VLC on Android Testsuite

Basic Information

Name: Shivansh Saini

Major: Computer Science and Engineering

Degree: Bachelor of Technology

Year: Sophomore

Institute: Indian Institute of Technology (BHU), Varanasi

Github: shivanshs9

IRC: TheFaker

Email Address: shivansh.saini.cse17@iitbhu.ac.in

Postal Address: A-1854 (Second floor), Greenfield Colony, Faridabad, Haryana, India - 121003
Phone number: (+91) 9717477205

CV: https://drive.google.com/file/d/1J1za3wGcVI3QTbQhZ4FMk9CmHNsDVxQZ/view
Timezone: Indian Standard Time (UTC +5:30)

Project

Abstract

This project aims to contribute to the stability of the Android port of VLC, by writing test suites for
the VLC user interface and the libVic port for Android. Writing tests ensures that developers
catch the regressions at an early stage and the deployed application stays stable.

Motivation

For every new piece of code written in any big project, like VLC on Android, the chances are
that old things may break and new features may have some bugs. These could lead to
instability of the otherwise working system, and hence detrimental for the software and its end
users. Moreover, amidst the planned release cycles, it’s vital for developers to move forward
with their code without getting pushed back by bugs.

Hence, it’s vital to write automated tests to:

e Test each component of the application or unit of code individually - called “Unit Test”.

e Test together multiple components at the same time - called “Integration Test”.

e Test the entire application, just as an end user would - called “Functional Test”.
Moreover, there’s another benefit of writing functional tests which are usually underappreciated -
they provide documentation of what the code is supposed to do. That’'s why, | believe that the
“Behavior-Driven Development” would greatly help the new developers to work on their ideas

https://github.com/shivanshs9
mailto:shivansh.saini.cse17@iitbhu.ac.in
https://drive.google.com/file/d/1Jlza3wGcVI3QTbQhZ4FMk9CmHnsDVxQZ/view

for the VLC application considering the rest of the code just like a Black box, that is being
unaware of the internal workings of the rest of the application.

Why VideoLAN?

I am only applying for VideoLAN organisation for GSoC’ 19 and have no plans either to invest in
other organisations for this summer. The VLC media player was the first open source software |
used, at the time when | didn’t even know the meaning of open source. | got motivated by the
journey VideoLAN has gone through from the VLC media player we all know and love. However,
mostly, | got a drive to get involved in this organization when the president of VideoLAN,
Jean-Baptiste Kempf, came to our institute during Technex 2018 edition.

His think talk was really inspiring for me and drove me to contribute to open source. Just as he
said, “Keep doing it”, I'll be contributing to the projects for VideoLAN as much as | can.

Proposed Deliverables

1. Write test suites around libVLC and medialibrary on Android, so that the core framework

stays stable.

Write test suites for the application’s interface to ensure the correct behaviours of Ul

views.

Write integrated tests around the main playback components.

Write functional tests to test the overall application, just like a user would.

Aim to maximise test coverage of libVIc and vic-android.

Run the written tests at least once per day with the latest master code on the gitlab

platform, so that no regressions miss.

7. Write documentation for the libVic code, so that the new developers can understand the
project faster.

N

ook w

Plan of Action

| believe that tests can very well explain the intention of the programmer for a piece of code,
better than comments can do. That's why | plan to follow the so-called Behavior-driven
development (BDD) approach for writing tests. In this approach, more focus is placed on
testing behaviour, rather than implementation. When writing tests for Black Box Testing, the
tester isn't aware of implementation details. In contrast, White Box Testing implies that the test
is aware of the internal workings of the code.

I'll write Unit Tests for the core classes to test that their methods work as expected, regardless
of their implementation. Since the focus is only on one element (our System under Test or

SUT) in isolation, its dependencies are faked, so our tests do not rely on them. So, these are
Test Doubles; a pretend object used in place of a real object (Nice article).

For cases where we’re just concerned with state verification, it’s preferred to use Stubs,
whereas, for behaviour verification, it's preferred to use Mocks. After understanding the VLC
codebase, the best approach to write tests without many side-effects would be to use mocks, as
expected from BDD approach. So, I'll be writing unit tests as a mockist BDD practitioner. | also
got inspiration from this article.

Going up the Testing Pyramid (for Android), I'll write Integration Tests to test several classes
together by checking how they behave. These include testing with the Android Framework as a
Runtime environment (without the complexity of Ul framework) and runs respectively for
different SDK versions, to ensure the tests pass for all the supported Android versions. In these
tests, test doubles would be awkward elements or those elements which we can’t control.

Both Unit and Integrations Tests can be run very frequently on a Cl server with every new
commit. Hence they are perfect for catching regressions without slowing down the development
time. These tests are also quite reliable because they aren’t affected by side-effects from
hardware or network issues.

Finally, Functional Tests are the most complex and can only be run once a day (Training
article). These are very critical to test the common workflows and involve the complete stack,
like network, Ul and logic layers. Hence, these tests are highly unreliable and slow to execute.

Test Coverage is the key metric in today’s competitive market for a quality product. Higher the
percentage more likely is it for the software to be less prone to regressions. However, it's been
proven many times that code coverage is not the best indicator for test strength and
thoroughness. That’s why | wish to later focus on Mutation Testing as the key index for the test
strength (Nice article and Proof of Concept).

Due to time constraints, | may not be able to work on it during the summer. But, | wish to work
on it even after the GSoC period is over.

Timeline

Community Bonding Period May 6 - 27

I will discuss the project in further detail with the mentor. | will also get more acquainted with the
codebase, especially the Playback controls and VLCVideoLayout. I'll try to fix some issues to
get ideas on the priority of the classes to test. | will try and experiment more with the currently
proposed idea to write tests, with inputs from the other developers. The optional parts, like
Coveralls and fastlane, would especially be discussed with the mentor.

https://martinfowler.com/articles/mocksArentStubs.html
https://www.activecampaign.com/blog/seven-principles-great-unit-tests-android/
https://medium.com/android-testing-daily/the-3-tiers-of-the-android-test-pyramid-c1211b359acd
https://developer.android.com/training/testing/fundamentals#large-tests
https://developer.android.com/training/testing/fundamentals#large-tests
https://medium.com/appsflyer/tests-coverage-is-dead-long-live-mutation-testing-7fd61020330e
https://www.android-dev-tools.com/mdroid

Week 1 May 28 - June 3

This period would be spent on setting up the utility methods for creation of fake Media objects
and to write the exact list of native method calls which would be stubbed with our test data.

Weeks 2 & 3 June 4 -17

I'll write unit tests for the mentioned classes in LibVLC and MedialLibrary. While writing these, I'll
stub the parts which require actual hardware support, like shared libraries and VLCObiject
events. So, in this period, I'll have completely filtered out the Android components and the
native components.

Week 4 & 5 June 18 - July 1

I'll write unit tests for the media, providers and viewmodels packages of the vic-android app. By
the end of this period, more than half of unit tests would be done. Also, I'll update the
configuration file for Gitlab Cl with a new job to run the written tests and to generate the artefact
reports.

Week 6 & 7 July 2 - 15

I'll wrap up the remaining unit tests and complete the integration tests. I'll also start
experimenting the above-mentioned ways for automated running of instrumentation tests.

Week 8 & 9 July 16 - 29

I'll also discuss with the mentor for the exact flows to automate for functional tests. I'll start
recording the essential interactions with the app and test locally. Meanwhile, I'll also plan out
with the mentor on how exactly the actual media files can be stored to be used in emulator for
functional tests.

Week 10 & 11 July 30 - August 13

I'll focus on finishing the instrumentation test scenarios with actual sample media files.
Meanwhile, I'll work on a script to run multiple emulators for testing with sample media files
pushed. I'll update the gitlab CI configuration file with different jobs for each device variant.

Ultimate Week August 14 - 19

For the final week, I'll work on test coverage reports and cleanup of my final submission. I'll also
analyse the written tests and their implementation in Cl, and discuss with the mentor on what
more things could’ve been done to make it better.

Detailed Plan and Implementation

Required Dependencies:

e JUnit4 (EPL-1.0 License)
Mockito (MIT License)
PowerMock (Apache-2.0 License)
Robolectric (MIT License)
kotlinx-coroutines-test (Apache-2.0 License)
androidx.test APIs
Espresso (Apache-2.0 License)
livedata-testing (Apache-2.0 License)
JaCoCo (EPL-1.0 License)

e JaCoCo gradle plugin
Optional Dependencies:
fastlane (MIT License)
automated-test-emulator-run (MIT License)

Coveralls-gradle-plugin (MIT License)
Coveralls (free for open source projects)

Unit tests

While it would be nice to switch to JUnit5 for the Test Suites, it's currently impossible due to lack
of official support in Android (lssue). So for now, | will write tests in JUnit4 testing framework.
For test doubles, I'll go by mock approach and use Mockito as the Mocking framework for our
unit tests. Its verification syntax is neat and so can be used to write readable tests. Moreover,
using mocks should make testing multithreaded code simpler by mocking the concurrent jobs
and writing tests synchronously. This ensures the reliability of the tests.

To enable mocking of static methods in some awkward situations, PowerMock is used. It allows
easy access to internal state by manipulation of bytecode and custom classloader. Moreover, it
has extensions over existing mocking frameworks, including Mockito, leading to similar syntax.
This allows me enough flexibility to not change the design of rest of the code while writing good
tests.

To test LiveData, livedata-testing library is used to model real code usage. It has a fluent API
of assertions - a necessity when writing good tests. With it, | can write tests as pure JUnit tests
leading to fast execution.

Unfortunately, checking the app codebase, there are lots of dependencies on Android as a
library (like TextUTtil, Uri). In these cases, we don’t need to access Android as a Runtime
environment, yet our unit tests fail because of the default stub implementation of Android
framework (Google issue). Besides mocking every Android code, we could run our test on
Robolectric test runner. However, that’s a very slow approach because of setting up Application
and Resources which are unneeded here.

https://junit.org/junit4/
https://site.mockito.org/
http://powermock.github.io/
http://robolectric.org/
https://github.com/Kotlin/kotlinx.coroutines/tree/master/kotlinx-coroutines-test
https://developer.android.com/reference/androidx/test/packages
https://github.com/jraska/livedata-testing
http://www.eclemma.org/jacoco/
https://docs.gradle.org/current/userguide/jacoco_plugin.html
https://fastlane.tools/
https://github.com/AzimoLabs/fastlane-plugin-automated-test-emulator-run
https://github.com/kt3k/coveralls-gradle-plugin
https://coveralls.io/
https://github.com/android/android-test/issues/224
https://issuetracker.google.com/issues/37020797

According to this suggestion, | could use either unmock-plugin or a custom
RobolectricTestRunner class. Testing both approaches, | did a small benchmark and had
almost the same results:

With RoboLiteTestRunner class (491ms):

RoboLiteTestRunner(cls: Class<*>): RobolectricTestRunner(cls) {
beforeTest(sandbox: Sandbox?, method: FrameworkMethod?,
bootstrappedMethod: Method?) {

}

afterTest(method: FrameworkMethod?, bootstrappedMethod:
Method?) {

}

getHelperTestRunner(bootstrappedTestClass: Class<*>?):
SandboxTestRunner.HelperTestRunner {
{
SandboxTestRunner.HelperTestRunner(bootstrappedTestClass)
(initializationError: InitializationError) {
RuntimeException(initializationError)

androidLibraryUtilBenchmark() {

DummyTest

https://groups.google.com/forum/#!topic/robolectric/lLKyzpGhhLA
https://github.com/bjoernQ/unmock-plugin

With unmock-plugin (598ms):

:///home/shivanshs9

s finished with exit code ©

Since they both took a similar time, | considered which one is more appropriate to use. A
custom test runner seems more appropriate to me, because of lack of any new dependency and
it's more explicit when it comes to use. The tests which require Android as a library can be
explicitly run on RobolL.iteTestRunner, rather than applying a Gradle plugin which applies to
every test suite. It allows flexibility to change SDK config using Robolectric.

Considering Robolectric has strongly recommended using androidX test APIs (link), build.gradle
will be changed:

dependencies {
testImplementation "androidx.test:core:$rootProject.ext.androidxVersion

Also, to support PowerMock with our custom test runner, a new PowerMockRule will be added
to our test suites (wiki).

Following are the classes for which I'll write Test Suites:
1. org.videolan.libvic.VLCObiject - Base class for all classes corresponding to C++ LibVic
VLCObiject and handles locks & event listeners.
2. org.videolan.libvic.LibVLC - A wrapper class over C++ LibVLC class to handle loading
shared libraries.
3. org.videolan.libvic.Media - Encapsulates a single Media information and all its related
events.

http://robolectric.org/migrating/#androidxtest
https://github.com/powermock/powermock/wiki/powermockrule

10.
1.
12.
13.
14.
15.

16.
17.

18.

19.

20.

21.

22.

23.

24.

25.
26.

org.videolan.libvlc.MediaL.ist - Encapsulates an array of Medias and its
addition/deletion events.

org.videolan.libvic.MediaDiscoverer - Encapsulates discovery of MediaList through
native calls.

org.videolan.libvic.MediaPlayer - Encapsulates state of currently-playing media and its
events.

org.videolan.libvic.util.MediaBrowser - Start up media discoverers for different
categories and allows to listen to media events.
org.videolan.medialibrary.Medialibrary - Encapsulates media categorizations, events
and initialization of native libraries.

org.videolan.medialibrary.media.MediaWrapper - Encapsulates a single media
information and metadata.

org.videolan.medialibrary.media.Album - Encapsulates a single album information.
org.videolan.medialibrary.media.Artist - Encapsulates a single artist information.
org.videolan.medialibrary.media.Dummyltem - These are used for creating dummy
media items.

org.videolan.medialibrary.media.Folder - Encapsulates a single folder information.
org.videolan.medialibrary.media.Genre - Encapsulates a single genre information.
org.videolan.medialibrary.media.Historyltem - Encapsulates information for a media
in history.

org.videolan.medialibrary.media.Playlist - Encapsulates a single playlist information.
org.videolan.medialibrary.media.Storage - Encapsulated a URI to represent media
item as file.

org.videolan.vlc.media.MediaGroup - Encapsulates group of MediaWrappers as an
object of MediaWrapper itself.

org.videolan.vic.media.MediaUtils - Utility methods to add, play and open medias via
PlaybackService,

org.videolan.vlic.media.MediaWrapperList - Encapsulates list of MediaWrappers to be
used by PlaylistManager.

org.videolan.vic.media.PlayerController - Provides actions to affect behaviour of
MediaPlayer depending on preferences, and utility methods for playback state of the
current media.

org.videolan.vlc.media.PlaylistManager - Created by PlaybackService, this class
manages the current MediaWrapperList and also uses PlayerController to affect
current playback.

org.videolan.vic.providers.FileBrowserProvider - Media data provider via livedata
and coroutine channels. Also converts Media object to MediaWrapper object.
org.videolan.vlc.providers.FilePickerProvider - For this provider, favorites can’t be
shown and is used to browse storage files.
org.videolan.vlc.providers.NetworkProvider - Browse through files via LAN.
org.videolan.vlc.providers.StorageProvider - Used to provide storage directory to
choose for medialibrary to scan.

27.

28.

29.

30.

31.

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45.

46.

47.

org.videolan.vic.viewmodels.SortableModel - ViewModel abstract class to provide
basic sorting functionality.

org.videolan.vic.viewmodels.BaseModel - Base class to provide MediaLibraryltem
as a LiveDataset.

org.videolan.vilc.viewmodels.HistoryModel - ViewModel class to provide recently
played media files.

org.videolan.vilc.viewmodels.MediaLibraryModel - Base class which implements
methods for medialibrary lifecycle to refresh data.
org.videolan.vic.viewmodels.PlaylistModel - Encapsulates the lifecycle of
PlaybackService using LiveData and also keeps progress and playerState in LiveData.
org.videolan.vic.viewmodels.StreamsModel - ViewModel class that provides last
played network streams data.

org.videolan.vic.viewmodels.VideosModel - ViewModel class that provides list of
videos from medialibrary.

org.videolan.vic.viewmodels.SubtitlesModel - ViewModel class to search and
download subtitles.

org.videolan.vic.viewmodels.audio.AlbumModel - Used by AlbumsFragment for TV
media browser.

org.videolan.vic.viewmodels.audio.ArtistModel - Used by ArtistsFragment for TV
media browser.

org.videolan.vic.viewmodels.audio.GenreModel - Used by GenresFragment for TV
media browser.

org.videolan.vic.viewmodels.audio.TracksModel - Used by TracksFragment for TV
media browser.

org.videolan.vic.viewmodels.browser.BrowserModel - ViewModel class that
communicates with respective BrowserProvider implementation, using LiveDataset.
org.videolan.vic.viewmodels.paged.PagedAlbumsModel - ViewModel class that
allows paging on albums data and sorting.
org.videolan.vic.viewmodels.paged.PagedArtistsModel - ViewModel class that
allows paging on artists data.
org.videolan.vic.viewmodels.paged.PagedFoldersModel - ViewModel class that
allows paging on folders data.
org.videolan.vic.viewmodels.paged.PagedGenresModel - ViewModel class that
allows paging on genres data and sorting.
org.videolan.vilc.viewmodels.paged.PagedPlaylistsModel - ViewModel class that
allows paging on playlists data.
org.videolan.vic.viewmodels.paged.PagedTracksModel - ViewModel class that
allows paging on medias data and sorting.

org.videolan.vic.util.Browserutils - Utility class user by implementations of
BrowserProvider.

org.videolan.vic.util.FileUtils - Utility class that provides methods to get, copy, delete
files.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.
61.

62.

63.

64.

65.

66.

67.

68.

org.videolan.vic.util.FilterDelegate - Utility class that provides filtering implementation
for MediaLibraryltem and in Playlist.

org.videolan.vic.util. KExtensions - Various Kotlin extensions related with MediaLibrary
and other utilities.

org.videolan.vic.util.LiveDataset - LiveData of a mutable list of a generic class.
org.videolan.vlc.util.LiveDataMap - LiveData of a mutable map of a generic class.
org.videolan.vlc.util.ModelsHelper - Provides utility methods for a collection of
MediaLibraryltem to split and generate sections with headers, depending on sort mode.
org.videolan.vic.util. MurmurHash - A class to provide implementation of Murmur
Hash, a fast-hash function.

org.videolan.vlc.util.PathUtils - Provides utility extensions over strings related to file
path.

org.videolan.vic.util.Permissions - Provides methods to get the current state of
permissions and helper method to create dialog to ask for such permissions.
org.videolan.vlc.util.Preferences - Provide static methods to get and store floats array
in Shared Preferences.

org.videolan.vlc.util.RendererLiveData - Wrapper class over LiveData of
Rendererltem to ensure the both new and old Rendererltem objects are properly
retained and released.

org.videolan.vlc.util.Strings - Provides kotlin extensions for easier conversion between
strings and other type, like number.

org.videolan.vic.util. ThumbnailsProvider - Utility class that provides thumbnails and
also composes images for use with folder and group.

org.videolan.vlc.util.Util - Provides static utility methods of miscellaneous category.
org.videolan.vlc.util. VLCAudioFocusHelper - Utility class to request audio focus from
android.

org.videolan.vic.util.VLCDownloadManager - A receiver class to handle download
completion and new downloads.

org.videolan.vlc.util.VoiceSearchParams - A utility class that parses the query and
extras bundle passed from MediaSessionCallback to handle music search.
org.videolan.vic.ExternalMonitor - A receiver class that listens to network, storage and
OTG events, and correspondingly updates MediaLibrary devices.
org.videolan.vic.MediaParsingService - Used to start MediaLibrary and for scanning
devices with it. Also, shows a scan notification and updates the scan progress.
org.videolan.vic.MediaSessionCallback - Implements the callback for Android’
MediaSession for playback methods.

org.videolan.vic.PlaybackService - Sets up a receiver for remote playback actions and
performs appropriate action on PlaylistManager depending on desired state. It
manages notification for the playing media. It is also responsible for handling media
events and running callbacks.

org.videolan.vic.RecommendationsService - Notifies the user with media
recommendations based on last 3 recently played medias.

While implementing the tests, | will also have to override the Dispatchers.Main coroutine
context so that our tests can make do without using Android Main Looper. For that, I'll include in
app’s build.gradle:

dependencies {

testImplementation
"org.jetbrains.kotlinx:kotlinx-coroutines-test:$rootProject.ext.kotlinx_ver
sion"

}

Then, before running the test:

setUp() {

Dispatchers.setMain(Dispatchers.Unconfined)

As an example, here’s a sample code for testing StreamsModel where I've mocked native
method, nativelnit of MediaLibrary, and used livedata-testing for assertions in livedata:

@
fun failedInitialization GetEmptyCollection() {

.doReturn(.ML_INIT_FAILED)."
OF)

Linit(

.updateHistory()
.observableHistory
.test()
.awaitValue()
.assertHasValue()
.assertValue(.EMPTY_COLLECTION)

Integration tests

For integration tests, the complete android framework is mocked in runtime environment, which
will allow to load views, resources etc, in the test suite. These will ensure that our application
code performs well with external services. These tests also include testing multiple classes in a
single test suite, so that their behaviour can be tested as a whole.
Following are the core classes which will be tested, along with their immediate dependencies:
1. org.videolan.vlc.util.AndroidDevices - Utility methods for android features and
standard values for Media directories. Dependency on Android framework for many of
the core features.
2. org.videolan.vlc.util.HttplmageLoader - Utility class to download image and cache it.

3. org.videolan.vic.gui.audio.AudioAlbumsSongsFragment - Fragment to browse by
albums and songs.

4. org.videolan.vlc.gui.audio.AudioBrowserFragment - Can browse by Artists, Tracks,
Albums or Genres when navigating audio.

5. Media, MedialList, MediaDiscoverer and MediaBrowser - These interact with each
other to keep track of media changes and the current list.

6. PlaylistManager, PlayerController and PlaybackService - These interact with each
other for media playback, state and information.

The main hurdle is to test any Ul which requires drawing video on a surface view. Those can
only be performed on actual hardware because of dependency on required CPU architecture.
Also, since there is no actual storage option, sample media files will have to be added
temporarily. That’'s why | propose to mock the native calls which are responsible for actual
parsing of media files to return pre-created MediaLibraryltem objects. A test utility class is
responsible for creating these objects and a sample file is created for each object in the
corresponding public directories. For example, for music directory | can use:

.getExternalStoragePublicDirectory(.DIRECTORY_MUSIC).

absoluteFile

Functional tests

These tests are supposed to test a particular flow on an emulated Android device or actual
device. The User Interactions within the app will be tested, by using Espresso testing
framework. These tests will use androidx.test.runner.AndroidJUnitRunner instrumentation
runner, as mentioned in the official docs, so that the test package can be run together with the
application package under the same process by the Instrumentation component of Android
framework. These tests will run on a separate Instrumentation thread and only run when the
main Ul thread is idle to avoid inconsistency with tests’ results. For ease of writing tests, I'll use
Espresso Test Recorder to record the flow to test. Since these tests also requires actual media
files, sample files have to be pushed beforehand to the emulator (using adb push).

The main flows to test are:

e Interaction with playback controls when playing audio and video.

e Interaction with media browser - selection of media files, options etc.

e Interaction with preferences screen.

e Interaction with the side navigation in MainActivity.
Since these tests are slow, these are run only once per day on Gitlab CI/CD using pipeline
schedules. To run these instrumented tests, multiple AVDs have to created and run with different
specifications to cover multiple API variants. Moreover, these steps have to be automated, and
the emulators have to be headless to run in a non-graphical Cl server. For this, we need to
install the required android system images so that AVDs can use them. Currently, only the
android-26 target is installed.

https://developer.android.com/training/testing/unit-testing/instrumented-unit-tests.html
https://developer.android.com/studio/test/espresso-test-recorder
https://docs.gitlab.com/ee/user/project/pipelines/schedules.html
https://docs.gitlab.com/ee/user/project/pipelines/schedules.html

Dockerfile for vic-debian-android (L50):

tools/bin/sdkmanager "build-tools;26.0.1" "platform-tools"
"platforms;android-26" && \

Once that’'s done, new AVDs will have to be created by using tools/bin/avdmanager and mention
the target ID. Once created, emulators will have to be started and the tests will run on them:

instrumentation_ tests:
stage: test
script:
- emulator -avd testAVD -no-audio -no-window & # To create an headless
emulator with no audio support.
- ./ci/android-wait-for-emulator.sh # Script to wait for emulator to fully
boot.
- adb devices
adb shell input keyevent 82 & # To unlock the booted android.
./gradlew connectedAndroidTest # To run the actual instrumentation tests.
./ci/stop-emulators.sh # Script to stop the running emulator.

For multiple virtual devices, it's possible to write them as separate jobs in the same stage so
that they do run in parallel (docs). However, it'll still be slow due to the setup of the environment
for each job. To avoid that, we could use fastlane and its plugin, automated-test-emulator-run.
Using these we could simply mention the AVD config in a JSON file and use that in a single lane
or multiple ones with sharding (article). In this article, fastlane is used for Gilab ClI in android
project.

Test Cycle & Coverage

The written unit tests will be run in Gitlab CI/CD Pipeline after every new Merge Request or a
commit in Master branch. This ensure that any change does pass the test and any regressions
are avoided. Gitlab CI/CD already powers the project right now, and it's a wonderful built-in
solution.

JaCoCo tool is a free Java library to evaluate code coverage depending on project
requirements. Following this guide and the JaCoCo Gradle Plugin docs, | would have to change
the project’s build.gradle and .gitlab-ci.yml. This quide proved helpful to customise the JaCoCo’s
behaviour for higher flexibility.

build.gradle

buildscript {
dependencies {
classpath "org.kt3k.gradle.plugin:coveralls-gradle-plugin:2.6.3"
}

https://code.videolan.org/videolan/docker-images/blob/master/vlc-debian-android/Dockerfile#L50
https://docs.gitlab.com/ee/ci/yaml/#stages
https://fastlane.tools/
https://github.com/AzimoLabs/fastlane-plugin-automated-test-emulator-run
https://medium.com/azimolabs/managing-android-virtual-devices-during-test-session-98a403acffc2
https://about.gitlab.com/2017/11/20/working-with-yaml-gitlab-ci-android/
https://about.gitlab.com/2018/10/24/setting-up-gitlab-ci-for-android-projects/
https://docs.gradle.org/current/userguide/jacoco_plugin.html
https://reflectoring.io/jacoco/

.gitlab-ci.yml

Coveralls is an optional part of the project since gitlab do provide the useful ability to generate
artefact reports from JUnit (Proof of Concept). However, | find it to be a highly motivating factor
for new developers to try and write test suites for their added feature, to increase that coverage
percentage. Moreover, this also promotes open reports for others to review.

Personal Information

Personal Details

I’'m Shivansh Saini, an undergraduate at Indian Institute of Technology (BHU), Varanasi. I've
been fascinated with software and games development since | was 14. | mainly started with
coding 2 years back and have grown to like open source, because of its vibrant and engaging
community. | actively use open source softwares and like to contribute back when | can. | like to
hack around with stuff and learn new things, such as fixing Hackintosh or studying about
Wayland. | tend to place more importance on practical implementations rather than theoretical
study. | believe in solving problems by reusing the latest technological stuff, rather than
reinventing the wheel. I've also been working in a startup for almost a year now and so have
come to appreciate the power of teamwork.

I’'m proficient in C, C++, Python, Java, Javascript and Shell scripting. I've basic knowledge of
Kotlin, but insufficient experience in it. | have experience in web backend development using

https://docs.gitlab.com/ee/ci/junit_test_reports.html

MVC frameworks such as Django (usually REST APIs) and frontend development using React
and Vueds. | have experience in Android development of 9 months, using the MVVM
architecture. | am an eager learner and ready to add more skills to my toolbox.

| use Manjaro Linux, with zsh as my favoured shell. | use Sublime Text for small codes and
Visual Code (Code-OSS) for working on development projects.

Communication

I’'m flexible with my schedule and have inculcated the habit of working at night, so time zone
difference shouldn’t be an issue. I’'m comfortable with any of the communication mediums |
mentioned above. However, due to network issues, | may not receive messages via IRC.

| can work full-time on weekdays and am usually available between 12 PM IST to 3 AM IST. On
weekends, | would love to spend time communicating with the team to learn from them, while
working on whatever issues occur at that time. When the time permits, | would also like to
contribute to the documentation of the code.

I may be travelling for a few days, and I'll inform those plans beforehand to my mentor. I'll also
responsibly keep my mentor updated in case of any emergency that occurs with suitable details.

Post GSoC

If there are things left unimplemented, I'll try to complete them post GSoC and will keep
contributing to VLC Android. | would like to contribute more to documentation of the code and to
work on other things, like coverage reports and mutation testing.

Contributions

Issues opened:
e GSoC project: VLC on Android Testsuite - A task issue to update with the list of planned
test suites.

Merge Requests assignee:
e Close button in notification to stop unpausable media. - Adds a close button in
notification for unpausable medias (Fixes #181)
e WIP: Simple test suite for StreamsModel. - Has a single test suite for StreamsModel
class.
e WIP: Allows VLC play in PiP mode from other apps. - Adds the ability to play videos in
PiP mode from other apps.

https://code.videolan.org/videolan/vlc-android/issues/793
https://code.videolan.org/videolan/vlc-android/merge_requests/37
https://code.videolan.org/videolan/vlc-android/issues/181
https://code.videolan.org/videolan/vlc-android/merge_requests/52
https://code.videolan.org/videolan/vlc-android/merge_requests/63

