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Preface

CALFEM©R is an interactive computer program for teaching the finite element method
(FEM). The name CALFEM is an abbreviation of ”Computer Aided Learning of the Finite
Element Method”. The program can be used for different types of structural mechanics
problems and field problems.

CALFEM, the program and its built-in philosophy have been developed at the Division of
Structural Mechanics, Lund University, starting in the late 70’s. Many coworkers, former
and present, have been engaged in the development at different stages, of whom we might
mention

Per-Erik Austrell H̊akan Carlsson Ola Dahlblom
Susanne Heyden Jonas Lindemann Anders Olsson
Karl-Gunnar Olsson Kent Persson Anders Peterson
Hans Petersson Matti Ristinmaa Göran Sandberg
Erik Serrano Per-Anders Wernberg

This release represents the latest development of CALFEM. The functions for finite element
applications are all MATLAB functions (.m-files) as described in the MATLAB manual.
We believe that this environment increases the versatility and handling of the program
and, above all, the ease of teaching the finite element method.

Lund, December 14, 2022

The authors
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1 Introduction

The computer program CALFEM is a MATLAB toolbox for finite element applications.
This manual concerns mainly the finite element functions, but it also contains descriptions
of some often used MATLAB functions.

The finite element analysis can be carried out either interactively or in a batch oriented
fashion. In the interactive mode the functions are evaluated one by one in the MATLAB
command window. In the batch oriented mode a sequence of functions are written in a file
named .m-file, and evaluated by writing the file name in the command window. The batch
oriented mode is a more flexible way of performing finite element analysis because the
.m-file can be written in an ordinary editor. This way of using CALFEM is recommended
because it gives a structured organization of the functions. Changes and reruns are also
easily executed in the batch oriented mode.

A command line consists typically of functions for vector and matrix operations, calls to
functions in the CALFEM finite element library or commands for workspace operations.
An example of a command line for a matrix operation is

C = A+ B′

where two matrices A and B’ are added together and the result is stored in matrix C .
The matrix B’ is the transpose of B. An example of a call to the element library is

Ke = spring1e(k)

where the two-by-two element stiffness matrix Ke is computed for a spring element with
spring stiffness k, and is stored in the variable Ke. The input argument is given within
parentheses ( ) after the name of the function. Some functions have multiple input argu-
ments and/or multiple output arguments. For example

[lambda,X] = eigen(K,M)

computes the eigenvalues and eigenvectors to a pair of matrices K and M. The output
variables - the eigenvalues stored in the vector lambda and the corresponding eigenvectors
stored in the matrix X - are surrounded by brackets [ ] and separated by commas. The
input arguments are given inside the parentheses and also separated by commas.

The statement

help function

provides information about purpose and syntax for the specified function.
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The available functions are organized in groups as follows. Each group is described in a
separate chapter.

Groups of functions

General purpose
commands for managing variables, workspace, output etc

Matrix functions for matrix handling

Material functions for computing material matrices

Element functions for computing element matrices and element forces

System functions for setting up and solving systems of equations

Statement
functions for algorithm definitions

Graphics functions for plotting
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2 General purpose functions

The general purpose functions are used for managing variables and workspace, control of
output etc. The functions listed here are a subset of the general purpose functions described
in the MATLAB manual. The functions can be divided into the following groups

Managing commands and functions
help Online documentation
type List .m-file
what Directory listing of .m-, .mat- and .mex-files
... Continuation
% Write a comment line

Managing variables and the workspace
clear Remove variables from workspace
disp Display variables in workspace on display screen
load Retrieve variable from disk and load in workspace
save Save matrix bank variable on disk
who,
whos

List directory of variables in workspace

Working with files and controlling the command window
diary Save session in a named file
echo Control output on the display screen
format Control the output display format
quit Stop execution and exit from the CALFEM program
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clear

Purpose:

Remove variables from workspace.

Syntax:

clear
clear name1 name2 name3 ...

Description:

clear removes all variables from workspace.

clear name1 name2 name3 ... removes specified variables from workspace.

Note:

This is a MATLAB built-in function. For more information about the clear function,
type help clear.
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diary

Purpose:

Save session in a disk file.

Syntax:

diary filename
diary off
diary on

Description:

diary filenamewrites a copy of all subsequent keyboard input and most of the resulting
output (but not graphs) on the named file. If the file filename already exists, the
output is appended to the end of that file.

diary off stops storage of the output.

diary on turns it back on again, using the current filename or default filename diary
if none has yet been specified.

The diary function may be used to store the current session for later runs. To make
this possible, finish each command line with semicolon ’;’ to avoid the storage of
intermediate results on the named diary file.

Note:

This is a MATLAB built-in function. For more information about the diary function,
type help diary.
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disp

Purpose:

Display a variable in matrix bank on display screen.

Syntax:

disp(A)

Description:

disp(A) displays the matrix A on the display screen.

Note:

This is a MATLAB built-in function. For more information about the disp function,
type help disp.
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echo

Purpose:

Control output on the display screen.

Syntax:

echo on
echo off
echo

Description:

echo on turns on echoing of commands inside Script-files.

echo off turns off echoing.

echo by itself, toggles the echo state.

Note:

This is a MATLAB built-in function. For more information about the echo function,
type help echo.
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format

Purpose:

Control the output display format.

Syntax:

See the listing below.

Description:

format controls the output format. By default, MATLAB displays numbers in a short
format with five decimal digits.

Command Result Example
format short 5 digit scaled fixed point 3.1416
format long 15 digit scaled fixed point 3.14159265358979
format short e 5 digit floating point 3.1416e+000
format long e 16 digit floating point 3.141592653589793e+000

Note:

This is a MATLAB built-in function. For more information about the format func-
tion, type help format.
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help

Purpose:

Display a description of purpose and syntax for a specific function.

Syntax:

help function name

Description:

help provides an online documentation for the specified function.

Example:

Typing

>> help spring1e

yields

Ke=spring1e(ep)

-------------------------------------------------------------

PURPOSE

Compute element stiffness matrix for spring (analog) element.

INPUT: ep = [k]; spring stiffness or analog quantity.

OUTPUT: Ke : stiffness matrix, dim(Ke)= 2 x 2

-------------------------------------------------------------

Note:

This is a MATLAB built-in function. For more information about the help function,
type help help.
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load

Purpose:

Retrieve variable from disk and load in workspace.

Syntax:

load filename
load filename.ext

Description:

load filename retrieves the variables from the binary file filename.mat.

load filename.ext reads the ASCII file filename.ext with numeric data arranged in m
rows and n columns. The result is an m-by-n matrix residing in workspace with the
name filename, i.e. with the extension stripped.

Note:

This is a MATLAB built-in function. For more information about the load function,
type help load.
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quit

Purpose:

Terminate CALFEM session.

Syntax:

quit

Description:

quit filename terminates the CALFEM without saving the workspace.

Note:

This is a MATLAB built-in function. For more information about the quit function,
type help quit.
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save

Purpose:

Save workspace variables on disk.

Syntax:

save filename
save filename variables
save filename variables -ascii

Description:

save filename writes all variables residing in workspace in a binary file named file-
name.mat

save filename variables writes named variables, separated by blanks, in a binary file
named filename.mat

save filename variables -ascii writes named variables in an ASCII file named filename.

Note:

This is a MATLAB built-in function. For more information about the save function,
type help save.
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type

Purpose:

List file.

Syntax:

type filename

Description:

type filename lists the specified file. Use path names in the usual way for your
operating system. If a filename extension is not given, .m is added by default. This
makes it convenient to list the contents of .m-files on the screen.

Note:

This is a MATLAB built-in function. For more information about the type function,
type help type.
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what

Purpose:

Directory listing of .m-files, .mat-files and .mex-files.

Syntax:

what
what dirname

Description:

what lists the .m-files, .mat-files and .mex-files in the current directory.

what dirname lists the files in directory dirname in the MATLAB search path. The
syntax of the path depends on your operating system.

Note:

This is a MATLAB built-in function. For more information about the what function,
type help what.
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who, whos

Purpose:

List directory of variables in matrix bank.

Syntax:

who
whos

Description:

who lists the variables currently in memory.

whos lists the current variables and their size.

Examples:

who

Your variables are:

A B C
K M X
k lambda

whos

name size elements bytes density complex
A 3-by-3 9 72 Full No
B 3-by-3 9 72 Full No
C 3-by-3 9 72 Full No
K 20-by-20 400 3200 Full No
M 20-by-20 400 3200 Full No
X 20-by-20 400 3200 Full No
k 1-by-1 1 8 Full No

lambda 20-by-1 20 160 Full No

Grand total is 1248 elements using 9984 bytes

Note:

These are MATLAB built-in functions. For more information about the functions,
type help who or help whos.

15 GENERAL PURPOSE



...

Purpose:

Continuation.

Syntax:

...

Description:

An expression can be continued on the next line by using ... .

Note:

This is a MATLAB built-in function.
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%

Purpose:

Write a comment line.

Syntax:

% arbitrary text

Description:

An arbitrary text can be written after the symbol %.

Note:

This is a MATLAB built-in character.
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%
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3 Matrix functions

The group of matrix functions comprises functions for vector and matrix operations and
also functions for sparse matrix handling. MATLAB has two storage modes, full and sparse.
Only nonzero entries and their indices are stored for sparse matrices. Sparse matrices are
not created automatically. But once initiated, sparsity propagates. Operations on sparse
matrices produce sparse matrices and operations on a mixture of sparse and full matrices
also normally produce sparse matrices.

The following functions are described in this chapter:

Vector and matrix operations
[ ] ( ) = Special characters
’ . , ; Special characters
: Create vectors and do matrix subscripting
+ – ∗ / Matrix arithmetic
abs Absolute value
det Matrix determinant
diag Diagonal matrices and diagonals of a matrix
inv Matrix inverse
length Vector length
max Maximum element(s) of a matrix
min Minimum element(s) of a matrix
ones Generate a matrix of all ones
size Matrix dimensions
sqrt Square root
sum Sum of the elements of a matrix
zeros Generate a zero matrix

Sparse matrix handling
full Convert sparse matrix to full matrix
sparse Create sparse matrix
spy Visualize sparsity structure
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[ ] ( ) = ’ . , ;

Purpose:

Special characters.

Syntax:

[ ] ( ) = ’ . , ;

Description:

[ ] Brackets are used to form vectors and matrices.

( ) Parentheses are used to indicate precedence in arithmetic expressions and to
specify an element of a matrix.

= Used in assignment statements.

’ Matrix transpose. X’ is the transpose of X. If X is complex, the apostrophe
sign performs complex conjugate as well. Do X.’ if only the transpose of the
complex matrix is desired

. Decimal point. 314/100, 3.14 and 0.314e1 are all the same.

, Comma. Used to separate matrix subscripts and function arguments.

; Semicolon. Used inside brackets to end rows. Used after an expression to
suppress printing or to separate statements.

Examples:

By the statement

a = 2

the scalar a is assigned a value of 2. An element in a matrix may be assigned a value
according to

A(2, 5) = 3

The statement

D = [ 1 2 ; 3 4]

results in matrix

D =

[
1 2
3 4

]

stored in the matrix bank. To copy the contents of the matrix D to a matrix E, use

E = D

The character ’ is used in the following statement to store the transpose of the matrix
A in a new matrix F

F = A′

Note:

These are MATLAB built-in characters.
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:

Purpose:

Create vectors and do matrix subscripting.

Description:

The colon operator uses the following rules to create regularly spaced vectors:

j : k is the same as [ j, j + 1, ... , k ]

j : i : k is the same as [ j, j + i, j + 2i, ... , k ]

The colon notation may also be used to pick out selected rows, columns, and elements
of vectors and matrices:

A( : , j ) is the j :th column of A

A( i , : ) is the i :th row of A

Examples:

The colon ’:’ used with integers

d = 1 : 4

results in a row vector

d = [ 1 2 3 4 ]

stored in the workspace.

The colon notation may be used to display selected rows and columns of a matrix on
the terminal. For example, if we have created a 3-times-4 matrix D by the statement

D = [ d ; 2 ∗ d ; 3 ∗ d ]

resulting in

D =

⎡
⎢⎣ 1 2 3 4
2 4 6 8
3 6 9 12

⎤
⎥⎦

columns three and four are displayed by entering

D( : , 3 : 4 )

resulting in

D( : , 3 : 4 ) =

⎡
⎢⎣ 3 4
6 8
9 12

⎤
⎥⎦

In order to copy parts of the D matrix into another matrix the colon notation is used
as

E( 3 : 4 , 2 : 3 ) = D( 1 : 2 , 3 : 4 )
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:

Assuming the matrix E was a zero matrix before the statement is executed, the result
will be

E =

⎡
⎢⎢⎢⎣
0 0 0 0
0 0 0 0
0 3 4 0
0 6 8 0

⎤
⎥⎥⎥⎦

Note:

This is a MATLAB built-in character.
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+ − ∗ /

Purpose:

Matrix arithmetic.

Syntax:

A + B
A − B
A ∗ B
A/s

Description:

Matrix operations are defined by the rules of linear algebra.

Examples:

An example of a sequence of matrix-to-matrix operations is

D = A+ B− C

A matrix-to-vector multiplication followed by a vector-to-vector subtraction may be
defined by the statement

b = c− A ∗ x
and finally, to scale a matrix by a scalar s we may use

B = A/s

Note:

These are MATLAB built-in operators.
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abs

Purpose:

Absolute value.

Syntax:

B=abs(A)

Description:

B=abs(A) computes the absolute values of the elements of matrix A and stores them
in matrix B.

Examples:

Assume the matrix

C =

[ −7 4
−3 −8

]

The statement D=abs(C) results in a matrix

D =

[
7 4
3 8

]

stored in the workspace.

Note:

This is a MATLAB built-in function. For more information about the abs function,
type help abs.
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det

Purpose:

Matrix determinant.

Syntax:

a=det(A)

Description:

a=det(A) computes the determinant of the matrix A and stores it in the scalar a.

Note:

This is a MATLAB built-in function. For more information about the det function,
type help det.
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diag

Purpose:

Diagonal matrices and diagonals of a matrix.

Syntax:

M=diag(v)
v=diag(M)

Description:

For a vector v with n components, the statement M=diag(v) results in an n × n
matrix M with the elements of v as the main diagonal.

For a n× n matrix M, the statement v=diag(M) results in a column vector v with n
components formed by the main diagonal in M.

Note:

This is a MATLAB built-in function. For more information about the diag function,
type help diag.
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full

Purpose:

Convert sparse matrices to full storage class.

Syntax:

A=full(S)

Description:

A=full(S) converts the storage of a matrix from sparse to full. If A is already full,
full(A) returns A.

Note:

This is a MATLAB built-in function. For more information about the full function,
type help full.
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inv

Purpose:

Matrix inverse.

Syntax:

B=inv(A)

Description:

B=inv(A) computes the inverse of the square matrix A and stores the result in the
matrix B.

Note:

This is a MATLAB built-in function. For more information about the inv function,
type help inv.
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length

Purpose:

Vector length.

Syntax:

n=length(x)

Description:

n=length(x) returns the dimension of the vector x.

Note:

This is a MATLAB built-in function. For more information about the length function,
type help length.
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max

Purpose:

Maximum element(s) of a matrix.

Syntax:

b=max(A)

Description:

For a vector a, the statement b=max(a) assigns the scalar b the maximum element
of the vector a.

For a matrix A, the statement b=max(A) returns a row vector b containing the
maximum elements found in each column vector in A.

The maximum element found in a matrix may thus be determined by
c=max(max(A)).

Examples:

Assume the matrix B is defined as

B =

[ −7 4
−3 −8

]

The statement d=max(B) results in a row vector

d =
[
−3 4

]

The maximum element in the matrix B may be found by e=max(d) which results in
the scalar e = 4.

Note:

This is a MATLAB built-in function. For more information about the max function,
type help max.
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min

Purpose:

Minimum element(s) of a matrix.

Syntax:

b=min(A)

Description:

For a vector a, the statement b=min(a) assigns the scalar b the minimum element of
the vector a.

For a matrix A, the statement b=min(A) returns a row vector b containing the min-
imum elements found in each column vector in A.

The minimum element found in a matrix may thus be determined by c=min(min(A)).

Examples:

Assume the matrix B is defined as

B =

[ −7 4
−3 −8

]

The statement d=min(B) results in a row vector

d =
[
−7 −8

]

The minimum element in the matrix B is then found by e=min(d), which results in
the scalar e = −8.

Note:

This is a MATLAB built-in function. For more information about the min function,
type help min.
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ones

Purpose:

Generate a matrix of all ones.

Syntax:

A=ones(m,n)

Description:

A=ones(m,n) results in an m-times-n matrix A with all ones.

Note:

This is a MATLAB built-in function. For more information about the ones function,
type help ones.
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size

Purpose:

Matrix dimensions.

Syntax:

d=size(A)
[m,n]=size(A)

Description:

d=size(A) returns a vector with two integer components, d=[m,n], from the matrix
A with dimensions m times n.

[m,n]=size(A) returns the dimensions m and n of the m× n matrix A.

Note:

This is a MATLAB built-in function. For more information about the size function,
type help size.
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sparse

Purpose:

Create sparse matrices.

Syntax:

S=sparse(A)
S=sparse(m,n)

Description:

S=sparse(A) converts a full matrix to sparse form by extracting all nonzero matrix
elements. If S is already sparse, sparse(S) returns S.

S=sparse(m,n) generates an m-times-n sparse zero matrix.

Note:

This is a MATLAB built-in function. For more information about the sparse function,
type help sparse.
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spy

Purpose:

Visualize matrix sparsity structure.

Syntax:

spy(S)

Description:

spy(S) plots the sparsity structure of any matrix S. S is usually a sparse matrix, but
the function also accepts full matrices and the nonzero matrix elements are plotted.

Note:

This is a MATLAB built-in function. For more information about the spy function,
type help spy.
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sqrt

Purpose:

Square root.

Syntax:

B=sqrt(A)

Description:

B=sqrt(A) computes the square root of the elements in matrix A and stores the result
in matrix B.

Note:

This is a MATLAB built-in function. For more information about the sqrt function,
type help sqrt.
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sum

Purpose:

Sum of the elements of a matrix.

Syntax:

b=sum(A)

Description:

For a vector a, the statement b=sum(a) results in a scalar a containing the sum of
all elements of a.

For a matrix A, the statement b=sum(A) returns a row vector b containing the sum
of the elements found in each column vector of A.

The sum of all elements of a matrix is determined by c=sum(sum(A)).

Note:

This is a MATLAB built-in function. For more information about the sum function,
type help sum.
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zeros

Purpose:

Generate a zero matrix.

Syntax:

A=zeros(m,n)

Description:

A=zeros(m,n) results in an m-times-n matrix A of zeros.

Note:

This is a MATLAB built-in function. For more information about the zeros function,
type help zeros.
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4 Material functions

The group of material functions comprises functions for constitutive models. The available
models can treat linear elastic and isotropic hardening von Mises material. These material
models are defined by the functions:

Material property functions
hooke Form linear elastic constitutive matrix
mises Compute stresses and plastic strains for isotropic hardening

von Mises material
dmises Form elasto-plastic continuum matrix for isotropic hardening

von Mises material
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hooke

Purpose:

Compute material matrix for a linear elastic and isotropic material.

Syntax:

D = hooke(ptype,E,v)

Description:

hooke computes the material matrix D for a linear elastic and isotropic material.

The variable ptype is used to define the type of analysis.

ptype =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 plane stress.
2 plane strain.
3 axisymmetry.
4 three dimensional analysis.

The material parameters E and v define the modulus of elasticity E and the Poisson’s
ratio ν, respectively.

For plane stress, ptype=1, D is formed as

D =
E

1− ν2

⎡
⎢⎢⎢⎣
1 ν 0
ν 1 0

0 0
1− ν

2

⎤
⎥⎥⎥⎦

For plane strain, ptype=2 and axisymmetry, ptype=3, D is formed as

D =
E

(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0

ν 1− ν ν 0

ν ν 1− ν 0

0 0 0 1
2
(1− 2ν)

⎤
⎥⎥⎥⎥⎥⎥⎦

For the three dimensional case, ptype=4, D is formed as

D =
E

(1 + ν)(1− 2ν)

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1− ν ν ν 0 0 0

ν 1− ν ν 0 0 0

ν ν 1− ν 0 0 0

0 0 0 1
2
(1− 2ν) 0 0

0 0 0 0 1
2
(1− 2ν) 0

0 0 0 0 0 1
2
(1− 2ν)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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mises

Purpose:

Compute stresses and plastic strains for an elasto-plastic isotropic hardening von
Mises material.

Syntax:

[es,deps,st]=mises(ptype,mp,est,st)

Description:

mises computes updated stresses es, plastic strain increments deps, and state variables
st for an elasto-plastic isotropic hardening von Mises material.

The input variable ptype is used to define the type of analysis, cf. hooke. The vector
mp contains the material constants

mp = [ E ν h ]

where E is the modulus of elasticity, ν is the Poisson’s ratio, and h is the plastic
modulus. The input matrix est contains trial stresses obtained by using the elas-
tic material matrix D in plants or some similar s-function, and the input vector st
contains the state parameters

st = [ yi σy ε
p
eff ]

at the beginning of the step. The scalar yi states whether the material behaviour
is elasto-plastic (yi=1), or elastic (yi=0). The current yield stress is denoted by σy
and the effective plastic strain by εpeff .

The output variables es and st contain updated values of es and st obtained by
integration of the constitutive equations over the actual displacement step. The
increments of the plastic strains are stored in the vector deps.

If es and st contain more than one row, then every row will be treated by the com-
mand.

Note:

It is not necessary to check whether the material behaviour is elastic or elasto-plastic,
this test is done by the function. The computation is based on an Euler-Backward
method, i.e. the radial return method.

Only the cases ptype=2, 3 and 4, are implemented.
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dmises

Purpose:

Form the elasto-plastic continuum matrix for an isotropic hardening von Mises ma-
terial.

Syntax:

D=dmises(ptype,mp,es,st)

Description:

dmises forms the elasto-plastic continuum matrix for an isotropic hardening von Mises
material.

The input variable ptype is used to define the type of analysis, cf. hooke. The vector
mp contains the material constants

mp = [ E ν h ]

where E is the modulus of elasticity, ν is the Poisson’s ratio, and h is the plastic
modulus. The matrix es contains current stresses obtained from plants or some
similar s-function, and the vector st contains the current state parameters

st = [ yi σy ε
p
eff ]

where yi=1 if the material behaviour is elasto-plastic, and yi=0 if the material
behaviour is elastic. The current yield stress is denoted by σy, and the current
effective plastic strain by εpeff .

Note:

Only the case ptype=2 is implemented.
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5 Element functions

5.1 Introduction

The group of element functions contains functions for computation of element matrices
and element forces for different element types. The element functions have been divided
into the following groups

Spring element

Bar elements

Heat flow elements

Solid elements

Beam elements

Plate element

For each element type there is a function for computation of the element stiffness matrix
Ke. For most of the elements, an element load vector f e can also be computed. These
functions are identified by their last letter -e.

Using the function assem, the element stiffness matrices and element load vectors are
assembled into a global stiffness matrix K and a load vector f . Unknown nodal values of
temperatures or displacements a are computed by solving the system of equations Ka = f
using the function solveq. A vector of nodal values of temperatures or displacements for a
specific element is formed by the function extract.

When the element nodal values have been computed, the element flux or element stresses
can be calculated using functions specific to the element type concerned. These functions
are identified by their last letter -s.

For some elements, a function for computing the internal force vector is also available.
These functions are identified by their last letter -f.
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5.2 Spring element

The spring element, shown below, can be used for the analysis of one-dimensional spring
systems and for a variety of analogous physical problems.

k
u1 u2

●●

Quantities corresponding to the variables of the spring are listed in Table 1.

Problem type Spring Nodal dis- Element Spring
stiffness placement force force

Spring k u P N

Bar
EA

L
u P N

Thermal conduction
λA

L
T H̄ H

Diffusion
DA

L
c H̄ H

Electrical circuit
1

R
U Ī I

Groundwater flow
kA

L
φ H̄ H

Pipe network
πD4

128μL
p H̄ H

Table 1: Analogous quantities



Interpretations of the spring element

Problem type Quantities Designations

Spring

k
u2, P2

N N

●●

●●

u1, P1

k
u
P
N

spring stiffness
displacement
element force
spring force

Bar E, A

N N

L

u2, P2u1, P1

L
E
A
u
P
N

length
modulus of elasticity
area of cross section
displacement
element force
normal force

Thermal
conduction

��

�

�� �� ���

�

L
λ
T
H̄
H

length
thermal conductivity
temperature
element heat flow
internal heat flow

Diffusion

H1

L

c 1 c 2 H2H

D

L
D
c
H̄
H

length
diffusivity
nodal concentration
nodal mass flow
element mass flow

Electrical
circuit

R
U2U1

I1

I

●●
I2

R
U
Ī
I

resistance
potential
element current
internal current

Ground-
water
flow

��

�

�� �� ���

�

L
k
φ
H̄
H

length
permeability
piezometric head
element water flow
internal water flow

Pipe
network
(laminar
flow)

��
�

����	�

��
�

	�

L
D
μ
p
H̄
H

length
pipe diameter
viscosity
pressure
element fluid flow
internal fluid flow

Table 2: Quantities used in different types of problems
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The following functions are available for the spring element:

Spring functions
spring1e Compute element matrix
spring1s Compute spring force
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Spring element spring1e

Purpose:

Compute element stiffness matrix for a spring element.

k
u1 u2

●●

Syntax:

Ke=spring1e(ep)

Description:

spring1e provides the element stiffness matrix Ke for a spring element.

The input variable

ep = [ k ]

supplies the spring stiffness k or the analog quantity defined in Table 1.

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke =

[
k −k

−k k

]

where k is defined by ep.
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spring1s Spring element

Purpose:

Compute spring force in a spring element.

N N
●●

Syntax:

es=spring1s(ep,ed)

Description:

spring1s computes the spring force es in a spring element.

The input variable ep is defined in spring1e and the element nodal displacements ed
are obtained by the function extract.

The output variable

es = [ N ]

contains the spring force N , or the analog quantity.

Theory:

The spring force N , or analog quantity, is computed according to

N = k ( u2 − u1 )
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5.3 Bar elements

Bar elements are available for one, two, and three dimensional analysis.

One dimensional bar elements
bar1e Compute element matrix
bar1s Compute normal force
bar1we Compute element matrix for bar element with elastic support
bar1ws Compute normal force for bar element with elastic support

Two dimensional bar elements
bar2e Compute element matrix
bar2s Compute normal force
bar2ge Compute element matrix for geometric nonlinear element
bar2gs Compute normal force and axial force for geometric nonlinear ele-

ment

Three dimensional bar elements
bar3e Compute element matrix
bar3s Compute normal force
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bar1e One dimensional bar element

Purpose:

Compute element stiffness matrix for a one dimensional bar element.

x
(x1) (x2)

u1 u2

EA

x

Syntax:

Ke=bar1e(ex,ep)
[Ke,fe]=bar1e(ex,ep,eq)

Description:

bar1e provides the element stiffness matrix Ke for a one dimensional bar element.
The input variables

ex = [ x1 x2 ] ep = [ E A ]

supply the element nodal coordinates x1 and x2, the modulus of elasticity E, and
the cross section area A.

The element load vector fe can also be computed if uniformly distributed load is
applied to the element. The optional input variable

eq =
[
qx̄
]

then contains the distributed load per unit length, qx̄.

x
x

qx

Theory:

The element stiffness matrix K̄e, stored in Ke, is computed according to

K̄e =
DEA

L

[
1 −1

−1 1

]

where the axial stiffness DEA and the length L are given by

DEA = EA; L = x2 − x1

The element load vector f̄ el , stored in fe, is computed according to

f̄ el =
qx̄L

2

[
1
1

]
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One dimensional bar element bar1s

Purpose:

Compute normal force in a one dimensional bar element.

x

N N

Syntax:

es=bar1s(ex,ep,ed)
es=bar1s(ex,ep,ed,eq)
[es,edi]=bar1s(ex,ep,ed,eq,n)
[es,edi,eci]=bar1s(ex,ep,ed,eq,n)

Description:

bar1s computes the normal force in the one dimensional bar element bar1e.

The input variables ex and ep are defined in bar1e and the element nodal displace-
ments, stored in ed, are obtained by the function extract. If distributed load is applied
to the element, the variable eq must be included. The number of evaluation points
for normal force and displacement are determined by n. If n is omitted, only the
ends of the bar are evaluated.

The output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0)
N(x̄2)

...
N(x̄n−1)
N(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(x̄2)

...
u(x̄n−1)
u(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the normal force, the displacement, and the evaluation points on the local
x̄-axis. L is the length of the bar element.

Theory:

The nodal displacements in local coordinates are given by

āe =

[
ū1
ū2

]

The transpose of āe is stored in ed.

The displacement u(x̄) and the normal force N(x̄) are computed from

u(x̄) = Nāe + up(x̄)

N(x̄) = DEABāe +Np(x̄)

51 ELEMENT



bar1s One dimensional bar element

where

N =
[
1 x̄

]
C−1 =

[
1− x̄

L
x̄
L

]

B =
[
0 1

]
C−1 =

1

L

[
−1 1

]

up(x̄) = − qx̄
DEA

(
x̄2

2
− Lx̄

2

)

Np(x̄) = −qx̄
(
x̄− L

2

)

in which DEA, L, and qx̄ are defined in bar1e and

C−1 =

[
1 0

− 1
L

1
L

]
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One dimensional bar element with elastic support bar1we

Purpose:

Compute element stiffness matrix for a one dimensional bar element with elastic
support.

x
(x1) (x2)

u1 u2

EA

x

kx

Syntax:

Ke=bar1we(ex,ep)
[Ke,fe]=bar1we(ex,ep,eq)

Description:

bar1we provides the element stiffness matrix Ke for a one dimensional bar element
with elastic support. The input variables

ex = [ x1 x2 ] ep = [ E A kx̄ ]

supply the element nodal coordinates x1 and x2, the modulus of elasticity E, the
cross section area A and the stiffness of the axial springs kx̄.

The element load vector fe can also be computed if uniformly distributed load is
applied to the element. The optional input variable

eq =
[
qx̄
]

then contains the distributed load per unit length, qx̄.

x
x

qx

Theory:

The element stiffness matrix K̄e, stored in Ke, is computed according to

K̄e = K̄e
0 + K̄e

s

K̄e
0 =

DEA

L

[
1 −1

−1 1

]

K̄e
s = kx̄L

[
1
3

1
6

1
6

1
3

]

where the axial stiffness DEA and the length L are given by

DEA = EA; L = x2 − x1

The element load vector f̄ el , stored in fe, is computed according to

f̄ el =
qx̄L

2

[
1
1

]
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bar1ws One dimensional bar element with elastic support

Purpose:

Compute normal force in a one dimensional bar element with elastic support.

x

N N

Syntax:

es=bar1ws(ex,ep,ed)
es=bar1ws(ex,ep,ed,eq)
[es,edi]=bar1ws(ex,ep,ed,eq,n)
[es,edi,eci]=bar1ws(ex,ep,ed,eq,n)

Description:

bar1ws computes the normal force in the one dimensional bar element bar1we.

The input variables ex and ep are defined in bar1we and the element nodal displace-
ments, stored in ed, are obtained by the function extract. If distributed load is applied
to the element, the variable eq must be included. The number of evaluation points
for normal force and displacement are determined by n. If n is omitted, only the
ends of the bar are evaluated.

The output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0)
N(x̄2)

...
N(x̄n−1)
N(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(x̄2)

...
u(x̄n−1)
u(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the normal force, the displacement, and the evaluation points on the local
x̄-axis. L is the length of the bar element.

Theory:

The nodal displacements in local coordinates are given by

āe =

[
ū1
ū2

]

The transpose of āe is stored in ed.

The displacement u(x̄) and the normal force N(x̄) are computed from

u(x̄) = Nāe + up(x̄)

N(x̄) = DEABāe +Np(x̄)

ELEMENT 54



One dimensional bar element with elastic support bar1ws

where

N =
[
1 x̄

]
C−1 =

[
1− x̄

L
x̄
L

]

B =
[
0 1

]
C−1 =

1

L

[
−1 1

]

up(x̄) =
kx̄
DEA

[
x̄2−Lx̄

2
x̄3−L2x̄

6

]
C−1āe − qx̄

DEA

(
x̄2

2
− Lx̄

2

)

Np(x̄) = kx̄
[

2x̄−L
2

3x̄2−L2

6

]
C−1āe − qx̄

(
x̄− L

2

)
in which DEA, L, kx̄ and qx̄ are defined in bar1we and

C−1 =

[
1 0

− 1
L

1
L

]
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bar2e Two dimensional bar element

Purpose:

Compute element stiffness matrix for a two dimensional bar element.

E, A

x

y

(x2,y2)

(x1,y1)

x

u1

u2

u3

u4

Syntax:

Ke=bar2e(ex,ey,ep)
[Ke,fe]=bar2e(ex,ey,ep,eq)

Description:

bar2e provides the global element stiffness matrix Ke for a two dimensional bar ele-
ment.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]

ep = [ E A ]

supply the element nodal coordinates x1, y1, x2, and y2, the modulus of elasticity E,
and the cross section area A.

The element load vector fe can also be computed if uniformly distributed axial load
is applied to the element. The optional input variable

eq =
[
qx̄
]

then contains the distributed load per unit length, qx̄.

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT K̄e G

where

K̄e =
DEA

L

[
1 −1

−1 1

]
G =

[
nxx̄ nyx̄ 0 0
0 0 nxx̄ nyx̄

]
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Two dimensional bar element bar2e

x

qx

xy

where the axial stiffness DEA and the length L are given by

DEA = EA; L =
√
(x2 − x1)2 + (y2 − y1)2

and the transformation matrix G contains the direction cosines

nxx̄ =
x2 − x1
L

nyx̄ =
y2 − y1
L

The element load vector f el , stored in fe, is computed according to

f el = GT f̄ el

where

f̄ el =
qx̄L

2

[
1
1

]
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bar2s Two dimensional bar element

Purpose:

Compute normal force in a two dimensional bar element.

x

y N

N

Syntax:

es=bar2s(ex,ey,ep,ed)
es=bar2s(ex,ey,ep,ed,eq)
[es,edi]=bar2s(ex,ey,ep,ed,eq,n)
[es,edi,eci]=bar2s(ex,ey,ep,ed,eq,n)

Description:

bar2s computes the normal force in the two dimensional bar element bar2e.

The input variables ex, ey, and ep are defined in bar2e and the element nodal dis-
placements, stored in ed, are obtained by the function extract. If distributed loads
are applied to the element, the variable eq must be included. The number of evalua-
tion points for section forces and displacements are determined by n. If n is omitted,
only the ends of the bar are evaluated.

The output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0)
N(x̄2)

...
N(x̄n−1)
N(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(x̄2)

...
u(x̄n−1)
u(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the normal force, the displacement, and the evaluation points on the local
x̄-axis. L is the length of the bar element.

Theory:

The nodal displacements in global coordinates

ae = [ u1 u2 u3 u4 ]
T

are also shown in bar2e. The transpose of ae is stored in ed.
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Two dimensional bar element bar2s

The nodal displacements in local coordinates are given by

āe = Gae

where the transformation matrix G is defined in bar2e.

The displacement u(x̄) and the normal force N(x̄) are computed from

u(x̄) = Nāe +up(x̄)

N(x̄) = DEABāe +Np(x̄)

where

N =
[
1 x̄

]
C−1 =

[
1− x̄

L
x̄
L

]

B =
[
0 1

]
C−1 =

1

L

[
−1 1

]

up(x̄) = − qx̄
DEA

(
x̄2

2
− Lx̄

2

)

Np(x̄) = −qx̄
(
x̄− L

2

)

where DEA, L, qx̄ are defined in bar2e and

C−1 =

[
1 0

− 1
L

1
L

]
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bar2ge Two dimensional bar element

Purpose:

Compute element stiffness matrix for a two dimensional geometric nonlinear bar.

E, A

x

y

(x2,y2)

(x1,y1)

x
E, A, N

u1

u2

u3

u4

Syntax:

Ke=bar2ge(ex,ey,ep,Qx)

Description:

bar2ge provides the element stiffness matrix Ke for a two dimensional geometric
nonlinear bar element.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]

ep = [ E A ]

supply the element nodal coordinates x1, y1, x2, and y2, the modulus of elasticity E,
and the cross section area A. The input variable

Qx = [ Qx̄ ]

contains the value of the axial force, which is positive in tension.

Theory:

The global element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT K̄e G

where

K̄e =
DEA

L

⎡
⎢⎢⎢⎣

1 0 −1 0
0 0 0 0

−1 0 1 0
0 0 0 0

⎤
⎥⎥⎥⎦+ Qx̄

L

⎡
⎢⎢⎢⎣
0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1

⎤
⎥⎥⎥⎦
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Two dimensional bar element bar2ge

G =

⎡
⎢⎢⎢⎣
nxx̄ nyx̄ 0 0
nxȳ nyȳ 0 0
0 0 nxx̄ nyx̄

0 0 nxȳ nyȳ

⎤
⎥⎥⎥⎦

where the axial stiffness DEA and the length L are given by

DEA = EA; L =
√
(x2 − x1)2 + (y2 − y1)2

and the transformation matrix G contains the direction cosines

nxx̄ = nyȳ =
x2 − x1
L

nyx̄ = −nxȳ =
y2 − y1
L
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bar2gs Two dimensional bar element

Purpose:

Compute axial force and normal force in a two dimensional bar element.

x

y N

N

Syntax:

[es,Qx]=bar2gs(ex,ey,ep,ed)
[es,Qx]=bar2gs(ex,ey,ep,ed,eq)
[es,Qx,edi]=bar2gs(ex,ey,ep,ed,eq,n)
[es,Qx,edi,eci]=bar2gs(ex,ey,ep,ed,eq,n)

Description:

bar2gs computes the normal force in the two dimensional bar elements bar2g.

The input variables ex, ey, and ep are defined in bar2ge and the element nodal
displacements, stored in ed, are obtained by the function extract. The number of
evaluation points for section forces and displacements are determined by n. If n is
omitted, only the ends of the bar are evaluated.

The output variable Qx contains the axial force Qx̄ and the output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0)
N(x̄2)

...
N(x̄n−1)
N(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(x̄2)

...
u(x̄n−1)
u(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the normal force, the displacement, and the evaluation points on the local
x̄-axis. L is the length of the bar element.

Theory:

The nodal displacements in global coordinates are given by

ae = [ u1 u2 u3 u4 ]
T

The transpose of ae is stored in ed. The nodal displacements in local coordinates are
given by

āe = Gae
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Two dimensional bar element bar2gs

where the transformation matrix G is defined in bar2ge. The displacements associ-
ated with bar action are determined as

āe
bar =

[
ū1
ū3

]

The displacement u(x̄) and the normal force N(x̄) are computed from

u(x̄) = Nāe
bar

N(x̄) = DEABāe
bar

where

N =
[
1 x̄

]
C−1 =

[
1− x̄

L
x̄
L

]

B =
[
0 1

]
C−1 =

1

L

[
−1 1

]
where DEA and L are defined in bar2ge and

C−1 =

[
1 0

− 1
L

1
L

]

An updated value of the axial force is computed as

Qx̄ = N(0)
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bar3e Three dimensional bar element

Purpose:

Compute element stiffness matrix for a three dimensional bar element.

E, A

(x1,y1,z1)

(x2,y2,z2)

z
x

y x

u1

u2

u3

u4

u5

u6

Syntax:

Ke=bar3e(ex,ey,ez,ep)
[Ke,fe]=bar3e(ex,ey,ez,ep,eq)

Description:

bar3e provides the global element stiffness matrix Ke for a three dimensional bar
element.

The input variables

ex = [ x1 x2 ]
ey = [ x1 x2 ]
ez = [ y1 y2 ]

ep = [ E A ]

supply the element nodal coordinates x1, y1, z1, x2, y2, and z2, the modulus of
elasticity E, and the cross section area A.

The element load vector fe can also be computed if uniformly distributed axial load
is applied to the element. The optional input variable

eq =
[
qx̄
]

then contains the distributed load per unit length, qx̄.

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT K̄e G

where

K̄e =
DEA

L

[
1 −1

−1 1

]
G =

[
nxx̄ nyx̄ nzx̄ 0 0 0
0 0 0 nxx̄ nyx̄ nzx̄

]
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Three dimensional bar element bar3e

where the axial stiffness DEA and the length L are given by

DEA = EA; L =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2

and the transformation matrix G contains the direction cosines

nxx̄ =
x2 − x1
L

nyx̄ =
y2 − y1
L

nzx̄ =
z2 − z1
L

The element load vector f el , stored in fe, is computed according to

f el = GT f̄ el

where

f̄ el =
qx̄L

2

[
1
1

]
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bar3s Three dimensional bar element

Purpose:

Compute normal force in a three dimensional bar element.

N

N

z
x

y

Syntax:

es=bar3s(ex,ey,ez,ep,ed)
es=bar3s(ex,ey,ez,ep,ed,eq)
[es,edi]=bar3s(ex,ey,ez,ep,ed,eq,n)
[es,edi,eci]=bar3s(ex,ey,ez,ep,ed,eq,n)

Description:

bar3s computes the normal force in a three dimensional bar element bar3e.

The input variables ex, ey, and ep are defined in bar3e and the element nodal displace-
ments, stored in ed, are obtained by the function extract. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only
the ends of the bar are evaluated.

The output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0)
N(x̄2)

...
N(x̄n−1)
N(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0)
u(x̄2)

...
u(x̄n−1)
u(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the normal force, the displacement, and the evaluation points on the local
x̄-axis. L is the length of the bar element.

Theory:

The nodal displacements in global coordinates are given by

ae = [ u1 u2 u3 u4 u5 u6 ]
T

The transpose of ae is stored in ed.
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Three dimensional bar element bar3s

The nodal displacements in local coordinates are given by

āe = Gae

where the transformation matrix G is defined in bar3e.

The displacement u(x̄) and the normal force N(x̄) are computed from

u(x̄) = Nāe +up(x̄)

N(x̄) = DEABāe +Np(x̄)

where

N =
[
1 x̄

]
C−1 =

[
1− x̄

L
x̄
L

]

B =
[
0 1

]
C−1 =

1

L

[
−1 1

]

up(x̄) = − qx̄
DEA

(
x̄2

2
− Lx̄

2

)

Np(x̄) = −qx̄
(
x̄− L

2

)
where DEA, L, qx̄ are defined in bar3e and

C−1 =

[
1 0

− 1
L

1
L

]
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5.4 Heat flow elements

Heat flow elements are available for one, two, and three dimensional analysis. For one
dimensional heat flow the spring element spring1 is used.

A variety of important physical phenomena are described by the same differential equa-
tion as the heat flow problem. The heat flow element is thus applicable in modelling differ-
ent physical applications. Table 3 below shows the relation between the primary variable
a, the constitutive matrix D, and the load vector fl for a chosen set of two dimensional
physical problems.

Problem type a D fl Designation

Heat flow T λx , λy Q T = temperature
λx , λy = thermal
conductivity
Q = heat supply

Groundwater flow φ kx , ky, Q φ = piezometric
head
kx, ky = perme-
abilities
Q = fluid supply

St. Venant torsion φ
1

Gzy
,

1

Gzx
2Θ φ = stress function

Gzy, Gzx = shear
moduli
Θ = angle of torsion
per unit length

Table 3: Problem dependent parameters
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Heat flow elements

●

●

●

T2

T3

T1

flw2te

●

●

●

●

T4 T3

T1

T2

flw2qe
flw2i4e

●

●

●

●

●

●

●

●

T4

T3

T1

T2

T7

T6T8

T5

flw2i8e

●

●

●
●

●

●

●

●

T4 T3

T1 T2

T7

T6

T8

T5

flw3i8e

2D heat flow functions
flw2te Compute element matrices for a triangular element
flw2ts Compute temperature gradients and flux
flw2qe Compute element matrices for a quadrilateral element
flw2qs Compute temperature gradients and flux
flw2i4e Compute element matrices, 4 node isoparametric element
flw2i4s Compute temperature gradients and flux
flw2i8e Compute element matrices, 8 node isoparametric element
flw2i8s Compute temperature gradients and flux

3D heat flow functions
flw3i8e Compute element matrices, 8 node isoparametric element
flw3i8s Compute temperature gradients and flux
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flw2te Two dimensional heat flow elements

Purpose:

Compute element stiffness matrix for a triangular heat flow element.

T2

T3

T1 ●

(x1,y1)

●

●

(x3,y3)

(x2,y2)

x

y

Syntax:

Ke=flw2te(ex,ey,ep,D)
[Ke,fe]=flw2te(ex,ey,ep,D,eq)

Description:

flw2te provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a triangular heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex
and ey, the element thickness t is supplied by ep and the thermal conductivities (or
corresponding quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 ]
ey = [ y1 y2 y3 ]

ep = [ t ] D =

[
kxx kxy
kyx kyy

]

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke = (C−1)T
∫
A
B̄

T
D B̄ t dA C−1

fel = (C−1)T
∫
A
N̄

T
Q t dA

with the constitutive matrix D defined by D.

The evaluation of the integrals for the triangular element is based on the linear
temperature approximation T (x, y) and is expressed in terms of the nodal variables
T1, T2 and T3 as

T (x, y) = Neae = N̄ C−1ae
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Two dimensional heat flow elements flw2te

where

N̄ = [ 1 x y ] C =

⎡
⎢⎣ 1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎥⎦ ae =

⎡
⎢⎣ T1T2
T3

⎤
⎥⎦

and hence it follows that

B̄ = ∇N̄ =

[
0 1 0
0 0 1

]
∇ =

⎡
⎢⎢⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎥⎥⎦

Evaluation of the integrals for the triangular element yields

Ke = (C−1)T B̄
T
D B̄ C−1 t A

fel =
QAt

3
[ 1 1 1 ]T

where the element area A is determined as

A =
1

2
detC
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flw2ts Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in a triangular heat flow element.

Syntax:

[es,et]=flw2ts(ex,ey,D,ed)

Description:

flw2ts computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a triangular heat flow element.

The input variables ex, ey and the matrix D are defined in flw2te. The vector ed
contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 ]

The output variables

es = qT = [ qx qy ]

et = (∇T )T =

[
∂T

∂x

∂T

∂y

]

contain the components of the heat flux and the temperature gradient computed in
the directions of the coordinate axis.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = B̄ C−1 ae

q = −D∇T
where the matrices D, B̄, and C are described in flw2te. Note that both the tem-
perature gradient and the heat flux are constant in the element.
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Two dimensional heat flow elements flw2qe

Purpose:

Compute element stiffness matrix for a quadrilateral heat flow element.

T2

T4

T1

●

(x1,y1)

●

●

(x4,y4)

(x2,y2)

T3
● (x3,y3)

x

y
●

T5

Syntax:

Ke=flw2qe(ex,ey,ep,D)
[Ke,fe]=flw2qe(ex,ey,ep,D,eq)

Description:

flw2qe provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a quadrilateral heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex
and ey, the element thickness t is supplied by ep and the thermal conductivities (or
corresponding quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ t ] D =

[
kxx kxy
kyx kyy

]

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.

Theory:

In computing the element matrices, a fifth degree of freedom is introduced. The
location of this extra degree of freedom is defined by the mean value of the coordinates
in the corner points. Four sets of element matrices are calculated using flw2te. These
matrices are then assembled and the fifth degree of freedom is eliminated by static
condensation.
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flw2qs Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in a quadrilateral heat flow element.

Syntax:

[es,et]=flw2qs(ex,ey,ep,D,ed)
[es,et]=flw2qs(ex,ey,ep,D,ed,eq)

Description:

flw2qs computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a quadrilateral heat flow element.

The input variables ex, ey, eq and the matrix D are defined in flw2qe. The vector ed
contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 T4 ]

The output variables

es = qT = [ qx qy ]

et = (∇T )T =

[
∂T

∂x

∂T

∂y

]

contain the components of the heat flux and the temperature gradient computed in
the directions of the coordinate axis.

Theory:

By assembling four triangular elements as described in flw2te a system of equations
containing 5 degrees of freedom is obtained. From this system of equations the
unknown temperature at the center of the element is computed. Then according to
the description in flw2ts the temperature gradient and the heat flux in each of the
four triangular elements are produced. Finally the temperature gradient and the
heat flux of the quadrilateral element are computed as area weighted mean values
from the values of the four triangular elements. If heat is supplied to the element,
the element load vector eq is needed for the calculations.
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Two dimensional heat flow elements flw2i4e

Purpose:

Compute element stiffness matrix for a 4 node isoparametric heat flow element.

T4

●

●

●

(x4,y4) ●

x

y

T3

T1

(x1,y1)

(x3,y3)

(x2,y2)

T2

Syntax:

Ke=flw2i4e(ex,ey,ep,D)
[Ke,fe]=flw2i4e(ex,ey,ep,D,eq)

Description:

flw2i4e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for a 4 node isoparametric heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex and
ey. The element thickness t and the number of Gauss points n

(n× n) integration points, n = 1, 2, 3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ t n ] D =

[
kxx kxy
kyx kyy

]

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.
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flw2i4e Two dimensional heat flow elements

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
A
BeT D Be t dA

fel =
∫
A
NeT Q t dA

with the constitutive matrix D defined by D.

The evaluation of the integrals for the isoparametric 4 node element is based on a
temperature approximation T (ξ, η), expressed in a local coordinates system in terms
of the nodal variables T1, T2, T3 and T4 as

T (ξ, η) = Neae

where

Ne = [ N e
1 N e

2 N e
3 N e

4 ] ae = [ T1 T2 T3 T4 ]
T

The element shape functions are given by

N e
1 =

1

4
(1− ξ)(1− η) N e

2 =
1

4
(1 + ξ)(1− η)

N e
3 =

1

4
(1 + ξ)(1 + η) N e

4 =
1

4
(1− ξ)(1 + η)

The Be-matrix is given by

Be = ∇Ne =

⎡
⎢⎢⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎥⎥⎦Ne = (JT )−1

⎡
⎢⎢⎢⎣

∂

∂ξ
∂

∂η

⎤
⎥⎥⎥⎦Ne

where J is the Jacobian matrix

J =

⎡
⎢⎢⎢⎣
∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

⎤
⎥⎥⎥⎦

Evaluation of the integrals is done by Gauss integration.
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Two dimensional heat flow elements flw2i4s

Purpose:

Compute heat flux and temperature gradients in a 4 node isoparametric heat flow
element.

Syntax:

[es,et,eci]=flw2i4s(ex,ey,ep,D,ed)

Description:

flw2i4s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in a 4 node isoparametric heat flow element.

The input variables ex, ey, ep and the matrix D are defined in flw2i4e. The vector ed
contains the nodal temperatures ae of the element and is obtained by extract as

ed = (ae)T = [ T1 T2 T3 T4 ]

The output variables

es = q̄T =

⎡
⎢⎢⎢⎢⎢⎣
q1x q1y

q2x q2y
...

...

qn
2

x qn
2

y

⎤
⎥⎥⎥⎥⎥⎦

et = (∇̄T )T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂T

∂x

1 ∂T

∂y

1

∂T

∂x

2 ∂T

∂y

2

...
...

∂T

∂x

n2

∂T

∂y

n2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎣
x1 y1
x2 y2
...

...
xn2 yn2

⎤
⎥⎥⎥⎥⎦

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw2i4e.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = Be ae

q = −D∇T
where the matrices D, Be, and ae are described in flw2i4e, and where the integration
points are chosen as evaluation points.
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flw2i8e Two dimensional heat flow elements

Purpose:

Compute element stiffness matrix for an 8 node isoparametric heat flow element.

x

y

●

●

●

●

●

●

●

●

T4

T3

T1

T2

T7

T6T8

T5

Syntax:

Ke=flw2i8e(ex,ey,ep,D)
[Ke,fe]=flw2i8e(ex,ey,ep,D,eq)

Description:

flw2i8e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for an 8 node isoparametric heat flow element.

The element nodal coordinates x1, y1, x2 etc, are supplied to the function by ex and
ey. The element thickness t and the number of Gauss points n

(n× n) integration points, n = 1, 2, 3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 . . . x8 ]
ey = [ y1 y2 y3 . . . y8 ]

ep = [ t n ] D =

[
kxx kxy
kyx kyy

]

If the scalar variable eq is given in the function, the vector fe is computed, using

eq = [ Q ]

where Q is the heat supply per unit volume.
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Two dimensional heat flow elements flw2i8e

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
A
BeT D Be t dA

fel =
∫
A
NeT Q t dA

with the constitutive matrix D defined by D.

The evaluation of the integrals for the 2D isoparametric 8 node element is based on a
temperature approximation T (ξ, η), expressed in a local coordinates system in terms
of the nodal variables T1 to T8 as

T (ξ, η) = Neae

where

Ne = [ N e
1 N e

2 N e
3 . . . N e

8 ] ae = [ T1 T2 T3 . . . T8 ]
T

The element shape functions are given by

N e
1 = −1

4
(1− ξ)(1− η)(1 + ξ + η) N e

5 =
1

2
(1− ξ2)(1− η)

N e
2 = −1

4
(1 + ξ)(1− η)(1− ξ + η) N e

6 =
1

2
(1 + ξ)(1− η2)

N e
3 = −1

4
(1 + ξ)(1 + η)(1− ξ − η) N e

7 =
1

2
(1− ξ2)(1 + η)

N e
4 = −1

4
(1− ξ)(1 + η)(1 + ξ − η) N e

8 =
1

2
(1− ξ)(1− η2)

The Be-matrix is given by

Be = ∇Ne =

⎡
⎢⎢⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎥⎥⎦Ne = (JT )−1

⎡
⎢⎢⎢⎣

∂

∂ξ
∂

∂η

⎤
⎥⎥⎥⎦Ne

where J is the Jacobian matrix

J =

⎡
⎢⎢⎢⎣
∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

⎤
⎥⎥⎥⎦

Evaluation of the integrals is done by Gauss integration.
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flw2i8s Two dimensional heat flow elements

Purpose:

Compute heat flux and temperature gradients in an 8 node isoparametric heat flow
element.

Syntax:

[es,et,eci]=flw2i8s(ex,ey,ep,D,ed)

Description:

flw2i8s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in an 8 node isoparametric heat flow element.

The input variables ex, ey, ep and the matrix D are defined in flw2i8e. The vector ed
contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 . . . T8 ]

The output variables

es = q̄T =

⎡
⎢⎢⎢⎢⎢⎣
q1x q1y

q2x q2y
...

...

qn
2

x qn
2

y

⎤
⎥⎥⎥⎥⎥⎦

et = (∇̄T )T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂T

∂x

1 ∂T

∂y

1

∂T

∂x

2 ∂T

∂y

2

...
...

∂T

∂x

n2

∂T

∂y

n2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎣
x1 y1
x2 y2
...

...
xn2 yn2

⎤
⎥⎥⎥⎥⎦

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw2i8e.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = Be ae

q = −D∇T
where the matrices D, Be, and ae are described in flw2i8e, and where the integration
points are chosen as evaluation points.
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Three dimensional heat flow elements flw3i8e

Purpose:

Compute element stiffness matrix for an 8 node isoparametric element.

z
x

y

●

●

●
●

●

●

●

●

T4 T3

T1 T2

T7

T6

T8

T5

Syntax:

Ke=flw3i8e(ex,ey,ez,ep,D)
[Ke,fe]=flw3i8e(ex,ey,ez,ep,D,eq)

Description:

flw3i8e provides the element stiffness (conductivity) matrix Ke and the element load
vector fe for an 8 node isoparametric heat flow element.

The element nodal coordinates x1, y1, z1 x2 etc, are supplied to the function by ex,
ey and ez. The number of Gauss points n

(n× n× n) integration points, n = 1, 2, 3

are supplied to the function by ep and the thermal conductivities (or corresponding
quantities) kxx, kxy etc are supplied by D.

ex = [ x1 x2 x3 . . . x8 ]
ey = [ y1 y2 y3 . . . y8 ]
ez = [ z1 z2 z3 . . . z8 ]

ep = [ n ] D =

⎡
⎢⎣ kxx kxy kxz
kyx kyy kyz
kzx kzy kzz

⎤
⎥⎦

If the scalar variable eq is given in the function, the element load vector fe is com-
puted, using

eq = [ Q ]

where Q is the heat supply per unit volume.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
V
BeT D Be dV

fel =
∫
V
NeT Q dV

81 ELEMENT



flw3i8e Three dimensional heat flow elements

with the constitutive matrix D defined by D.

The evaluation of the integrals for the 3D isoparametric 8 node element is based on
a temperature approximation T (ξ, η, ζ), expressed in a local coordinates system in
terms of the nodal variables T1 to T8 as

T (ξ, η, ζ) = Neae

where

Ne = [ N e
1 N e

2 N e
3 . . . N e

8 ] ae = [ T1 T2 T3 . . . T8 ]
T

The element shape functions are given by

N e
1 =

1

8
(1− ξ)(1− η)(1− ζ) N e

2 =
1

8
(1 + ξ)(1− η)(1− ζ)

N e
3 =

1

8
(1 + ξ)(1 + η)(1− ζ) N e

4 =
1

8
(1− ξ)(1 + η)(1− ζ)

N e
5 =

1

8
(1− ξ)(1− η)(1 + ζ) N e

6 =
1

8
(1 + ξ)(1− η)(1 + ζ)

N e
7 =

1

8
(1 + ξ)(1 + η)(1 + ζ) N e

8 =
1

8
(1− ξ)(1 + η)(1 + ζ)

The Be-matrix is given by

Be = ∇Ne =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
∂

∂y
∂

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ne = (JT )−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂ξ
∂

∂η
∂

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
Ne

where J is the Jacobian matrix

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂x

∂η

∂x

∂ζ
∂y

∂ξ

∂y

∂η

∂y

∂ζ
∂z

∂ξ

∂z

∂η

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Evaluation of the integrals is done by Gauss integration.
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Three dimensional heat flow elements flw3i8s

Purpose:

Compute heat flux and temperature gradients in an 8 node isoparametric heat flow
element.

Syntax:

[es,et,eci]=flw3i8s(ex,ey,ez,ep,D,ed)

Description:

flw3i8s computes the heat flux vector es and the temperature gradient et (or corre-
sponding quantities) in an 8 node isoparametric heat flow element.

The input variables ex, ey, ez, ep and the matrix D are defined in flw3i8e. The vector
ed contains the nodal temperatures ae of the element and is obtained by the function
extract as

ed = (ae)T = [ T1 T2 T3 . . . T8 ]

The output variables

es = q̄T =

⎡
⎢⎢⎢⎢⎢⎣
q1x q1y q1z

q2x q2y q2z
...

...
...

qn
3

x qn
3

y qn
3

z

⎤
⎥⎥⎥⎥⎥⎦

et = (∇̄T )T =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂T

∂x

1 ∂T

∂y

1 ∂T

∂z

1

∂T

∂x

2 ∂T

∂y

2 ∂T

∂z

2

...
...

...

∂T

∂x

n3

∂T

∂y

n3

∂T

∂z

n3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎣
x1 y1 z1
x2 y2 z2
...

...
...

xn3 yn3 zn3

⎤
⎥⎥⎥⎥⎦

contain the heat flux, the temperature gradient, and the coordinates of the integra-
tion points. The index n denotes the number of integration points used within the
element, cf. flw3i8e.

Theory:

The temperature gradient and the heat flux are computed according to

∇T = Be ae

q = −D∇T
where the matrices D, Be, and ae are described in flw3i8e, and where the integration
points are chosen as evaluation points.
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5.5 Solid elements

Solid elements are available for two dimensional analysis in plane stress (panels) and plane
strain, and for general three dimensional analysis. In the two dimensional case there are
a triangular three node element, a quadrilateral four node element, two rectangular four
node elements, and quadrilateral isoparametric four and eight node elements. For three
dimensional analysis there is an eight node isoparametric element.

The elements are able to deal with both isotropic and anisotropic materials. The triangular
element and the three isoparametric elements can also be used together with a nonlinear
material model. The material properties are specified by supplying the constitutive matrix
D as an input variable to the element functions. This matrix can be formed by the functions
described in Section 4.
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Solid elements
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2D solid functions
plante Compute element matrices for a triangular element
plants Compute stresses and strains
plantf Compute internal element forces
planqe Compute element matrices for a quadrilateral element
planqs Compute stresses and strains
planre Compute element matrices for a rectangular Melosh element
planrs Compute stresses and strains
plantce Compute element matrices for a rectangular Turner-Clough element
plantcs Compute stresses and strains
plani4e Compute element matrices, 4 node isoparametric element
plani4s Compute stresses and strains
plani4f Compute internal element forces
plani8e Compute element matrices, 8 node isoparametric element
plani8s Compute stresses and strains
plani8f Compute internal element forces

3D solid functions
soli8e Compute element matrices, 8 node isoparametric element
soli8s Compute stresses and strains
soli8f Compute internal element forces
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Two dimensional solid elements plante

Purpose:

Compute element matrices for a triangular element in plane strain or plane stress.

x

y

(x1,y1)

(x2,y2)

(x3,y3)

u1
●

●

●u2

u5

u6

u3

u4

Syntax:

Ke=plante(ex,ey,ep,D)
[Ke,fe]=plante(ex,ey,ep,D,eq)

Description:

plante provides an element stiffness matrix Ke and an element load vector fe for a
triangular element in plane strain or plane stress.

The element nodal coordinates x1, y1, x2 etc. are supplied to the function by ex and
ey. The type of analysis ptype and the element thickness t are supplied by ep,

ptype = 1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 × 3) to (6 × 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex = [ x1 x2 x3 ]
ey = [ y1 y2 y3 ]

ep = [ ptype t ]

D =

⎡
⎢⎣ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎥⎦ or D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14 [D15 ] [D16 ]
D21 D22 D23 D24 [D25 ] [D26 ]
D31 D32 D33 D34 [D35 ] [D36 ]
D41 D42 D43 D44 [D45 ] [D46 ]
[D51 ] [D52 ] [D53 ] [D54 ] [D55 ] [D56 ]
[D61 ] [D62 ] [D63 ] [D64 ] [D65 ] [D66 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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plante Two dimensional solid elements

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke = (C−1)T
∫
A
B̄

T
D B̄ t dA C−1

fel = (C−1)T
∫
A
N̄

T
b t dA

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the triangular element is based on a linear dis-
placement approximation u(x, y) and is expressed in terms of the nodal variables u1,
u2, . . . , u6 as

u(x, y) = Ne ae = N̄ C−1 ae

where

u =

[
ux
uy

]
N̄ =

[
1 x y 0 0 0
0 0 0 1 x y

]

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 x1 y1 0 0 0
0 0 0 1 x1 y1
1 x2 y2 0 0 0
0 0 0 1 x2 y2
1 x3 y3 0 0 0
0 0 0 1 x3 y3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

ae =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

u1
u2
u3
u4
u5
u6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

The matrix B̄ is obtained as

B̄ = ∇̃N̄ where ∇̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

If a larger D-matrix than (3× 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 × 3) matrix by static condensation using σzz = σxz = σyz = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.
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Two dimensional solid elements plante

If a larger D-matrix than (3× 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 × 3) matrix using εzz = γxz = γyz = 0. This implies that a
(3×3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals for the triangular element yields

Ke = (C−1)T B̄
T
D B̄ C−1 t A

f el =
A t

3
[ bx by bx by bx by ]

T

where the element area A is determined as

A =
1

2
det

⎡
⎢⎣ 1 x1 y1
1 x2 y2
1 x3 y3

⎤
⎥⎦
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plants Two dimensional solid elements

Purpose:

Compute stresses and strains in a triangular element in plane strain or plane stress.
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●
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σyy

σxx

σxy

σyy
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Syntax:

[es,et]=plants(ex,ey,ep,D,ed)

Description:

plants computes the stresses es and the strains et in a triangular element in plane
strain or plane stress.

The input variables ex, ey, ep and D are defined in plante. The vector ed contains
the nodal displacements ae of the element and is obtained by the function extract as

ed = (ae)T = [ u1 u2 . . . u6 ]

The output variables

es = σT = [ σxx σyy [σzz] σxy [σxz] [σyz ] ]

et = εT = [ εxx εyy [εzz] γxy [γxz] [γyz] ]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress εzz �= 0, and for plane strain σzz �= 0.

Theory:

The strains and stresses are computed according to

ε = B̄ C−1 ae

σ = D ε

where the matrices D, B̄, C and ae are described in plante. Note that both the
strains and the stresses are constant in the element.
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Two dimensional solid elements plantf

Purpose:

Compute internal element force vector in a triangular element in plane strain or
plane stress.

Syntax:

ef=plantf(ex,ey,ep,es)

Description:

plantf computes the internal element forces ef in a triangular element in plane strain
or plane stress.

The input variables ex, ey and ep are defined in plante, and the input variable es is
defined in plants.

The output variable

ef = f eTi = [ fi1 fi2 . . . fi6 ]

contains the components of the internal force vector.

Theory:

The internal force vector is computed according to

f ei = (C−1)T
∫
A
B̄

T
σ t dA

where the matrices B̄ and C are defined in plante and σ is defined in plants.

Evaluation of the integral for the triangular element yields

f ei = (C−1)T B̄
T
σ t A
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planqe Two dimensional solid elements

Purpose:

Compute element matrices for a quadrilateral element in plane strain or plane stress.

x

y

2

3

4

(x1,y1)

u7

u8

u2

u5

u6

u3

u4

u1
●

●

●

●

Syntax:

Ke=planqe(ex,ey,ep,D)
[Ke,fe]=planqe(ex,ey,ep,D,eq)

Description:

planqe provides an element stiffness matrix Ke and an element load vector fe for a
quadrilateral element in plane strain or plane stress.

The element nodal coordinates x1, y1, x2 etc. are supplied to the function by ex and
ey. The type of analysis ptype and the element thickness t are supplied by ep,

ptype = 1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 × 3) to (6 × 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ ptype t ]

D =

⎡
⎢⎣ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎥⎦ or D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14 [D15 ] [D16 ]
D21 D22 D23 D24 [D25 ] [D26 ]
D31 D32 D33 D34 [D35 ] [D36 ]
D41 D42 D43 D44 [D45 ] [D46 ]
[D51 ] [D52 ] [D53 ] [D54 ] [D55 ] [D56 ]
[D61 ] [D62 ] [D63 ] [D64 ] [D65 ] [D66 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Two dimensional solid elements planqe

If uniformly distributed loads are applied on the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.

Theory:

In computing the element matrices, two more degrees of freedom are introduced.
The location of these two degrees of freedom is defined by the mean value of the
coordinates at the corner points. Four sets of element matrices are calculated using
plante. These matrices are then assembled and the two extra degrees of freedom are
eliminated by static condensation.

93 ELEMENT



planqs Two dimensional solid elements

Purpose:

Compute stresses and strains in a quadrilateral element in plane strain or plane
stress.
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Syntax:

[es,et]=planqs(ex,ey,ep,D,ed)
[es,et]=planqs(ex,ey,ep,D,ed,eq)

Description:

planqs computes the stresses es and the strains et in a quadrilateral element in plane
strain or plane stress.

The input variables ex, ey, ep, D and eq are defined in planqe. The vector ed contains
the nodal displacements ae of the element and is obtained by the function extract as

ed = (ae)T = [ u1 u2 . . . u8 ]

If body forces are applied to the element the variable eq must be included.

The output variables

es = σT = [ σxx σyy [σzz] σxy [σxz] [σyz ] ]

et = εT = [ εxx εyy [εzz] γxy [γxz] [γyz] ]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress εzz �= 0, and for plane strain σzz �= 0.

Theory:

By assembling triangular elements as described in planqe a system of equations con-
taining 10 degrees of freedom is obtained. From this system of equations the two
unknown displacements at the center of the element are computed. Then according
to the description in plants the strain and stress components in each of the four trian-
gular elements are produced. Finally the quadrilateral element strains and stresses
are computed as area weighted mean values from the values of the four triangular
elements. If uniformly distributed loads are applied on the element, the element load
vector eq is needed for the calculations.

ELEMENT 94



Two dimensional solid elements planre

Purpose:

Compute element matrices for a rectangular (Melosh) element in plane strain or
plane stress.

x

y
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(x2,y2)

(x3,y3)
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u1

u2
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Syntax:

Ke=planre(ex,ey,ep,D)
[Ke,fe]=planre(ex,ey,ep,D,eq)

Description:

planre provides an element stiffness matrix Ke and an element load vector fe for a
rectangular (Melosh) element in plane strain or plane stress. This element can only
be used if the element edges are parallel to the coordinate axis.

The element nodal coordinates (x1, y1) and (x3, y3) are supplied to the function by
ex and ey. The type of analysis ptype and the element thickness t are supplied by ep,

ptype = 1 plane stress
ptype = 2 plane strain

and the material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 × 3) to (6 × 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex = [ x1 x3 ]
ey = [ y1 y3 ]

ep = [ ptype t ]

D =

⎡
⎢⎣ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎥⎦ or D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14 [D15 ] [D16 ]
D21 D22 D23 D24 [D25 ] [D26 ]
D31 D32 D33 D34 [D35 ] [D36 ]
D41 D42 D43 D44 [D45 ] [D46 ]
[D51 ] [D52 ] [D53 ] [D54 ] [D55 ] [D56 ]
[D61 ] [D62 ] [D63 ] [D64 ] [D65 ] [D66 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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planre Two dimensional solid elements

If uniformly distributed loads are applied on the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
A
BeT D Be t dA

fel =
∫
A
NeT b t dA

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the rectangular element is based on a bilinear
displacement approximation u(x, y) and is expressed in terms of the nodal variables
u1, u2, . . ., u8 as

u(x, y) = Ne ae

where

u =

[
ux
uy

]
Ne =

[
N e

1 0 N e
2 0 N e

3 0 N e
4 0

0 N e
1 0 N e

2 0 N e
3 0 N e

4

]
ae =

⎡
⎢⎢⎢⎢⎣
u1
u2
...
u8

⎤
⎥⎥⎥⎥⎦

With a local coordinate system located at the center of the element, the element
shape functions N e

1 −N e
4 are obtained as

N e
1 =

1

4ab
(x− x2)(y − y4)

N e
2 = − 1

4ab
(x− x1)(y − y3)

N e
3 =

1

4ab
(x− x4)(y − y2)

N e
4 = − 1

4ab
(x− x3)(y − y1)

where

a =
1

2
(x3 − x1) and b =

1

2
(y3 − y1)
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Two dimensional solid elements planre

The matrix Be is obtained as

Be = ∇̃Ne where ∇̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

If a larger D-matrix than (3× 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 × 3) matrix by static condensation using σzz = σxz = σyz = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.

If a larger D-matrix than (3× 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 × 3) matrix using εzz = γxz = γyz = 0. This implies that a
(3×3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals for the rectangular element can be done either analytically
or numerically by use of a 2× 2 point Gauss integration. The element load vector f el
yields

f el = abt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bx
by
bx
by
bx
by
bx
by

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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planrs Two dimensional solid elements

Purpose:

Compute stresses and strains in a rectangular (Melosh) element in plane strain or
plane stress.
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Syntax:

[es,et]=planrs(ex,ey,ep,D,ed)

Description:

planrs computes the stresses es and the strains et in a rectangular (Melosh) element
in plane strain or plane stress. The stress and strain components are computed at
the center of the element.

The input variables ex, ey, ep and D are defined in planre. The vector ed contains
the nodal displacements ae of the element and is obtained by the function extract as

ed = (ae)T = [ u1 u2 . . . u8 ]

The output variables

es = σT = [ σxx σyy [σzz] σxy [σxz] [σyz ] ]

et = εT = [ εxx εyy [εzz] γxy [γxz] [γyz] ]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress εzz �= 0, and for plane strain σzz �= 0.

Theory:

The strains and stresses are computed according to

ε = Be ae

σ = D ε

where the matrices D, Be, and ae are described in planre, and where the evaluation
point (x, y) is chosen to be at the center of the element.
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Two dimensional solid elements plantce

Purpose:

Compute element matrices for a rectangular (Turner-Clough) element in plane strain
or plane stress.
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Syntax:

Ke=plantce(ex,ey,ep)
[Ke,fe]=plantce(ex,ey,ep,eq)

Description:

plantce provides an element stiffness matrix Ke and an element load vector fe for a
rectangular (Turner-Clough) element in plane strain or plane stress. This element
can only be used if the material is isotropic and if the element edges are parallel to
the coordinate axis.

The element nodal coordinates (x1, y1) and (x3, y3) are supplied to the function by ex
and ey. The state of stress ptype, the element thickness t and the material properties
E and ν are supplied by ep. For plane stress ptype = 1 and for plane strain ptype = 2.

ex = [ x1 x3 ]
ey = [ y1 y3 ]

ep = [ ptype t E ν ]

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.
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plantce Two dimensional solid elements

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
A
BeT D Be t dA

fel =
∫
A
NeT b t dA

where the constitutive matrix D is described in hooke, see Section 4, and the body
force vector b is defined by eq.

The evaluation of the integrals for the Turner-Clough element is based on a dis-
placement field u(x, y) built up of a bilinear displacement approximation superposed
by bubble functions in order to create a linear stress field over the element. The
displacement field is expressed in terms of the nodal variables u1, u2, . . ., u8 as

u(x, y) = Ne ae

where

u =

[
ux
uy

]
Ne =

[
N e

1 N e
5 N e

2 −N e
5 N e

3 N e
5 N e

4 −N e
5

N e
6 N e

1 −N e
6 N e

2 N e
6 N e

3 −N e
6 N e

4

]
ae =

⎡
⎢⎢⎢⎢⎣
u1
u2
...
u8

⎤
⎥⎥⎥⎥⎦

With a local coordinate system located at the center of the element, the element
shape functions N e

1 −N e
6 are obtained as

N e
1 =

1

4ab
(a− x)(b− y)

N e
2 =

1

4ab
(a+ x)(b− y)

N e
3 =

1

4ab
(a+ x)(b+ y)

N e
4 =

1

4ab
(a− x)(b+ y)

N e
5 =

1

8ab

[
(b2 − y2) + ν(a2 − x2)

]
N e

6 =
1

8ab

[
(a2 − x2) + ν(b2 − y2)

]
where

a =
1

2
(x3 − x1) and b =

1

2
(y3 − y1)
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Two dimensional solid elements plantce

The matrix Be is obtained as

Be = ∇̃Ne where ∇̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Evaluation of the integrals for the Turner-Clough element can be done either ana-
lytically or numerically by use of a 2× 2 point Gauss integration. The element load
vector f el yields

f el = abt

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

bx
by
bx
by
bx
by
bx
by

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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plantcs Two dimensional solid elements

Purpose:

Compute stresses and strains in a Turner-Clough element in plane strain or plane
stress.
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σxy

σyy
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y

Syntax:

[es,et]=plantcs(ex,ey,ep,ed)

Description:

plantcs computes the stresses es and the strains et in a rectangular Turner-Clough ele-
ment in plane strain or plane stress. The stress and strain components are computed
at the center of the element.

The input variables ex, ey, and ep are defined in plantce. The vector ed contains the
nodal displacements ae of the element and is obtained by the function extract as

ed = (ae)T = [ u1 u2 . . . u8 ]

The output variables

es = σT = [ σxx σyy [σzz] σxy [σxz] [σyz ] ]

et = εT = [ εxx εyy [εzz] γxy [γxz] [γyz] ]

contain the stress and strain components. The size of es and et follows the size of D.
Note that for plane stress εzz �= 0, and for plane strain σzz �= 0.

Theory:

The strains and stresses are computed according to

ε = Be ae

σ = D ε

where the matrices D, Be, and ae are described in plantce, and where the evaluation
point (x, y) is chosen to be at the center of the element.
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Purpose:

Compute element matrices for a 4 node isoparametric element in plane strain or
plane stress.

x
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●

●

●
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Syntax:

Ke=plani4e(ex,ey,ep,D)
[Ke,fe]=plani4e(ex,ey,ep,D,eq)

Description:

plani4e provides an element stiffness matrix Ke and an element load vector fe for a 4
node isoparametric element in plane strain or plane stress.

The element nodal coordinates x1, y1, x2 etc. are supplied to the function by ex and
ey. The type of analysis ptype, the element thickness t, and the number of Gauss
points n are supplied by ep.

ptype = 1 plane stress (n× n) integration points
ptype = 2 plane strain n = 1, 2, 3

The material properties are supplied by the constitutive matrix D. Any arbitrary D-
matrix with dimensions from (3× 3) to (6× 6) maybe given. For an isotropic elastic
material the constitutive matrix can be formed by the function hooke, see Section 4.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ ptype t n ]

D =

⎡
⎢⎣ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎥⎦ or D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14 [D15 ] [D16 ]
D21 D22 D23 D24 [D25 ] [D26 ]
D31 D32 D33 D34 [D35 ] [D36 ]
D41 D42 D43 D44 [D45 ] [D46 ]
[D51 ] [D52 ] [D53 ] [D54 ] [D55 ] [D56 ]
[D61 ] [D62 ] [D63 ] [D64 ] [D65 ] [D66 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

If different Di -matrices are used in the Gauss points these Di -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in plani4s.

D =

⎡
⎢⎢⎢⎢⎣

D1

D2
...

Dn2

⎤
⎥⎥⎥⎥⎦
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If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
A
BeT D Be t dA

fel =
∫
A
NeT b t dA

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the isoparametric 4 node element is based on a
displacement approximation u(ξ, η), expressed in a local coordinates system in terms
of the nodal variables u1, u2, . . ., u8 as

u(ξ, η) = Ne ae

where

u =

[
ux
uy

]
Ne =

[
N e

1 0 N e
2 0 N e

3 0 N e
4 0

0 N e
1 0 N e

2 0 N e
3 0 N e

4

]
ae =

⎡
⎢⎢⎢⎢⎣
u1
u2
...
u8

⎤
⎥⎥⎥⎥⎦

The element shape functions are given by

N e
1 =

1

4
(1− ξ)(1− η) N e

2 =
1

4
(1 + ξ)(1− η)

N e
3 =

1

4
(1 + ξ)(1 + η) N e

4 =
1

4
(1− ξ)(1 + η)

The matrix Be is obtained as

Be = ∇̃Ne where ∇̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and where⎡
⎢⎢⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎥⎥⎦ = (JT )−1

⎡
⎢⎢⎢⎣

∂

∂ξ
∂

∂η

⎤
⎥⎥⎥⎦ J =

⎡
⎢⎢⎢⎣
∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

⎤
⎥⎥⎥⎦
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If a larger D-matrix than (3× 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 × 3) matrix by static condensation using σzz = σxz = σyz = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.

If a larger D-matrix than (3× 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 × 3) matrix using εzz = γxz = γyz = 0. This implies that a
(3×3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals is done by Gauss integration.
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Purpose:

Compute stresses and strains in a 4 node isoparametric element in plane strain or
plane stress.
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u2
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u4
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●

●
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σyy
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σxy

σyy

x

y

Syntax:

[es,et,eci]=plani4s(ex,ey,ep,D,ed)

Description:

plani4s computes stresses es and the strains et in a 4 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey, ep and the matrix D are defined in plani4e. The vector ed
contains the nodal displacements ae of the element and is obtained by the function
extract as

ed = (ae)T = [ u1 u2 . . . u8 ]

The output variables

es = σT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1
xx σ1

yy [σ1
zz] σ1

xy [σ1
xz]

[
σ1
yz

]
σ2
xx σ2

yy [σ2
zz] σ2

xy [σ2
xz]

[
σ2
yz

]
...

...
...

...
...

...

σn2

xx σn2

yy

[
σn2

zz

]
σn2

xy

[
σn2

xz

] [
σn2

yz

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

et = εT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε1xx ε1yy [ε1zz] γ1xy [γ1xz]
[
γ1yz
]

ε2xx ε2yy [ε2zz] γ2xy [γ2xz]
[
γ2yz
]

...
...

...
...

...
...

εn
2

xx εn
2

yy

[
εn

2

zz

]
γn

2

xy

[
γn

2

xz

] [
γn

2

yz

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎣
x1 y1
x2 y2
...

...
xn2 yn2

⎤
⎥⎥⎥⎥⎦

contain the stress and strain components, and the coordinates of the integration
points. The index n denotes the number of integration points used within the ele-
ment, cf. plani4e. The number of columns in es and et follows the size of D. Note
that for plane stress εzz �= 0, and for plane strain σzz �= 0.
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Theory:

The strains and stresses are computed according to

ε = Be ae

σ = D ε

where the matrices D, Be, and ae are described in plani4e, and where the integration
points are chosen as evaluation points.
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Purpose:

Compute internal element force vector in a 4 node isoparametric element in plane
strain or plane stress.

Syntax:

ef=plani4f(ex,ey,ep,es)

Description:

plani4f computes the internal element forces ef in a 4 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey and ep are defined in plani4e, and the input variable es is
defined in plani4s.

The output variable

ef = f eTi = [ fi1 fi2 . . . fi8 ]

contains the components of the internal force vector.

Theory:

The internal force vector is computed according to

f ei =
∫
A
BeTσ t dA

where the matrices Be and σ are defined in plani4e and plani4s, respectively.

Evaluation of the integral is done by Gauss integration.
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Purpose:

Compute element matrices for an 8 node isoparametric element in plane strain or
plane stress.

x

y
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Syntax:

Ke=plani8e(ex,ey,ep,D)
[Ke,fe]=plani8e(ex,ey,ep,D,eq)

Description:

plani8e provides an element stiffness matrix Ke and an element load vector fe for an
8 node isoparametric element in plane strain or plane stress.

The element nodal coordinates x1, y1, x2 etc. are supplied to the function by ex and
ey. The type of analysis ptype, the element thickness t, and the number of Gauss
points n are supplied by ep.

ptype = 1 plane stress (n× n) integration points
ptype = 2 plane strain n = 1, 2, 3

The material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions from (3 × 3) to (6 × 6) may be given. For an isotropic
elastic material the constitutive matrix can be formed by the function hooke, see
Section 4.

ex = [ x1 x2 . . . x8 ]
ey = [ y1 y2 . . . y8 ]

ep = [ ptype t n ]

D =

⎡
⎢⎣ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎥⎦ or D =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

D11 D12 D13 D14 [D15 ] [D16 ]
D21 D22 D23 D24 [D25 ] [D26 ]
D31 D32 D33 D34 [D35 ] [D36 ]
D41 D42 D43 D44 [D45 ] [D46 ]
[D51 ] [D52 ] [D53 ] [D54 ] [D55 ] [D56 ]
[D61 ] [D62 ] [D63 ] [D64 ] [D65 ] [D66 ]

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

If different Di -matrices are used in the Gauss points these Di -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in plani8s.

D =

⎡
⎢⎢⎢⎢⎣

D1

D2
...

Dn2

⎤
⎥⎥⎥⎥⎦

109 ELEMENT



plani8e Two dimensional solid elements

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

eq =

[
bx
by

]

containing loads per unit volume, bx and by, is then given.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
A
BeT D Be t dA

fel =
∫
A
NeT b t dA

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the isoparametric 8 node element is based on a
displacement approximation u(ξ, η), expressed in a local coordinates system in terms
of the nodal variables u1, u2, . . ., u16 as

u(ξ, η) = Ne ae

where

u =

[
ux
uy

]
Ne =

[
N e

1 0 N e
2 0 . . . N e

8 0
0 N e

1 0 N e
2 . . . 0 N e

8

]
ae =

⎡
⎢⎢⎢⎢⎣
u1
u2
...
u16

⎤
⎥⎥⎥⎥⎦

The element shape functions are given by

N e
1 = −1

4
(1− ξ)(1− η)(1 + ξ + η) N e

5 =
1

2
(1− ξ2)(1− η)

N e
2 = −1

4
(1 + ξ)(1− η)(1− ξ + η) N e

6 =
1

2
(1 + ξ)(1− η2)

N e
3 = −1

4
(1 + ξ)(1 + η)(1− ξ − η) N e

7 =
1

2
(1− ξ2)(1 + η)

N e
4 = −1

4
(1− ξ)(1 + η)(1 + ξ − η) N e

8 =
1

2
(1− ξ)(1− η2)

The matrix Be is obtained as

Be = ∇̃Ne where ∇̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0

0
∂

∂y
∂

∂y

∂

∂x

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
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and where⎡
⎢⎢⎢⎣

∂

∂x
∂

∂y

⎤
⎥⎥⎥⎦ = (JT )−1

⎡
⎢⎢⎢⎣

∂

∂ξ
∂

∂η

⎤
⎥⎥⎥⎦ J =

⎡
⎢⎢⎢⎣
∂x

∂ξ

∂x

∂η
∂y

∂ξ

∂y

∂η

⎤
⎥⎥⎥⎦

If a larger D-matrix than (3× 3) is used for plane stress (ptype = 1), the D-matrix
is reduced to a (3 × 3) matrix by static condensation using σzz = σxz = σyz = 0.
These stress components are connected with the rows 3, 5 and 6 in the D-matrix
respectively.

If a larger D-matrix than (3× 3) is used for plane strain (ptype = 2), the D-matrix
is reduced to a (3 × 3) matrix using εzz = γxz = γyz = 0. This implies that a
(3×3) D-matrix is created by the rows and the columns 1, 2 and 4 from the original
D-matrix.

Evaluation of the integrals is done by Gauss integration.
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Purpose:

Compute stresses and strains in an 8 node isoparametric element in plane strain or
plane stress.
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Syntax:

[es,et,eci]=plani8s(ex,ey,ep,D,ed)

Description:

plani8s computes stresses es and the strains et in an 8 node isoparametric element in
plane strain or plane stress.

The input variables ex, ey, ep and the matrix D are defined in plani8e. The vector ed
contains the nodal displacements ae of the element and is obtained by the function
extract as

ed = (ae)T = [ u1 u2 . . . u16 ]

The output variables

es = σT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

σ1
xx σ1

yy [σ1
zz] σ1

xy [σ1
xz]

[
σ1
yz

]
σ2
xx σ2

yy [σ2
zz] σ2

xy [σ2
xz]

[
σ2
yz

]
...

...
...

...
...

...

σn2

xx σn2

yy

[
σn2

zz

]
σn2

xy

[
σn2

xz

] [
σn2

yz

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

et = εT =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ε1xx ε1yy [ε1zz] γ1xy [γ1xz]
[
γ1yz
]

ε2xx ε2yy [ε2zz] γ2xy [γ2xz]
[
γ2yz
]

...
...

...
...

...
...

εn
2

xx εn
2

yy

[
εn

2

zz

]
γn

2

xy

[
γn

2

xz

] [
γn

2

yz

]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎣
x1 y1
x2 y2
...

...
xn2 yn2

⎤
⎥⎥⎥⎥⎦

contain the stress and strain components, and the coordinates of the integration
points. The index n denotes the number of integration points used within the ele-
ment, cf. plani8e. The number of columns in es and et follows the size of D. Note
that for plane stress εzz �= 0, and for plane strain σzz �= 0.
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Theory:

The strains and stresses are computed according to

ε = Be ae

σ = D ε

where the matrices D, Be, and ae are described in plani8e, and where the integration
points are chosen as evaluation points.
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Purpose:

Compute internal element force vector in an 8 node isoparametric element in plane
strain or plane stress.

Syntax:

ef=plani8f(ex,ey,ep,es)

Description:

plani8f computes the internal element forces ef in an 8 node isoparametric element
in plane strain or plane stress.

The input variables ex, ey and ep are defined in plani8e, and the input variable es is
defined in plani8s.

The output variable

ef = f eTi = [ fi1 fi2 . . . fi16 ]

contains the components of the internal force vector.

Theory:

The internal force vector is computed according to

f ei =
∫
A
BeTσ t dA

where the matrices Be and σ are defined in plani8e and plani8s, respectively.

Evaluation of the integral is done by Gauss integration.
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Purpose:

Compute element matrices for an 8 node isoparametric solid element.

z
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y
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Syntax:

Ke=soli8e(ex,ey,ez,ep,D)
[Ke,fe]=soli8e(ex,ey,ez,ep,D,eq)

Description:

soli8e provides an element stiffness matrix Ke and an element load vector fe for an 8
node isoparametric solid element.

The element nodal coordinates x1, y1, z1, x2 etc. are supplied to the function by ex,
ey and ez, and the number of Gauss points n are supplied by ep.

(n× n× n) integration points, n = 1, 2, 3

The material properties are supplied by the constitutive matrix D. Any arbitrary
D-matrix with dimensions (6×6) may be given. For an isotropic elastic material the
constitutive matrix can be formed by the function hooke, see Section 4.

ex = [ x1 x2 . . . x8 ]
ey = [ y1 y2 . . . y8 ]
ez = [ z1 z2 . . . z8 ]

ep = [ n ] D =

⎡
⎢⎢⎢⎢⎣
D11 D12 · · · D16

D21 D22 · · · D26
...

...
. . .

...
D61 D62 · · · D66

⎤
⎥⎥⎥⎥⎦

If different Di -matrices are used in the Gauss points these Di -matrices are stored
in a global vector D. For numbering of the Gauss points, see eci in soli8s.

D =

⎡
⎢⎢⎢⎢⎣

D1

D2
...

Dn3

⎤
⎥⎥⎥⎥⎦

If uniformly distributed loads are applied to the element, the element load vector fe
is computed. The input variable

eq =

⎡
⎢⎣ bxby
bz

⎤
⎥⎦
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containing loads per unit volume, bx , by, and bz, is then given.

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe,
respectively, are computed according to

Ke =
∫
V
BeT D Be dV

fel =
∫
V
NeT b dV

with the constitutive matrix D defined by D, and the body force vector b defined by
eq.

The evaluation of the integrals for the isoparametric 8 node solid element is based
on a displacement approximation u(ξ, η, ζ), expressed in a local coordinates system
in terms of the nodal variables u1, u2, . . ., u24 as

u(ξ, η, ζ) = Ne ae

where

u =

⎡
⎢⎣ uxuy
uz

⎤
⎥⎦ Ne =

⎡
⎢⎣ N

e
1 0 0 N e

2 0 0 . . . N e
8 0 0

0 N e
1 0 0 N e

2 0 . . . 0 N e
8 0

0 0 N e
1 0 0 N e

2 . . . 0 0 N e
8

⎤
⎥⎦ ae =

⎡
⎢⎢⎢⎢⎣
u1
u2
...
u24

⎤
⎥⎥⎥⎥⎦

The element shape functions are given by

N e
1 =

1

8
(1− ξ)(1− η)(1− ζ) N e

5 =
1

8
(1− ξ)(1− η)(1 + ζ)

N e
2 =

1

8
(1 + ξ)(1− η)(1− ζ) N e

6 =
1

8
(1 + ξ)(1− η)(1 + ζ)

N e
3 =

1

8
(1 + ξ)(1 + η)(1− ζ) N e

7 =
1

8
(1 + ξ)(1 + η)(1 + ζ)

N e
4 =

1

8
(1− ξ)(1 + η)(1− ζ) N e

8 =
1

8
(1− ξ)(1 + η)(1 + ζ)

The Be-matrix is obtained as

Be = ∇̃Ne
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where

∇̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
0 0

0
∂

∂y
0

0 0
∂

∂z
∂

∂y

∂

∂x
0

∂

∂z
0

∂

∂x

0
∂

∂z

∂

∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂x
∂

∂y
∂

∂z

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= (JT )−1

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂

∂ξ
∂

∂η
∂

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

J =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂x

∂ξ

∂x

∂η

∂x

∂ζ
∂y

∂ξ

∂y

∂η

∂y

∂ζ
∂z

∂ξ

∂z

∂η

∂z

∂ζ

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

Evaluation of the integrals is done by Gauss integration.
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soli8s Three dimensional solid elements

Purpose:

Compute stresses and strains in an 8 node isoparametric solid element.

σzz

σzx

σxx

σxy
σzy

σyy

σyxσyz

σxz

z
x

y

2

3
4

6

7
8

5

(x1,y1,z1) ●

●

●
●

●

●

●

●

u3

u2

u1

Syntax:

[es,et,eci]=soli8s(ex,ey,ez,ep,D,ed)

Description:

soli8s computes stresses es and the strains et in an 8 node isoparametric solid element.

The input variables ex, ey, ez, ep and the matrix D are defined in soli8e. The vector
ed contains the nodal displacements ae of the element and is obtained by the function
extract as

ed = (ae)T = [ u1 u2 . . . u24 ]

The output variables

es = σT =

⎡
⎢⎢⎢⎢⎢⎣
σ1
xx σ1

yy σ1
zz σ1

xy σ1
xz σ1

yz

σ2
xx σ2

yy σ2
zz σ2

xy σ2
xz σ2

yz
...

...
...

...
...

...

σn3

xx σn3

yy σn3

zz σn3

xy σn3

xz σn3

yz

⎤
⎥⎥⎥⎥⎥⎦

et = εT =

⎡
⎢⎢⎢⎢⎢⎣
ε1xx ε1yy ε1zz γ1xy γ1xz γ1yz

ε2xx ε2yy ε2zz γ2xy γ2xz γ2yz
...

...
...

...
...

...

εn
3

xx εn
3

yy εn
3

zz γn
3

xy γn
3

xz γn
3

yz

⎤
⎥⎥⎥⎥⎥⎦ eci =

⎡
⎢⎢⎢⎢⎣
x1 y1 z1
x2 y2 z2
...

...
...

xn3 yn3 zn3

⎤
⎥⎥⎥⎥⎦

contain the stress and strain components, and the coordinates of the integration
points. The index n denotes the number of integration points used within the ele-
ment, cf. soli8e.
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Three dimensional solid elements soli8s

Theory:

The strains and stresses are computed according to

ε = Be ae

σ = D ε

where the matrices D, Be, and ae are described in soli8e, and where the integration
points are chosen as evaluation points.
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soli8f Three dimensional solid elements

Purpose:

Compute internal element force vector in an 8 node isoparametric solid element.

Syntax:

ef=soli8f(ex,ey,ez,ep,es)

Description:

soli8f computes the internal element forces ef in an 8 node isoparametric solid element.

The input variables ex, ey, ez and ep are defined in soli8e, and the input variable es
is defined in soli8s.

The output variable

ef = f eTi = [ fi1 fi2 . . . fi24 ]

contains the components of the internal force vector.

Theory:

The internal force vector is computed according to

f ei =
∫
V
BeTσ dV

where the matrices B and σ are defined in soli8e and soli8s, respectively.

Evaluation of the integral is done by Gauss integration.

ELEMENT 120





5.6 Beam elements

Beam elements are available for one, two, and three dimensional linear static analysis.
Two dimensional beam elements for nonlinear geometric and dynamic analysis are also
available.

1D beam elements
beam1e Compute element matrices
beam1s Compute section forces
beam1we Compute element matrices for beam element on elastic foundation
beam1ws Compute section forces for beam element on elastic foundation

2D beam elements
beam2e Compute element matrices
beam2s Compute section forces
beam2te Compute element matrices for Timoshenko beam element
beam2ts Compute section forces for Timoshenko beam element
beam2we Compute element matrices for beam element on elastic foundation
beam2ws Compute section forces for beam element on elastic foundation
beam2ge Compute element matrices for geometric nonlinear beam element
beam2gs Compute section forces for geometric nonlinear beam element
beam2gxe Compute element matrices for geometric nonlinear exact beam el-

ement
beam2gxs Compute section forces for geometric nonlinear exact beam element
beam2de Compute element matrices for dynamic analysis
beam2ds Compute section forces for dynamic analysis

3D beam elements
beam3e Compute element matrices
beam3s Compute section forces
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One dimensional beam element beam1e

Purpose:

Compute element stiffness matrix for a one dimensional beam element.

E, I

x

y

2(x )

u1
u4u2

u3

(x1 )
x

Syntax:

Ke=beam1e(ex,ep)
[Ke,fe]=beam1e(ex,ep,eq)

Description:

beam1e provides the global element stiffness matrix Ke for a one dimensional beam
element.

The input variables

ex = [ x1 x2 ] ep = [ E I ]

supply the element nodal coordinates x1 and x2, the modulus of elasticity E and the
moment of inertia I.

The element load vector fe can also be computed if uniformly distributed load is
applied to the element. The optional input variable

eq =
[
qȳ
]

then contains the distributed load per unit length, qȳ.

x

q

yq

x

q
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beam1e One dimensional beam element

Theory:

The element stiffness matrix K̄e, stored in Ke, is computed according to

K̄e =
DEI

L3

⎡
⎢⎢⎢⎢⎢⎣

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎤
⎥⎥⎥⎥⎥⎦

where the bending stiffness DEI and the length L are given by

DEI = EI; L = x2 − x1

The element loads f̄ el stored in the variable fe are computed according to

f̄ el = qȳ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L

2
L2

12
L

2

−L
2

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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One dimensional beam element beam1s

Purpose:

Compute section forces in a one dimensional beam element.

x

y

M
V

M
V

Syntax:

es=beam1s(ex,ep,ed)
es=beam1s(ex,ep,ed,eq)
[es,edi,eci]=beam1s(ex,ep,ed,eq,n))

Description:

beam1s computes the section forces and displacements in local directions along the
beam element beam1e.

The input variables ex, ep and eq are defined in beam1e, and the element displace-
ments, stored in ed, are obtained by the function extract. If distributed loads are
applied to the element, the variable eq must be included. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only
the ends of the beam are evaluated.

The output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V (0) M(0)
V (x̄2) M(x̄2)

...
...

V (x̄n−1) M(x̄n−1)
V (L) M(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v(0)
v(x̄2)
...

v(x̄n−1)
v(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the section forces, the displacements, and the evaluation points on the local
x̄-axis. L is the length of the beam element.

Theory:

The nodal displacements in local coordinates are given by

āe =

⎡
⎢⎢⎢⎣
ū1
ū2
ū3
ū4

⎤
⎥⎥⎥⎦

where the transpose of ae is stored in ed.
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beam1s One dimensional beam element

The displacement v(x̄), the bending moment M(x̄) and the shear force V (x̄) are
computed from

v(x̄) = Nāe +vp(x̄)

M(x̄) = DEIBāe +Mp(x̄)

V (x̄) = −DEI
dB

dx
āe +Vp(x̄)

where

N =
[
1 x̄ x̄2 x̄3

]
C−1

B =
[
0 0 2 6x̄

]
C−1

dB

dx
=
[
0 0 0 6

]
C−1

vp(x̄) =
qȳ
DEI

(
x̄4

24
− Lx̄3

12
+
L2x̄2

24

)

Mp(x̄) = qȳ

(
x̄2

2
− Lx̄

2
+
L2

12

)

Vp(x̄) = −qȳ
(
x̄− L

2

)

in which DEI , L, and qȳ are defined in beam1e and

C−1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

− 3
L2 − 2

L
3
L2 − 1

L
2
L3

1
L2 − 2

L3
1
L2

⎤
⎥⎥⎥⎥⎥⎦
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One dimensional beam element with elastic support beam1we

Purpose:

Compute element stiffness matrix for a one dimensional beam element on elastic
support.

E, I

x

y

2(x )

u1
u4u2

u3

(x1 )
x

ky

Syntax:

Ke=beam1we(ex,ep)
[Ke,fe]=beam1we(ex,ep,eq)

Description:

beam1we provides the global element stiffness matrix Ke for a one dimensional beam
element with elastic support.

The input variables

ex = [ x1 x2 ] ep = [ E I kȳ ]

supply the element nodal coordinates x1 and x2, the modulus of elasticity E, the
moment of inertia I, and the spring stiffness in the transverse direction kȳ.

The element load vector fe can also be computed if uniformly distributed load is
applied to the element. The optional input variable

eq =
[
qȳ
]

then contains the distributed load per unit length, qȳ.

x

q

yq

x

q
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beam1we One dimensional beam element with elastic support

Theory:

The element stiffness matrix K̄e, stored in Ke, is computed according to

K̄e = K̄e
0 + K̄e

s

K̄e
0 =

DEI

L3

⎡
⎢⎢⎢⎢⎢⎣

12 6L −12 6L

6L 4L2 −6L 2L2

−12 −6L 12 −6L

6L 2L2 −6L 4L2

⎤
⎥⎥⎥⎥⎥⎦

K̄e
s =

kȳL

420

⎡
⎢⎢⎢⎣

156 22L 54 −13L
22L 4L2 13L −3L2

54 13L 156 −22L
−13L −3L2 −22L 4L2

⎤
⎥⎥⎥⎦

where the bending stiffness DEI and the length L are given by

DEI = EI; L = x2 − x1

The element loads f̄ el stored in the variable fe are computed according to

f̄ el = qȳ

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

L

2
L2

12
L

2

−L
2

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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One dimensional beam element with elastic support beam1ws

Purpose:

Compute section forces in a one dimensional beam element with elastic support.

x

y

M
V

M
V

Syntax:

es=beam1ws(ex,ep,ed)
es=beam1ws(ex,ep,ed,eq)
[es,edi,eci]=beam1ws(ex,ep,ed,eq,n))

Description:

beam1ws computes the section forces and displacements in local directions along the
beam element beam1we.

The input variables ex, ep and eq are defined in beam1we, and the element displace-
ments, stored in ed, are obtained by the function extract. If distributed loads are
applied to the element, the variable eq must be included. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only
the ends of the beam are evaluated.

The output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

V (0) M(0)
V (x̄2) M(x̄2)

...
...

V (x̄n−1) M(x̄n−1)
V (L) M(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

v(0)
v(x̄2)
...

v(x̄n−1)
v(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the section forces, the displacements, and the evaluation points on the local
x̄-axis. L is the length of the beam element.

Theory:

The nodal displacements in local coordinates are given by

āe =

⎡
⎢⎢⎢⎣
ū1
ū2
ū3
ū4

⎤
⎥⎥⎥⎦

where the transpose of ae is stored in ed.
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beam1ws One dimensional beam element with elastic support

The displacement v(x̄), the bending moment M(x̄) and the shear force V (x̄) are
computed from

v(x̄) = Nāe +vp(x̄)

M(x̄) = DEIBāe +Mp(x̄)

V (x̄) = −DEI
dB

dx
āe +Vp(x̄)

where

N =
[
1 x̄ x̄2 x̄3

]
C−1

B =
[
0 0 2 6x̄

]
C−1

dB

dx
=
[
0 0 0 6

]
C−1

vp(x̄) = − kȳ
DEI

⎡
⎢⎢⎢⎢⎢⎢⎣

x̄4−2Lx̄3+L2x̄2

24
x̄5−3L2x̄3+2L3x̄2

120
x̄6−4L3x̄3+3L4x̄2

360
x̄7−5L4x̄3+4L5x̄2

840

⎤
⎥⎥⎥⎥⎥⎥⎦

T

C−1āe +
qȳ
DEI

(
x̄4

24
− Lx̄3

12
+
L2x̄2

24

)

Mp(x̄) = −kȳ

⎡
⎢⎢⎢⎢⎢⎢⎣

6x̄2−6Lx̄+L2

12
10x̄3−9L2x̄+2L3

60
5x̄4−4L3x̄+L4

60
21x̄5−15L4x̄+4L5

420

⎤
⎥⎥⎥⎥⎥⎥⎦

T

C−1āe + qȳ

(
x̄2

2
− Lx̄

2
+
L2

12

)

Vp(x̄) = kȳ

⎡
⎢⎢⎢⎢⎢⎣

2x̄−L
2

10x̄2−3L2

20
5x̄3−L3

15
7x̄4−L4

28

⎤
⎥⎥⎥⎥⎥⎦

T

C−1āe − qȳ
(
x̄− L

2

)

in which DEI , kȳ, L, and qȳ are defined in beam1we and

C−1 =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

− 3
L2 − 2

L
3
L2 − 1

L
2
L3

1
L2 − 2

L3
1
L2

⎤
⎥⎥⎥⎥⎥⎦
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Two dimensional beam element beam2e

Purpose:

Compute element stiffness matrix for a two dimensional beam element.

E, A, I

x

y

(x1,y1)

(x2,y2)

x

u1

u2

u4

u5

u6

u3

Syntax:

Ke=beam2e(ex,ey,ep)
[Ke,fe]=beam2e(ex,ey,ep,eq)

beam2e provides the global element stiffness matrix Ke for a two dimensional beam
element.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]

ep = [ E A I ]

supply the element nodal coordinates x1, y1, x2, and y2, the modulus of elasticity E,
the cross section area A, and the moment of inertia I.

The element load vector fe can also be computed if a uniformly distributed transverse
load is applied to the element. The optional input variable

eq =
[
qx̄ qȳ

]

then contains the distributed loads per unit length, qx̄ and qȳ.
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beam2e Two dimensional beam element

x

y

1

2

qy

qx

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT K̄eG

where

K̄e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DEA

L
0 0 −DEA

L
0 0

0 12DEI

L3
6DEI

L2 0 −12DEI

L3
6DEI

L2

0 6DEI

L2
4DEI

L
0 −6DEI

L2
2DEI

L

−DEA

L
0 0 DEA

L
0 0

0 −12DEI

L3 −6DEI

L2 0 12DEI

L3 −6DEI

L2

0 6DEI

L2
2DEI

L
0 −6DEI

L2
4DEI

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

nxx̄ nyx̄ 0 0 0 0
nxȳ nyȳ 0 0 0 0
0 0 1 0 0 0
0 0 0 nxx̄ nyx̄ 0
0 0 0 nxȳ nyȳ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the axial stiffness DEA, the bending stiffness DEI and the length L are given

by

DEA = EA; DEI = EI; L =
√
(x2 − x1)2 + (y2 − y1)2

The transformation matrix G contains the direction cosines

nxx̄ = nyȳ =
x2 − x1
L

nyx̄ = −nxȳ =
y2 − y1
L
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Two dimensional beam element beam2e

The element loads f el stored in the variable fe are computed according to

f el = GT f̄ el

where

f̄ el =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qx̄L

2
qȳL

2
qȳL

2

12
qx̄L

2
qȳL

2

−qȳL
2

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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beam2s Two dimensional beam element

Purpose:

Compute section forces in a two dimensional beam element.

x

y
N

M V

N

M

V

Syntax:

[es]=beam2s(ex,ey,ep,ed)
[es]=beam2s(ex,ey,ep,ed,eq)
[es,edi]=beam2s(ex,ey,ep,ed,eq,n)
[es,edi,eci]=beam2s(ex,ey,ep,ed,eq,n)

Description:

beam2s computes the section forces and displacements in local directions along the
beam element beam2e.

The input variables ex, ey, ep, and eq are defined in beam2e.

The element displacements, stored in ed, are obtained by the function extract. If a
distributed load is applied to the element, the variable eq must be included. The
number of evaluation points for section forces and displacements are determined by
n. If n is omitted, only the ends of the beam are evaluated.

The output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0) V (0) M(0)
N(x̄2) V (x̄2) M(x̄2)

...
...

...
N(x̄n−1) V (x̄n−1) M(x̄n−1)
N(L) V (L) M(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0) v(0)
u(x̄2) v(x̄2)

...
...

u(x̄n−1) v(x̄n−1)
u(L) v(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the section forces, the displacements, and the evaluation points on the local
x̄-axis. L is the length of the beam element.

Theory:

The nodal displacements in local coordinates are given by

āe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ū1
ū2
ū3
ū4
ū5
ū6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Gae

ELEMENT 134



Two dimensional beam element beam2s

where G is described in beam2e and the transpose of ae is stored in ed. The dis-
placements associated with bar action and beam action are determined as

āe
bar =

[
ū1
ū4

]
; āe

beam =

⎡
⎢⎢⎢⎣
ū2
ū3
ū5
ū6

⎤
⎥⎥⎥⎦

The displacement u(x̄) and the normal force N(x̄) are computed from

u(x̄) = Nbarā
e
bar + up(x̄)

N(x̄) = DEABbarā
e +Np(x̄)

where

Nbar =
[
1 x̄

]
C−1

bar =
[
1− x̄

L
x̄
L

]

Bbar =
[
0 1

]
C−1

bar =
[
− 1

L
1
L

]

up(x̄) = − qx̄
DEA

(
x̄2

2
− Lx̄

2

)

Np(x̄) = −qx̄
(
x̄− L

2

)

in which DEA, L, and qx̄ are defined in beam2e and

C−1
bar =

[
1 0

− 1
L

1
L

]

The displacement v(x̄), the bending moment M(x̄) and the shear force V (x̄) are
computed from

v(x̄) = Nbeamā
e
beam + vp(x̄)

M(x̄) = DEIBbeamā
e
beam +Mp(x̄)

V (x̄) = −DEI
dBbeam

dx̄
āe
beam + Vp(x̄)

where

Nbeam =
[
1 x̄ x̄2 x̄3

]
C−1

beam

Bbeam =
[
0 0 2 6x̄

]
C−1

beam
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beam2s Two dimensional beam element

dBbeam

dx̄
=
[
0 0 0 6

]
C−1

beam

vp(x̄) =
qȳ
DEI

(
x̄4

24
− Lx̄3

12
+
L2x̄2

24

)

Mp(x̄) = qȳ

(
x̄2

2
− Lx̄

2
+
L2

12

)

Vp(x̄) = −qȳ
(
x̄− L

2

)

in which DEI , L, and qȳ are defined in beam2e and

C−1
beam =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

− 3
L2 − 2

L
3
L2 − 1

L
2
L3

1
L2 − 2

L3
1
L2

⎤
⎥⎥⎥⎥⎥⎦
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Two dimensional Timoshenko beam element beam2te

Purpose:

Compute element stiffness matrix for a two dimensional Timoshenko beam element.

E, A, I

x

y

(x1,y1)

(x2,y2)

x E, G, A, I, ks

u1

u2

u4

u5

u6

u3

Syntax:

Ke=beam2te(ex,ey,ep)
[Ke,fe]=beam2te(ex,ey,ep,eq)

Description:

beam2te provides the global element stiffness matrix Ke for a two dimensional Tim-
oshenko beam element.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]

ep = [ E G A I ks ]

supply the element nodal coordinates x1, y1, x2, and y2, the modulus of elasticity
E, the shear modulus G, the cross section area A, the moment of inertia I and the
shear correction factor ks.

The element load vector fe can also be computed if uniformly distributed loads are
applied to the element. The optional input variable

eq =
[
qx̄ qȳ

]
then contains the distributed loads per unit length, qx̄ and qȳ.
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x

y

1

2

qy

qx

Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT K̄eG

where G is described in beam2e, and K̄e is given by

K̄e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DEA

L
0 0 −DEA

L
0 0

0 12DEI

L3(1+μ)
6DEI

L2(1+μ)
0 − 12DEI

L3(1+μ)
6DEI

L2(1+μ)

0 6DEI

L2(1+μ)

4DEI(1+
µ
4
)

L(1+μ)
0 − 6DEI

L2(1+μ)

2DEI(1−µ
2
)

L(1+μ)

−DEA

L
0 0 DEA

L
0 0

0 − 12DEI

L3(1+μ)
− 6DEI

L2(1+μ)
0 12DEI

L3(1+μ)
− 6DEI

L2(1+μ)

0 6DEI

L2(1+μ)

2DEI(1−µ
2
)

L(1+μ)
0 − 6DEI

L2(1+μ)

4DEI(1+
µ
4
)

L(1+μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the axial stiffness DEA, the bending stiffness DEI , and the length L are given
by

DEA = EA; DEI = EI; L =
√
(x2 − x1)2 + (y2 − y1)2

and where

μ =
12DEI

L2GAks

The element loads f el stored in the variable fe are computed according to

f el = GT f̄ el

ELEMENT 138



Two dimensional Timoshenko beam element beam2te

where

f̄ el =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qx̄L

2
qȳL

2
qȳL

2

12
qx̄L

2
qȳL

2

−qȳL
2

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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beam2ts Two dimensional Timoshenko beam element

Purpose:

Compute section forces in a two dimensional Timoshenko beam element.

x

y
N

M V

N

M

V

Syntax:

es=beam2ts(ex,ey,ep,ed)
es=beam2ts(ex,ey,ep,ed,eq)
[es,edi,eci]=beam2ts(ex,ey,ep,ed,eq,n)

Description:

beam2ts computes the section forces and displacements in local directions along the
beam element beam2te.

The input variables ex, ey, ep and eq are defined in beam2te. The element displace-
ments, stored in ed, are obtained by the function extract. If distributed loads are
applied to the element, the variable eq must be included. The number of evaluation
points for section forces and displacements are determined by n. If n is omitted, only
the ends of the beam are evaluated.

The output variables

es = [ N V M ] edi = [ u v θ ] eci = [x̄]

consist of column matrices that contain the section forces, the displacements and
rotation of the cross section (note that the rotation θ is not equal to dv̄

dx̄
), and the

evaluation points on the local x̄-axis. The explicit matrix expressions are

es =

⎡
⎢⎢⎢⎢⎣
N1 V1 M1

N2 V2 M2
...

...
...

Nn Vn Mn

⎤
⎥⎥⎥⎥⎦ edi =

⎡
⎢⎢⎢⎢⎣
u1 v1 θ1
u2 v2 θ2
...

...
...

un vn θn

⎤
⎥⎥⎥⎥⎦ eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

where L is the length of the beam element.

Theory:
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The nodal displacements in local coordinates are given by

āe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ū1
ū2
ū3
ū4
ū5
ū6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Gae

where G is described in beam2e and the transpose of ae is stored in ed. The dis-
placements associated with bar action and beam action are determined as

āe
bar =

[
ū1
ū4

]
; āe

beam =

⎡
⎢⎢⎢⎣
ū2
ū3
ū5
ū6

⎤
⎥⎥⎥⎦

The displacement u(x̄) and the normal force N(x̄) are computed from

u(x̄) = Nbarā
e
bar + up(x̄)

N(x̄) = DEABbarā
e +Np(x̄)

where

Nbar =
[
1 x̄

]
C−1

bar =
[
1− x̄

L
x̄
L

]

Bbar =
[
0 1

]
C−1

bar =
[
− 1

L
1
L

]

up(x̄) = − qx̄
DEA

(
x̄2

2
− Lx̄

2

)

Np(x̄) = −qx̄
(
x̄− L

2

)

in which DEA, L, and qx̄ are defined in beam2te and

C−1
bar =

[
1 0

− 1
L

1
L

]

The displacement v(x̄), the rotation θ(x̄), the bending moment M(x̄) and the shear
force V (x̄) are computed from

v(x̄) = Nbeam,vā
e
beam + vp(x̄)

θ(x̄) = Nbeam,θā
e
beam + θp(x̄)

M(x̄) = DEI
dθ

dx
= DEI

dNbeam,θ

dx̄
āe
beam +Mp(x̄)
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beam2ts Two dimensional Timoshenko beam element

V (x̄) = DGAks

(
dv

dx
− θ

)
= DGAks

(
dNbeam,v

dx̄
−Nbeam,θ

)
āe
beam + Vp(x̄)

where

Nbeam,v =
[
1 x̄ x̄2 x̄3

]
C−1

beam

dNbeam,v

dx̄
=
[
0 1 2x̄ 3x̄2

]
C−1

beam

Nbeam,θ =
[
0 1 2x̄ 3x̄2 + 6α

]
C−1

beam

dNbeam,θ

dx̄
=
[
0 0 2 6x̄

]
C−1

beam

vp(x̄) =
qȳ
DEI

(
x̄4

24
− Lx̄3

12
+
L2x̄2

2

)
+

qȳ
DGAks

(
− x̄

2

2
+
Lx̄

2

)

θp(x̄) =
qȳ
DEI

(
x̄3

6
− Lx̄2

4
+
L2x̄

12

)

Mp(x̄) = qȳ

(
x̄2

2
− Lx̄

2
+
L2

12

)

Vp(x̄) = −qȳ
(
x̄− L

2

)

in which DEI , DGA, ks, L, and qȳ are defined in beam2te and

C−1
beam =

1

L2 + 12α

⎡
⎢⎢⎢⎢⎢⎣
L2 + 12α 0 0 0

−12α
L

L2 + 6α 12α
L

−6α

−3 −2L− 6α
L

3 −L+ 6α
L

2
L

1 − 2
L

1

⎤
⎥⎥⎥⎥⎥⎦

with

α =
DEI

DGA ks
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Two dimensional beam element on elastic support beam2we

Purpose:

Compute element stiffness matrix for a two dimensional beam element on elastic
support.

E, A, I

x

y

(x1,y1)

(x2,y2)

x

u1

u2

u4

u5

u6

u3 kx
ky

Syntax:

Ke=beam2we(ex,ey,ep)
[Ke,fe]=beam2we(ex,ey,ep,eq)

Description:

beam2we provides the global element stiffness matrix Ke for a two dimensional beam
element with elastic support.

The input variables

ex = [ x1 x2 ] ex = [ y1 y2 ] ep = [ E A I kx̄ kȳ ]

supply the element nodal coordinates x1, x2, y1, and y2, the modulus of elasticity E,
the cross section area A, the moment of inertia I, the spring stiffness in the axial
direction kx̄, and the spring stiffness in the transverse direction kȳ.

The element load vector fe can also be computed if uniformly distributed loads are
applied to the element. The optional input variable

eq =
[
qx̄ qȳ

]
then contains the distributed load per unit length, qx̄ and qȳ.
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Theory:

The element stiffness matrix Ke, stored in Ke, is computed according to

Ke = GT K̄eG

where

K̄e = K̄e
0 + K̄e

s

K̄e
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DEA

L
0 0 −DEA

L
0 0

0 12DEI

L3
6DEI

L2 0 −12DEI

L3
6DEI

L2

0 6DEI

L2
4DEI

L
0 −6DEI

L2
2DEI

L

−DEA

L
0 0 DEA

L
0 0

0 −12DEI

L3 −6DEI

L2 0 12DEI

L3 −6DEI

L2

0 6DEI

L2
2DEI

L
0 −6DEI

L2
4DEI

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K̄e
s =

L

420

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

140kx̄ 0 0 70kx̄ 0 0
0 156kȳ 22kȳL 0 54kȳ −13kȳL
0 22kȳL 4kȳL

2 0 13kȳL −3kȳL
2

70kx̄ 0 0 140kx̄ 0 0
0 54kȳ 13kȳL 0 156kȳ −22kȳL
0 −13kȳL −3kȳL

2 0 −22kȳL 4kȳL
2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

nxx̄ nyx̄ 0 0 0 0
nxȳ nyȳ 0 0 0 0
0 0 1 0 0 0
0 0 0 nxx̄ nyx̄ 0
0 0 0 nxȳ nyȳ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the axial stiffness DEA, the bending stiffness DEI and the length L are given
by

DEA = EA; DEI = EI; L =
√
(x2 − x1)2 + (y2 − y1)2

The transformation matrix G contains the direction cosines

nxx̄ = nyȳ =
x2 − x1
L

nyx̄ = −nxȳ =
y2 − y1
L

The element loads f el stored in the variable fe are computed according to

f el = GT f̄ el
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where

f̄ el =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qx̄L

2
qȳL

2
qȳL

2

12
qx̄L

2
qȳL

2

−qȳL
2

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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beam2ws Two dimensional beam element on elastic support

Purpose:

Compute section forces in a two dimensional beam element with elastic support.

x

y
N

M V

N

M

V

Syntax:

es=beam2ws(ex,ey,ep,ed)
es=beam2ws(ex,ey,ep,ed,eq)
[es,edi,eci]=beam2ws(ex,ey,ep,ed,eq,n)

Description:

beam2ws computes the section forces and displacements in local directions along the
beam element beam2we.

The input variables ex, ey, ep and eq are defined in beam2we, and the element
displacements, stored in ed, are obtained by the function extract. If distributed
loads are applied to the element, the variable eq must be included. The number of
evaluation points for section forces and displacements are determined by n. If n is
omitted, only the ends of the beam are evaluated.

The output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0) V (0) M(0)
N(x̄2) V (x̄2) M(x̄2)

...
...

...
N(x̄n−1) V (x̄n−1) M(x̄n−1)
N(L) V (L) M(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0) v(0)
u(x̄2) v(x̄2)

...
...

u(x̄n−1) v(x̄n−1)
u(L) v(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the section forces, the displacements, and the evaluation points on the local
x̄-axis. L is the length of the beam element.

Theory:
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The nodal displacements in local coordinates are given by

āe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ū1
ū2
ū3
ū4
ū5
ū6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Gae

where G is described in beam2we and the transpose of ae is stored in ed. The
displacements associated with bar action and beam action are determined as

āe
bar =

[
ū1
ū4

]
; āe

beam =

⎡
⎢⎢⎢⎣
ū2
ū3
ū5
ū6

⎤
⎥⎥⎥⎦

The displacement u(x̄) and the normal force N(x̄) are computed from

u(x̄) = Nbarā
e
bar + up(x̄)

N(x̄) = DEABbarā
e +Np(x̄)

where

Nbar =
[
1 x̄

]
C−1

bar =
[
1− x̄

L
x̄
L

]

Bbar =
[
0 1

]
C−1

bar =
[
− 1

L
1
L

]

up(x̄) =
kx̄
DEA

[
x̄2−Lx̄

2
x̄3−L2x̄

6

]
C−1

barā
e
bar −

qx̄
DEA

(
x̄2

2
− Lx̄

2

)

Np(x̄) = kx̄
[

2x̄−L
2

3x̄2−L2

6

]
C−1

barā
e
bar − qx̄

(
x̄− L

2

)
in which DEA, kx̄, L, and qx̄ are defined in beam2we and

C−1
bar =

[
1 0

− 1
L

1
L

]

The displacement v(x̄), the bending moment M(x̄) and the shear force V (x̄) are
computed from

v(x̄) = Nbeamā
e
beam + vp(x̄)

M(x̄) = DEIBbeamā
e
beam +Mp(x̄)

V (x̄) = −DEI
dBbeam

dx
āe
beam + Vp(x̄)
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where

Nbeam =
[
1 x̄ x̄2 x̄3

]
C−1

beam

Bbeam =
[
0 0 2 6x̄

]
C−1

beam

dBbeam

dx
=
[
0 0 0 6

]
C−1

beam

vp(x̄) = − kȳ
DEI

⎡
⎢⎢⎢⎢⎢⎢⎣

x̄4−2Lx̄3+L2x̄2

24
x̄5−3L2x̄3+2L3x̄2

120
x̄6−4L3x̄3+3L4x̄2

360
x̄7−5L4x̄3+4L5x̄2

840

⎤
⎥⎥⎥⎥⎥⎥⎦

T

C−1
beamā

e
beam +

qȳ
DEI

(
x̄4

24
− Lx̄3

12
+
L2x̄2

24

)

Mp(x̄) = −kȳ

⎡
⎢⎢⎢⎢⎢⎢⎣

6x̄2−6Lx̄+L2

12
10x̄3−9L2x̄+2L3

60
5x̄4−4L3x̄+L4

60
21x̄5−15L4x̄+4L5

420

⎤
⎥⎥⎥⎥⎥⎥⎦

T

C−1
beamā

e
beam + qȳ

(
x̄2

2
− Lx̄

2
+
L2

12

)

Vp(x̄) = kȳ

⎡
⎢⎢⎢⎢⎢⎣

2x̄−L
2

10x̄2−3L2

20
5x̄3−L3

15
7x̄4−L4

28

⎤
⎥⎥⎥⎥⎥⎦

T

C−1
beamā

e
beam − qȳ

(
x̄− L

2

)

in which DEI , kȳ, L, and qȳ are defined in beam2we and

C−1
beam =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

− 3
L2 − 2

L
3
L2 − 1

L
2
L3

1
L2 − 2

L3
1
L2

⎤
⎥⎥⎥⎥⎥⎦
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Two dimensional geometric nonlinear beam element beam2ge

Purpose:

Compute element stiffness matrix for a two dimensional nonlinear beam element with
respect to geometrical nonlinearity.

u1

u2

u4

u5

E, A, I, Qx

x

y

u6

u3

(x1,y1)

(x2,y2)

x

Syntax:

Ke=beam2ge(ex,ey,ep,Qx)
[Ke,fe]=beam2ge(ex,ey,ep,Qx,eq)

Description:

beam2ge provides the global element stiffness matrix Ke for a two dimensional beam
element with respect to geometrical nonlinearity.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]

ep = [ E A I ]

supply the element nodal coordinates x1, y1, x2, and y2, the modulus of elasticity E,
the cross section area A, and the moment of inertia I and

Qx = [ Qx̄ ]

contains the value of the predefined axial force Qx̄, which is positive in tension.

The element load vector fe can also be computed if a uniformly distributed transverse
load is applied to the element. The optional input variable

eq = [ qȳ ]

then contains the distributed transverse load per unit length, qȳ. Note that eq is a
scalar and not a vector as in beam2e.

Theory:

The element stiffness matrix Ke, stored in the variable Ke, is computed according to

Ke = GT K̄eG
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where K̄e is given by

K̄e = K̄e
0 + K̄e

σ

with

K̄e
0 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DEA

L
0 0 −DEA

L
0 0

0 12DEI

L3
6DEI

L2 0 −12DEI

L3
6DEI

L2

0 6DEI

L2
4DEI

L
0 −6DEI

L2
2DEI

L

−DEA

L
0 0 DEA

L
0 0

0 −12DEI

L3 −6DEI

L2 0 12DEI

L3 −6DEI

L2

0 6DEI

L2
2DEI

L
0 −6DEI

L2
4DEI

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

K̄e
σ = Qx̄

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 0 0 0 0 0

0 6
5L

1
10

0 − 6
5L

1
10

0 1
10

2L
15

0 − 1
10

− L
30

0 0 0 0 0 0

0 − 6
5L

− 1
10

0 6
5L

− 1
10

0 1
10

− L
30

0 − 1
10

2L
15

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

nxx̄ nyx̄ 0 0 0 0
nxȳ nyȳ 0 0 0 0
0 0 1 0 0 0
0 0 0 nxx̄ nyx̄ 0
0 0 0 nxȳ nyȳ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the axial stiffness DEA, the bending stiffness DEI and the length L are given
by

DEA = EA; DEI = EI; L =
√
(x2 − x1)2 + (y2 − y1)2

The transformation matrix G contains the direction cosines

nxx̄ = nyȳ =
x2 − x1
L

nyx̄ = −nxȳ =
y2 − y1
L

The element loads f el stored in fe are computed according to

f el = GT f̄ el

where

f̄ el = qȳ

[
0

L

2

L2

12
0

L

2
− L2

12

]T
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Purpose:

Compute section forces in a two dimensional nonlinear beam element with geomet-
rical nonlinearity.

x

y
N

M V

N

M

V

Syntax:

[es,Qx]=beam2gs(ex,ey,ep,ed,Qx)
[es,Qx]=beam2gs(ex,ey,ep,ed,Qx,eq)
[es,Qx,edi]=beam2gs(ex,ey,ep,ed,Qx,eq,n)
[es,Qx,edi,eci]=beam2gs(ex,ey,ep,ed,Qx,eq,n)

Description:

beam2gs computes the section forces and displacements in local directions along the
geometric nonlinear beam element beam2ge.

The input variables ex, ey, ep, Qx, and eq are described in beam2ge. The element
displacements, stored in ed, are obtained by the function extract. If a distributed
transversal load is applied to the element, the variable eq must be included. The
number of evaluation points for section forces and displacements are determined by
n. If n is omitted, only the ends of the beam are evaluated.

The output variable Qx contains Qx̄ and the output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0) V (0) M(0)
N(x̄2) V (x̄2) M(x̄2)

...
...

...
N(x̄n−1) V (x̄n−1) M(x̄n−1)
N(L) V (L) M(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0) v(0)
u(x̄2) v(x̄2)

...
...

u(x̄n−1) v(x̄n−1)
u(L) v(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the section forces, the displacements, and the evaluation points on the local
x̄-axis. L is the length of the beam element.

Theory:
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The nodal displacements in local coordinates are given by

āe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ū1
ū2
ū3
ū4
ū5
ū6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Gae

where G is described in beam2ge and the transpose of ae is stored in ed. The
displacements associated with bar action and beam action are determined as

āe
bar =

[
ū1
ū4

]
; āe

beam =

⎡
⎢⎢⎢⎣
ū2
ū3
ū5
ū6

⎤
⎥⎥⎥⎦

The displacement u(x̄) is computed from

u(x̄) = Nbarā
e
bar

where

Nbar =
[
1 x̄

]
C−1

bar =
[
1− x̄

L
x̄
L

]
where L is defined in beam2ge and

C−1
bar =

[
1 0

− 1
L

1
L

]

The displacement v(x̄), the rotation θ(x̄), the bending moment M(x̄) and the shear
force V (x̄) are computed from

v(x̄) = Nbeamā
e
beam + vp(x̄)

θ(x̄) =
dNbeam

dx
āe
beam + θp(x̄)

M(x̄) = DEIBbeamā
e
beam +Mp(x̄)

V (x̄) = −DEI
dBbeam

dx
āe
beam + Vp(x̄)

where

Nbeam =
[
1 x̄ x̄2 x̄3

]
C−1

beam

dNbeam

dx
=
[
0 1 2x̄ 3x̄2

]
C−1

beam
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Bbeam =
[
0 0 2 6x̄

]
C−1

beam

dBbeam

dx
=
[
0 0 0 6

]
C−1

beam

vp(x̄) = − Qx̄

DEI

⎡
⎢⎢⎢⎢⎢⎣

0

0

( x̄4

12
−Lx̄3

6
+L2x̄2

12
)

( x̄5

20
− 3L2x̄3

20
+L3x̄2

10
)

⎤
⎥⎥⎥⎥⎥⎦

T

C−1
beamā

e
beam +

qȳ
DEI

(
x̄4

24
− Lx̄3

12
+
L2x̄2

24

)

θp(x̄) = − Qx̄

DEI

⎡
⎢⎢⎢⎢⎢⎣

0

0

( x̄3

3
−Lx̄2

2
+L2x̄

6
)

( x̄4

4
− 9L2x̄2

20
+L3x̄

5
)

⎤
⎥⎥⎥⎥⎥⎦

T

C−1
beamā

e
beam +

qȳ
DEI

(
x̄3

6
− Lx̄2

4
+
L2x̄

12

)

Mp(x̄) = −Qx̄

⎡
⎢⎢⎢⎢⎢⎣

0

0

(x̄2−Lx̄+L2

6
)

(x̄3− 9L2x̄
10

+L3

5
)

⎤
⎥⎥⎥⎥⎥⎦

T

C−1
beamā

e
beam + qȳ

(
x̄2

2
− Lx̄

2
+ L2

12

)

Vp(x̄) = Qx̄

⎡
⎢⎢⎢⎢⎢⎣

0

0

(2x̄−L)

(3x̄2− 9L2

10
)

⎤
⎥⎥⎥⎥⎥⎦

T

C−1
beamā

e
beam − qȳ

(
x̄− L

2

)

in which DEI , L, and qȳ are defined in beam2ge and

C−1
beam =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

− 3
L2 − 2

L
3
L2 − 1

L
2
L3

1
L2 − 2

L3
1
L2

⎤
⎥⎥⎥⎥⎥⎦

An updated value of the axial force is computed as

Qx̄ = DEA

[
0 1

]
C−1

barā
e
bar

The normal force N(x̄) is then computed as

N(x̄) = Qx̄ + θ(x̄)V (x̄)
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Purpose:

Compute element stiffness matrix for a two dimensional nonlinear beam element with
exact solution.

u1

u2

u4

u5

E, A, I, Qx

x

y

u6

u3

(x1,y1)

(x2,y2)

x

Syntax:

Ke=beam2gxe(ex,ey,ep,Qx)
[Ke,fe]=beam2gxe(ex,ey,ep,Qx,eq)

Description:

beam2gxe provides the global element stiffness matrix Ke for a two dimensional beam
element with respect to geometrical nonlinearity considering exact solution.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]

ep = [ E A I ]

supply the element nodal coordinates x1, y1, x2, and y2, the modulus of elasticity E,
the cross section area A, and the moment of inertia I and

Qx = [ Qx̄ ]

contains the value of the predefined axial force Qx̄, which is positive in tension.

The element load vector fe can also be computed if a uniformly distributed transverse
load is applied to the element. The optional input variable

eq = [ qȳ ]

then contains the distributed transverse load per unit length, qȳ. Note that eq is a
scalar and not a vector as in beam2e.

Theory:

The element stiffness matrix Ke, stored in the variable Ke, is computed according to

Ke = GT K̄eG
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with

K̄e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DEA

L
0 0 −DEA

L
0 0

0 12DEI

L3 φ5
6DEI

L2 φ2 0 −12DEI

L3 φ5
6DEI

L2 φ2

0 6DEI

L2 φ2
4DEI

L
φ3 0 −6DEI

L2 φ2
2DEI

L
φ4

−DEA

L
0 0 DEA

L
0 0

0 −12DEI

L3 φ5 −6DEI

L2 φ2 0 12DEI

L3 φ5 −6DEI

L2 φ2

0 6DEI

L2 φ2
2DEI

L
φ4 0 −6DEI

L2 φ2
4DEI

L
φ3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

nxx̄ nyx̄ 0 0 0 0
nxȳ nyȳ 0 0 0 0
0 0 1 0 0 0
0 0 0 nxx̄ nyx̄ 0
0 0 0 nxȳ nyȳ 0
0 0 0 0 0 1

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the axial stiffness DEA, the bending stiffness DEI and the length L are given
by

DEA = EA; DEI = EI; L =
√
(x2 − x1)2 + (y2 − y1)2

The transformation matrix G contains the direction cosines

nxx̄ = nyȳ =
x2 − x1
L

nyx̄ = −nxȳ =
y2 − y1
L

For axial compression (Qx̄ < 0), we have

φ2 =
1

12

k2L2

(1− φ1)
φ3 =

1

4
φ1 +

3

4
φ2

φ4 = −1

2
φ1 +

3

2
φ2 φ5 = φ1φ2

with

k =

√
−Qx̄

DEI

φ1 =
kL

2
cot

kL

2

For axial tension (Qx̄ > 0), we have

φ2 = − 1

12

k2L2

(1− φ1)
φ3 =

1

4
φ1 +

3

4
φ2

φ4 = −1

2
φ1 +

3

2
φ2 φ5 = φ1φ2

with

k =

√
Qx̄

DEI
φ1 =

kL

2
coth

kL

2
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The element loads f el stored in the variable fe are computed according to

f el = GT f̄ el

where

f̄ el = qȳL
[
0

1

2

L

12
ψ 0

1

2
− L

12
ψ
]T

For an axial compressive force (Qx̄ < 0), we have

ψ = 6

(
2

(kL)2
− 1 + cos kL

kL sin kL

)

and for an axial tensile force (Qx̄ > 0)

ψ = −6

(
2

(kL)2
− 1 + cosh kL

kL sinh kL

)
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Purpose:

Compute section forces in a two dimensional geometric nonlinear beam element with
exact solution.

x

y
N

M V

N

M

V

Syntax:

[es,Qx]=beam2gxs(ex,ey,ep,ed,Qx)
[es,Qx]=beam2gxs(ex,ey,ep,ed,Qx,eq)
[es,Qx,edi]=beam2gxs(ex,ey,ep,ed,Qx,eq,n)
[es,Qx,edi,eci]=beam2gxs(ex,ey,ep,ed,Qx,eq,n)

Description:

beam2gxs computes the section forces and displacements in local directions along the
geometric nonlinear beam element beam2gxe.

The input variables ex, ey, ep, Qx, and eq are described in beam2gxe. The element
displacements, stored in ed, are obtained by the function extract. If a distributed
transversal load is applied to the element, the variable eq must be included. The
number of evaluation points for section forces and displacements are determined by
n. If n is omitted, only the ends of the beam are evaluated.

The output variable Qx contains Qx̄ and the output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0) V (0) M(0)
N(x̄2) V (x̄2) M(x̄2)

...
...

...
N(x̄n−1) V (x̄n−1) M(x̄n−1)
N(L) V (L) M(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0) v(0)
u(x̄2) v(x̄2)

...
...

u(x̄n−1) v(x̄n−1)
u(L) v(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the section forces, the displacements, and the evaluation points on the local
x̄-axis. L is the length of the beam element.
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Theory:

The nodal displacements in local coordinates are given by

āe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

ū1
ū2
ū3
ū4
ū5
ū6

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦
= Gae

where G is described in beam2ge and the transpose of ae is stored in ed. The
displacements associated with bar action and beam action are determined as

āe
bar =

[
ū1
ū4

]
; āe

beam =

⎡
⎢⎢⎢⎣
ū2
ū3
ū5
ū6

⎤
⎥⎥⎥⎦

The displacement u(x̄) is computed from

u(x̄) = Nbarā
e
bar

where

Nbar =
[
1 x̄

]
C−1

bar =
[
1− x̄

L
x̄
L

]
where L is defined in beam2gxe and

C−1
bar =

[
1 0

− 1
L

1
L

]

The displacement v(x̄), the rotation θ(x̄), the bending moment M(x̄) and the shear
force V (x̄) are computed from

v(x̄) = Nbeamā
e
beam + vp(x̄)

θ(x̄) =
dNbeam

dx
āe
beam + θp(x̄)

M(x̄) = DEIBbeamā
e
beam +Mp(x̄)

V (x̄) = −DEI
dBbeam

dx
āe
beam + Vp(x̄)

For an axial compressive force (Qx̄ < 0) we have

Nbeam =
[
1 x̄ cos kx̄ sin kx̄

]
C−1

beam

dNbeam

dx
=
[
0 1 −k sin kx̄ k cos kx̄

]
C−1

beam
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Bbeam =
[
0 0 −k2 cos kx̄ −k2 sin kx̄

]
C−1

beam

dBbeam

dx
=
[
0 0 k3 sin kx̄ −k3 cos kx̄

]
C−1

beam

vp(x̄) =
qȳL

4

2DEI

[
1 + cos kL

(kL)3 sin kL
(−1 + cos kx̄)− 1

(kL)3
sin kx̄+

1

(kL)2

(
x̄2

L2
− x̄

L

)]

θp(x̄) =
qȳL

3

2DEI

[
− 1 + cos kL

(kL)2 sin kL
sin kx̄− 1

(kL)2
cos kx̄+

1

(kL)2

(
2x̄

L
− 1

)]

Mp(x̄) =
qȳL

2

2

[
−1 + cos kL

kL sin kL
cos kx̄+

1

kL
sin kx̄+

2

(kL)2

]

Vp(x̄) =
qȳL

2

[
−1 + cos kL

sin kL
sin kx̄− cos kx̄

]

in which DEI , L, k, and qȳ are defined in beam2gxe and

C−1
beam = c

⎡
⎢⎢⎢⎢⎣
k (kL sin kL+ cos kL− 1) −kL cos kL+ sin kL −k (1− cos kL) − sin kL+ kL

−k2 sin kL −k (1− cos kL) k2 sin kL −k (1− cos kL)

−k (1− cos kL) kL cos kL− sin kL k (1− cos kL) sin kL− kL

k sin kL kL sin kL+ cos kL− 1 −k sin kL 1− cos kL

⎤
⎥⎥⎥⎥⎦

with

c =
1

k(−2 + 2 cos kL+ kL sin kL)

For an axial tensile force (Qx̄ > 0) we have

Nbeam =
[
1 x̄ cosh kx̄ sinh kx̄

]
C−1

beam

dNbeam

dx
=
[
0 1 k sinh kx̄ k cosh kx̄

]
C−1

beam

Bbeam =
[
0 0 k2 cosh kx̄ k2 sinh kx̄

]
C−1

beam

dBbeam

dx
=
[
0 0 k3 sinh kx̄ k3 cosh kx̄

]
C−1

beam

vp(x̄) =
qȳL

4

2DEI

[
1 + cosh kL

(kL)3 sinh kL
(−1 + cosh kx̄)− 1

(kL)3
sinh kx̄+

1

(kL)2

(
− x̄2

L2
+
x̄

L

)]
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θp(x̄) =
qȳL

3

2DEI

[
1 + cosh kL

(kL)2 sinh kL
sinh kx̄− 1

(kL)2
cosh kx̄+

1

(kL)2

(
−2x̄

L
+ 1
)]

Mp(x̄) =
qȳL

2

2

[
1 + cosh kL

kL sinh kL
cosh kx̄− 1

kL
sinh kx̄− 2

(kL)2

]

Vp(x̄) =
qȳL

2

[
−1 + cosh kL

sinh kL
sinh kx̄+ cosh kx̄

]

in which DEI , L, k, and qȳ are defined in beam2gxe and

C−1
beam = c

⎡
⎢⎢⎢⎣

k (−kL sinh kL+ coshkL− 1) −kL coshkL+ sinh kL −k (1− coshkL) − sinh kL+ kL

k2 sinh kL −k (1− coshkL) −k2 sinh kL −k (1− coshkL)

−k (1− coshkL) kL coshkL− sinh kL k (1− cosh kL) sinh kL− kL

−k sinh kL −kL sinh kL+ coshkL− 1 k sinh kL 1− coshkL

⎤
⎥⎥⎥⎦

with

c =
1

k(−2 + 2 cosh kL− kL sinh kL)

An updated value of the axial force is computed as

Qx̄ = DEA

[
0 1

]
C−1

barā
e
bar

The normal force N(x̄) is then computed as

N(x̄) = Qx̄ + θ(x̄)V (x̄)
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Two dimensional beam element for dynamic analysis beam2de

Purpose:

Compute element stiffness, mass and damping matrices for a two dimensional beam
element.

u1

u2

u4

u5

E, A, I, m

x

y

u6

u3

(x1,y1)

(x2,y2)

x

Syntax:

[Ke,Me]=beam2de(ex,ey,ep)
[Ke,Me,Ce]=beam2de(ex,ey,ep)

Description:

beam2de provides the global element stiffness matrix Ke, the global element mass
matrix Me, and the global element damping matrix Ce, for a two dimensional beam
element.

The input variables ex and ey are described in beam2e, and

ep = [ E A I m [ a0 a1] ]

contains the modulus of elasticity E, the cross section area A, the moment of inertia
I, the mass per unit length m, and the Raleigh damping coefficients a0 and a1. If a0
and a1 are omitted, the element damping matrix Ce is not computed.
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Theory:

The element stiffness matrix Ke, the element mass matrix Me and the element
damping matrixCe, stored in the variables Ke, Me and Ce, respectively, are computed
according to

Ke = GT K̄eG Me = GTM̄eG Ce = GT C̄eG

where G and K̄e are described in beam2e.

The matrix M̄e is given by

M̄e =
mL

420

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎣

140 0 0 70 0 0
0 156 22L 0 54 −13L
0 22L 4L2 0 13L −3L2

70 0 0 140 0 0
0 54 13L 0 156 −22L
0 −13L −3L2 0 −22L 4L2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎦

and the matrix C̄e is computed by combining K̄e and M̄e

C̄e = a0M̄
e + a1K̄

e
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Two dimensional beam element for dynamic analysis beam2ds

Purpose:

Compute section forces for a two dimensional beam element in dynamic analysis.

x

y
N

M V

N

M

V

Syntax:

es=beam2ds(ex,ey,ep,ed,ev,ea)

Description:

beam2ds computes the section forces at the ends of the dynamic beam element
beam2de.

The input variables ex, ey, and ep are defined in beam2de. The element displace-
ments, the element velocities, and the element accelerations, stored in ed, ev, and ea
respectively, are obtained by the function extract.

The output variable

es =

[
N1 V1 M1

N2 V2 M2

]

contains the section forces at the ends of the beam.
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Theory:

The section forces at the ends of the beam are obtained from the element force vector

P̄ = [ −N1 − V1 −M1 N2 V2 M2 ]
T

computed according to

P̄ = K̄e G ae + C̄e G ȧe + M̄e G äe

The matrices K̄e and G are described in beam2e, and the matrices M̄e and C̄e are
described in beam2d. The nodal displacements

ae = [ u1 u2 u3 u4 u5 u6 ]
T

shown in beam2de also define the directions of the nodal velocities

ȧe = [ u̇1 u̇2 u̇3 u̇4 u̇5 u̇6 ]
T

and the nodal accelerations

äe = [ ü1 ü2 ü3 ü4 ü5 ü6 ]
T

Note that the transposes of ae, ȧe, and äe are stored in ed, ev, and ea respectively.
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Three dimensional beam element beam3e

Purpose:

Compute element stiffness matrix for a three dimensional beam element.

z
x

y

u1

u2

u4

u5

u6

u3

u7

u8

u10

u11

u12

u9

(x1,y1,z1)

(x2,y2,z2)

y
x

z

Syntax:

Ke=beam3e(ex,ey,ez,eo,ep)
[Ke,fe]=beam3e(ex,ey,ez,eo,ep,eq)

Description:

beam3e provides the global element stiffness matrix Ke for a three dimensional beam
element.

The input variables

ex = [ x1 x2 ]
ey = [ y1 y2 ]
ez = [ z1 z2 ]

eo = [ xz̄ yz̄ zz̄ ]

supply the element nodal coordinates x1, y1, etc. as well as the direction of the local
beam coordinate system (x̄, ȳ, z̄). By giving a global vector (xz̄ , yz̄, zz̄) parallel with
the positive local z̄ axis of the beam, the local beam coordinate system is defined.
The variable

ep = [ E G A Iȳ Iz̄ Kv ]

supplies the modulus of elasticity E, the shear modulus G, the cross section area
A, the moment of inertia with respect to the ȳ axis Iȳ, the moment of inertia with
respect to the z̄ axis Iz̄, and St. Venant torsion constant Kv.

The element load vector fe can also be computed if uniformly distributed loads are
applied to the element. The optional input variable

eq = [ qx̄ qȳ qz̄ qω̄ ]
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then contains the distributed loads. The positive directions of qx̄, qȳ, and qz̄ follow
the local beam coordinate system. The distributed torque qω̄ is positive if directed
in the local x̄-direction, i.e. from local ȳ to local z̄. All the loads are per unit length.

Theory:

The element stiffness matrix Ke is computed according to

Ke = GT K̄eG

where

K̄e =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

DEA

L
0 0 0 0 0 −DEA

L
0 0 0 0 0

0
12DEIz̄

L3 0 0 0
6DEIz̄

L2 0 −12DEIz̄

L3 0 0 0
6DEIz̄

L2

0 0
12DEIȳ

L3 0 −6DEIȳ

L2 0 0 0 −12DEIȳ

L3 0 −6DEIȳ

L2 0
0 0 0 DGK

L
0 0 0 0 0 −DGK

L
0 0

0 0 −6DEIȳ

L2 0
4DEIȳ

L
0 0 0

6DEIȳ

L2 0
2DEIȳ

L
0

0
6DEIz̄

L2 0 0 0
4DEIz̄

L
0 −6DEIz̄

L2 0 0 0
2DEIz̄

L

−DEA

L
0 0 0 0 0 DEA

L
0 0 0 0 0

0 −12DEIz̄

L3 0 0 0 −6DEIz̄

L2 0
12DEIz̄

L3 0 0 0 −6DEIz̄

L2

0 0 −12DEIȳ

L3 0
6DEIȳ

L2 0 0 0
12DEIȳ

L3 0
6DEIȳ

L2 0
0 0 0 −DGK

L
0 0 0 0 0 DGK

L
0 0

0 0 −6DEIȳ

L2 0
2DEIȳ

L
0 0 0

6DEIȳ

L2 0
4DEIȳ

L
0

0
6DEIz̄

L2 0 0 0
2DEIz̄

L
0 −6DEIz̄

L2 0 0 0
4DEIz̄

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

G =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nxx̄ nyx̄ nzx̄ 0 0 0 0 0 0 0 0 0
nxȳ nyȳ nzȳ 0 0 0 0 0 0 0 0 0
nxz̄ nyz̄ nzz̄ 0 0 0 0 0 0 0 0 0
0 0 0 nxx̄ nyx̄ nzx̄ 0 0 0 0 0 0
0 0 0 nxȳ nyȳ nzȳ 0 0 0 0 0 0
0 0 0 nxz̄ nyz̄ nzz̄ 0 0 0 0 0 0
0 0 0 0 0 0 nxx̄ nyx̄ nzx̄ 0 0 0
0 0 0 0 0 0 nxȳ nyȳ nzȳ 0 0 0
0 0 0 0 0 0 nxz̄ nyz̄ nzz̄ 0 0 0
0 0 0 0 0 0 0 0 0 nxx̄ nyx̄ nzx̄

0 0 0 0 0 0 0 0 0 nxȳ nyȳ nzȳ

0 0 0 0 0 0 0 0 0 nxz̄ nyz̄ nzz̄

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

where the axial stiffness DEA, the bending stiffness DEIz̄ , the bending stiffness DEIȳ ,
and the St. Venant torsion stiffness DGK are given by

DEA = EA; DEIz̄ = EIz̄; DEIȳ = EIȳ; DGK = GKv

The length L is given by

L =
√
(x2 − x1)2 + (y2 − y1)2 + (z2 − z1)2
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The transformation matrix G contains direction cosines computed as

nxx̄ = x2−x1

L
nyx̄ = y2−y1

L
nzx̄ = z2−z1

L

nxz̄ =
xz̄

Lz̄
nyz̄ =

yz̄
Lz̄

nzz̄ =
zz̄
Lz̄

nxȳ = nyz̄nzx̄ − nzz̄nyx̄ nyȳ = nzz̄nxx̄ − nxz̄nzx̄ nzȳ = nxz̄nyx̄ − nyz̄nxx̄

where

Lz̄ =
√
x2z̄ + y2z̄ + z2z̄

The element load vector f el , stored in fe, is computed according to

f el = GT f̄ el

where

f̄ el =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

qx̄L

2
qȳL

2
qz̄L

2
qω̄L

2

−qz̄L
2

12
qȳL

2

12
qx̄L

2
qȳL

2
qz̄L

2
qω̄L

2
qz̄L

2

12

−qȳL
2

12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
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Purpose:

Compute section forces in a three dimensional beam element .

z
x

y

Tn

My,n

Mz,n

Nn

Vz,n

My,1

T1

Mz,1

N1
Vy,1

Vz,1

Vy,n

y
x

z

T
N

Mz
Vz

Vy

My

T
N

My

Vy

Vz
Mz

Syntax:

[es]=beam3s(ex,ey,ez,eo,ep,ed)
[es]=beam3s(ex,ey,ez,eo,ep,ed,eq)
[es,edi]=beam3s(ex,ey,ez,eo,ep,ed,eq,n)
[es,edi,eci]=beam3s(ex,ey,ez,eo,ep,ed,eq,n)

Description:

beam3s computes the section forces and displacements in local directions along the
beam element beam3e.

The input variables ex, ey, ez, eo, ep, and eq are defined in beam3e.

The element displacements, stored in ed, are obtained by the function extract. If a
distributed load is applied to the element, the variable eq must be included. The
number of evaluation points for section forces and displacements are determined by
n. If n is omitted, only the ends of the beam are evaluated.

The output variables

es =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

N(0) Vȳ(0) Vz̄(0) T (0) Mȳ(0) Mz̄(0)
N(x̄2) Vȳ(x̄2) Vz̄(x̄2) T (x̄2) Mȳ(x̄2) Mz̄(x̄2)

...
...

...
...

...
...

N(x̄n−1) Vȳ(x̄n−1) Vz̄(x̄n−1) T (x̄n−1) Mȳ(x̄n−1) Mz̄(x̄n−1)
N(L) Vȳ(L) Vz̄(L) T (x̄n−1) Mȳ(L) Mz̄(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
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edi =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

u(0) v(0) w(0) ϕ(0)
u(x̄2) v(x̄2) w(x̄2) ϕ(x̄2)
...

...
...

...
u(x̄n−1) v(x̄n−1) w(x̄n−1) ϕ(x̄n−1)
u(L) v(L) w(L) ϕ(L)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

eci =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

0
x̄2
...

x̄n−1

L

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

contain the section forces, the displacements, and the evaluation points on the local
x̄-axis. L is the length of the beam element.

Theory:

The nodal displacements in local coordinates are given by

āe =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ū1
ū2
ū3
ū4
ū5
ū6
ū7
ū8
ū9
ū10
ū11
ū12

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

= Gae

where G is described in beam3e and the transpose of ae is stored in ed. The dis-
placements associated with bar action, beam action in the x̄ȳ-plane, beam action in
the x̄z̄-plane, and torsion are determined as

āe
bar =

[
ū1
ū7

]
; āe

beam,z̄ =

⎡
⎢⎢⎢⎣

ū2
ū6
ū8
ū12

⎤
⎥⎥⎥⎦ ; āe

beam,ȳ =

⎡
⎢⎢⎢⎣

ū3
−ū5
ū9

−ū11

⎤
⎥⎥⎥⎦ ; āe

torsion =

[
ū4
ū10

]

The displacement u(x̄) and the normal force N(x̄) are computed from

u(x̄) = Nbarā
e
bar + up(x̄)

N(x̄) = DEABbarā
e +Np(x̄)

where

Nbar =
[
1 x̄

]
C−1

bar =
[
1− x̄

L
x̄
L

]

Bbar =
[
0 1

]
C−1

bar =
[
− 1

L
1
L

]

up(x̄) = − qx̄
DEA

(
x̄2

2
− Lx̄

2

)
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Np(x̄) = −qx̄
(
x̄− L

2

)
in which DEA, L, and qx̄ are defined in beam3e and

C−1
bar =

[
1 0

− 1
L

1
L

]

The displacement v(x̄), the bending moment Mz̄(x̄) and the shear force Vȳ(x̄) are
computed from

v(x̄) = Nbeamā
e
beam,z̄ + vp(x̄)

Mz̄(x̄) = DEIz̄Bbeamā
e
beam,z̄ +Mz̄,p(x̄)

Vȳ(x̄) = −DEIz̄

dBbeam

dx
āe
beam,z̄ + Vȳ,p(x̄)

where

Nbeam =
[
1 x̄ x̄2 x̄3

]
C−1

beam

Bbeam =
[
0 0 2 6x̄

]
C−1

beam

dBbeam

dx
=
[
0 0 0 6

]
C−1

beam

vp(x̄) =
qȳ
DEIz̄

(
x̄4

24
− Lx̄3

12
+
L2x̄2

24

)

Mz̄,p(x̄) = qȳ
(
x̄2

2
− Lx̄

2
+ L2

12

)

Vȳ,p(x̄) = −qȳ
(
x̄− L

2

)

in which DEIz̄ , L, and qȳ are defined in beam3e and

C−1
beam =

⎡
⎢⎢⎢⎢⎢⎣

1 0 0 0

0 1 0 0

− 3
L2 − 2

L
3
L2 − 1

L
2
L3

1
L2 − 2

L3
1
L2

⎤
⎥⎥⎥⎥⎥⎦

The displacement w(x̄), the bending moment Mȳ(x̄) and the shear force Vz̄(x̄) are
computed from

w(x̄) = Nbeamā
e
beam,ȳ + wp(x̄)
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Mȳ(x̄) = −DEIȳBbeamā
e
beam,ȳ +Mȳ,p(x̄)

Vz̄(x̄) = −DEIȳ

dBbeam

dx
āe
beam,ȳ + Vz̄,p(x̄)

where

wp(x̄) =
qz̄
DEIȳ

(
x̄4

24
− Lx̄3

12
+
L2x̄2

24

)

Mȳ,p(x̄) = −qz̄
(
x̄2

2
− Lx̄

2
+ L2

12

)

Vz̄,p(x̄) = −qz̄
(
x̄− L

2

)

in which DEIȳ , L, and qz̄ are defined in beam3e and Nbeam, Bbeam, and
dBbeam

dx
are

given above.

The displacement ϕ(x̄) and the torque T (x̄) are computed from

ϕ(x̄) = Ntorsionā
e
torsion + ϕp(x̄)

T (x̄) = DGKBtorsionā
e + Tp(x̄)

where

Ntorsion = Nbar

Btorsion = Bbar

ϕp(x̄) = − qω
DGK

(
x̄2

2
− Lx̄

2

)

Tp(x̄) = −qω
(
x̄− L

2

)
in which DGK , L, and qω are defined in beam3e.
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5.7 Plate element

Only one plate element is currently available, a rectangular 12 dof element. The element
presumes a linear elastic material which can be isotropic or anisotropic.

Plate elements
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platre

Plate functions
platre Compute element matrices
platrs Compute section forces
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Purpose:

Compute element stiffness matrix for a rectangular plate element.
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Syntax:

Ke=platre(ex,ey,ep,D)
[Ke,fe]=platre(ex,ey,ep,D,eq)

Description:

platre provides an element stiffness matrix Ke, and an element load vector fe, for a
rectangular plate element. This element can only be used if the element edges are
parallel to the coordinate axis.

The element nodal coordinates x1, y1, x2 etc. are supplied to the function by ex and
ey, the element thickness t by ep, and the material properties by the constitutive
matrix D. Any arbitrary D-matrix with dimensions (3× 3) and valid for plane stress
may be given. For an isotropic elastic material the constitutive matrix can be formed
by the function hooke, see Section 4.

ex = [ x1 x2 x3 x4 ]
ey = [ y1 y2 y3 y4 ]

ep = [ t ] D =

⎡
⎢⎣ D11 D12 D13

D21 D22 D23

D31 D32 D33

⎤
⎥⎦

If a uniformly distributed load is applied to the element, the element load vector fe
is computed. The input variable

eq = [ qz ]

then contains the load qz per unit area in the z-direction.

173 ELEMENT



platre Plate element

Theory:

The element stiffness matrix Ke and the element load vector fel , stored in Ke and fe
respectively, are computed according to

Ke = (C−1)T
∫
A
B̄

T
D̃ B̄ dA C−1

fel = (C−1)T
∫
A
N̄

T
qz dA

where the constitutive matrix

D̃ =
t3

12
D

and where D is defined by D.

The evaluation of the integrals for the rectangular plate element is based on the
displacement approximation w(x, y) and is expressed in terms of the nodal variables
u1, u2, ... , u12 as

w(x, y) = Ne ae = N̄ C−1 ae

where

N̄ =
[
1 x y x2 xy y2 x3 x2y xy2 y3 x3y xy3

]

C =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 −a −b a2 ab b2 −a3 −a2b −ab2 −b3 a3b ab3

0 0 1 0 −a −2b 0 a2 2ab 3b2 −a3 −3ab2

0 −1 0 2a b 0 −3a2 −2ab −b2 0 3a2b b3

1 a −b a2 −ab b2 a3 −a2b ab2 −b3 −a3b −ab3
0 0 1 0 a −2b 0 a2 −2ab 3b2 a3 3ab2

0 −1 0 −2a b 0 −3a2 2ab −b2 0 3a2b b3

1 a b a2 ab b2 a3 a2b ab2 b3 a3b ab3

0 0 1 0 a 2b 0 a2 2ab 3b2 a3 3ab2

0 −1 0 −2a −b 0 −3a2 −2ab −b2 0 −3a2b −b3
1 −a b a2 −ab b2 −a3 a2b −ab2 b3 −a3b −ab3
0 0 1 0 −a 2b 0 a2 −2ab 3b2 −a3 −3ab2

0 −1 0 2a −b 0 −3a2 2ab −b2 0 −3a2b −b3

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

ae = [ u1 u2 ... u12 ]
T

and where

a =
1

2
(x3 − x1) and b =

1

2
(y3 − y1)

The matrix B̄ is obtained as

B̄ =
∗∇N̄ =

⎡
⎢⎣ 0 0 0 2 0 0 6x 2y 0 0 6xy 0
0 0 0 0 0 2 0 0 2x 6y 0 6xy
0 0 0 0 2 0 0 4x 4y 0 6x2 6y2

⎤
⎥⎦
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where

∗∇ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

∂2

∂x2

∂2

∂y2

2
∂2

∂x∂y

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

Evaluation of the integrals for the rectangular plate element is done analytically.
Computation of the integrals for the element load vector f el yields

f el = qzLxLy

[
1

4

Ly

24
− Lx

24

1

4

Ly

24

Lx

24

1

4
− Ly

24

Lx

24

1

4
− Ly

24
− Lx

24

]T

where

Lx = x3 − x1 and Ly = y3 − y1
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platrs Plate element

Purpose:

Compute section forces in a rectangular plate element.
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Syntax:

[es,et]=platrs(ex,ey,ep,D,ed)

Description:

platrs computes the section forces es and the curvature matrix et in a rectangular
plate element. The section forces and the curvatures are computed at the center of
the element.

The input variables ex, ey, ep and D are defined in platre. The vector ed contains the
nodal displacements ae of the element and is obtained by the function extract as

ed = (ae)T = [ u1 u2 ... u12 ]

The output variables

es =
[
MT VT

]
= [Mxx Myy Mxy Vxz Vyz ]

et = κT = [ κxx κyy κxy ]

contain the section forces and curvatures in global directions.
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Theory:

The curvatures and the section forces are computed according to

κ =

⎡
⎢⎣ κxxκyy
κxy

⎤
⎥⎦ = B̄ C−1 ae

M =

⎡
⎢⎣ Mxx

Myy

Mxy

⎤
⎥⎦ = D̃ κ

V =

[
Vxz
Vyz

]
= ∇̃ M

where the matrices D̃, B̄, C and ae are described in platre, and where

∇̃ =

⎡
⎢⎢⎢⎣

∂

∂x
0

∂

∂y

0
∂

∂y

∂

∂x

⎤
⎥⎥⎥⎦

177 ELEMENT



platrs Plate element

ELEMENT 178



6 System functions

6.1 Introduction

The group of system functions comprises functions for the setting up, solving, and elimi-
nation of systems of equations. The functions are separated in two groups:

Static system functions

Dynamic system functions

Static system functions concern the linear system of equations

Ka = f

where K is the global stiffness matrix and f is the global load vector. Often used static
system functions are assem and solveq. The function assem assembles the global stiffness
matrix and solveq computes the global displacement vector a considering the boundary
conditions. It should be noted that K, f , and a also represent analogous quantities in
systems others than structural mechanical systems. For example, in a heat flow problem
K represents the conductivity matrix, f the heat flow, and a the temperature.

Dynamic system functions are related to different aspects of linear dynamic systems of
coupled ordinary differential equations according to

C ȧ+K a = f

for first-order systems and
Mä+Cȧ+Ka = f

for second-order systems. First-order systems occur typically in transient heat conduction
and second-order systems occur in structural dynamics.
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6.2 Static system functions

The group of static system functions comprises functions for setting up and solving the
global system of equations. It also contains a function for eigenvalue analysis, a function
for static condensation, a function for extraction of element displacements from the global
displacement vector and a function for extraction of element coordinates.

The following functions are available for static analysis:

Static system functions
assem Assemble element matrices
coordxtr Extract element coordinates from a global coordinate matrix.
eigen Solve a generalized eigenvalue problem
extract ed Extract values from a global vector
insert Assemble element internal force vector
red Reduce the size of a square matrix
solveq Solve a system of equations
statcon Perform static condensation
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assem Static system functions

Purpose:

Assemble element matrices.
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Syntax:

K=assem(edof,K,Ke)
[K,f]=assem(edof,K,Ke,f,fe)

Description:

assem adds the element stiffness matrix Ke, stored in Ke, to the structure stiffness
matrix K, stored in K, according to the topology matrix edof.

The element topology matrix edof is defined as

edof = [el dof1 dof2 . . . dofned︸ ︷︷ ︸
global dof.

]

where the first column contains the element number, and the columns 2 to (ned+ 1)
contain the corresponding global degrees of freedom (ned = number of element de-
grees of freedom).

In the case where the matrix Ke is identical for several elements, assembling of these
can be carried out simultaneously. Each row in Edof then represents one element,
i.e. nel is the total number of considered elements.

Edof =

⎡
⎢⎢⎢⎢⎣

el1
el2
...

elnel

dof1 dof2 . . . dofned
dof1 dof2 . . . dofned
...

...
...

dof1 dof2 . . . dofned

⎤
⎥⎥⎥⎥⎦

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭
one row for each element

If fe and f are given in the function, the element load vector f e is also added to the
global load vector f .
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Static system functions coordxtr

Purpose:

Extract element coordinates from a global coordinate matrix.
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Syntax:

[Ex,Ey,Ez]=coordxtr(Edof,Coord,Dof,nen)

Description:

coordxtr extracts element nodal coordinates from the global coordinate matrix Coord
for elements with equal numbers of element nodes and dof’s.

Input variables are the element topology matrix Edof, defined in assem, the global
coordinate matrix Coord, the global topology matrix Dof, and the number of element
nodes nen in each element.

Coord =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x1 y1 [z1]
x2 y2 [z2]
x3 y3 [z3]
...

...
...

xn yn [zn]

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

Dof =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

k1 l1 ... m1

k2 l2 ... m2

k3 l3 ... m3
...

... ...
...

kn ln ... mn

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

nen = [ nen ]

The nodal coordinates defined in row i of Coord correspond to the degrees of freedom
of row i in Dof. The components ki, li and mi define the degrees of freedom of node
i, and n is the number of global nodes for the considered part of the FE-model.
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coordxtr Static system functions

The output variables Ex, Ey, and Ez are matrices defined according to

Ex =

⎡
⎢⎢⎢⎢⎣

x1
1 x2

1 x3
1 ... xnen

1

x1
2 x2

2 x3
2 ... xnen

2

...
...

...
...

...
x1

nel x2
nel x3

nel ... xnen
nel

⎤
⎥⎥⎥⎥⎦

where row i gives the x-coordinates of the element defined in row i of Edof, and
where nel is the number of considered elements.

The element coordinate data extracted by the function coordxtr can be used for
plotting purposes and to create input data for the element stiffness functions.
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Static system functions eigen

Purpose:

Solve the generalized eigenvalue problem.

Syntax:

L=eigen(K,M)
L=eigen(K,M,b)
[L,X]=eigen(K,M)
[L,X]=eigen(K,M,b)

Description:

eigen solves the eigenvalue problem

| K− λM |= 0

where K and M are square matrices. The eigenvalues λ are stored in the vector L
and the corresponding eigenvectors in the matrix X.

If certain rows and columns in matrices K and M are to be eliminated in computing
the eigenvalues, b must be given in the function. The rows (and columns) that are
to be eliminated are described in the vector b defined as

b =

⎡
⎢⎢⎢⎢⎣
dof1
dof2
...

dofnb

⎤
⎥⎥⎥⎥⎦

The computed eigenvalues are given in order ranging from the smallest to the largest.
The eigenvectors are normalized in order that

XTMX = I

where I is the identity matrix.
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extract ed Static system functions

Purpose:

Extract element nodal quantities from a global solution vector.
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Syntax:

ed=extract ed(edof,a)

Description:

extract ed extracts element displacements or corresponding quantities ae from the
global solution vector a, stored in a.

Input variables are the element topology matrix edof, defined in assem, and the global
solution vector a.

The output variable

ed = (ae)T

contains the element displacement vector.

If Edof contains more than one element, Ed will be a matrix

Ed =

⎡
⎢⎢⎢⎢⎢⎢⎣

(ae)T1

(ae)T2
...

(ae)Tnel

⎤
⎥⎥⎥⎥⎥⎥⎦

where row i gives the element displacements for the element defined in row i of Edof,
and nel is the total number of considered elements.
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Static system functions extract ed

Example:

For the two dimensional beam element, the extract function will extract six nodal
displacements for each element given in Edof, and create a matrix Ed of size (nel × 6).

Ed =

⎡
⎢⎢⎢⎢⎣
u1 u2 u3 u4 u5 u6
u1 u2 u3 u4 u5 u6
...

...
...

...
...

...
u1 u2 u3 u4 u5 u6

⎤
⎥⎥⎥⎥⎦
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insert Static system functions

Purpose:

Assemble internal element forces in a global force vector.
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Syntax:

f=insert(edof,f,ef)

Description:

insert adds the internal element load vector f ei , stored in ef, to the global internal
force vector f, stored in f, according to the topology matrix edof. The function is for
use in nonlinear analysis.

The element topology matrix edof is defined in assem. The vector f is the global
internal force vector, and the vector ef is the internal element force vector computed
from the element stresses, see for example plani4f.
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Static system functions red

Purpose:

Reduce the size of a square matrix by omitting rows and columns.

Syntax:

B=red(A,b)

Description:

B=red(A,b) reduces the square matrix A to a smaller matrix B by omitting rows and
columns of A. The indices for rows and columns to be omitted are specified by the
column vector b.

Examples:

Assume that the matrix A is defined as

A =

⎡
⎢⎢⎢⎣

1 2 3 4
5 6 7 8
9 10 11 12
13 14 15 16

⎤
⎥⎥⎥⎦

and b as

b =

[
2
4

]

The statement B=red(A,b) results in the matrix

B =

[
1 3
9 11

]
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solveq Static system functions

Purpose:

Solve equation system.

Syntax:

a=solveq(K,f)
a=solveq(K,f,bc)
[a,r]=solveq(K,f,bc)

Description:

solveq solves the equation system

K a = f

where K is a matrix and a and f are vectors.

The matrix K and the vector f must be predefined. The solution of the system of
equations is stored in a vector a which is created by the function.

If some values of a are to be prescribed, the row number and the corresponding values
are given in the boundary condition matrix

bc =

⎡
⎢⎢⎢⎢⎣

dof1
dof2
...

dofnbc

u1
u2
...

unbc

⎤
⎥⎥⎥⎥⎦

where the first column contains the row numbers and the second column the corre-
sponding prescribed values.

If r is given in the function, support forces are computed according to

r = K a− f
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Static system functions statcon

Purpose:

Reduce system of equations by static condensation.

Syntax:

[K1,f1]=statcon(K,f,b)

Description:

statcon reduces a system of equations

K a = f

by static condensation.

The degrees of freedom to be eliminated are supplied to the function by the vector

b =

⎡
⎢⎢⎢⎢⎣
dof1
dof2
...

dofnb

⎤
⎥⎥⎥⎥⎦

where each row in b contains one degree of freedom to be eliminated.

The elimination gives the reduced system of equations

K1 a1 = f1

where K1 and f1 are stored in K1 and f1 respectively.
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6.3 Dynamic system functions

The group of system functions comprises functions for solving linear dynamic systems by
time stepping or modal analysis, functions for frequency domain analysis, etc.

Dynamic system functions
dyna2 Solve a set of uncoupled second-order differential equations
dyna2f Solve a set of uncoupled second-order differential equations in the

frequency domain
fft Fast Fourier transform
freqresp Compute frequency response
gfunc Linear interpolation between equally spaced points
ifft Inverse Fast Fourier transform
ritz Compute approximative eigenvalues and eigenvectors by the

Lanczos method
spectra Compute seismic response spectra
step1 Carry out step-by-step integration in first-order systems
step2 Carry out step-by-step integration in second-order systems
sweep Compute frequency response function

Note: Eigenvalue analysis is performed by using the function eigen; see static system
functions.
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dyna2 Dynamic system functions

Purpose:

Compute the dynamic solution to a set of uncoupled second-order differential equa-
tions.

Syntax:

X=dyna2(w2,xi,f,g,dt)

Description:

dyna2 computes the solution to the set

ẍi + 2ξiωiẋi + ω2
i xi = fig(t), i = 1, ..., m

of differential equations, where g(t) is a piecewise linear time function.

The set of vectors w2, xi and f contains the squared circular frequencies ω2
i , the

damping ratios ξi and the applied forces fi, respectively. The vector g defines the
load function in terms of straight line segments between equally spaced points in
time. This function may have been formed by the command gfunc.

The dynamic solution is computed at equal time increments defined by dt. Including
the initial zero vector as the first column vector, the result is stored in the m-by-n
matrix X, n− 1 being the number of time steps.

Note:

The accuracy of the solution is not a function of the output time increment dt, since
the command produces the exact solution for straight line segments in the loading
time function.

See also:

gfunc
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Dynamic system functions dyna2f

Purpose:

Compute the dynamic solution to a set of uncoupled second-order differential equa-
tions.

Syntax:

Y=dyna2f(w2,xi,f,p,dt)

Description:

dyna2f computes the solution to the set

ẍi + 2ξiωiẋi + ω2
i xi = fig(t), i = 1, ..., m

of differential equations in the frequency domain.

The vectors w2, xi and f are the squared circular frequencies ω2
i , the damping ratios

ξi and the applied forces fi, respectively. The force vector p contains the Fourier
coefficients p(k) formed by the command fft.

The solution in the frequency domain is computed at equal time increments defined
by dt. The result is stored in the m-by-n matrix Y, where m is the number of
equations and n is the number of frequencies resulting from the fft command. The
dynamic solution in the time domain is achieved by the use of the command ifft.

Example:

The dynamic solution to a set of uncoupled second-order differential equations can
be computed by the following sequence of commands:

>> g=gfunc(G,dt);

>> p=fft(g);

>> Y=dyna2f(w2,xi,f,p,dt);

>> X=(real(ifft(Y.’)))’;

where it is assumed that the input variables G, dt, w2, xi and f are properly defined.
Note that the ifft command operates on column vectors if Y is a matrix; therefore
use the transpose of Y. The output from the ifft command is complex. Therefore
use Y.’ to transpose rows and columns in Y in order to avoid the complex conjugate
transpose of Y. The time response is represented by the real part of the output from
the ifft command. If the transpose is used and the result is stored in a matrix X,
each row will represent the time response for each equation as the output from the
command dyna2.

See also:

gfunc, fft, ifft
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fft Dynamic system functions

Purpose:

Transform functions in time domain to frequency domain.

Syntax:

p=fft(g)
p=fft(g,N)

Description:

fft transforms a time dependent function to the frequency domain.

The function to be transformed is stored in the vector g. Each row in g contains
the value of the function at equal time intervals. The function represents a span
−∞ ≤ t ≤ +∞ ; however, only the values within a typical period are specified by g.

The fft command can be used with one or two input arguments. If N is not specified,
the numbers of frequencies used in the transformation is equal to the the numbers
of points in the time domain, i.e. the length of the variable g, and the output will
be a vector of the same size containing complex values representing the frequency
content of the input signal.

The scalar variable N can be used to specify the numbers of frequencies used in the
Fourier transform. The size of the output vector in this case will be equal to N.
It should be remembered that the highest harmonic component in the time signal
that can be identified by the Fourier transform corresponds to half the sampling
frequency. The sampling frequency is equal to 1/dt, where dt is the time increment
of the time signal.

The complex Fourier coefficients p(k) are stored in the vector p, and are computed
according to

p(k) =
N∑
j=1

x(j)ω
(j−1)(k−1)
N ,

where

ωN = e−2πi/N .

Note:

This is a MATLAB built-in function.
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Dynamic system functions freqresp

Purpose:

Compute frequency response of a known discrete time response.

Syntax:

[Freq,Resp] = freqresp(D,dt)

Description:

freqresp computes the frequency response of a discrete dynamic system.

D is the time history function and dt is the sampling time increment, i.e. the time
increment used in the time integration procedure.

Resp contains the computed response as a function of frequency. Freq contains the
corresponding frequencies.

Example:

The result can be visualized by

>> plot(Freq,Resp)

>> xlabel(’frequency (Hz)’)

or

>> semilogy(Freq,Resp)

>> xlabel(’frequency (Hz)’)

The dimension of Resp is the same as that of the original time history function.

Note:

The time history function of a discrete system computed by direct integration behaves
often in an unstructured manner. The reason for this is that the time history is a
mixture of several participating eigenmodes at different eigenfrequencies. By using a
Fourier transform, however, the response as a function of frequency can be computed
efficiently. In particular it is possible to identify the participating frequencies.
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gfunc Dynamic system functions

Purpose:

Form vector with function values at equally spaced points by linear interpolation.

●

●

●

●

●

t

g(t)

●

(t2,g(t2))

(t1,g(t1))

(t3,g(t3))

(t4,g(t4))

(t5,g(t5))

(tN,g(tN))

●

Syntax:

[t,g]=gfunc(G,dt)

Description:

gfunc uses linear interpolation to compute values at equally spaced points for a
discrete function g given by

G =

⎡
⎢⎢⎢⎢⎣
t1 g(t1)
t2 g(t2)
...
tN g(tN)

⎤
⎥⎥⎥⎥⎦ ,

as shown in the figure above.

Function values are computed in the range t1 ≤ t ≤ tN , at equal increments, dt being
defined by the variable dt. The number of linear segments (steps) is (tN − t1)/dt.
The corresponding vector t is also computed. The result can be plotted by using the
command plot(t,g).
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Dynamic system functions ifft

Purpose:

Transform function in frequency domain to time domain.

Syntax:

x=ifft(y)
x=ifft(y,N)

Description:

ifft transforms a function in the frequency domain to a function in the time domain.

The function to be transformed is given in the vector y. Each row in y contains
Fourier terms in the interval −∞ ≤ ω ≤ +∞.

The fft command can be used with one or two input arguments. The scalar variable
N can be used to specify the numbers of frequencies used in the Fourier transform.
The size of the output vector in this case will be equal to N. See also the description
of the command fft.

The inverse Fourier coefficients x(j), stored in the variable x, are computed according
to

x(j) = (1/N)
N∑
k=1

y(k)ω
−(j−1)(k−1)
N ,

where

ωN = e−2πi/N .

Note:

This is a MATLAB built-in function.

See also:

fft
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ritz Dynamic system functions

Purpose:

Compute approximative eigenvalues and eigenvectors by the Lanczos method.

Syntax:

L=ritz(K,M,f,m)
L=ritz(K,M,f,m,b)
[L,X]=ritz(K,M,f,m)
[L,X]=ritz(K,M,f,m,b)

Description:

ritz computes, by the use of the Lanczos algorithm, m approximative eigenvalues and
m corresponding eigenvectors for a given pair of n-by-n matrices K and M and a
given non-zero starting vector f.

If certain rows and columns in matrices K and M are to be eliminated in computing
the eigenvalues, b must be given in the command. The rows (and columns) to be
eliminated are described in the vector b defined as

b =

⎡
⎢⎢⎢⎢⎣
dof1
dof2
...

dofnb

⎤
⎥⎥⎥⎥⎦ .

Note:

If the number of vectors, m, is chosen less than the total number of degrees-of-
freedom, n, only about the first m/2 Ritz vectors are good approximations of the
true eigenvectors. Recall that the Ritz vectors satisfy theM-orthonormality condition

XT M X = I,

where I is the identity matrix.
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Dynamic system functions spectra

Purpose:

Compute seismic response spectra for elastic design.

Syntax:

s=spectra(a,xi,dt,f)

Description:

spectra computes the seismic response spectrum for a known acceleration history
function.

The computation is based on the vector a, that contains an acceleration time history
function defined at equal time steps. The time step is specified by the variable dt.
The value of the damping ratio is given by the variable xi.

Output from the computation, stored in the vector s, is achieved at frequencies
specified by the column vector f.

Example:

The following procedure can be used to produce a seismic response spectrum for a
damping ratio ξ = 0.05, defined at 34 logarithmicly spaced frequency points. The
acceleration time history a has been sampled at a frequency of 50 Hz, corresponding
to a time increment dt = 0.02 between collected points:

>> freq=logspace(0,log10(2^(33/6)),34);

>> xi=0.05;

>> dt=0.02;

>> s=spectra(a,xi,dt,freq’);

The resulting spectrum can be plotted by the command

>> loglog(freq,s,’*’)
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step1 Dynamic system functions

Purpose:

Compute the dynamic solution to a set of first order differential equations.

Syntax:

[a,da]=step1(K,C,f,a0,bc,ip)
[a,da]=step1(K,C,f,a0,bc,ip,times)
[a,da,ahist,dahist]=step1(K,C,f,a0,bc,ip,times,dofs)

Description:

step1 computes at equal time steps the solution to a set of first order differential
equations of the form

Cȧ+Ka = f(x, t),

a(0) = a0.

The command solves transient field problems. In the case of heat conduction, K
and C represent the n× n conductivity and capacity matrices, respectively. a is the
temperature and da (= ȧ) is the time derivative of the temperature.

The matrix f contains the time-dependent load vectors. If no external loads are
active, the matrix corresponding to f should be replaced by []. Matrix f is organized
in the following manner:

f =

⎡
⎢⎢⎢⎢⎣
time history of the load at dof1
time history of the load at dof2
...
time history of the load at dofn

⎤
⎥⎥⎥⎥⎦ .

The dimension of f is

(number of degrees-of-freedom)× (number of timesteps + 1).

The initial conditions are given by the vector a0 containing initial values of a.

The matrix bc contains the time-dependent prescribed values of the field variable a.
If no field variables are prescribed the matrix corresponding to bc should be replaced
by []. The matrix bc is organized in the following manner:

bc =

⎡
⎢⎢⎢⎢⎣
dof1 time history of the field variable
dof2 time history of the field variable
...

...
dofm2 time history of the field variable

⎤
⎥⎥⎥⎥⎦ .

The dimension of bc is

(number of dofs with prescribed field values)× (number of timesteps + 2).

The time integration procedure is governed by the parameters given in the vector ip
defined as

ip = [dt T α]
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Dynamic system functions step1

where dt specifies the length of the time increment in the time stepping scheme, T
total time and α the time integration constant; see [1]. In the following frequently
used values of α are listed:

α = 0 Forward difference; forward Euler,

α = 1
2

Trapezoidal rule; Crank-Nicholson,

α = 1 Backward difference; backward Euler.

The computed values of a and ȧ are stored in a and da, respectively. The first column
of a and da contains the initial values and the following columns contain the values
for each time step. The dimension of a and da is

(number of degrees-of-freedom)× (number of time steps + 1).

If the values of a and ȧ are to be stored only for specific times, the parameter times
specifies at which times the solution will be stored. The values are stored in a and da,
respectively, one column for each requested time according to times. The dimension
of a and da is then

(number of degrees-of-freedom)× (number of requested times + 1).

If the history is to be stored in ahist and dahist for some degrees of freedom, the
parameter dofs specifies for which degrees of freedom the history is to be stored. The
computed time histories of a and ȧ are stored in ahist and dahist, respectively. The
matrices ahist and dahist has one row for each requested degree of freedom according
to dofs. The dimension of ahist and dahist is

(number of specified degrees of freedom)× (number of timesteps + 1).

The time history functions can be generated using the command gfunc. If all the
values of the time histories of f or bc are kept constant, these values need to be stated
only once. In this case the number of columns in f is one and in bc two.

In most cases only a few degrees-of-freedom are affected by the exterior load, and
hence the matrix contains only few non-zero entries. In such cases it is possible to
save space by defining f as sparse (a MATLAB built-in function).
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step2 Dynamic system functions

Purpose:

Compute the dynamic solution to a set of second order differential equations.

Syntax:

[a,da,d2a]=step2(K,C,M,f,a0,da0,bc,ip)
[a,da,d2a]=step2(K,C,M,f,a0,da0,bc,ip,times)
[a,da,d2a,ahist,dahist,d2ahist]=step2(K,C,M,f,a0,da0,bc,ip,times,dofs)

Description:

step2 computes at equal time steps the solution to a second order differential equa-
tions of the form

Mä+Cȧ+Ka = f(x, t),

a(0) = a0,

ȧ(0) = v0.

In structural mechanics problems, K , C and M represent the n×n stiffness, damping
and mass matrices, respectively. a is the displacement, da (= ȧ) is the velocity and
d2a (= ä) is the acceleration.

The matrix f contains the time-dependent load vectors. If no external loads are
active, the matrix corresponding to f should be replaced by []. The matrix f is
organized in the following manner:

f =

⎡
⎢⎢⎢⎢⎣
time history of the load at dof1
time history of the load at dof2
...
time history of the load at dofn

⎤
⎥⎥⎥⎥⎦ .

The dimension of f is

(number of degrees-of-freedom)× (number of timesteps + 1).

The initial conditions are given by the vectors a0 and da0, containing initial displace-
ments and initial velocities.

The matrix bc contains the time-dependent prescribed displacement. If no displace-
ments are prescribed the matrix corresponding to bc should be replaced by []. The
matrix bc is organized in the following manner

bc =

⎡
⎢⎢⎢⎢⎣
dof1 time history of the displacement
dof2 time history of the displacement
...

...
dofm2 time history of the displacement

⎤
⎥⎥⎥⎥⎦ .

The dimension of bc is

(number of dofs with prescribed displacement)× (number of timesteps + 2).
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Dynamic system functions step2

The time integration procedure is governed by the parameters given in the vector ip
defined as

ip = [dt T α δ]

where dt specifies the time increment in the time stepping scheme, T the total time
and α and δ time integration constants for the Newmark family of methods; see [1].
The following table lists frequently used values of α and δ:

α = 1
4

δ = 1
2

Average acceleration (trapezoidal) rule,

α = 1
6

δ = 1
2

Linear acceleration,

α = 0 δ = 1
2

Central difference.

The computed values of a, ȧ and ä are stored in a, and da and d2a, respectively. The
first column of a, da and d2a contains the initial values and the following columns
contain the values for each time step. The dimension of a, da and da is

(number of degrees-of-freedom)× (number of time steps + 1).

If the values of a and ȧ are to be stored only for specific times, the parameter times
specifies at which times the solution will be stored. The values are stored in a, da
and d2a, respectively, one column for each requested time according to times. The
dimension of a, da and d2a is then

(number of degrees-of-freedom)× (number of requested times + 1).

If the history is to be stored in ahist, dahist and d2ahist for some degrees of freedom,
the parameter dofs specifies for which degrees of freedom the history is to be stored.
The computed time histories of a, ȧ and ä are stored in ahist, dahist and d2ahist,
respectively. The matrices ahist, dahist and d2ahist has one row for each requested
degree of freedom according to dofs. The dimension of ahist, dahist and d2ahist is

(number of specified degrees of freedom)× (number of timesteps + 1).

In most cases only a few degrees-of-freedom are affected by the exterior load, and
hence the matrix contains only few non-zero entries. In such cases it is possible to
save space by defining f as sparse (a MATLAB built-in function).
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sweep Dynamic system functions

Purpose:

Compute complex frequency response functions.

Syntax:

Y=sweep(K,C,M,p,w)

Description:

sweep computes the complex frequency response function for a system of the form

[K+ iωC− ω2M]y(ω) = p.

Here K, C and M represent the m-by-m stiffness, damping and mass matrices, re-
spectively. The vector p defines the amplitude of the force. The frequency response
function is computed for the values of ω given by the vector w.

The complex frequency response function is stored in the matrix Y with dimension
m-by-n, where n is equal to the number of circular frequencies defined in w.

Example:

The steady-state response can be computed by

>> X=real(Y*exp(i*w*t));

and the amplitude by

>> Z=abs(Y);
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7 Statements and macros

Statements describe algorithmic actions that can be executed. There are two different
types of control statements, conditional and repetitive. The first group defines conditional
jumps whereas the latter one defines repetition until a conditional statement is fulfilled.
Macros are used to define new functions to the MATLAB or CALFEM structure, or to
store a sequence of statements in an .m-file.

Control statements
if Conditional jump
for Initiate a loop
while Define a conditional loop

Macros
function Define a new function
script Store a sequence of statements
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if

Purpose:

Conditional jump.

Syntax:

if logical expression
...
elseif logical expression
...
else
...
end

Description:

if initiates a conditional jump. If logical expression produces the value True the
statements following if are executed. If logical expression produces the value False
the next conditional statement elseif is checked.

elseif works like if. One or more of the conditional statement elseif can be added after
the initial conditional statement if.

If else is present, the statements following else are executed if the logical expressions
in all if and elseif statements produce the value False. The if loop is closed by end to
define the loop sequence.

The following relation operators can be used

== equal

>= greater than or equal to

> greater than

<= less than or equal to

< less than

∼= not equal

Note:

This is MATLAB built-in language.
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for

Purpose:

Initiate a loop.

Syntax:

for i = start : inc : stop
...
end

Description:

for initiates a loop which terminates when i>stop. The for loop is closed by end to
define the loop sequence.

Examples:

for i = 1 : 10 i takes values from 1 to 10.
for i = 1 : 2 : 10 i equals 1, 3, 5, 7, 9.
for i = 20 : -1 : 1 i equals 20, 19 ... 2, 1.

Note:

This is MATLAB built-in language.
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while

Purpose:

Define a conditional loop.

Syntax:

while logical expression
...
end

Description:

while initiates a conditional loop which terminates when logical expression equals
False. The while loop is closed by end to define the loop sequence.

The different relation operators that can be used can be found under the if command.

Examples:

A loop continuing until a equals b

while a∼=b
...
end

Note:

This is MATLAB built-in language.
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function

Purpose:

Define a new function.

Syntax:

function[ out1 , out2 , ... ]=name( in1 , in2 , ... )

Description:

name is replaced by the name of the function. The input variables in1, in2, ... can be
scalars, vectors or matrices, and the same holds for the output variables out1, out2,
... .

Example:

To define the CALFEM function spring1e a file named spring1e.m is created. The file
contains the following statements:

function [Ke]=spring1e(k)
% Define the stiffness matrix
% for a one dimensional spring
% with spring stiffness k
Ke=[ k, -k; -k, k ]

i.e. the function spring1e is defined to return a stiffness matrix.

Note:

This is MATLAB built-in language.
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script

Purpose:

Execute a stored sequence of statements.

Syntax:

name

Description:

name is replaced by the name of the script.

Example:

The statements below are stored in a file named spring.m and executed by typing
spring in the MATLAB command window.

% Stiffness matrix for a one dimensional
% spring with stiffness k=10
k=10;
[Ke]=spring1e(k);

Note:

This is MATLAB built-in language.
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8 Graphics functions

The group of graphics functions comprises functions for element based graphics. Mesh
plots, displacements, section forces, flows, iso lines and principal stresses can be displayed.
The functions are divided into two dimensional, and general graphics functions.

Two dimensional graphics functions
dispbeam2 Draw displacements for beam element
eldraw2 Draw undeformed finite element mesh
eldisp2 Draw deformed finite element mesh
elflux2 Plot flux vectors
eliso2 Draw isolines for nodal quantities
elprinc2 Plot principal stresses
scalfact2 Determine scale factor
scalgraph2 Draw graphic scale
secforce2 Draw section force diagram for bar or beam element

General graphics functions in MATLAB
axis Axis scaling and appearance
clf Clear current figure
figure Create figures
fill Draw filled 2D polygons
grid Grid lines
hold Hold current graph
plot Plot lines and points in 2D space
print Print graph or save graph to file
text Add text to current plot
title Titles for 2D and 3D plots
xlabel,
ylabel,
zlabel

Axis labels for 2D and 3D plots
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dispbeam2

Purpose:

Draw the displacements for a two dimensional beam element.

Syntax:

[sfac]=dispbeam2(ex,ey,edi)
[sfac]=dispbeam2(ex,ey,edi,plotpar)
dispbeam2(ex,ey,edi,plotpar,sfac)

Description:

Input variables are the coordinate matrices ex and ey, see e.g. beam2e, and the
element displacements edi obtained by e.g. beam2s.

The variable plotpar sets plot parameters for linetype, linecolour and node marker.

plotpar=[ linetype linecolur nodemark ]

linetype = 1 solid line linecolor = 1 black
2 dashed line 2 blue
3 dotted line 3 magenta

4 red

nodemark = 1 circle
2 star
0 no mark

Default is dashed black lines with circles at nodes.

The scale factor sfac is a scalar that the element displacements are multiplied with
to get a suitable geometrical representation. If sfac is omitted in the input list the
scale factor is set automatically.
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eldraw2

Purpose:

Draw the undeformed mesh for a two dimensional structure.

Syntax:

eldraw2(Ex,Ey)
eldraw2(Ex,Ey,plotpar)
eldraw2(Ex,Ey,plotpar,elnum)

Description:

eldraw2 displays the undeformed mesh for a two dimensional structure.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr.

The variable plotpar sets plot parameters for linetype, linecolor and node marker.

plotpar = [ linetype linecolor nodemark ]

linetype = 1 solid line linecolor = 1 black
2 dashed line 2 blue
3 dotted line 3 magenta

4 red

nodemark = 1 circle
2 star
0 no mark

Default is solid black lines with circles at nodes.

Element numbers can be displayed at the center of the element if a column vector
elnum with the element numbers is supplied. This column vector can be derived from
the element topology matrix Edof,

elnum=Edof(:,1)

i.e. the first column of the topology matrix.

Limitations:

Supported elements are bar, beam, triangular three node, and quadrilateral four
node elements.
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eldisp2

Purpose:

Draw the deformed mesh for a two dimensional structure.

Syntax:

[sfac]=eldisp2(Ex,Ey,Ed)
[sfac]=eldisp2(Ex,Ey,Ed,plotpar)
eldisp2(Ex,Ey,Ed,plotpar,sfac)

Description:

eldisp2 displays the deformed mesh for a two dimensional structure.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr, and the element displacements Ed formed by the function extract.

The variable plotpar sets plot parameters for linetype, linecolor and node marker.

plotpar=[ linetype linecolor nodemark ]

linetype = 1 solid line linecolor = 1 black
2 dashed line 2 blue
3 dotted line 3 magenta

4 red

nodemark = 1 circle
2 star
0 no mark

Default is dashed black lines with circles at nodes.

The scale factor sfac is a scalar that the element displacements are multiplied with
to get a suitable geometrical representation. The scale factor is set automatically if
it is omitted in the input list.

Limitations:

Supported elements are bar, beam, triangular three node, and quadrilateral four
node elements.
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elflux2

Purpose:

Draw element flow arrows for two dimensional elements.

Syntax:

[sfac]=elflux2(Ex,Ey,Es)
[sfac]=elflux2(Ex,Ey,Es,plotpar)
elflux2(Ex,Ey,Es,plotpar,sfac)

Description:

elflux2 displays element heat flux vectors (or corresponding quantities) for a number
of elements of the same type. The flux vectors are displayed as arrows at the element
centroids. Note that only the flux vectors are displayed. To display the element mesh,
use eldraw2.

Input variables are the coordinate matrices Ex and Ey, and the element flux matrix
Es defined in flw2ts or flw2qs.

The variable plotpar sets plot parameters for the flux arrows.

plotpar=[ arrowtype arrowcolor ]

arrowtype = 1 solid arrowcolor = 1 black
2 dashed 2 blue
3 dotted 3 magenta

4 red

Default, if plotpar is omitted, is solid black arrows.

The scale factor sfac is a scalar that the values are multipied with to get a suitable
arrow size in relation to the element size. The scale factor is set automatically if it
is omitted in the input list.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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eliso2

Purpose:

Display element iso lines for two dimensional elements.

Syntax:

eliso2(Ex,Ey,Ed,isov)
eliso2(Ex,Ey,Ed,isov,plotpar)

Description:

eliso2 displays element iso lines for a number of elements of the same type. Note that
only the iso lines are displayed. To display the element mesh, use eldraw2.

Input variables are the coordinate matrices Ex and Ey formed by the function co-
ordxtr, and the element nodal quantities (e.g displacement or energy potential) matrix
Ed defined in extract.

If isov is a scalar it determines the number of iso lines to be displayed. If isov is a
vector it determines the values of the iso lines to be displayed (number of iso lines
equal to length of vector isov).

isov = [ isolines]
isov = [ isovalue(1) ... isovalue(n) ]

The variable plotpar sets plot parameters for the iso lines.

plotpar=[ linetype linecolor textfcn ]

arrowtype = 1 solid arrowcolor = 1 black
2 dashed 2 blue
3 dotted 3 magenta

4 red

textfcn = 0 the iso values of the lines will not be printed
1 the iso values of the lines will be printed at the iso lines
2 the iso values of the lines will be printed where the cursor indicates

Default is solid, black lines and no iso values printed.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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elprinc2

Purpose:

Draw element principal stresses as arrows for two dimensional elements.

Syntax:

[sfac]=elprinc2(Ex,Ey,Es)
[sfac]=elprinc2(Ex,Ey,Es,plotpar)
elprinc2(Ex,Ey,Es,plotpar,sfac)

Description:

elprinc2 displays element principal stresses for a number of elements of the same type.
The principal stresses are displayed as arrows at the element centroids. Note that
only the principal stresses are displayed. To display the element mesh, use eldraw2.

Input variables are the coordinate matrices Ex and Ey, and the element stresses
matrix Es defined in plants or planqs

The variable plotpar sets plot parameters for the principal stress arrows.

plotpar=[ arrowtype arrowcolor ]

arrowtype = 1 solid arrowcolor = 1 black
2 dashed 2 blue
3 dotted 3 magenta

4 red

Default, if plotpar is omitted, is solid black arrows.

The scale factor sfac is a scalar that values are multiplied with to get a suitable
arrow size in relation to the element size. The scale factor is set automatically if it
is omitted in the input list.

Limitations:

Supported elements are triangular 3 node and quadrilateral 4 node elements.
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scalfact2

Purpose:

Determine scale factor for drawing computational results.

Syntax:

[sfac]=scalfact2(ex,ey,ed)
[sfac]=scalfact2(ex,ey,ed,rat)

Description:

scalfact2 determines a scale factor sfac for drawing computational results, such as
displacements, section forces or flux.

Input variables are the coordinate matrices ex and ey and the matrix ed containing
the quantity to be displayed. The scalar rat defines the ratio between the geometric
representation of the largest quantity to be displayed and the element size. If rat is
not specified, 0.2 is used.
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scalgraph2

Purpose:

Draw a Graphic scale.

Syntax:

scalgraph2(sfac,magnitude)
scalgraph2(sfac,magnitude,plotpar)

Description:

scalgraph2 draws a graphic scale to visualise the magnitude of displayed computa-
tional results. The input variable sfac is a scale factor determined by the function
scalfact2 and the variable

magnitude = [ S x y ]

specifies the value corresponding the length of the graphic scale S, and (x, y) are the
coordinates of the starting point. If no coordinates are given the starting point will
be (0,-0.5).

The variable plotpar sets the the graphic scale color.

plotpar=[color ]

color = 1 black
2 blue
3 magenta
4 red
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secforce2

Purpose:

Draw the section force diagrams of a two dimensional bar or beam element in its
global position.

Syntax:

secforce2(ex,ey,es,plotpar,sfac)
secforce2(ex,ey,es,plotpar,sfac,eci)
[sfac]=secforce2(ex,ey,es)
[sfac]=secforce2(ex,ey,es,plotpar)

Description:

The input variables ex and ey are defined in bar2e or beam2e and the input variable

es =

⎡
⎢⎢⎢⎢⎣
S1

S2
...

Sn

⎤
⎥⎥⎥⎥⎦

consists of a column matrix that contains section forces. The values in es are com-
puted in e.g. bar2s or beam2s.

The variable plotpar sets plot parameters for the diagram.

plotpar=[ linecolor elementcolor ]

linecolor = 1 black elementcolor = 1 black
2 blue 2 blue
3 magenta 3 magenta
4 red 4 red

The scale factor sfac is a scalar that the section forces are multiplied with to get a
suitable graphical representation. If sfac is omitted in the input list the scale factor
is set automatically.

The input variable

eci =

⎡
⎢⎢⎢⎢⎣
x̄1
x̄2
...

x̄n

⎤
⎥⎥⎥⎥⎦

specifies the local x̄-coordinates of the quantities in es. If eci is not given, uniform
distance is assumed.
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axis

Purpose:

Plot axis scaling and appearance.

Syntax:

axis([xmin xmax ymin ymax])
axis([xmin xmax ymin ymax zmin zmax])
axis auto
axis square
axis equal
axis off
axis on

Description:

axis([xmin xmax ymin ymax]) sets scaling for the x- and y-axes on the current 2D plot.

axis([xmin xmax ymin ymax zmin zmax]) sets the scaling for the x-, y- and z-axes on
the current 3D plot.

axis auto returns the axis scaling to its default automatic mode where, for each plot,
xmin = min(x), xmax = max(x), etc.

axis square makes the current axis box square in shape.

axis equal changes the current axis box size so that equal tick mark increments on
the x- and y-axes are equal in size. This makes plot(sin(x),cos(x)) look like a circle,
instead of an oval.

axis normal restores the current axis box to full size and removes any restrictions on
the scaling of the units. This undoes the effects of axis square and axis equal.

axis off turns off all axis labeling and tick marks.

axis on turns axis labeling and tick marks back on.

Note:

This is a MATLAB built-in function. For more information about the axis function,
type help axis.
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clf

Purpose:

Clear current figure (graph window).

Syntax:

clf

Description:

clf deletes all objects (axes) from the current figure.

Note:

This is a MATLAB built-in function. For more information about the clf function,
type help clf.
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figure

Purpose:

Create figures (graph windows).

Syntax:

figure(h)

Description:

figure(h) makes the h’th figure the current figure for subsequent plotting functions.
If figure h does not exist, a new one is created using the first available figure handle.

Note:

This is a MATLAB built-in function. For more information about the figure function,
type help figure.
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fill

Purpose:

Filled 2D polygons.

Syntax:

fill(x,y,c)
fill(X,Y,C)

Description:

fill(x,y,c) fills the 2D polygon defined by vectors x and y with the color specified by
c. The vertices of the polygon are specified by pairs of components of x and y. If
necessary, the polygon is closed by connecting the last vertex to the first.

If c is a vector of the same length as x and y, its elements are used to specify colors
at the vertices. The color within the polygon is obtained by bilinear interpolation in
the vertex colors.

If X, Y and C are matrices of the same size, fill(X,Y,C) draws one polygon per column
with interpolated colors.

Example:

The solution of a heat conduction problem results in a vector d with nodal tem-
peratures. The temperature distribution in a group of triangular 3 node (nen=3)
or quadrilateral 4 node (nen=4) elements, with topology defined by edof, can be
displayed by

[ex,ey]=coordxtr(edof,Coord,Dof,nen)

ed=extract(edof,d)

colormap(hot)

fill(ex’,ey’,ed’)

Note:

This is a MATLAB built-in function. For more information about the fill function,
type help fill.
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grid

Purpose:

Grid lines for 2D and 3D plots.

Syntax:

grid on
grid off
grid

Description:

grid on adds grid lines on the current axes.

grid off takes them off.

grid by itself, toggles the grid state.

Note:

This is a MATLAB built-in function. For more information about the grid function,
type help grid.
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hold

Purpose:

Hold the current graph.

Syntax:

hold on
hold off
hold

Description:

hold on holds the current graph.

hold off returns to the default mode where plot functions erase previous plots.

hold by itself, toggles the hold state.

Note:

This is a MATLAB built-in function. For more information about the hold function,
type help hold.
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plot

Purpose:

Linear two dimensional plot.

Syntax:

plot(x,y)
plot(x,y,’linetype’)

Description:

plot(x,y) plots vector x versus vector y. Straight lines are drawn between each pair
of values.

Various line types, plot symbols and colors may be obtained with plot(x,y,s) where s
is a 1, 2, or 3 character string made from the following characters:

– solid line . point y yellow
: dotted line o circle m magenta
-. dashdot line x x-mark c cyan
- - dashed line + plus r red

* star g green
b blue
w white
k black

Default is solid blue lines.

Example:

The statement

plot(x,y,’-’,x,y,’ro’)

plots the data twice, giving a solid blue line with red circles at the data points.

Note:

This is a MATLAB built-in function. For more information about the plot function,
type help plot.
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print

Purpose:

Create hardcopy output of current figure window.

Syntax:

print [filename]

Description:

print with no arguments sends the contents of the current figure window to the
default printer. print filename creates a PostScript file of the current figure window
and writes it to the specified file.

Note:

This is a MATLAB built-in function. For more information about the print function,
type help print.
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text

Purpose:

Add text to current plot.

Syntax:

text(x,y,’string’)

Description:

text adds the text in the quotes to location (x,y) on the current axes, where (x,y)
is in units from the current plot. If x and y are vectors, text writes the text at all
locations given. If ’string’ is an array with the same number of rows as the length of
x and y, text marks each point with the corresponding row of the ’string’ array.

Note:

This is a MATLAB built-in function. For more information about the text function,
type help text.
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title

Purpose:

Titles for 2D and 3D plots.

Syntax:

title(’text’)

Description:

title adds the text string ’text’ at the top of the current plot.

Note:

This is a MATLAB built-in function. For more information about the title function,
type help title.
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xlabel, ylabel, zlabel

Purpose:

x-, y-, and z-axis labels for 2D and 3D plots.

Syntax:

xlabel(’text’)
ylabel(’text’)
zlabel(’text’)

Description:

xlabel adds text beside the x-axis on the current plot.

ylabel adds text beside the y-axis on the current plot.

zlabel adds text beside the z-axis on the current plot.

Note:

This is a MATLAB built-in function. For more information about the functions,
type help xlabel, help ylabel, or help zlabel.
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xlabel, ylabel, zlabel
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9 User’s Manual, examples

9.1 Introduction

This set of examples is defined with the ambition to serve as a User’s Manual. The
examples, except the introductory ones, are written as .m-files (script files) and supplied
together with the CALFEM functions.

The User’s Manual examples are separated into three groups:

Static analysis

Dynamic analysis

Nonlinear analysis

The static linear examples illustrate finite element analysis of different structures loaded by
stationary loads. The dynamic linear examples illustrate some basic features in dynamics,
such as modal analysis and time stepping procedures. The examples of nonlinear analysis
cover subjects such as second order theory and buckling.
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9.2 Static analysis

This section illustrates some linear static finite element calculations. The examples deal
with structural problems as well as field problems such as heat conduction.

Static analysis

exs spring Linear spring system

exs flw temp1 One-dimensional heat flow

exs bar2 Plane truss

exs bar2 l Plane truss analysed using loops

exs beam1 Simply supported beam

exs beam2 Plane frame

exs beambar2 Plane frame stabilized with bars

exs flw diff2 Two dimensional diffusion

Note: The examples listed above are supplied as .m-files under the directory examples.
The example files are named according to the table.
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exs spring Static analysis

Purpose:

Show the basic steps in a finite element calculation.

Description:

The general procedure in linear finite element calculations is carried out for a simple
structure. The steps are

• define the model

• generate element matrices

• assemble element matrices into the global system of equations

• solve the global system of equations

• evaluate element forces

Consider the system of three linear elastic springs, and the corresponding finite
element model. The system of springs is fixed in its ends and loaded by a single load
F .

k

2k

2k
F

3

2

1

a1
a2 a3

The computation is initialized by defining the topology matrix Edof, containing ele-
ment numbers and global element degrees of freedom,

>> Edof=[1 1 2;

2 2 3;

3 2 3];

the global stiffness matrix K (3×3) of zeros,

>> K=zeros(3,3)

K =

0 0 0

0 0 0

0 0 0
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Static analysis exs spring

and the load vector f (3×1) with the load F = 100 in position 2.

>> f=zeros(3,1); f(2)=100

f =

0

100

0

Element stiffness matrices are generated by the function spring1e. The element prop-
erty ep for the springs contains the spring stiffnesses k and 2k respectively, where
k = 1500.

>> k=1500; ep1=k; ep2=2*k;

>> Ke1=spring1e(ep1)

Ke1 =

1500 -1500

-1500 1500

>> Ke2=spring1e(ep2)

Ke2 =

3000 -3000

-3000 3000

The element stiffness matrices are assembled into the global stiffness matrix K ac-
cording to the topology.

>> K=assem(Edof(1,:),K,Ke2)

K =

3000 -3000 0

-3000 3000 0

0 0 0

>> K=assem(Edof(2,:),K,Ke1)

K =

3000 -3000 0

-3000 4500 -1500

0 -1500 1500
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exs spring Static analysis

>> K=assem(Edof(3,:),K,Ke2)

K =

3000 -3000 0

-3000 7500 -4500

0 -4500 4500

The global system of equations is solved considering the boundary conditions given
in bc.

>> bc= [1 0; 3 0];

>> [a,r]=solveq(K,f,bc)

a =

0

0.0133

0

r =

-40.0000

0

-60.0000

Element forces are evaluated from the element displacements. These are obtained
from the global displacements a using the function extract.

>> ed1=extract_ed(Edof(1,:),a)

ed1 =

0 0.0133

>> ed2=extract_ed(Edof(2,:),a)

ed2 =

0.0133 0

>> ed3=extract_ed(Edof(3,:),a)

ed3 =

0.0133 0
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Static analysis exs spring

The spring forces are evaluated using the function spring1s.

>> es1=spring1s(ep2,ed1)

es1 =

40

>> es2=spring1s(ep1,ed2)

es2 =

-20

>> es3=spring1s(ep2,ed3)

es3 =

-40
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exs flw temp1 Static analysis

Purpose:

Analysis of one-dimensional heat flow.

Description:

Consider a wall built up of concrete and thermal insulation. The outdoor temperature
is −17◦C and the temperature inside is 20◦C. At the inside of the theral insulation
there is a heat source yielding 10 W/m2.

0.070 m

o = -17 °CT

0.100 m 0.100 m

Ti = 20 °C

heat source 10 W/m2 

surface thermal resistance, R = 0.13 m2 K/W
concrete, λ = 1.7 W/mK

mineral wool, λ = 0.04 W/mK
concrete, λ = 1.7 W/mK
surface thermal resistance, R = 0.04 m2 K/W

 

a4 a5a3a2 a6

1 2 3 4 5

a1

The wall is subdivided into five elements and the one-dimensional spring (analogy)
element spring1e is used. Equivalent spring stiffnesses are ki = λA/L for thermal
conductivity and ki = A/R for thermal surface resistance. Corresponding spring
stiffnesses per m2 of the wall are:

k1 = 1/0.04 = 25.0 W/K
k2 = 1.7/0.070 = 24.3 W/K
k3 = 0.040/0.100 = 0.4 W/K
k4 = 1.7/0.100 = 17.0 W/K
k5 = 1/0.13 = 7.7 W/K

A global system matrix K and a heat flow vector f are defined. The heat source inside
the wall is considered by setting f4 = 10. The element matrices Ke are computed
using spring1e, and the function assem assembles the global stiffness matrix.

The system of equations is solved using solveq with considerations to the boundary
conditions in bc. The prescribed temperatures are a1 = −17◦C and a6 = 20◦C.

>> Edof=[1 1 2

2 2 3;

3 3 4;

4 4 5;

5 5 6];
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Static analysis exs flw temp1

>> K=zeros(6);

>> f=zeros(6,1); f(4)=10

f =

0

0

0

10

0

0

>> ep1=[25]; ep2=[24.3];

>> ep3=[0.4]; ep4=[17];

>> ep5=[7.7];

>> Ke1=spring1e(ep1); Ke2=spring1e(ep2);

>> Ke3=spring1e(ep3); Ke4=spring1e(ep4);

>> Ke5=spring1e(ep5);

>> K=assem(Edof(1,:),K,Ke1); K=assem(Edof(2,:),K,Ke2);

>> K=assem(Edof(3,:),K,Ke3); K=assem(Edof(4,:),K,Ke4);

>> K=assem(Edof(5,:),K,Ke5);

>> bc=[1 -17; 6 20];

>> [a,r]=solveq(K,f,bc)

a =

-17.0000

-16.4384

-15.8607

19.2378

19.4754

20.0000

r =

-14.0394

0.0000

-0.0000

0

0.0000

4.0394
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The temperature values ai in the node points are given in the vector a and the
boundary flows in the vector r.

After solving the system of equations, the heat flow through the wall is computed
using extract and spring1s.

>> ed1=extract_ed(Edof(1,:),a);

>> ed2=extract_ed(Edof(2,:),a);

>> ed3=extract_ed(Edof(3,:),a);

>> ed4=extract_ed(Edof(4,:),a);

>> ed5=extract_ed(Edof(5,:),a);

>> q1=spring1s(ep1,ed1)

q1 =

14.0394

>> q2=spring1s(ep2,ed2)

q2 =

14.0394

>> q3=spring1s(ep3,ed3)

q3 =

14.0394

>> q4=spring1s(ep4,ed4)

q4 =

4.0394

>> q5=spring1s(ep5,ed5)

q5 =

4.0394

The heat flow through the wall is q = 14.0 W/m2 in the part of the wall to the left
of the heat source, and q = 4.0 W/m2 in the part to the right of the heat source.
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Purpose:

Analysis of a plane truss.

Description:

Consider a plane truss consisting of tree bars with the properties E = 200 GPa,
A1 = 6.0 · 10−4 m2, A2 = 3.0 · 10−4 m2 and A3 = 10.0 · 10−4 m2, and loaded by a
single force P = 80 kN. The corresponding finite element model consists of three
elements and eight degrees of freedom.

P
1.6 m

1.2 m

a1

a2

a3

a4

a5

a6

a7

a8

1

2

3

x

y

The topology is defined by the matrix

>> Edof=[1 1 2 5 6;

2 5 6 7 8;

3 3 4 5 6];

The stiffness matrix K and the load vector f, are defined by

>> K=zeros(8);

f=zeros(8,1); f(6)=-80e3;

The element property vectors ep1, ep2 and ep3 are defined by

>> E=2.0e11;

>> A1=6.0e-4; A2=3.0e-4; A3=10.0e-4;

>> ep1=[E A1]; ep2=[E A2]; ep3=[E A3];

and the element coordinate vectors ex1, ex2, ex3, ey1, ey2 and ey3 by

>> ex1=[0 1.6]; ex2=[1.6 1.6]; ex3=[0 1.6];

>> ey1=[0 0]; ey2=[0 1.2]; ey3=[1.2 0];
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The element stiffness matrices Ke1, Ke2 and Ke3 are computed using bar2e.

>> Ke1=bar2e(ex1,ey1,ep1)

Ke1 =

1.0e+007 *

7.5000 0 -7.5000 0

0 0 0 0

-7.5000 0 7.5000 0

0 0 0 0

>> Ke2=bar2e(ex2,ey2,ep2)

Ke2 =

1.0e+007 *

0 0 0 0

0 5.0000 0 -5.0000

0 0 0 0

0 -5.0000 0 5.0000

>> Ke3=bar2e(ex3,ey3,ep3)

Ke3 =

1.0e+007 *

6.4000 -4.8000 -6.4000 4.8000

-4.8000 3.6000 4.8000 -3.6000

-6.4000 4.8000 6.4000 -4.8000

4.8000 -3.6000 -4.8000 3.6000

Based on the topology information, the global stiffness matrix can be generated by
assembling the element stiffness matrices

>> K=assem(Edof(1,:),K,Ke1);

>> K=assem(Edof(2,:),K,Ke2);

>> K=assem(Edof(3,:),K,Ke3)
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K =

1.0e+008 *

Columns 1 through 7

0.7500 0 0 0 -0.7500 0 0

0 0 0 0 0 0 0

0 0 0.6400 -0.4800 -0.6400 0.4800 0

0 0 -0.4800 0.3600 0.4800 -0.3600 0

-0.7500 0 -0.6400 0.4800 1.3900 -0.4800 0

0 0 0.4800 -0.3600 -0.4800 0.8600 0

0 0 0 0 0 0 0

0 0 0 0 0 -0.5000 0

Column 8

0

0

0

0

0

-0.5000

0

0.5000

Considering the prescribed displacements in bc, the system of equations is solved
using the function solveq, yielding displacements a and support forces r.

>> bc= [1 0;2 0;3 0;4 0;7 0;8 0];

>> [a,r]=solveq(K,f,bc)

a =

1.0e-002 *

0

0

0

0

-0.0398

-0.1152

0

0
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r =

1.0e+004 *

2.9845

0

-2.9845

2.2383

0.0000

0.0000

0

5.7617

The vertical displacement at the point of loading is 1.15 mm. The section forces es1,
es2 and es3 are calculated using bar2s from element displacements ed1, ed2 and ed3
obtained using extract.

>> ed1=extract_ed(Edof(1,:),a);

>> es1=bar2s(ex1,ey1,ep1,ed1)

es1 =

1.0e+004 *

-2.9845

-2.9845

>> ed2=extract_ed(Edof(2,:),a);

>> es2=bar2s(ex2,ey2,ep2,ed2)

es2 =

1.0e+004 *

5.7617

5.7617

>> ed3=extract_ed(Edof(3,:),a);

>> es3=bar2s(ex3,ey3,ep3,ed3)

es3 =

1.0e+004 *

3.7306

3.7306
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i.e., the normal forces are N1 = −29.84 kN, N2 = 57.62 kN and N3 = 37.31 kN.

A displacement diagram is displayed using the function eldisp2 and normal force
diagram using the function secforce2.

>> figure(1)

>> plotpar=[2 1 0];

>> eldraw2(ex1,ey1,plotpar);

>> eldraw2(ex2,ey2,plotpar);

>> eldraw2(ex3,ey3,plotpar);

>> sfac=scalfact2(ex1,ey1,ed1,0.1);

>> plotpar=[1 2 1];

>> eldisp2(ex1,ey1,ed1,plotpar,sfac);

>> eldisp2(ex2,ey2,ed2,plotpar,sfac);

>> eldisp2(ex3,ey3,ed3,plotpar,sfac);

>> axis([-0.4 2.0 -0.4 1.4]);

>> scalgraph2(sfac,[1e-3 0 -0.3]);

>> title(’Displacements’)

>> figure(2)

>> plotpar=[2 1];

>> sfac=scalfact2(ex1,ey1,N2(:,1),0.1);

>> secforce2(ex1,ey1,N1(:,1),plotpar,sfac);

>> secforce2(ex2,ey2,N2(:,1),plotpar,sfac);

>> secforce2(ex3,ey3,N3(:,1),plotpar,sfac);

>> axis([-0.4 2.0 -0.4 1.4]);

>> scalgraph2(sfac,[5e4 0 -0.3]);

>> title(’Normal force’)

0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0.001 

Displacements
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0 0.5 1 1.5 2
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

50000 

Normal force
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Static analysis exs bar2 l

Purpose:

Analysis of a plane truss.

Description:

Consider a plane truss, loaded by a single force P = 0.5 MN.

P2.0 m 2.0 m 30°

2.0 m

The corresponding finite element model consists of ten elements and twelve degrees
of freedom.

a1

a2

a3

a4

a5

a6

a7

a8

2

5

9

x

y

7

1

a11

a12

a9

a10

4

6

10

8

3

A = 25.0 · 10−4 m2

E = 2.10 · 105 MPa

The topology is defined by the matrix

>> Edof=[1 1 2 5 6;

2 3 4 7 8;

3 5 6 9 10;

4 7 8 11 12;

5 7 8 5 6;

6 11 12 9 10;

7 3 4 5 6;

8 7 8 9 10;

9 1 2 7 8;

10 5 6 11 12];
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A global stiffness matrix K and a load vector f are defined. The load P is divided
into x and y components and inserted in the load vector f.

>> K=zeros(12);

>> f=zeros(12,1); f(11)=0.5e6*sin(pi/6); f(12)=-0.5e6*cos(pi/6);

The element matrices Ke are computed by the function bar2e. These matrices are
then assembled in the global stiffness matrix using the function assem.

>> A=25.0e-4; E=2.1e11; ep=[E A];

>> Ex=[0 2;

0 2;

2 4;

2 4;

2 2;

4 4;

0 2;

2 4;

0 2;

2 4];

>> Ey=[2 2;

0 0;

2 2;

0 0;

0 2;

0 2;

0 2;

0 2;

2 0;

2 0];

All the element matrices are computed and assembled in the loop

>> for i=1:10

Ke=bar2e(Ex(i,:),Ey(i,:),ep);

K=assem(Edof(i,:),K,Ke);

end;

The displacements in a and the support forces in r are computed by solving the
system of equations considering the boundary conditions in bc.

>> bc=[1 0;2 0;3 0;4 0];

>> [a,r]=solveq(K,f,bc)
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a =

0

0

0

0

0.0024

-0.0045

-0.0016

-0.0042

0.0030

-0.0107

-0.0017

-0.0113

r =

1.0e+005 *

-8.6603

2.4009

6.1603

1.9293

0.0000

-0.0000

-0.0000

-0.0000

0.0000

0.0000

0.0000

0.0000

The displacement at the point of loading is −1.7 · 10−3 m in the x-direction and
−11.3 · 10−3 m in the y-direction. At the upper support the horizontal force is
−0.866 MN and the vertical 0.240 MN. At the lower support the forces are 0.616
MN and 0.193 MN, respectively.

Normal forces are evaluated from element displacements. These are obtained from
the global displacements a using the function extract ed. The normal forces are
evaluated using the function bar2s.

ed=extract_ed(Edof,a);

>> for i=1:10

es=bar2s(Ex(i,:),Ey(i,:),ep,ed(i,:));

N(i,:)=es(1);

end
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The obtained normal forces are

>> N

N =

1.0e+005 *

6.2594

-4.2310

1.7064

-0.1237

-0.6945

1.7064

-2.7284

-2.4132

3.3953

3.7105

The largest normal force N = 0.626 MN is obtained in element 1 and is equivalent
to a normal stress σ = 250 MPa.

To reduce the quantity of input data, the element coordinate matrices Ex and Ey can
alternatively be created from a global coordinate matrix Coord and a global topology
matrix Coord using the function coordxtr, i.e.

>> Coord=[0 2;

0 0;

2 2;

2 0;

4 2;

4 0];

>> Dof=[ 1 2;

3 4;

5 6;

7 8;

9 10;

11 12];

>> [ex,ey]=coordxtr(Edof,Coord,Dof,2);
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Purpose:

Analysis of a simply supported beam.

Description:

Consider a beam with the length 9.0 m. The beam is simply supported and loaded
by a point load P = 10000 N applied at a point 3.0 m from the left support. The
corresponding computational model has six degrees of freedom and consists of two
beam elements with four degrees of freedom. The beam has Young’s modulus E =
210 GPa and moment of inertia I = 2510 · 10−8 m4.

6.03.0

P
E, I

a4

a5 a3

a2

a6

a1

5 4

The element topology is defined by the topology matrix

>> Edof=[1 1 2 3 4;

2 3 4 5 6];

The system matrices, i.e. the stiffness matrix K and the load vector f, are defined by

>> K=zeros(6); f=zeros(6,1); f(3)=-10000;

The element property vector ep, the element coordinate vectors ex1 and ex2, and the
element stiffness matrices Ke1 and Ke2, are generated.
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>> E=210e9; I=2510e-8; ep=[E A I];

>> ex1=[0 3]; ex2=[3 9];

>> Ke1=beam1e(ex1,ep)

Ke1 =

1.0e+06 *

2.3427 3.5140 -2.3427 3.5140

3.5140 7.0280 -3.5140 3.5140

-2.3427 -3.5140 2.3427 -3.5140

3.5140 3.5140 -3.5140 7.0280

>> Ke2=beam1e(ex2,ep)

Ke2 =

1.0e+06 *

0.2928 0.8785 -0.2928 0.8785

0.8785 3.5140 -0.8785 1.7570

-0.2928 -0.8785 0.2928 -0.8785

0.8785 1.7570 -0.8785 3.5140

Based on the topology information, the global stiffness matrix can be generated by
assembling the element stiffness matrices

>> K=assem(Edof(1,:),K,Ke1);

>> K=assem(Edof(2,:),K,Ke2);

Finally, the solution can be calculated by defining the boundary conditions in bc and
solving the system of equations. Displacements a and support forces r are computed
by the function solveq.

>> bc=[1 0; 5 0];

[a,r]=solveq(K,f,bc)

The section forces es are calculated from element displacements Ed

>> Ed=extract_ed(Edof,a);

>> [es1,edi1]=beam1s(ex1,ep,Ed(1,:),eq,6)

>> [es2,edi2]=beam1s(ex2,ep,Ed(2,:),eq,11)
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Results

a = r =

0 1.0e+003 *

-0.0095

-0.0228 6.6667

-0.0038 -0.0000

0 -0.0000

0.0076 -0.0000

3.3333

0

es1 = edi1 =

1.0e+004 * 0

-0.0093

-0.6667 0.0000 -0.0173

-0.6667 0.6667 -0.0228

-0.6667 1.3333

-0.6667 2.0000

es2 = edi2 =

1.0e+004 * -0.0228

-0.0248

0.3333 2.0000 -0.0236

0.3333 1.6667 -0.0199

0.3333 1.3333 -0.0143

0.3333 1.0000 -0.0075

0.3333 0.6667 -0.0000

0.3333 0.3333

0.3333 -0.0000

A displacement diagram and section force diagrams are displayed using the function
plot.

figure(1)

hold on;

plot([0 9],[0 0]);

c=plot([0,0:1:3,3:1:9,9],[0;edi1(:,1);edi2(:,1);0]);

set(c,’LineWidth’,[2]);

axis([-1 10 -0.03 0.01]);

title(’displacements’)
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figure(2)

hold on;

plot([0 9],[0 0]);

c=plot([0,0:1:3,3:1:9,9],[0;es1(:,1);es2(:,1);0]);

set(c,’LineWidth’,[2]);

axis([-1 10 -8000 5000]);

set(gca, ’YDir’,’reverse’);

title(’shear force’)

figure(3)

hold on;

plot([0 9],[0 0]);

c=plot([0,0:1:3,3:1:9,9],[0;es1(:,2);es2(:,2);0]);

set(c,’LineWidth’,[2]);

axis([-1 10 -5000 25000]);

set(gca, ’YDir’,’reverse’);

title(’moment’)
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Purpose:

Analysis of a plane frame.

Description:

A frame consists of one horizontal and two vertical beams according to the figure.

P

6.0 m

4.0 m

q0

A3, I3E,

A1, I1E, A2, I2E,

E = 200 GPa
A1 = 2.0 · 10−3 m2

I1 = 1.6 · 10−5 m4

A2 = 6.0 · 10−3 m2

I2 = 5.4 · 10−5 m4

P = 2.0 kN
q0 = 10.0 kN/m

The corresponding finite element model consists of three beam elements and twelve
degrees of freedom.

a1

a2a3

1 2

a4
a5a6 a7

a8a9

a10
a11a12

3

A topology matrix Edof, a global stiffness matrix K and load vector f are defined. The
element matrices Ke and fe are computed by the function beam2e. These matrices
are then assembled in the global matrices using the function assem.

>> Edof=[1 4 5 6 1 2 3;

2 7 8 9 10 11 12;

3 4 5 6 7 8 9];

>> K=zeros(12); f=zeros(12,1); f(4)=2e+3;

>> E=200e9;

>> A1=2e-3; A2=6e-3;

>> I1=1.6e-5; I2=5.4e-5;

>> ep1=[E A1 I1]; ep3=[E A2 I2];
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>> ex1=[0 0]; ex2=[6 6]; ex3=[0 6];

>> ey1=[0 4]; ey2=[0 4]; ey3=[4 4];

>> eq1=[0 0]; eq2=[0 0]; eq3=[0 -10e+3];

>> Ke1=beam2e(ex1,ey1,ep1);

>> Ke2=beam2e(ex2,ey2,ep1);

>> [Ke3,fe3]=beam2e(ex3,ey3,ep3,eq3);

>> K=assem(Edof(1,:),K,Ke1);

>> K=assem(Edof(2,:),K,Ke2);

>> [K,f]=assem(Edof(3,:),K,Ke3,f,fe3);

The system of equations are solved considering the boundary conditions in bc.

>> bc=[1 0; 2 0; 3 0; 10 0; 11 0];

>> [a,r]=solveq(K,f,bc)

a = r =

0 1.0e+004 *

0

0 0.1927

0.0075 2.8741

-0.0003 0.0445

-0.0054 0

0.0075 0.0000

-0.0003 -0.0000

0.0047 -0.0000

0 0

0 0.0000

-0.0052 -0.3927

3.1259

0

The element displacements are obtained from the function extract, and the function
beam2s computes the section forces and the displacements along the element.

>> Ed=extract_ed(Edof,a);

>> [es1,edi1]=beam2s(ex1,ey1,ep1,Ed(1,:),eq1,21)

es1 = edi1 =

1.0e+004 * 0.0003 0.0075

0.0003 0.0065

-2.8741 0.1927 0.8152 . .

-2.8741 0.1927 0.7767 0.0000 0.0000

. . .

-2.8741 0.1927 0.0445
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>> [es2,edi2]=beam2s(ex2,ey2,ep1,Ed(2,:),eq2,21)

es2 = edi2 =

1.0e+004 * 0.0003 0.0075

0.0003 0.0084

-3.1259 -0.3927 -1.5707 . .

-3.1259 -0.3927 -1.4922 0.0000 0.0000

. . .

-3.1259 -0.3927 -0.0000

>> [es3,edi3]=beam2s(ex3,ey3,ep3,Ed(3,:),eq3,21)

es3 = edi3 =

1.0e+004 * 0.0075 -0.0003

0.0075 -0.0019

-0.3927 -2.8741 -0.8152 . .

-0.3927 -2.5741 0.0020 0.0075 -0.0003

. . .

-0.3927 3.1259 -1.5707

A displacement diagram is displayed using the function dispbeam2 and section force
diagrams using the function secforce2.

>> figure(1)

>> plotpar=[2 1 0];

>> eldraw2(ex1,ey1,plotpar);

>> eldraw2(ex2,ey2,plotpar);

>> eldraw2(ex3,ey3,plotpar);

>> sfac=scalfact2(ex3,ey3,Ed(3,:),0.1);

>> plotpar=[1 2 1];

>> dispbeam2(ex1,ey1,edi1,plotpar,sfac);

>> dispbeam2(ex2,ey2,edi2,plotpar,sfac);

>> dispbeam2(ex3,ey3,edi3,plotpar,sfac);

>> axis([-1.5 7.5 -0.5 5.5]);

>> scalgraph2(sfac,[1e-2 0.5 0]);

>> title(’Displacements’)
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>> figure(2)

>> plotpar=[2 1];

>> sfac=scalfact2(ex1,ey1,es1(:,1),0.2);

>> secforce2(ex1,ey1,es1(:,1),plotpar,sfac);

>> secforce2(ex2,ey2,es2(:,1),plotpar,sfac);

>> secforce2(ex3,ey3,es3(:,1),plotpar,sfac);

>> axis([-1.5 7.5 -0.5 5.5]);

>> scalgraph2(sfac,[3e4 1.5 0]);

>> title(’Normal force’)

>> figure(3)

>> plotpar=[2 1];

>> sfac=scalfact2(ex3,ey3,es3(:,2),0.2);

>> secforce2(ex1,ey1,es1(:,2),plotpar,sfac);

>> secforce2(ex2,ey2,es2(:,2),plotpar,sfac);

>> secforce2(ex3,ey3,es3(:,2),plotpar,sfac);

>> axis([-1.5 7.5 -0.5 5.5]);

>> scalgraph2(sfac,[3e4 0.5 0]);

>> title(’Shear force’)

>> figure(4)

>> plotpar=[2 1];

>> sfac=scalfact2(ex3,ey3,es3(:,3),0.2);

>> secforce2(ex1,ey1,es1(:,3),plotpar,sfac);

>> secforce2(ex2,ey2,es2(:,3),plotpar,sfac);

>> secforce2(ex3,ey3,es3(:,3),plotpar,sfac);

>> axis([-1.5 7.5 -0.5 5.5]);

>> scalgraph2(sfac,[3e4 0.5 0]);

>> title(’Moment’)
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Purpose:

Analysis of a combined beam and bar structure.

Description:

Consider a structure consisting of a beam with A1 = 4.0 ·10−3 m2 and I1 = 5.4 ·10−5

m4 supported by two bars with A2 = 1.0 · 10−3 m2. The beam as well as the bars
have E = 200 GPa. The structure is loaded by a distributed load q = 10 kN/m.
The corresponding finite element model consists of three beam elements and two bar
elements and has 14 degrees of freedom.

q0

A1, I1E,
A2E,

2.0 m

2.0 m2.0 m 2.0 m

a1

a2a3 a4
a5a6 a7

a8a9 a10
a11a12

a13

a14

1 2 3

4 5

The computation is initialised by defining the topology matrix Edof1 for the beam
elements and Edof2 for the bar elements. The matrix K (14×14) , and vector f (14×1)
are created and filled with zeros.

>> Edof1=[1 1 2 3 4 5 6;

>> 2 4 5 6 7 8 9;

>> 3 7 8 9 10 11 12];

>> Edof2=[4 13 14 4 5;

>> 5 13 14 7 8];

>>

>> K=zeros(14); f=zeros(14,1);
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The element property vectors ep1 and ep2 and the element coordinate vectors ex1,
ex2, ex3, ex4, ex5, ey1, ey2, ey3, ey4 and ey5 are defined.

>> E=200e9; A1=4.0e-3; A2=1.0e-3; I1=5.4e-5;

>>

>> ep1=[E A1 I1]; ep4=[E A2];

>>

>> eq1=[0 0]; eq2=[0 -10e3];

>>

>> ex1=[0 2]; ey1=[2 2];

>> ex2=[2 4]; ey2=[2 2];

>> ex3=[4 6]; ey3=[2 2];

>> ex4=[0 2]; ey4=[0 2];

>> ex5=[0 4]; ey5=[0 2];

The element stiffness matrices Ke1, Ke2 and Ke3 are computed using beam2e and
Ke4 and Ke5 are computed using bar2e. Element load vectors fe2 and fe3 are also
given by beam2e.

>> Ke1=beam2e(ex1,ey1,ep1);

>> [Ke2,fe2]=beam2e(ex2,ey2,ep1,eq2);

>> [Ke3,fe3]=beam2e(ex3,ey3,ep1,eq2);

>> Ke4=bar2e(ex4,ey4,ep4);

>> Ke5=bar2e(ex5,ey5,ep4);

Based on the topology information, the global stiffness matrix K and load vector f
are generated by assembling the element matrices using assem.

>> K=assem(Edof1(1,:),K,Ke1);

>> [K,f]=assem(Edof1(2,:),K,Ke2,f,fe2);

>> [K,f]=assem(Edof1(3,:),K,Ke3,f,fe3);

>> K=assem(Edof2(1,:),K,Ke4);

>> K=assem(Edof2(2,:),K,Ke5);

Considering the prescribed displacements in bc, the system of equations is solved
using the function solveq, yielding displacements a and support forces r. According
to the computation the vertical displacement at the end of the beam is 13.0 mm.

>> bc=[1 0; 2 0; 3 0; 13 0; 14 0];

>> [a,r]=solveq(K,f,bc)
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a = r =

0 1.0e+04 *

0

0 -8.0702

0.0002 -0.6604

-0.0006 -0.1403

-0.0010 0

0.0004 -0.0000

-0.0046 -0.0000

-0.0033 0

0.0004 -0.0000

-0.0130 0.0000

-0.0045 0

0 0

0 -0.0000

8.0702

4.6604

The section forces es1, es2, es3, es4 and es5 are calculated using bar2s and beam2s
from element displacements ed1, ed2, ed3, ed4 and ed5 obtained using extract. This
yields the normal forces −35.4 kN, −152.5 kN in the bars and the maximum moment
10.00 kNm in the beam.

>> Ed1=extract_ed(Edof1,a);

>> Ed2=extract_ed(Edof2,a);

>>

>> es1=beam2s(ex1,ey1,ep1,Ed1(1,:),eq1,11)

>> es2=beam2s(ex2,ey2,ep1,Ed1(2,:),eq2,11)

>> es3=beam2s(ex3,ey3,ep1,Ed1(3,:),eq2,11)

>> es4=bar2s(ex4,ey4,ep2,Ed2(1,:))

>> es5=bar2s(ex5,ey5,ep2,Ed2(2,:))

es1 =

1.0e+04 *

8.0702 0.6604 0.1403

8.0702 0.6604 0.0082

. . .

8.0702 0.6604 -1.1806
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es2 =

1.0e+04 *

6.8194 -0.5903 -1.1806

6.8194 -0.3903 -1.0825

. . .

. . .

6.8194 1.4097 -2.0000

es3 =

1.0e+04 *

0 -2.0000 -2.0000

0 -1.8000 -1.6200

. . .

0 0.0000 -0.0000

es4 =

1.0e+04 *

-3.5376

-3.5376

es5 =

1.0e+05 *

-1.5249

-1.5249
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Purpose:

Analysis of two dimensional diffusion.

Description:

1 2 3

4 5 6

7 8 9

10 11 12

13 14 15

1 2

3 4

5 6

7 8

x

y

c = 0

c = 0

c = 10-3 kg/m3

c = 0

0.1 m

0.1 m

Description:

Consider a filter paper of square shape. Three sides are in contact with pure water
and the fourth side is in contact with a solution of concentration c = 1.0·10−3 kg/m3.
The length of each side is 0.100 m. Using symmetry, only half of the paper has to
be analyzed. The paper and the corresponding finite element mesh are shown. The
following boundary conditions are applied

c(0, y) = c(x, 0) = c(0.1, y) = 0
c(x, 0.1) = 10−3

The element topology is defined by the topology matrix

>> Edof=[1 1 2 5 4

2 2 3 6 5

3 4 5 8 7

4 5 6 9 8

5 7 8 11 10

6 8 9 12 11

7 10 11 14 13

8 11 12 15 14];
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The system matrices, i.e. the stiffness matrix K and the load vector f, are defined by

>> K=zeros(15); f=zeros(15,1);

Because of the same geometry, orientation, and constitutive matrix for all elements,
only one element stiffness matrix Ke has to be computed. This is done by the function
flw2qe.

>> ep=1; D=[1 0; 0 1];

>> ex=[0 0.025 0.025 0]; ey=[0 0 0.025 0.025];

>> Ke=flw2qe(ex,ey,ep,D)

>> Ke =

0.7500 -0.2500 -0.2500 -0.2500

-0.2500 0.7500 -0.2500 -0.2500

-0.2500 -0.2500 0.7500 -0.2500

-0.2500 -0.2500 -0.2500 0.7500

Based on the topology information, the global stiffness matrix is generated by as-
sembling this element stiffness matrix Ke in the global stiffness matrix K

>> K=assem(Edof,K,Ke);

Finally, the solution is calculated by defining the boundary conditions bc and solving
the system of equations. The boundary condition at dof 13 is set to 0.5·10−3 as an
average of the concentrations at the neighbouring boundaries. Concentrations a and
unknown boundary flows r are computed by the function solveq.

>> bc=[1 0;2 0;3 0;4 0;7 0;10 0;13 0.5e-3;14 1e-3;15 1e-3];

>> [a,r]=solveq(K,f,bc);

The element flows q are calculated from element concentration Ed

>> Ed=extract_ed(Edof,a);

>> for i=1:8

Es=flw2qs(ex,ey,ep,D,Ed(i,:));

end
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Results

a= r=

1.0e-003 * 1.0e-003 *

0 -0.0165

0 -0.0565

0 -0.0399

0 -0.0777

0.0662 0.0000

0.0935 0

0 -0.2143

0.1786 0.0000

0.2500 0.0000

0 -0.6366

0.4338 0.0000

0.5494 -0.0000

0.5000 0.0165

1.0000 0.7707

1.0000 0.2542

Es =

-0.0013 -0.0013

-0.0005 -0.0032

-0.0049 -0.0022

-0.0020 -0.0054

-0.0122 -0.0051

-0.0037 -0.0111

-0.0187 -0.0213

-0.0023 -0.0203
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The following .m-file shows an alternative set of commands to perform the diffusion
analysis of exs flw diff2. By use of global coordinates, an FE-mesh is generated. Also
plots with flux-vectors and contour lines are created.

% ----- System matrices -----

K=zeros(15); f=zeros(15,1);

Coord=[0 0 ; 0.025 0 ; 0.05 0

0 0.025; 0.025 0.025; 0.05 0.025

0 0.05 ; 0.025 0.05 ; 0.05 0.05

0 0.075; 0.025 0.075; 0.05 0.075

0 0.1 ; 0.025 0.1 ; 0.05 0.1 ];

Dof=[1; 2; 3

4; 5; 6

7; 8; 9

10;11;12

13;14;15];

% ----- Element properties, topology and coordinates -----

ep=1; D=[1 0;0 1];

Edof=[1 1 2 5 4

2 2 3 6 5

3 4 5 8 7

4 5 6 9 8

5 7 8 11 10

6 8 9 12 11

7 10 11 14 13

8 11 12 15 14];

[Ex,Ey]=coordxtr(Edof,Coord,Dof,4);

% ----- Generate FE-mesh -----

eldraw2(Ex,Ey,[1 3 0],Edof(:,1));

pause; clf;

% ----- Create and assemble element matrices -----

for i=1:8

Ke=flw2qe(Ex(i,:),Ey(i,:),ep,D);

K=assem(Edof(i,:),K,Ke);

end;

% ----- Solve equation system -----

bc=[1 0;2 0;3 0;4 0;7 0;10 0;13 0.5e-3;14 1e-3;15 1e-3];
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[a,r]=solveq(K,f,bc)

% ----- Compute element flux vectors -----

Ed=extract_ed(Edof,a);

for i=1:8

Es(i,:)=flw2qs(Ex(i,:),Ey(i,:),ep,D,Ed(i,:))

end

% ----- Draw flux vectors and contour lines -----

sfac=scalfact2(Ex,Ey,Es,0.5);

eldraw2(Ex,Ey,[1,3,0]);

elflux2(Ex,Ey,Es,[1,4],sfac);

pltscalb2(sfac,[2e-2 0.06 0.01],4);

pause; clf;

eldraw2(Ex,Ey,[1,3,0]);

eliso2(Ex,Ey,Ed,5,[1,4]);

−0.02 0 0.02 0.04 0.06 0.08
0

0.01
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0.04
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0.1

0.02 

Flux vectors
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−0.02 0 0.02 0.04 0.06 0.08
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

Contour lines

Two comments concerning the contour lines:

In the upper left corner, the contour lines should physically have met at the corner
point. However, the drawing of the contour lines for the planqe element follows the
numerical approximation along the element boundaries, i.e. a linear variation. A
finer element mesh will bring the contour lines closer to the corner point.

Along the symmetry line, the contour lines should physically be perpendicular to the
boundary. This will also be improved with a finer element mesh.

With the MATLAB functions colormap and fill a color plot of the concentrations can
be obtained.

colormap(’jet’)

fill(Ex’,Ey’,Ed’)

axis equal
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9.3 Dynamic analysis

This section concerns linear dynamic finite element calculations. The examples illustrate
some basic features in dynamics such as modal analysis and time stepping procedures.

Dynamic analysis

exd beam2 m Modal analysis of frame

exd beam2 t Transient analysis

exd beam2 tr Reduced system transient analysis

exd beam2 b Time varying boundary condition

Note: The examples listed above are supplied as .m-files under the directory examples.
The example files are named according to the table.
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Purpose:

Set up the finite element model and perform eigenvalue analysis for a simple frame
structure.

Description:

Consider the two dimensional frame shown below. A vertical beam is fixed at its
lower end, and connected to a horizontal beam at its upper end. The horizontal
beam is simply supported at the right end. The length of the vertical beam is 3 m
and of the horizontal beam 2 m. The following data apply to the beams

vertical beam horizontal beam
Young’s modulus (N/m2) 3 · 1010 3 · 1010
Cross section area (m2) 0.1030 · 10−2 0.0764 · 10−2

Moment of inertia (m4) 0.171 · 10−5 0.0801 · 10−5

Density (kg/m3) 2500 2500
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a) b)

The structure is divided into 4 elements. The numbering of elements and degrees-of-
freedom are apparent from the figure. The following .m-file defines the finite element
model.

% --- material data ------------------------------------------

E=3e10; rho=2500;

Av=0.1030e-2; Iv=0.0171e-4; % IPE100

Ah=0.0764e-2; Ih=0.00801e-4; % IPE80

epv=[E Av Iv rho*Av]; eph=[E Ah Ih rho*Ah];
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% --- topology ----------------------------------------------

Edof=[1 1 2 3 4 5 6

2 4 5 6 7 8 9

3 7 8 9 10 11 12

4 10 11 12 13 14 15];

% --- list of coordinates -----------------------------------

Coord=[0 0; 0 1.5; 0 3; 1 3; 2 3];

% --- list of degrees-of-freedom ----------------------------

Dof=[1 2 3; 4 5 6; 7 8 9; 10 11 12; 13 14 15];

% --- generate element matrices, assemble in global matrices -

K=zeros(15); M=zeros(15);

[Ex,Ey]=coordxtr(Edof,Coord,Dof,2);

for i=1:2

[k,m,c]=beam2de(Ex(i,:),Ey(i,:),epv);

K=assem(Edof(i,:),K,k); M=assem(Edof(i,:),M,m);

end

for i=3:4

[k,m,c]=beam2de(Ex(i,:),Ey(i,:),eph);

K=assem(Edof(i,:),K,k); M=assem(Edof(i,:),M,m);

end

The finite element mesh is plotted, using the following commands

clf;

eldraw2(Ex,Ey,[1 2 2],Edof);

grid; title(’2D Frame Structure’);

pause;

-0.5 0 0.5 1 1.5 2 2.5
0

0.5

1

1.5

2

2.5

3
2-D Frame Structure

x

y

1

2

3 4

Finite element mesh
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A standard procedure in dynamic analysis is eigenvalue analysis. This is accom-
plished by the following set of commands.

b=[1 2 3 14]’;

[La,Egv]=eigen(K,M,b);

Freq=sqrt(La)/(2*pi);

Note that the boundary condition matrix, b, only lists the degrees-of-freedom that
are zero. The results of these commands are the eigenvalues, stored in La, and the
eigenvectors, stored in Egv. The corresponding frequencies in Hz are calculated and
stored in the column matrix Freq.

Freq = [6.9826 43.0756 66.5772 162.7453 230.2709 295.6136

426.2271 697.7628 877.2765 955.9809 1751.3]T

The eigenvectors can be plotted by entering the commands below.

figure(1), clf, grid, title(’The first eigenmode’),

eldraw2(Ex,Ey,[2 3 1]);

Edb=extract_ed(Edof,Egv(:,1)); eldisp2(Ex,Ey,Edb,[1 2 2]);

FreqText=num2str(Freq(1)); text(.5,1.75,FreqText);

pause;

-0.5 0 0.5 1 1.5 2 2.5
0
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The first eigenmode

x

y

6.983

The first eigenmode, 6.98 Hz
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An attractive way of displaying the eigenmodes is shown in the figure below. The
result is accomplished by translating the different eigenmodes in the x-direction, see
the Ext-matrix defined below, and in the y-direction, see the Eyt-matrix.

clf, axis(’equal’), hold on, axis off

sfac=0.5;

title(’The first eight eigenmodes (Hz)’ )

for i=1:4;

Ext=Ex+(i-1)*3; eldraw2(Ext,Ey,[2 3 1]);

Edb=extract_ed(Edof,Egv(:,i));

eldisp2(Ext,Ey,Edb,[1 2 2],sfac);

FreqText=num2str(Freq(i)); text(3*(i-1)+.5,1.5,FreqText);

end;

Eyt=Ey-4;

for i=5:8;

Ext=Ex+(i-5)*3; eldraw2(Ext,Eyt,[2 3 1]);

Edb=extract_ed(Edof,Egv(:,i));

eldisp2(Ext,Eyt,Edb,[1 2 2],sfac);

FreqText=num2str(Freq(i)); text(3*(i-5)+.5,-2.5,FreqText);

end

The first eight eigenmodes (Hz)

6.983 43.08 66.58 162.7

230.3 295.6 426.2 697.8

The first eight eigenmodes. Frequencies are given in Hz.
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Purpose:

The frame structure defined in exd beam2 m is exposed in this example to a transient
load. The structural response is determined by a time stepping procedure.

Description:

The structure is exposed to a transient load, impacting on the center of the vertical
beam in horizontal direction, i.e. at the 4th degree-of-freedom. The time history of
the load is shown below. The result shall be displayed as time history plots of the
4th degree-of-freedom and the 11th degree-of-freedom. At time t = 0 the frame is at
rest. The timestep is chosen as Δt = 0.001 seconds and the integration is performed
for T = 1.0 second. At every 0.1 second the deformed shape of the whole structure
shall be displayed.

force (N)

0.15 sec

0.25 sec

time (sec)0.2 0.4 0.6 0.8 1.0

500

1000

Time history of the impact load

The load is generated using the gfunc-function. The time integration is performed
by the step2-function. Because there is no damping present, the C-matrix is entered
as [ ].

dt=0.005; T=1;

% --- the load -----------------------------------------------

G=[0 0; 0.15 1; 0.25 0; T 0]; [t,g]=gfunc(G,dt);

f=zeros(15, length(g)); f(4,:)=1000*g;

% --- boundary condition, initial condition ------------------

bc=[1 0; 2 0; 3 0; 14 0];

a0=zeros(15,1); da0=zeros(15,1);

% --- output parameters --------------------------------------

times=[0.1:0.1:1]; dofs=[4 11];

% --- time integration parameters ----------------------------

ip=[dt T 0.25 0.5];

% --- time integration ---------------------------------------

k=sparse(K); m=sparse(M);

[a,da,d2a,ahist,dahist,d2ahist]...

=step2(k,[],m,f,a0,da0,bc,ip,times,dofs);

The requested time history plots are generated by the following commands
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figure(1), plot(t,ahist(1,:),’-’,t,ahist(2,:),’--’)

grid, xlabel(’time (sec)’), ylabel(’displacement (m)’)

title(’Displacement(time) for the 4th and 11th’...

’ degree-of-freedom’)

text(0.3,0.009,’solid line = impact point, x-direction’)

text(0.3,0.007,’dashed line = center, horizontal beam,’...

’ y-direction’)

0 0.2 0.4 0.6 0.8 1
-0.01

-0.005

0

0.005

0.01

0.015

0.02

time (sec)

di
sp

la
ce

m
en

t (
m

)
Displacement(time) at the 4th and 11th degree-of-freedom

solid line = impact point, x-direction

dashed line = center, horizontal beam, y-direction

Time history at DOF 4 and DOF 11.

The deformed shapes at time increment 0.1 sec are stored in a. They are visualized
by the following commands:

figure(2),clf, axis(’equal’), hold on, axis off

sfac=25;

title(’Snapshots (sec), magnification = 25’);

for i=1:5;

Ext=Ex+(i-1)*3; eldraw2(Ext,Ey,[2 3 0]);

Edb=extract_ed(Edof,a(:,i));

eldisp2(Ext,Ey,Edb,[1 2 2],sfac);

Time=num2str(times(i)); text(3*(i-1)+.5,1.5,Time);

end;

Eyt=Ey-4;

for i=6:10;

Ext=Ex+(i-6)*3; eldraw2(Ext,Eyt,[2 3 0]);

Edb=extract_ed(Edof,a(:,i));

eldisp2(Ext,Eyt,Edb,[1 2 2],sfac);

Time=num2str(times(i)); text(3*(i-6)+.5,-2.5,Time);

end
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Snapshots (sec), magnification = 25

0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1

Snapshots of the deformed geometry for every 0.1 sec.
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Purpose:

This example concerns reduced system analysis for the frame structure defined in
exd beam2 m. Transient analysis on modal coordinates is performed for the reduced
system.

Description:

In the previous example the transient analysis was based on the original finite element
model. Transient analysis can also be employed on some type of reduced system,
commonly a subset of the eigenvectors. The commands below pick out the first two
eigenvectors for a subsequent time integration, see constant nev. The result in the
figure below shall be compared to the result in exd2.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−0.01

−0.005

0

0.005

0.01

0.015

0.02

time (sec)

di
sp

la
ce

m
en

t (
m

)

Displacement(time) at the 4th and 11th degree−of−freedom

solid line = impact point, x−direction

dashed line = center, horizontal beam, y−direction

TWO EIGENVECTORS ARE USED

Time history at DOF 4 and DOF 11 using two eigenvectors.

dt=0.002; T=1; nev=2;

% --- the load -----------------------------------------------

G=[0 0; 0.15 1; 0.25 0; T 0]; [t,g]=gfunc(G,dt);

f=zeros(15, length(g)); f(4,:)=9000*g;

fr=sparse([[1:1:nev]’ Egv(:,1:nev)’*f]);

% --- reduced system matrices --------------------------------

kr=sparse(diag(diag(Egv(:,1:nev)’*K*Egv(:,1:nev))));

mr=sparse(diag(diag(Egv(:,1:nev)’*M*Egv(:,1:nev))));

% --- initial condition --------------------------------------

ar0=zeros(nev,1); dar0=zeros(nev,1);

% --- output parameters --------------------------------------

times=[0.1:0.1:1]; dofsr=[1:1:nev]; dofs=[4 11];

% --- time integration parameters ----------------------------

ip=[dt T 0.25 0.5];

% --- time integration ---------------------------------------

[ar,dar,d2ar,arhist,darhist,d2arhist]...
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=step2(kr,[],mr,fr,ar0,dar0,[],ip,times,dofsr);

% --- mapping back to original coordinate system -------------

aR=Egv(:,1:nev)*ar; aRhist=Egv(dofs,1:nev)*arhist;

% --- plot time history for two DOF:s ------------------------

figure(1), plot(t,aRhist(1,:),’-’,t,aRhist(2,:),’--’)

axis([0 1.0000 -0.0100 0.0200])

grid, xlabel(’time (sec)’), ylabel(’displacement (m)’)

title(’Displacement(time) at the 4th and 11th’...

’ degree-of-freedom’)

text(0.3,0.017,’solid line = impact point, x-direction’)

text(0.3,0.012,’dashed line = center, horizontal beam,’...

’ y-direction’)

text(0.3,-0.007,’2 EIGENVECTORS ARE USED’)
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Purpose:

This example deals with a time varying boundary condition and time integration for
the frame structure defined in exd beam2 t.

Description:

Suppose that the support of the vertical beam is moving in the horizontal direction.
The commands below prepare the model for time integration. Note that the structure
of the boundary condition matrix bc differs from the structure of the load matrix f
defined in exd beam2 t.

time (sec)0.2 0.4 0.6 0.8 1.0

0.00

displacement  (m)
0.1 sec

0.3 sec0.01

0.02

-0.01

Time dependent boundary condition at the support, DOF 1.

dt=0.002; T=1;

% --- boundary condition, initial condition ------------------

G=[0 0; 0.1 0.02; 0.2 -0.01; 0.3 0.0; T 0]; [t,g]=gfunc(G,dt);

bc=zeros(4, 1 + length(g));

bc(1,:)=[1 g]; bc(2,1)=2; bc(3,1)=3; bc(4,1)=14;

a0=zeros(15,1); da0=zeros(15,1);

% --- output parameters --------------------------------------

times=[0.1:0.1:1]; dofs=[1 4 11];

% --- time integration parameters ----------------------------

ip=[dt T 0.25 0.5];

% --- time integration ---------------------------------------

k=sparse(K); m=sparse(M);

[a,da,d2a,ahist,dahist,d2ahist]...

=step2(k,[],m,[],a0,da0,bc,ip,times,dofs);

% --- plot time history for two DOF:s ------------------------

figure(1), plot(t,ahist(1,:),’-’,t,ahist(2,:),’--’,t,ahist(3,:),’-.’)

grid, xlabel(’time (sec)’), ylabel(’displacement (m)’)

title(’Displacement(time) at the 1st, 4th and 11th’...

’ degree-of-freedom’)

text(0.2,0.022,’solid line = bottom, vertical beam,’...

’ x-direction’)

text(0.2,0.017,’dashed line = center, vertical beam,’...
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’ x-direction’)

text(0.2,0.012,’dashed-dotted line = center,’...

’ horizontal beam, y-direction’)

% --- plot displacement for some time increments -------------

figure(2),clf, axis(’equal’), hold on, axis off

sfac=20;

title(’Snapshots (sec), magnification = 20’); for i=1:5;

Ext=Ex+(i-1)*3; eldraw2(Ext,Ey,[2 3 0]);

Edb=extract_ed(Edof,a(:,i));

eldisp2(Ext,Ey,Edb,[1 2 2],sfac);

Time=num2str(times(i)); text(3*(i-1)+.5,1.5,Time);

end;

Eyt=Ey-4;

for i=6:10;

Ext=Ex+(i-6)*3; eldraw2(Ext,Eyt,[2 3 0]);

Edb=extract_ed(Edof,a(:,i));

eldisp2(Ext,Eyt,Edb,[1 2 2],sfac);

Time=num2str(times(i)); text(3*(i-6)+.5,-2.5,Time);

end

0 0.2 0.4 0.6 0.8 1
-0.02

-0.015

-0.01

-0.005

0

0.005

0.01

0.015

0.02

0.025
Displacement(time) at the 1st, 4th and 11th degree-of-freedom

solid line = bottom, vertical beam, x-direction

dashed line = center, vertical beam, x-direction

dashed-dotted line = center, horizontal beam, y-direction

Time history at DOF 1, DOF 4 and DOF 11.
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Snapshots (sec), magnification = 20

0.1 0.2 0.3 0.4 0.5

0.6 0.7 0.8 0.9 1

Snapshots of the deformed geometry for every 0.1 sec.
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9.4 Nonlinear analysis

This section illustrates some nonlinear finite element calculations.

Nonlinear analysis

exn bar2g Analysis of a plane truss considering geometric nonlinearity

exn beam2g Analysis of a plane frame considering geometric nonlinearity

exn beam2g b Buckling analysis of a frame

exn bar2m Analysis of a plane truss considering material nonlinearity

Note: The examples listed above are supplied as .m-files under the directory examples.
The example files are named according to the table.
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Purpose:

Plane truss considering geometric nonlinearity.

Description:

Consider a plane truss consisting of two bars with the properties E = 200 GPa,
A1 = 6.0 ·10−4 m2 and A2 = 3.0 ·10−4 m2. The truss is loaded by a force P = 10 MN
to the left and a force F = 0.2 MN downwards. The corresponding finite element
model consists of two elements and six degrees of freedom.

P

1.6 m
F

1.2 m

1

2

x

y

a2
a1

a3

a4

a5

a6

The element property vectors ep1 and ep2 and the element coordinate vectors ex1,
ex2, ey1, and ey2 are defined. Initial values are given to the variables axial forces QX1
and QX2. The element stiffness matrices Ke1 and Ke2 are computed using bar2ge.

The computation is initialised by defining the topology matrix Edof, containing ele-
ment numbers and global element degrees of freedom. The element property vectors
ep1 and ep2 and the element coordinate vectors ex1, ex2, ey1, and ey2 are also defined.

>> Edof=[1 1 2 5 6;

>> 2 3 4 5 6];

>> E=10e9;

>> A1=4e-2; A2=1e-2;

>> ep1=[E A1]; ep2=[E A2];

>> ex1=[0 1.6]; ey1=[0 0];

>> ex2=[0 1.6]; ey2=[1.2 0];

The bar element function considering geometric nonlinearity bar2ge requires the value
axial force Qx̄. Since the axial forces are a result of the computation the computation
procedure is iterative. Initially, the axial forces are set to zero, i.e. Q

(1)
x̄ = 0 and

Q
(2)
x̄ = 0 which are stored in QX1 and QX2. This means that the first iteration is

equivalent to a linear analysis using bar2e. To make sure that the first iteration is
performed the scalar used for storing the previous axial force in element 1 QX01 is
set to 1. To avoid dividing by 0 in the second convergence check, a nonzero but small
value is assumed for the initial axial force in Element 1, i.e. Q

(1)
x̄,0 = 0.0001. In each
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iteration the axial forces QX1 and QX2 are updated according to the computational
result. The iterations continue until the difference in axial force QX1 of the two latest
iterations is less than an accepted error eps chosen as 1.0 · 10−6 (QX1−QX01)/QX01
< eps.

>> QX1=0.0001; QX2=0;

>> QX01=1;

>> eps=1e-6;

>> n=0;

>> while(abs((QX1-QX01)/QX01)>eps)

In each iteration the global stiffness matrix K (6×6) and the load vector f (6×1)
is initially filled with zeros. The nodal loads of 10.0 MN and 0.2 MN acting at
lower right corner of the frame are placed in position 5 and 6 of the load vector,
respectively. Element stiffness matrices are computed by bar2ge and assembled using
assem, after which the system of equations is solved using solveq. Based on the
computed displacements a, new values of section forces and axial forces are computed
by beam2gs. If QX1 does not converge in 20 iterations the analysis is interrupted.

>> n=n+1

>> K=zeros(6,6);

>> f=zeros(6,1);

>> f(5)=-10e6;

>> f(6)=-0.2e6;

>>

>> Ke1=bar2ge(ex1,ey1,ep1,QX1);

>> Ke2=bar2ge(ex2,ey2,ep2,QX2);

>> K=assem(Edof(1,:),K,Ke1);

>> K=assem(Edof(2,:),K,Ke2);

>> bc=[1 0;2 0;3 0;4 0];

>> [a,r]=solveq(K,f,bc)

>>

>> Ed=extract_ed(Edof,a);

>>

>> QX01=QX1;

>> [es1,QX1]=bar2gs(ex1,ey1,ep1,Ed(1,:))

>> [es2,QX2]=bar2gs(ex2,ey2,ep2,Ed(2,:))

>>

>> if(n>20)

>> disp(’The solution does not converge’)

>> break

>> end

>> end

After 7 iterations the computation has converged and the axial forces are
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QX1 =

-1.1136e+07

QX2 =

1.4833e+06

The displacements according to the linear analysis and the analysis considering ge-
ometric nonlinearity are respectively:

a = a =

0 0

0 0

0 0

0 0

-0.0411 -0.0445

-0.0659 -0.1088

the vertical displacement at the node to the right is 108.8 mm, which is 1.6 times
larger than the result from a linear computation according to the first iteration. The
axial force in Element 2 is 1.483 kN, which is 4.5 times larger than the value obtained
in the linear computation.
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Purpose:

Analysis of a plane frame considering geometric nonlinearity.

Description:

The frame of exs beam2 is analysed again, but it is now subjected to a load five times
larger than in exs beam2. Geometric nonlinearity is considered.

P

6.0 m

4.0 m

q0

A3, I3E,

A1, I1E, A2, I2E,

E = 200 GPa
A1 = 2.0 · 10−3 m2

I1 = 1.6 · 10−5 m4

A2 = 2.0 · 10−3 m2

I2 = 1.6 · 10−5 m4

A3 = 6.0 · 10−3 m2

I3 = 5.4 · 10−5 m4

P = 10.0 kN
q0 = 50.0 kN/m

The corresponding computational model consists of three beam elements and twelve
degrees of freedom.

a1

a2a3

1 2

a4
a5a6 a7

a8a9

a10
a11a12

3

The computation is initialised by defining the topology matrix Edof, containing ele-
ment numbers and global element degrees of freedom. The element property vectors
ep1, ep2 and ep3, the element load vectors eq1, eq2 and eq3, and the element coor-
dinate vectors ex1, ex2, ex3, ey1, ey2, and ey3 are also defined.

>> Edof=[1 4 5 6 1 2 3 ;

>> 2 7 8 9 10 11 12;

>> 3 4 5 6 7 8 9];

>>

>> E=200e9;

>> A1=2e-3; A2=2e-3; A3=6e-3;

>> I1=1.6e-5; I2=1.6e-5; I3=5.4e-5;
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>> ep1=[E A1 I1]; ep2=[E A2 I2]; ep3=[E A3 I3];

>> eq1=[0]; eq2=[0]; eq3=[-50e3];

>> ex1=[0 0]; ex2=[6 6]; ex3=[0 6];

>> ey1=[4 0]; ey2=[4 0]; ey3=[4 4];

The beam element function considering geometric nonlinearity beam2ge requires the
value axial force Qx̄. Since the axial forces are a result of the computation the
computation procedure is iterative. Initially, the axial forces are set to zero, i.e.
Q

(1)
x̄ = 0, Q

(2)
x̄ = 0 and Q

(3)
x̄ = 0 which are stored in QX1, QX2 and QX3. This means

that the first iteration is equivalent to a linear analysis using beam2e. To make sure
that the first iteration is performed the scalar used for storing the previous axial
force in element 1 QX01 is set to 1. To avoid dividing by 0 in the second convergence
check, a nonzero but small value is assumed for the initial axial force in Element 1,
i.e. Q

(1)
x̄,0 = 0.0001. In each iteration the axial forces QX1, QX2 and QX3 are updated

according to the computational result. The iterations continue until the difference in
axial force QX1 of the two latest iterations is less than an accepted error eps chosen
as 1.0 · 10−6 (QX1−QX01)/QX01 < eps.

>> QX1=0.0001; QX2=0; QX3=0;

>> QX01=1;

>> eps=1e-6;

>> n=0;

>> while(abs((QX1-QX01)/QX01)>eps)

In each iteration the global stiffness matrix K (12×12) and the load vector f (12×1)
are initially filled with zeros. The nodal load of 10.0 kN acting at upper left corner of
the frame is placed in position 4 of the load vector. Element matrices are computed
by beam2ge and assembled using assem, after which the system of equations is solved
using solveq. Based on the computed displacements a, new values of section forces
and axial forces are computed by beam2gs. If QX1 does not converge in 20 iterations
the analysis is interrupted.

>> n=n+1

>> K=zeros(12,12);

>> f=zeros(12,1);

>> f(4)=10e3;

>>

>> [Ke1]=beam2ge(ex1,ey1,ep1,QX1);

>> [Ke2]=beam2ge(ex2,ey2,ep2,QX2);

>> [Ke3,fe3]=beam2ge(ex3,ey3,ep3,QX3,eq3);

>>

>> K=assem(Edof(1,:),K,Ke1);

>> K=assem(Edof(2,:),K,Ke2);

>> [K,f]=assem(Edof(3,:),K,Ke3,f,fe3);

>>

EXAMPLES 294



Nonlinear analysis exn beam2g

>> bc=[1 0;2 0;3 0;10 0;11 0];

>> [a,r]=solveq(K,f,bc)

>>

>> Ed=extract_ed(Edof,a);

>>

>> QX01=QX1;

>> [es1,QX1]=beam2gs(ex1,ey1,ep1,Ed(1,:),QX1,eq1,11)

>> [es2,QX2]=beam2gs(ex2,ey2,ep2,Ed(2,:),QX2,eq2,11)

>> [es3,QX3]=beam2gs(ex3,ey3,ep3,Ed(3,:),QX3,eq3,11)

>>

>> if(n>20)

>> disp(’The solution does not converge’)

>> break

>> end

>> end

After 4 iterations the computation has converged and the axial forces are

QX1 =

-1.4242e+05

QX2 =

-1.5758e+05

QX3 =

-1.8163e+04

The displacements according to the linear analysis and the analysis considering ge-
ometric nonlinearity are respectively:

a = a =

0 0

0 0

0 0

0.0377 0.0451

-0.0014 -0.0014

-0.0269 -0.0281

0.0376 0.0450

-0.0016 -0.0016

0.0233 0.0238

0 0

0 0

-0.0258 -0.0295
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Considering geometrical nonlinearity, the horizontal displacement of the upper left
corner of the frame increases from 37.7 to 45.1 mm. A displacement diagram is
displayed using the function dispbeam2. The displacement according to the linear
calculation is illustrated using a dashed line and the displacement considering geo-
metrical nonlinearity is illustrated using a solid line.

>> figure(1)

>> plotpar=[3 1 0];

>> eldraw2(ex1,ey1,plotpar);

>> eldraw2(ex2,ey2,plotpar);

>> eldraw2(ex3,ey3,plotpar);

>> sfac=scalfact2(ex3,ey3,edi3,0.1);

>> plotpar=[1 2 0];

>> dispbeam2(ex1,ey1,edi1,plotpar,sfac);

>> dispbeam2(ex2,ey2,edi2,plotpar,sfac);

>> dispbeam2(ex3,ey3,edi3,plotpar,sfac);

>> plotpar=[2 4 0];

>> dispbeam2(ex1,ey1,edi10,plotpar,sfac);

>> dispbeam2(ex2,ey2,edi20,plotpar,sfac);

>> dispbeam2(ex3,ey3,edi30,plotpar,sfac);

>> axis([-1.5 7.5 -0.5 5.5]);

>> scalgraph2(sfac,[0.1 0.5 0]);

>> title(’Displacements’)

−1 0 1 2 3 4 5 6 7

0

1

2

3

4

5

0.1 

Displacements
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Purpose:

Buckling analysis of a plane frame.

Description:

Buckling safety of the frame analysed in exn beam2g is performed. The same com-
putational model as in exn beam2g is used. First, the same computation as in
exn beam2g is performed. In this computation the linear stiffness matrix is ob-
tained by saving the stiffness matrix established using the function assem in the first
iteration, i.e.

>> if n==1;

>> K0=K;

>> end;

On the basis of the linear stiffness matrixK0 and geometric nonlinear stiffness matrix
Ka obtained in that computation and stored in K0 and K, the generalised eigen value
problem (Ka − λK0)φ = 0 is established. Considering prescribed displacements
specified in b, the generalised eigen value problem is solved using eigen. Thereafter
the loading factors corresponding the buckling modes is computed as αi =

1
1−λi

. The
loading factor corresponding the first buckling mode obtained is α1 = 6.89.

>> b=bc(:,1);

>> [lambda,phi]=eigen(K,K0,b);

>> nmods=size(lambda);

>> one=ones(nmods);

>> alpha=one./(one-lambda);

>> alpha(1)

>> phi(:,1)

alpha(1)

ans =

6.8904e+00
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The shape of the frame at buckling is given by the first eigen vector, i.e.

phi(:,1)

ans =

0

0

0

-1.2708e-03

-2.4706e-06

1.4668e-04

-1.2719e-03

2.4706e-06

-6.8722e-06

0

0

5.3425e-04
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Purpose:

Analysis of a plane truss considering material nonlinearity.

Description:

The truss of exs bar2 is analysed again, but now the material behaviour is assumed
to be nonlinear.

The truss consists of three bars with the properties E = 200 GPa, σY = 400.0MPa,
A1 = 6.0 · 10−4 m2, A2 = 3.0 · 10−4 m2 and A3 = 10.0 · 10−4 m2. The corresponding
finite element model consists of three elements and eight degrees of freedom. The
truss is loaded by a single force P . The load is applied in increments ΔP = 4.0 kN.

The corresponding computational model consists of three bar elements and eight
degrees of freedom.

P
1.6 m

1.2 m

a1

a2

a3

a4

a5

a6

a7

a8

1

2

3

x

y

The computation is initialised by defining the topology, boundary condition, geom-
etry and element property matrices.

>> edof=[1 1 2 5 6;

>> 2 5 6 7 8;

>> 3 3 4 5 6]

>>

>> bc=[1 0; 2 0; 3 0; 4 0; 7 0; 8 0];

>>

>> ex=[0 1.6; 1.6 1.6; 0 1.6]

>> ey=[0 0; 0 1.2; 1.2 0]

>>

>> Em=200.0e9

>> E=ones(3,1)*Em;

>> A1=6.0e-4; A2=3.0e-4; A3=10.0e-4

>> A=[A1 A2 A3]’

>> SY=400.0e6

>> Ns=SY*A
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The computation is performed incrementally. The nodal load is applied in incre-
ments, chosen to be ΔPi = 4 kN. The limit of the number of increments is chosen to
be 100. Matrices for storage of the total values of displacements, support forces and
normal forces are defined. Matrices for storage of the number of plastic elements and
the force-displacement history are defined.

>> dp=4.0e3

>>

>> incr=100;

>>

>> a=zeros(8,1);

>> r=zeros(8,1);

>> es=zeros(3,1);

>>

>> plbar=0;

>> pl(1,:)=[0 0];

For each computational step the global stiffness matrix K (8×8) and the incremental
load vector df (8×1) are initially filled with zeros. The load increment is placed in
position 6 of the incremental load vector. Element matrices are computed by bar2ge
and assembled using assem. The determinant of the stiffness matrix is computed to
determine whether if the structure has turned to a mechanism and the computation
should be interrupted. The system of equations is solved using solveq. The incre-
ments of displacements and support forces are added to the previously computed
total values. Based on the displacement increments, the increments of normal forces
are computed and added to to the previously obtained normal forces. The computed
normal forces are then compared to the yield forces of the elements. If the yield force
is exceeded, the modulus of elasticity is set to zero.

>> for i=1:incr

>> K=zeros(8);

>> df=zeros(8,1);

>> df(6)=-dp;

>> for j=1:3

>> ep=[E(j),A(j)];

>> Ke=bar2e(ex(j,:),ey(j,:),ep);

>> K=assem(edof(j,:),K,Ke);

>> end;

>> Kr=red(K,bc(:,1));

>> if det(Kr)<=0

>> disp([’Determinant zero after increment ’,num2str(i-1)])

>> break;

>> end;

>>

>> [da,dr]=solveq(K,df,bc);

>> a=a+da;
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>> r=r+dr;

>>

>> ded=extract_ed(edof,da);

>> for j=1:3

>> ep=[E(j),A(j)];

>> desj=bar2s(ex(j,:),ey(j,:),ep,ded(j,:));

>> des(j,1)=desj(1);

>> end;

>> es=es+des;

>> for j=1:3

>> E(j)=Em; if abs(es(j))>=Ns(j); E(j)=0; end

>> end;

>> newplbar=sum(abs(es)>Ns);

>> if newplbar > plbar

>> plbar=newplbar;

>> disp([num2str(plbar),’ plastic elements for increment ’,num2str(i), ...

>> ’ at load = ’, num2str(i*dp)])

>> es

>> end;

>>

>> pl(i+1,:)=[-a(6),i*dp];

>> end;

After 42 increments the yield stress has been reached in Element 2 and after 76
increments in Element 1. After 76 increments, for P = 304.0kN, the truss becomes
a mechanism.

1 plastic elements for increment 42 at load = 168000

es =

1.0e+05 *

-0.6267

1.2099

0.7834
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2 plastic elements for increment 76 at load = 304000

es =

1.0e+05 *

-2.4401

1.2099

3.0501

Determinant zero after increment 76

A force-displacement diagram is displayed using the function plot.

>> figure(1)

>> plot(pl(:,1),pl(:,2),’-’);
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Index

abs, 24
assem, 180
axis, 221

bar1e, 50
bar1s, 51
bar1we, 53
bar1ws, 54
bar2e, 56
bar2ge, 60
bar2gs, 62
bar2s, 58
bar3e, 64
bar3s, 66
beam1e, 123, 127, 129
beam1s, 125
beam2de, 160
beam2ds, 162
beam2e, 131
beam2ge, 149
beam2gs, 151, 157
beam2gxe, 154
beam2s, 134
beam2te, 137
beam2ts, 140
beam2we, 143
beam2ws, 146
beam3e, 164
beam3s, 167

clear, 4
clf, 222
coordxtr, 181

det, 25
diag, 26
diary, 5
disp, 6
dispbeam2, 212
dmises, 42
dyna2, 192
dyna2f, 193

echo, 7
eigen, 183

eldisp2, 214
eldraw2, 213
elflux2, 215
eliso2, 216
elprinc2, 217
extract ed, 184

fft, 194
figure, 223
fill, 224
flw2i4e, 75
flw2i4s, 77
flw2i8e, 78
flw2i8s, 80
flw2qe, 73
flw2qs, 74
flw2te, 70
flw2ts, 72
flw3i8e, 81
flw3i8s, 83
for, 207
format, 8
freqresp, 195
full, 27
function, 209

gfunc, 196
grid, 225

help, 9
hold, 226
hooke, 40

if, 206
ifft, 197
insert, 186
inv, 28

length, 29
load, 10

max, 30
min, 31
mises, 41

ones, 32
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plani4e, 103
plani4f, 108
plani4s, 106
plani8e, 109
plani8f, 114
plani8s, 112
planqe, 92
planqs, 94
planre, 95
planrs, 98
plantce, 99
plantcs, 102
plante, 87
plantf, 91
plants, 90
platre, 172
platrs, 175
plot, 227
print, 228

quit, 11

red, 187
ritz, 198

save, 12
scalfact2, 218
scalgraph2, 219
script, 210
secforce2, 220
size, 33
soli8e, 115
soli8f, 120
soli8s, 118
solveq, 188
sparse, 34
spectra, 199
spring1e, 47
spring1s, 48
spy, 35
sqrt, 36
statcon, 189
step1, 200
step2, 202
sum, 37
sweep, 204

text, 229

title, 230
type, 13

what, 14
while, 208
who, 15
whos, 15

xlabel, 231

ylabel, 231

zeros, 38
zlabel, 231
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