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Backtracking Algorithm for 
Fibonacci Sequence
Suppose we want to compute   Fn given by the following recurrence



Backtracking can be slow

T(n) > 2 T(n-2)
> 22 T(n-4)
.
.
.
> 2n/2 T(0) = 2n/2

T(0) = 1,   T(1) = 1,   T(n) = T(n-1) + T(n-2) + 1 

Can we speed up this algorithm?



Backtracking algorithm repeats 
computation



Backtracking algorithm repeats 
computation



Memo(r)ization: Remember everything 

Why memoization without an “r”? 



Memoization trims the recursion tree



Dynamic Programming: Fill 
Deliberately



Example: Text Segmentation
For our next dynamic programming algorithm, let’s consider the text segmentation 
problem from the previous chapter. We are given a string A[1, …,  n] , and we want 
to know whether A can be partitioned into a sequence of words.



Backtracking repeats computation



Dynamic Programming solution

T(n) = O(n2) calls to ISWORD





Greed is almost never good 

• If we’re incredibly lucky, we can bypass all the recurrences and tables and so forth, and solve the 
problem using a greedy algorithm.

• Greedy algorithm looks at only one branch of the recursion tree

• For example, a greedy algorithm for the text segmentation problem might find the shortest (or, if 
you prefer, longest) prefix of the input string that is a word, accept that prefix as the first word in 
the segmentation, and then recursively segment the remaining suffix of the input string

• Similarly, a greedy algorithm for the longest increasing subsequence problem might look for the 
smallest element of the input array, accept that element as the start of the target subsequence, and 
then recursively look for the longest increasing subsequence to the right of that element.

If these sound like stupid hacks to you, pat yourself on the back; these 
aren’t even close to correct solutions.



Greed is not good



Longest increasing subsequence



We saw the following..



The backtracking algorithm

Finally, we connected our recursive strategy 
to the original problem: Finding the longest 
increasing subsequence of an array with no 
other constraints.

Running time: T(n) = 2T(n-1) + 1, which as usual implies that T(n) = O(2n). 



Dynamic Programming



Dynamic Programming Solution



Example: Edit Distance



Example: Edit Distance

Unfortunately, it’s not so easy in general to tell when a sequence of edits is as 
short as possible. For example, the following alignment shows that the 
distance between the strings ALGORITHM and ALTRUISTIC is at most 6. Is 
that the best we can do?



Recursive substructure

• Suppose we have the gap representation for the shortest edit sequence for 
two strings. 

• If we remove the last column, the remaining columns must represent the 
shortest edit sequence for the remaining prefixes. 

• We can easily prove this observation by contradiction: If the prefixes had a 
shorter edit sequence, gluing the last column back on would gives us a 
shorter edit sequence for the original strings. 

• So once we figure out what should happen in the last column, the 
Recursion can figure out the rest of the optimal gap representation.



Recurrence



Dynamic Programming



The Algorithm

Space/Time Complexity: O(mn)



Subset Sum

For Dynamic programming, we want to avoid recursing on t < 0



Subset Sum



The Algorithm



Optimal Binary Search Trees



The function F(i,k) 



Back to Optimal Binary Search Trees



Computing Optimal Cost



Dynamic Programming Algorithms(s)



Dynamic Programming Algorithms(s)



Time and Space Complexity



Maximum Independent Set in a Tree



Maximum Independent Set in a Tree



How to Memoize?



Dynamic Programming Algorithms

What’s the running time of the algorithm? The non-recursive time associated with each node 
v is proportional to the number of children and grandchildren of v; this is hard to analyze. 

But we can turn the analysis around: Each vertex contributes a constant amount of time to 
its parent and its grandparent! Because each vertex has at most one parent and at most one 
grandparent, the algorithm runs in O(n) time.


