
Chapter 3
Dynamic Programming

Divesh Aggarwal
School of Computing

Department of Computer Science

Backtracking Algorithm for
Fibonacci Sequence
Suppose we want to compute Fn given by the following recurrence

Backtracking can be slow

T(n) > 2 T(n-2)
> 22 T(n-4)
.
.
.
> 2n/2 T(0) = 2n/2

T(0) = 1, T(1) = 1, T(n) = T(n-1) + T(n-2) + 1

Can we speed up this algorithm?

Backtracking algorithm repeats
computation

Backtracking algorithm repeats
computation

Memo(r)ization: Remember everything

Why memoization without an “r”?

Memoization trims the recursion tree

Dynamic Programming: Fill
Deliberately

Example: Text Segmentation
For our next dynamic programming algorithm, let’s consider the text segmentation
problem from the previous chapter. We are given a string A[1, …, n] , and we want
to know whether A can be partitioned into a sequence of words.

Backtracking repeats computation

Dynamic Programming solution

T(n) = O(n2) calls to ISWORD

Greed is almost never good

• If we’re incredibly lucky, we can bypass all the recurrences and tables and so forth, and solve the
problem using a greedy algorithm.

• Greedy algorithm looks at only one branch of the recursion tree

• For example, a greedy algorithm for the text segmentation problem might find the shortest (or, if
you prefer, longest) prefix of the input string that is a word, accept that prefix as the first word in
the segmentation, and then recursively segment the remaining suffix of the input string

• Similarly, a greedy algorithm for the longest increasing subsequence problem might look for the
smallest element of the input array, accept that element as the start of the target subsequence, and
then recursively look for the longest increasing subsequence to the right of that element.

If these sound like stupid hacks to you, pat yourself on the back; these
aren’t even close to correct solutions.

Greed is not good

Longest increasing subsequence

We saw the following..

The backtracking algorithm

Finally, we connected our recursive strategy
to the original problem: Finding the longest
increasing subsequence of an array with no
other constraints.

Running time: T(n) = 2T(n-1) + 1, which as usual implies that T(n) = O(2n).

Dynamic Programming

Dynamic Programming Solution

Example: Edit Distance

Example: Edit Distance

Unfortunately, it’s not so easy in general to tell when a sequence of edits is as
short as possible. For example, the following alignment shows that the
distance between the strings ALGORITHM and ALTRUISTIC is at most 6. Is
that the best we can do?

Recursive substructure

• Suppose we have the gap representation for the shortest edit sequence for
two strings.

• If we remove the last column, the remaining columns must represent the
shortest edit sequence for the remaining prefixes.

• We can easily prove this observation by contradiction: If the prefixes had a
shorter edit sequence, gluing the last column back on would gives us a
shorter edit sequence for the original strings.

• So once we figure out what should happen in the last column, the
Recursion can figure out the rest of the optimal gap representation.

Recurrence

Dynamic Programming

The Algorithm

Space/Time Complexity: O(mn)

Subset Sum

For Dynamic programming, we want to avoid recursing on t < 0

Subset Sum

The Algorithm

Optimal Binary Search Trees

The function F(i,k)

Back to Optimal Binary Search Trees

Computing Optimal Cost

Dynamic Programming Algorithms(s)

Dynamic Programming Algorithms(s)

Time and Space Complexity

Maximum Independent Set in a Tree

Maximum Independent Set in a Tree

How to Memoize?

Dynamic Programming Algorithms

What’s the running time of the algorithm? The non-recursive time associated with each node
v is proportional to the number of children and grandchildren of v; this is hard to analyze.

But we can turn the analysis around: Each vertex contributes a constant amount of time to
its parent and its grandparent! Because each vertex has at most one parent and at most one
grandparent, the algorithm runs in O(n) time.

