.

Evaluation of the integral for the triangular element yields

fe=(CY'B' ot A

7
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planqge Two dimensional solid elements

Purpose:

Compute element matrices for a quadrilateral element in plane strain or plane stress.

Syntax:

Ke=plange(ex,ey,ep,D)
[Ke,fe]=planqge(ex,ey,ep,D,eq)

Description:

plange provides an element stiffness matrix Ke and an element load vector fe for a
quadrilateral element in plane strain or plane stress.

The element nodal coordinates x1, y;, x2 etc. are supplied to the function by ex and
ey. The type of analysis ptype and the element thickness ¢ are supplied by ep,

ptype = 1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 x 3) to (6 x 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex =[xy Ty T3 T4

ep = |ptype t
ey:[yl Y2 Y3 y4] P [pyp ]

Dll D12 D13 D14 [D15] [Dlﬁ]
D21 D22 D23 D24 [D25] [DQG]
D D D
5| Do e polorbe| Ps Du Ds Ds [Dg] [Ds]
DZi Diz Dij D41 D42 D43 D44 [D45 ] [D46 ]
[Ds1] [Dsa] [Ds3] [Dsa] [Dss] [Dse]
| [De1] [De2] [Des] [Dea] [Des] [Des]
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Two dimensional solid elements plange

If uniformly distributed loads are applied on the element, the element load vector fe
is computed. The input variable

be
«= L]
Y

containing loads per unit volume, b, and b,, is then given.

Theory:

In computing the element matrices, two more degrees of freedom are introduced.
The location of these two degrees of freedom is defined by the mean value of the
coordinates at the corner points. Four sets of element matrices are calculated using
plante. These matrices are then assembled and the two extra degrees of freedom are
eliminated by static condensation.
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plangs Two dimensional solid elements

Purpose:

Compute stresses and strains in a quadrilateral element in plane strain or plane
stress.

Syntax:

[es,et]=plangs(ex,ey,ep,D,ed)
[es,et]=plangs(ex,ey,ep,D,ed,eq)

Description:

plangs computes the stresses es and the strains et in a quadrilateral element in plane
strain or plane stress.

The input variables ex, ey, ep, D and eq are defined in plange. The vector ed contains
the nodal displacements a® of the element and is obtained by the function extract as

ed:(ae)T:[ul Uy ... Ug]

If body forces are applied to the element the variable eq must be included.
The output variables

es=o0! = [O'm; Oyy [Uzz] Ozy [sz] [ayZ] ]

T

et=¢" = [ Exz Eyy [5,2,2] Yay [’sz] [’Vyz] ]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress €., # 0, and for plane strain o,, # 0.

Theory:

By assembling triangular elements as described in plange a system of equations con-
taining 10 degrees of freedom is obtained. From this system of equations the two
unknown displacements at the center of the element are computed. Then according
to the description in plants the strain and stress components in each of the four trian-
gular elements are produced. Finally the quadrilateral element strains and stresses
are computed as area weighted mean values from the values of the four triangular
elements. If uniformly distributed loads are applied on the element, the element load
vector eq is needed for the calculations.
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Two dimensional solid elements planre

Purpose:

Compute element matrices for a rectangular (Melosh) element in plane strain or
plane stress.

Syntax:

Ke=planre(ex,ey,ep,D)
[Ke,fe]=planre(ex,ey,ep,D,eq)

Description:

planre provides an element stiffness matrix Ke and an element load vector fe for a
rectangular (Melosh) element in plane strain or plane stress. This element can only
be used if the element edges are parallel to the coordinate axis.

The element nodal coordinates (z1,y;) and (z3,ys) are supplied to the function by
ex and ey. The type of analysis ptype and the element thickness ¢ are supplied by ep,

ptype = 1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 x 3) to (6 x 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see

Section 4.
ex = [x1 23]
ep = |ptype t
ey = (11 5] p = [ptype t]
[ D].l DlQ D13 D14 [D15] [D16] i
D21 D22 D23 D24 [-D25] [DQG]
D D D
5| Do e Dolorbe| P Ds Dss Ds [Dy] [Dss]
Do D D Dy Di Dis Du [Dis] [Dag]
[Ds1] [Dsa] [Dss] [Dsa] [Dss] [Dse]
[De1] [De2] [De3] [Des] [Des] [Des] |
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planre Two dimensional solid elements

If uniformly distributed loads are applied on the element, the element load vector fe
is computed. The input variable

be
«= L]
Y

containing loads per unit volume, b, and b,, is then given.

Theory:
The element stiffness matrix K and the element load vector f}, stored in Ke and fe,
respectively, are computed according to
K= [ BT DB tdA
A
£ = / N bt dA
A

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the rectangular element is based on a bilinear
displacement approximation u(z,y) and is expressed in terms of the nodal variables

Uy, U, ..., Ug aS
u(x,y) = N°a°
where
Uz
uo | U Ne_NfONfONgONfO e | U2
TS | 0 N O N, O Nf 0 N¢ I
Uus

With a local coordinate system located at the center of the element, the element
shape functions Ny — Ny are obtained as

Ni= o))
N§ =~ (a — 1)y — o)
Ni= (e m)y - w)
Nj = —ﬁ(w —z3)(y —y1)

where

1 1
a = §(x3—$1) aIld b: 5(93_y1)
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Two dimensional solid elements planre

The matrix B€ is obtained as

ox
~ ~ 0
B*=VN‘ where V=| 0 —
dy
9 9
L Oy Oz |

If a larger D-matrix than (3 x 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 x 3) matrix by static condensation using 0., = 0,, = 0,, = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.

If a larger D-matrix than (3 x 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 X 3) matrix using €,, = 7., = 7V, = 0. This implies that a
(3 x 3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals for the rectangular element can be done either analytically
or numerically by use of a 2 x 2 point Gauss integration. The element load vector ff
yields

8

<

8

<

£ = abt

<

)

@‘@‘G“S@‘@‘G“@‘

T
<
L
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planrs Two dimensional solid elements

Purpose:

Compute stresses and strains in a rectangular (Melosh) element in plane strain or
plane stress.

Ug U
Uy Ug
o> ny
y U, U, Oy Oy
U Uz Oy
Oyy

Syntax:
[es,et]=planrs(ex,ey,ep,D,ed)

Description:

planrs computes the stresses es and the strains et in a rectangular (Melosh) element
in plane strain or plane stress. The stress and strain components are computed at
the center of the element.

The input variables ex, ey, ep and D are defined in planre. The vector ed contains
the nodal displacements a® of the element and is obtained by the function extract as

ed:(ae)T:[ul Uy ... Ug]

The output variables

-

es =0 Oz Uyy [UZZ] U:cy [0-3375] [UyZ] ]

=

et=¢ Exx 6\yy [57;2'] ’Vacy [’7432] ['VyZH

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress ., # 0, and for plane strain o, # 0.

Theory:

The strains and stresses are computed according to
e =B‘a°®
oc=Dce

where the matrices D, B¢, and a® are described in planre, and where the evaluation
point (x,y) is chosen to be at the center of the element.
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Two dimensional solid elements plantce

Purpose:

Compute element matrices for a rectangular (Turner-Clough) element in plane strain
or plane stress.

Syntax:

Ke=plantce(ex,ey,ep)
[Ke,fe]=plantce(ex,ey,ep,eq)

Description:

plantce provides an element stiffness matrix Ke and an element load vector fe for a
rectangular (Turner-Clough) element in plane strain or plane stress. This element
can only be used if the material is isotropic and if the element edges are parallel to
the coordinate axis.

The element nodal coordinates (z1,y;) and (z3,y3) are supplied to the function by ex
and ey. The state of stress ptype, the element thickness ¢t and the material properties
E and v are supplied by ep. For plane stress ptype = 1 and for plane strain ptype = 2.

ex =[x w3 ]

ep=|ptype t E v
ey =l us] p= [ ptyp ]

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

ba
“=[]
Y

containing loads per unit volume, b, and b,, is then given.
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plantce Two dimensional solid elements

Theory:

The element stiffness matrix K and the element load vector f}, stored in Ke and fe,
respectively, are computed according to

K@:/ BY D Bt dA

A
£ = / N bt dA
A

where the constitutive matrix D is described in hooke, see Section 4, and the body

force vector b is defined by eq.

The evaluation of the integrals for the Turner-Clough element is based on a dis-
placement field u(z,y) built up of a bilinear displacement approximation superposed
by bubble functions in order to create a linear stress field over the element. The

displacement field is expressed in terms of the nodal variables uq, us, ..., ug as
u(x,y) = N°a°
where
Uy
u= Ug N¢ — Nle Ng N26 _Ng NBe Ng Néf _Ng a — Uz
[y | Ng Nf —N§ N5 Ng N§ —Ng  Nf ]
Uus

With a local coordinate system located at the center of the element, the element
shape functions Ny — N¢ are obtained as

Nf = (a—ax)(b—y)

4ab
Ng = (-t a)(b—y)
N = (a+ 2)(b+y)
Ni=1-(a—2)(b+y)
NE = % {(b2 —y?) +v(a® - xQ)}
N§ = ﬁ {(a2 — ) + v — yQ)}
where

1 1
a = §(I‘3—I’1) aIld b: 5(93_y1)
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Two dimensional solid elements plantce

The matrix B€ is obtained as

Ox
- ~ 0
B = VN*© where V=| 0
dy
9 9
L Oy Oz |

Evaluation of the integrals for the Turner-Clough element can be done either ana-
lytically or numerically by use of a 2 x 2 point Gauss integration. The element load
vector ff yields

8

<

8

£ = abt

8

<

8

0“@‘@“@‘@@‘@‘@“@‘

T
<
L
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plantcs Two dimensional solid elements

Purpose:

Compute stresses and strains in a Turner-Clough element in plane strain or plane

stress.
Ug Ug
u; U
o> ny
y u, Uy Oxx Oxx
Uy { Us Oxy
Oyy
X
Syntax:

[es,et]=plantcs(ex,ey,ep,ed)

Description:

plantcs computes the stresses es and the strains et in a rectangular Turner-Clough ele-
ment in plane strain or plane stress. The stress and strain components are computed
at the center of the element.

The input variables ex, ey, and ep are defined in plantce. The vector ed contains the
nodal displacements a® of the element and is obtained by the function extract as

ed:(ae)T:[ul Uy ... Ug]

The output variables

es=o =

Oz Oyy [0:2] Oy [022] [0y:] ]

T

et=¢" = [ Exz Eyy [5,2,2] Yy [’sz] [’Vyz] ]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress ., # 0, and for plane strain o, # 0.

Theory:

The strains and stresses are computed according to
e =Ba°
oc=Dce

where the matrices D, B¢, and a® are described in plantce, and where the evaluation
point (x,y) is chosen to be at the center of the element.
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Two dimensional solid elements planide

Purpose:

Compute element matrices for a 4 node isoparametric element in plane strain or
plane stress.

(Xuy1)

Syntax:

Ke=plani4e(ex,ey,ep,D)
[Ke,fe]=planide(ex,ey,ep,D,eq)

Description:

planide provides an element stiffness matrix Ke and an element load vector fe for a 4
node isoparametric element in plane strain or plane stress.

The element nodal coordinates 1, y;, z9 etc. are supplied to the function by ex and
ey. The type of analysis ptype, the element thickness ¢, and the number of Gauss
points n are supplied by ep.

ptype = 1 plane stress (n X n) integration points
ptype = 2 plane strain n=1,2,3

The material properties are supplied by the constitutive matrix D. Any arbitrary D-
matrix with dimensions from (3 x 3) to (6 x 6) maybe given. For an isotropic elastic
material the constitutive matrix can be formed by the function hooke, see Section 4.

ex =[xy Ty X3 T4

ep = |ptype t n
ey = (11 1 vs vl p = [ptyp ]

Dll D12 DlS D14

[Di5] [Dis]
D21 D22 D23 D24 [D25] [D26]

D D D
5| Do e Dolorbe| P Ds Dss Ds [Dy] [Dss]
Do D D Dy Di Dis Du [Dis] [Dag]
[Ds1] [Dsa] [Ds3] [Dsa] [Dss] [Dse]
| [De1] [De2] [Des] [Des] [Des] [Des] |

If different D; -matrices are used in the Gauss points these D; -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in plani4s.

D1
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planide Two dimensional solid elements

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

ba
== (]
Y

containing loads per unit volume, b, and b,, is then given.

Theory:

The element stiffness matrix K and the element load vector f], stored in Ke and fe,
respectively, are computed according to

Ke:/ B D B° t dA

A
£ = / N7 bt dA
A

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.
The evaluation of the integrals for the isoparametric 4 node element is based on a

displacement approximation u(,n), expressed in a local coordinates system in terms
of the nodal variables uy, us, ..., ug as

u(é,n) = N° a°
where

Uy
[ e . [Nf 0 Ny 0O Ny O Nf O .|
“‘luy] N_[o Ny O Ny 0 Ny o0 Np| © :

ug

The element shape functions are given by

N=ta-1-n)  Ni=i(+e)-n

4 4
Ni= {1481 +n)  Nj=(1-6(1+n)

The matrix B¢ is obtained as

ox

- - 0

B¢ = VN° where V=| 0 —

dy

9 9

L dy Ox |

and where

) 2 or 0
Ov | _ qryv-1 | 08 _ | 9§ On
o |79 oy o
Jy on o0& On
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Two dimensional solid elements planide

If a larger D-matrix than (3 x 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 x 3) matrix by static condensation using o,, = 0,, = 0,, = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.

If a larger D-matrix than (3 x 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 X 3) matrix using €,, = 7., = 7V, = 0. This implies that a
(3 x 3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals is done by Gauss integration.
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planids Two dimensional solid elements

Purpose:

Compute stresses and strains in a 4 node isoparametric element in plane strain or
plane stress.

Syntax:
[es,et,eci]=planids(ex,ey,ep,D,ed)

Description:

plani4s computes stresses es and the strains et in a 4 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey, ep and the matrix D are defined in plani4e. The vector ed
contains the nodal displacements a® of the element and is obtained by the function
extract as

ed=(a%)" =[u; uy ... ug]

The output variables

ot oty L) ok ok [ok]
es = O'T — O':%a: aZy [‘732] a;?cy [03262] 052}

I I T A BT -
ot — 7 — 6290 €§y [ng] ’Yzy [’yiz] [’YZZ} eci — $'2 y'z
o ] b b | v

contain the stress and strain components, and the coordinates of the integration
points. The index n denotes the number of integration points used within the ele-
ment, cf. plani4e. The number of columns in es and et follows the size of D. Note
that for plane stress €, # 0, and for plane strain o,, # 0.
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Two dimensional solid elements plani4s

Theory:
The strains and stresses are computed according to
e=Ba“
oc=Dc¢e

where the matrices D, B¢, and a® are described in plani4e, and where the integration
points are chosen as evaluation points.
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plani4f Two dimensional solid elements

Purpose:
Compute internal element force vector in a 4 node isoparametric element in plane
strain or plane stress.

Syntax:
ef=plani4f(ex,ey,ep,es)

Description:

plani4f computes the internal element forces ef in a 4 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey and ep are defined in plani4e, and the input variable es is
defined in plani4s.

The output variable
ef:fieT: [ fa fio - fis]
contains the components of the internal force vector.
Theory:

The internal force vector is computed according to

)

fe — / B o t dA
A

where the matrices B® and o are defined in plani4e and plani4s, respectively.

Evaluation of the integral is done by Gauss integration.
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Two dimensional solid elements plani8e

Purpose:

Compute element matrices for an 8 node isoparametric element in plane strain or

plane stress.
7 3
4
8 6

U,
= \iL
2

(xpyp) W

Syntax:

Ke=plani8e(ex,ey,ep,D)
[Ke,fe]=plani8e(ex,ey,ep,D,eq)

Description:

plani8e provides an element stiffness matrix Ke and an element load vector fe for an
8 node isoparametric element in plane strain or plane stress.

The element nodal coordinates 1, y1, xo etc. are supplied to the function by ex and
ey. The type of analysis ptype, the element thickness ¢, and the number of Gauss
points n are supplied by ep.

ptype = 1 plane stress (n X n) integration points

ptype = 2 plane strain n=1,23
The material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 x 3) to (6 x 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

R R

I Dll D12 D13 D14 [-D15] [-Dlﬁ]
DQl D22 D23 D24 [D25] [D26]
D D D
D — Dll D12 D13 or D — D31 D32 D33 D34 [D35 ] [D36]
Du Du D Dy Di Dy Dus [Dis] [Dag]
[Ds1] [Ds2] [Dss] [Dsa] [Dss] [Dse]
| [De1] [De2] [De3] [Des] [Des] [Des] |

If different D; -matrices are used in the Gauss points these D; -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in plani8s.

D1
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plani8e Two dimensional solid elements

If uniformly distributed loads are applied to the element, the e