Chapter 3
Dynamic Programming

Divesh Aggarwal
School of Computing
Department of Computer Science

National University
of Singapore

TN US
9

Backtracking Algorithm for
Fibonacci Sequence

Suppose we want to compute F, given by the following recurrence

0 ifn=0
F,=11 if n=1
| Fn1+Fro otherwise

RecFiBo(n):
ifn=0
return O
elseifn=1
return 1
else
return REcFiBo(n — 1) + REcFiBo(n — 2)

Backtracking can be slow

T0) =1, T(D)=1 Tm) =Twn-1)+ T(n-2) + 1

I(n) > 2 T(n-2)
> 22 T(n-4)

> 2n/2 T(O) — 2n/2

Can we speed up this algorithm?

TANUS
95

National University
of Singapore

Backtracking algorithm repeats
computation

Figure 3.1. The recursion tree for computing F; arrows represent recursive calls.

National University
of Singapore

TANUS
95

Backtracking algorithm repeats
computation

The obvious reason for the recursive algorithm’s lack of speed is that it com-
putes the same Fibonacci numbers over and over and over. A single call to
RecF1Bo(n) results in one recursive call to REcFiBo(n — 1), two recursive calls
to REcF1Bo(n — 2), three recursive calls to REcFiBo(n — 3), five recursive calls
to REcFiBo(n —4), and in general F,_; recursive calls to REcFiBo(n — k) for

any integer 0 < k < n. Each call is recomputing some Fibonacci number from
scratch.

. . EBNUS
Memo(r)ization: Remember everything 9%z

This optimization technique, now known as memoization (yes, without an R), is
usually credited to Donald Michie in 1967, but essentially the same technique
was proposed in 1959 by Arthur Samuel.>

MEeMF1Bo(n):

ifn=0
return 0

elseifn=1
return 1

else
if F[n] is undefined

F[n] « MEmMFIBo(n— 1) + MEMFIBO(Nn — 2)

return F[n]

Why memoization without an “r”?

TANUS
95

National University
of Singapore

Memoization trims the recursion tree

\JAJA B
0[1/1[2]3[5]|8(13

Figure 3.2. Therecursiontree for F, trimmed by memoization. Downward green arrows indicate writing
into the memoization array; upward red arrows indicate reading from the memoization array.

National University
of Singapore

TANUS
95

Dynamic Programming: Fill
Deliberately

Once we see how the array F|[] is filled, we can replace the memoized recurrence
with a simple for-loop that intentionally fills the array in that order, instead of

relying on a more complicated recursive algorithm to do it for us accidentally.

ITERFIBO(N):
F[0] <O
F[1]«1
forie—2ton
Fli]« F[i—1]+F[i—2]
return F[n]

Now the time analysis is immediate: ITERFIBO clearly uses O(n) additions and
stores O(n) integers.

This is our first explicit dynamic programming algorithm.

TANUS
95

National University
of Singapore

Example: Text Segmentation

For our next dynamic programming algorithm, let’s consider the text segmentation
problem from the previous chapter. We are given a string A[1, ..., n], and we want
to know whether A can be partitioned into a sequence of words.

We solved this problem by defining a function Splittable(i) that returns TRUE
if and only if the suffix A[i..n] can be partitioned into a sequence of words. We
need to compute Splittable(1). This function satisfies the recurrence

rTRUE ifi>n

Splittable(i) = { »
P ()= V (IsWord(i, j) A Splittable(j + 1)) otherwise
\J=1

where IsWord(i, j) is shorthand for IsWord(A[i .. j]). This recurrence translates
directly into a recursive backtracking algorithm that calls the ISWorD subroutine
O(2") times in the worst case.

National University
of Singapore

TANUS
95

Backtracking repeats computation

But for any fixed string A[1..n], there are only n different ways to call
the recursive function Splittable(i)—one for each value of i between 1 and
n + 1—and only O(n?) different ways to call IsWorb(i, j)—one for each pair
(i,j) such that 1 <i < j < n. Why are we spending exponential time computing
only a polynomial amount of stuff?

Dynamic Programming solution

FASTSPLITTABLE(A[1..n]):
SplitTable[n + 1] « TRUE

fori «—ndowntol
SplitTable[i] <« FALSE

forje—iton
if IsWorbD(i, j) and SplitTable[j + 1]
SplitTable[i] « TRUE

return SplitTable[1]

Figure 3.3. Interpunctio verborum velox

T(n) = O(n?) calls to ISWORD

National University
of Singapore

TANUS
95

Dynamic programming is not about filling in tables.
It's about smart recursion!

Dynamic programming algorithms are best developed in two distinct stages.

1. Formulate the problem recursively.

2. Build solutions to your recurrence from the bottom up.

! B ®
Greed is almost never good NUS

of Singapore

If we’re incredibly lucky, we can bypass all the recurrences and tables and so forth, and solve the
problem using a greedy algorithm.

Greedy algorithm looks at only one branch of the recursion tree

For example, a greedy algorithm for the text segmentation problem might find the shortest (or, if
you prefer, longest) prefix of the input string that is a word, accept that prefix as the first word in
the segmentation, and then recursively segment the remaining suffix of the input string

Similarly, a greedy algorithm for the longest increasing subsequence problem might look for the
smallest element of the input array, accept that element as the start of the target subsequence, and
then recursively look for the longest increasing subsequence to the right of that element.

If these sound like stupid hacks to you, pat yourself on the back; these
aren’t even close to correct solutions.

Greed is not good

Greedy algorithms never work!
Use dynamic programming instead!

What, never?

No, never!

What, never?

Well. . . hardly ever.’®

Whenever you write—or even think—the word “greeDY”,
your subconscious is telling you to use DYnamic programming.

National University
of Singapore

Longest increasing subsequence NUS

Another problem we considered in the previous chapter was computing the
length of the longest increasing subsequence of a given array A[1 .. n] of numbers.
We developed two different recursive backtracking algorithms for this problem.
Both algorithms run in O(2") time in the worst case; both algorithms can be
sped up significantly via dynamic programming.

31415926535'8?97932384626

National University
of Singapore

TANUS
95

We saw the following..

So we can reformulate our recursive problem as follows:

Given two indices i and j, where i < j, find the longest increasing
subsequence of A[j..n] in which every element is larger than A[i].

Let LISbigger(i, j) denote the length of the longest increasing subsequence of
A[j..n] in which every element is larger than A[i]. Our recursive strategy gives
us the following recurrence:

(0 if j>n
LISbigger(i,j+ 1) if A[i] = A[j]

LISbigger(i,j+ 1)
max .
\ 1+ LISbigger(j,j+ 1)

LISbigger(i,j) = 4

} otherwise

The backtracking algorithm

LISBIGGER(i, j):
if j>n
return 0
else if A[i] > A[j]
return LISBIGGER(i, j + 1)

else
skip « LISBIGGER(i,j + 1)
take < LISBIGGER(j,j+ 1)+ 1
return max{skip, take}

National University
of Singapore

TANUS
95

Finally, we connected our recursive strategy
to the original problem: Finding the longest
increasing subsequence of an array with no
other constraints.

LIS(A[1..n]):
A[0] « —o0
return LISBIGGER(O, 1)

Running time: T(n) =2T(n-1) + 1, which as usual implies that T(n) = O(2").

TANUS
95

National University
of Singapore

Dynamic Programming

Each recursive subproblem is identified by two indices i and j, so there are
only O(n?) distinct recursive subproblems to consider. We can memoize the re-
sults of these subproblems into a two-dimensional array LISbigger[0..n,1..n]."?
Moreover, each subproblem can be solved in O(1) time, not counting recursive
calls, so we should expect the final dynamic programming algorithm to run in
0(n?2) time.

The order in which the memoized recursive algorithm fills this array is

not immediately clear; all we can tell from the recurrence is that each entry
LISbigger][i, j] is filled in after the entries LISbigger[i, j+ 1] and LISbigger[j, j+1]

Fortunately, this partial information is enough to give us a valid evaluation

Dynamic Programming Solution =BANUS

National University
of Singapore

Figure 3.4. Subproblem dependencies for longest increasing subsequence, and a valid evaluation order

FASTLIS(A[1..n]):
A[0] « —o00 ((Add a sentinel))

fori—Oton {(Base cases))
LISbigger[i,n+ 1]« 0
for j e ndownto 1
forie—0toj—1 (... or whatever))
keep «— 1 + LISbigger[j,j+ 1]
skip < LISbigger[i,j+ 1]
if A[i] > A[j]
LISbigger|[i, j] « skip
else
LISbigger[i, j] « max{keep, skip}
return LISbigger[0, 1]

Example: Edit Distance =RINUS

National University
of Singapore

The edit distance between two strings is the minimum number of letter inser-
tions, letter deletions, and letter substitutions required to transform one string

into the other. For example, the edit distance between FOOD and MONEY is at
most four:

FOOD — MOOD — MOND — MONED — MONEY

This distance function was independently proposed by Vladimir Levenshtein in
1965 (working on coding theory), Taras Vintsyuk in 1968 (working on speech
recognition), and Stanislaw Ulam in 1972 (working with biological sequences).

For this reason, edit distance is sometimes called Levenshtein distance or Ulam
distance (but strangely, never “Vintsyuk distance”).

Example: Edit Distance

95

Unfortunately, 1t’s not so easy in general to tell when a sequence of edits 1s as
short as possible. For example, the following alignment shows that the
distance between the strings ALGORITHM and ALTRUISTIC 1s at most 6. Is
that the best we can do?

Recursive substructure {'E

Suppose we have the gap representation for the shortest edit sequence for
two strings.
If we remove the last column, the remaining columns must represent the

shortest edit sequence for the remaining prefixes.
We can easily prove this observation by contradiction: If the prefixes had a

shorter edit sequence, gluing the last column back on would gives us a
shorter edit sequence for the original strings.

So once we figure out what should happen in the last column, the
Recursion can figure out the rest of the optimal gap representation.

Recurrence

Edit(i, j—1) + 1
Edit(i—1,j) +1 b otherwise

Edit(i—1,j—1) +[Ali] # B[j]1])

National University
of Singapore

Dynamic Programming NUS
* Dependencies: Each entry Edit[i, j] depends only on its three neighboring
entries Edit[i — 1, j], Edit[i,j — 1], and Edit[i—1,j —1].

» Evaluation order: If we fill this array in standard row-major order—row by
row from top down, each row from left to right—then whenever we reach an
entry in the array, all the entries it depends on are already available. (This
isn’t the only evaluation order we could use, but it works, so let’s go with it.)

e

The Algorithm

EDITDISTANCE(A[1..m],B[1..n]):
forje<Oton
Edit[0,j] « j
forie—1tom
Edit[i,0] « i
forje—1ton
ins « Edit[i,j—1]+1
del — Edit[i—1,j]+1
if A[i] = B[]
rep « Edit[i—1,j—1]
else
rep « Edit[i—1,j—1]+1
Edit(i, j] « min {ins, del, rep}

return Edit[m, n]

Space/Time Complexity: O(mn)

Subset Sum W

SS(i, t) = TrRuE if and only if some subset of X[i..n] sums to t.

We need to compute SS(1, T). This function satisfies the following recurrence:

rTRUI»: ift=0
SS(i,t) = { FALSE ift<Qori>n
LSS(i +1,t) V SS(i+1,t—X[i]) otherwise

For Dynamic programming, we want to avoid recursing on t < 0

(TRUE ift=0
FALSE ifi>n
SS(i+1,t) if t < X[i]
|SS(i+1,t) vV SS(i+1,t—X[i]) otherwise

SS(i,t) = <

Subset Sum W

* Data structure: We can memoize our recurrence into a two-dimensional
array S[1..n+1,0..T], where S[i, t] stores the value of SS(i, t).

Evaluation order: Each entry S[i, t] depends on at most two other entries,
both of the form SS[i + 1,:]. So we can fill the array by considering rows

from bottom to top in the outer loop, and considering the elements in each
row in arbitrary order in the inner loop.

Space and time: The memoization structure uses O(nT) space. If S[i+1, t]
and S[i+1,t—X[i]] are already known, we can compute S[i, t] in constant
time, so the algorithm runs in O(nT) time.

The Algorithm

FAsTSUBSETSUM(X[1..n], T):

S[n+1,0]

Sn+

S[i,0.

«— TRUE

forte—1toT

1,t] « FALSE

for i «< n downto 1

= TRUE

fort —1toX[i]—1

S

i,t] < S[i+1,t]

fort « X[i]to T
Sli,t]«<S[i+1,t]VvS[i+1,t—X[i]]

return S[1, T]

((Avoid the case t < 0))

National University
of Singapore

Optimal Binary Search Trees % NUS_

Fix the frequency array f, and let OptCost(i, k) denote the total search time
in the optimal search tree for the subarray A[i..k]. We derived the following
recurrence for the function OptCost:

ifi >k

OptCost(i, k) = 1 . . | OptCost(i,r — 1)
+ OptCost(r + 1, k)

} otherwise

For any pair of indices i < k, let F(i, k) denote the total frequency count for
all the keys in the interval A[i .. k]:

k
F(i,k):=) f[j]
j=i

The function F(i,k)

This function satisfies the following simple recurrence:

fli] ifi=k
F(i,k—1)+ f[k] otherwise

r = |

We can compute all possible values of F(i, k) in O(n?) time using—you guessed
it'—dynamic programming! The usual mechanical steps give us the following
dynamic programming algorithm:

INITE(f[1..n]):
forie—1ton
Fli,i—1]« 0
forke—iton
Fli,k] « F[i,k—1]+ f[k]

Back to Optimal Binary Search Trees % NUS

of Singapore

We will use this short algorithm as an initialization subroutine. This initialization

allows us to simplify

OptCost(i, k) = {

the original OptCost recurrence as follows:
(0 if i > k

F[i,k]+ min

OptCost(i,r — 1)
+ OptCost(r + 1,k)

} otherwise

L i<r<k

 Dependencies: Each entry OptCost[i, k] depends on the entries OptCost| i,
j— 1] and OptCost[j + 1, k], for all j such thati < j < k. In other words,
each table entry depends on all entries either directly to the left or directly

below.

National University
of Singapore

Computing Optimal Cost % NUS_

The following subroutine fills the entry OptCost{ i, k], assuming all the
entries it depends on have already been computed.

CompUuTEOPTCOST(i, k):
OptCost[i, k] « oo
forr —itok
tmp « OptCost[i,r — 1]+ OptCost[r + 1, k]
if OptCost[i, k] > tmp
OptCost[i, k] « tmp
OptCost[i, k] « OptCost[i, k] + F[i, k]

Evaluation order: There are at least three different orders that can be
used to fill the array. The first one that occurs to most students is to scan
through the table one diagonal at a time, starting with the trivial base cases
OptCost[i,i — 1] and working toward the final answer OptCost[1, n], like so:

National University
of Singapore

Dynamic Programming Algorithms(s) % NUS

OpTIMALBST(f[1..n]):
INITF(f[1..n])
forie—1lton+1
OptCost[i,i—1] « 0
ford —0Oton—1
fori —~1ton—d ((...or whatever))
CompUTEOPTCOST(i,i +d)
return OptCost[1,n]

We could also traverse the array row by row from the bottom up, traversing
each row from left to right, or column by column from left to right, traversing
each columns from the bottom up.

National University
of Singapore

Dynamic Programming Algorithms(s) % NUS

OpTIMALBST2(f[1..n]):
INITF(f[1..n])
fori «n+1 downto 1
OptCost[i,i —1] « 0
forje—iton
CompUuTEOPTCOST(1, j)
return OptCost[1,n]

OpTIMALBST3(f[1..n]):
INITF(f[1..n])
forj<—Oton+1

OptCost[j+1,j]1« 0
for i « j downto 1
CompuTEOPTCOST(1, j)
return OptCost[1, n]

National University
of Singapore

Time and Space Complexity % NUS

* Time and space: The memoization structure uses O(n?) space. No matter
which evaluation order we choose, we need O(n) time to compute each
entry OptCost{i, k], so our overall algorithm runs in O(n3) time.

TANUS

Maximum Independent Set in a Tree W

of Singapore

For any node v in T, let MIS(v) denote the size of the largest independent set
in the subtree rooted at v. Any independent set in this subtree that excludes v
itself is the union of independent sets in the subtrees rooted at the children of v.
On the other hand, any independent set that includes v necessarily excludes all

of v’s children, and therefore includes independent sets in the subtrees rooted
at v’s grandchildren. Thus, the function MIS obeys the following recurrence,
where the nonstandard notation w | v means “w is a child of v”:

National University
of Singapore

Maximum Independent Set in a Tree % NUS

MIS(v) = max {ZMIS(W), 1+ > MIS(x)

wlv wlv xlw

We need to compute MIS(r), where r is the root of T.

Figure 3.5. Computing the maximum independent set in a tree

National University
of Singapore

How to Memoize? % NUS

What data structure should we use to memoize this recurrence? The most
natural choice is the tree T itself! Specifically, for each vertex v in T, we store
the result of MIS(v) in a new field v.MIS. (In principle, we could use an array
instead, but then we’d need pointers back and forth between each node and its
corresponding array entry, so why bother?)

What’s a good order to consider the subproblems? The subproblem associ-
ated with any node v depends on the subproblems associated with the children
and grandchildren of v. So we can visit the nodes in any order we like, provided
that every vertex is visited before its parent; in particular, we can use a standard
post-order traversal.

. . . & @
Dynamic Programming Algorithms Qj) NUS

Here is the resulting dynamic programming algorithm. Yes, it's still recursive,
because that’s the most natural way to implement a post-order tree traversal.

TREeMIS(v):

skipy «— 0
for each child w of v

skipv «— skipv + TREEMIS(w)
keepv « 1
for each grandchild x of v

keepv « keepv + x. MIS
v.MIS « max{keepv, skipv}
return v. MIS

What’s the running time of the algorithm? The non-recursive time associated with each node
v 1s proportional to the number of children and grandchildren of v; this is hard to analyze.

But we can turn the analysis around: Each vertex contributes a constant amount of time to
its parent and its grandparent! Because each vertex has at most one parent and at most one
grandparent, the algorithm runs in O(n) time.

