
CS3230 Design and Analysis of Algorithms September 14, 2019

Midterm 1

Name: Divesh Aggarwal

Problem 1-1 (Palindrome)

Recall that a palindrome is a string that is the same as its reverse. Any string can be decomposed
into a sequence of palindromes. For example, the string XYXYXY can be broken into palindromes
in the following ways(and some others): XYX + YXY, XYXYX + Y, X + YXYXY, X + YXY +
X + Y, X + Y + X + Y + X + Y. Your task in this problem is to design an efficient algorithm to
find the smallest number of palindromes that make up a given input string A[1 . . . n]. For example,
given the input string XYXYXY, your algorithm would return the integer 2. You do NOT need to
prove correctness or analyze the running time for any of the sub-tasks.

(a) Define a boolean array B[1 . . . n][1 . . . n] as follows: B[i][j] = 1 if and only if either i ≥ j
(trivial case), or i < j and A[i . . . j] is a palindrome. Give a recurrence relation for B[i][j].

Solution:

B[i][j] =

1 , if i ≥ j;

B[i+ 1][j − 1] , if i < j and A[i] = A[j]

0 , otherwise

(b) Assume that you already computed the boolean array B[1 . . . n][1 . . . n] using the recursion
above. Let S[0 . . . n] be an array such that S[0] = 0 and, for i ≥ 1, S[i] is the smallest number
of palindromes that make up the string A[1 . . . i]. Give a recurrence relation to compute S[i]
as a function of S[0 . . . i− 1] and the boolean array B[1 . . . n][1 . . . n].

S[i] =

, if i = 0;

, if i > 0.

Solution:

S[i] =

0, if i = 0;

1 + minj<i : B[j+1][i]=1 S[j], if i > 0.

(c) Given array B as (already computed) input, use part (b) to give pseudocode for the bottom-up
dynamic programming O(n2) algorithm to compute S[0 . . . n], and output S[n].

Solution: Straightforward from the recurrence relation in part (b).

PS1, Page 1

Problem 1-2 (Ski and Skier)

Consider the following problem. The input consists of n skiers with heights p1, . . . , pn, and n skies
with heights s1, . . . , sn. The problem is to assign each skier a ski to minimize the average difference
between the height of a skier and his/her assigned ski. That is, if the i-th skier is given the α(i)-th
ski, then you want to minimize:

1

n

n∑
i=1

|pi − sα(i)| .

We suggest two greedy algorithms to solve this problem. Only one of these algorithms is correct.

Algorithm A: Find the skier and ski whose absolute height difference is smallest. Assign this
skier this ski. Repeat the process until every skier is assigned a ski.

Algorithm B: Give the shortest skier the shortest ski, give the second shortest skier the second
shortest ski, give the third shortest skier the third shortest ski, etc.

(a) Which of the Algorithms A or B is incorrect? Also, give a counter-example for this algorithm
for n = 2 formatted as in below.

Counter-example:

p1 = , p2 = , s1 = , s2 =

Greedy average difference =
1

2
(+) =

Optimal average difference =
1

2
(+) =

Solution: Algorithm A is incorrect. Any example with p1 � s1 < p2 � s2 works.

Counter-example:
p1 = 1, p2 = 7, s1 = 5, s2 = 11

Greedy average difference =
1

2
(2 + 10) = 6

Optimal average difference =
1

2
(4 + 4) = 4

(b) Which of the Algorithms A or B is correct? Convince yourself that the algorithm is correct
for n = 2 (you do not need to prove this), and use this and the local swap argument to prove
the correctness of the algorithm for all n.

Prove that it is correct.

PS1, Page 2

Solution: Algorithm B is correct. We assume the base case that the algorithm is correct
for n = 2. Now, assume that there is an optimal solution that is not found by the greedy
algorithm. Assume that

p1 ≤ p2 ≤ · · · ≤ pn .

Now any solution to the problem corresponds to finding a permutation α : {1, 2, . . . , n} →
{1, 2, . . . , n} of the skis that minimizes the given sum. For any permutation α, we let I(π) be
the number of inversions, i.e., the number of pairs (i, j) such that i < j and sα(i) > sα(j).

Assume that the greedy solution does not give the optimal solution. Then, we consider the
optimal solution α∗ that minimizes the number of inversions. Consider any pair (i, i + 1)
such that α∗(i) > α∗(i + 1). We define a new permutation β such that β(i) = α∗(i + 1),
β(i+ 1) = α∗(i), and β(j) = α∗(j), otherwise. Then, we have the following:

– The permutation β has exactly 1 inversion less than α, i.e., I(β) = I(α∗)− 1.

– By the optimality of the algorithm for n = 2,

1

n

n∑
i=1

|pi − sβ(i)| ≤
1

n

n∑
i=1

|pi − sα∗(i)| .

This contradicts the fact that that α∗ is an optimal solution that minimizes the number of
inversions.

Problem 1-3 (Increment or Divide?)

Consider the following process. At all times you have a single positive integer x, which is initially
equal to 1. In each step, you can either increment x or double x. Your goal is to produce a target
value n. For example, you can produce the integer 10 in four steps as follows:

1
×2−−→ 2

×2−−→ 4
+1−−→ 5

×2−−→ 10

Obviously you can produce any integer n using exactly n − 1 increments. But for almost
all values of n, this is horribly inefficient. Describe an O(log n) time algorithm to compute the
minimum number of steps required to produce any given integer n. You should prove correctness
of your algorithm.

(Hint: Let the binary representation of n (with the leading bit 1) be

n = 1a1a2 . . . a` .

You might want to express the minimum number of steps output by your algorithm in terms of `
and the number of 1s in a1a2 . . . a`.)

Solution: Let the binary representation of n (with the leading bit 1) be

n = 1a1a2 . . . a` .

We claim that the minimum number of steps is ` + k, where k is the number of 1s in a1a2 . . . a`.
We prove this by induction on n.

PS1, Page 3

Clearly, for n = 1, we need 0 steps, for n = 2, we need 1 step, and for n = 3, we need 3 steps,
and so the claim is correct for n ≤ 3. Now, we assume that it is correct for n = 1, 2, 3, . . . ,m− 1,
where m ≥ 4. We now show that it is correct for n = m.

Let m = 1a1a2 . . . a`.
If a` = 1, then the last step must be an increment, and the result follows by induction hypothesis.
If a` = 0, then the last step could be increment or doubling. If the last step is doubling, then

in the previous step, we have m/2 = 1a1a2 . . . a`−1, and by the induction hypothesis the minimum
number of steps required in this case is `+ k, where k is the number of 1s in a1a2 . . . a`.

If the last step is an increment, then the number of steps to obtain m is at least 1 more than
the minimum number of steps to obtain m− 1. We show in this case, that we obtain a suboptimal
solution. If the binary representation of m is of the form 100 . . . 0, then m − 1 = 111 . . . 1 (` 1s),
and hence the number of steps required is at least `− 1 + `− 1 + 1 = 2`− 1, which is larger than
`. Else, m is of the form 1a1 . . . ai−11000 . . . 0, and in this case, the number of steps required to
obtain m− 1 is `+ k+ `− i− 1, and hence the number of steps to obtain m is `+ k+ `− i, which
is suboptimal.

Alternative argument: If the last step is an increment when a` = 0, i.e., n is even, then look for
the last doubling step, which occurs from m/2→ m (where m is even), i.e.,

m/2
×2−−→ m

+1−−→ m+ 1
+1−−→ · · · +1−−→ n ,

Then the total number of steps after m/2 are n−m+ 1. An alternative path from m/2 is

m/2
+1−−→ m/2 + 1

+1−−→ · · · +1−−→ n/2
×2−−→ n ,

which requires a total of n−m
2 + 1 steps, contradicting the optimality of the solution.

Problem 1-4 (Recursive Squaring)

Describe a recursive algorithm that squares any n-digit number in O(nlog3 5) time, by reducing to
squaring only five (n/3 +O(1))-digit numbers.

(Hint: What is (a+ b+ c)2 + (a− b+ c)2? Consider using a2, c2, (a+ b+ c)2, (a− b+ c)2 and
(· · ·)2.)

For partial credit, describe a recursive algorithm that squares any n-digit number in O(nlog3 6)
time, by reducing to squaring only six (n/3 +O(1))-digit numbers.

Solution: Let x be an n-digit number. We write x = a · 102m + b · 10m + c, where m = dn/3e, and
a, b, c < 10m.

Then
x2 = a2 · 104m + 2ab · 103m + (b2 + 2ac) · 102m + 2bc · 10m + c2 .

Now, it is easy to see that if we have a2, b2, c2, (a+ b)2, (b+ c)2, (c+ a)2, then we get each of 2ab,
2bc, and 2ca, and so we can easily reduce the problem to squaring six (n/3 +O(1))-digit numbers.

For reducing to squaring five numbers, we need to work a little more. Using the hint, consider
four of the squares to be a2, c2, (a+ b+ c)2, (a− b+ c)2. Then,

(a+ b+ c)2 + (a− b+ c)2 − 2a2 − 2c2 = 2(b2 + 2ac) ,

PS1, Page 4

and
(a+ b+ c)2 − a2 − c2 − (b2 + 2ac) = 2ab+ 2bc ,

which means that using the given four squares, we can compute a2, c2, b2 + 2ac, and ab+ bc. We
want another equation in ab and bc in order to get their individual values.

Let the fifth square be (αa+ βb+ γc)2. We have

(αa+ βb+ γc)2 − α2a2 − γ2c2 − β2(b2 − 2ac) = 2(αγ − β2)ac+ 2αβab+ 2βγbc .

So, to get another different equation in ab and bc, we need to get rid of the ac term, which happens
if αγ = β2, and we want αβ 6= γβ, which implies α 6= γ.

So any α, β, γ satisfying the above will work. In particular, we can choose the fifth square to
be (a+ 2b+ 4c)2, and then

(a+ 2b+ 4c)2 − a2 − 16c2 − 4(b2 + 2ac) = 4ab+ 16bc ,

and thus we can compute the value of ab and bc. The number of digits in a + 2b + 4c is at most
dn/3e+ 1 ≤ n/3 + 2, and we obtain the following recurrence.

T (n) ≤ 5T (n/3 + 2) +O(n) ,

where O(n) is the time taken for the required additions and subtractions. Let S(n) = T (n + 3).
Then, we have that

S(n) = T (n+ 3) ≤ 5T ((n+ 3)/3 + 2) +O(n) = 5T (n/3 + 3) +O(n) = 5S(n/3) +O(n) .

Using the recursion tree method, or the masters method gives the desired running time for the
algorithm.

PS1, Page 5

