
JuMP - Optimization problem
differentiation

Akshay Sharma

March 31, 2020

Abstract

Differentiable optimization is a promising field of convex opti-
mization and has many potential applications in game theory, control
theory and machine learning. Unlike CVXPY, JuMP currently lacks the
feature to differentiate solutions of disciplined convex optimization
problems and render them as layers in machine learning libraries. I
propose to develop this feature and make it accessible from the JuMP
interface.

Contents
1 About Me 2

2 The Project 3
2.1 Adding support for DPPs . 3
2.2 Differentiation overview . 4
2.3 Canonicalization . 4
2.4 Differentiating the cone solver 4
2.5 Solution retrieval . 5

3 Road Map 6
3.1 Caveats . 6
3.2 Timeline . 6

3.2.1 Community Bonding Period 6
3.2.2 Coding Period . 6
3.2.3 Post GSoC . 7

1

1 About Me

The Student
Name Akshay Sharma
E-Mail akshay.sharma.mat16@iitbhu.ac.in

Github https://github.com/AKS1996

Website http://www.imakshay.com

The Institute
University Indian Institute of Technology (BHU), Varanasi
Major Mathematics and Computing
Year Pre-final
Degree Dual Degree (Bachelors and Masters)

My Background
I have been programming since last four years at college. I have been part
of quite a good number of projects and I have developed a flair in tackling
challenges.
In winter of 2019, I was a research intern at the Indian Statistical Institute
working on improving PEGASOS algorithm [1] for large scale content-
based URL classification. It involved digesting large textual data dumps
(far prominent than all UCI repositories).
In summer of 2019, I interned at Adobe Systems. My project involved
pattern mining of Adobe Photoshop user logs on Spark. I learned about
the problems while handling big data, as there TBs of usage logs produced
every day, and I had to handle and run usage statistics on four weeks’ worth
of data.
In summer of 2018, I completed the Google Summer of Code in ViSP - an
open-source visual processing library. My project was developing a Java
and an Android SDK for their C++ codebase. We used Native C++ libraries
to maintain near-realtime detection time.
For more information on my projects, you can head over to my website.

My Motivation
Since past few years, I have developed an interest in optimization and
applied research. Last year, I co-authored an article on finding globalized

2

mailto:akshay.sharma.mat16@iitbhu.ac.in
https://github.com/AKS1996
http://www.imakshay.com

markov equilibrium for discounted stochastic games [2]. For my Master’s
thesis, I’m working on developing a parallel asynchronous variant for Primal
SVM solver for large scale classification on the Common Crawl (CC) dataset.
I have used proprietary solvers to implement mathematical programs. I
came to know about this project from a friend of mine, who is a part of
Julia community now, and introduced me to the concept of Automatic
Differentiated and JuMP modelling interface in Julia. This project is a
great learning opportunity for me. Given my past project experience, I feel
confident to work on this project.

Contributions
Recently I made the following pull requests to JuMP.jl:

• 2216 Add docstring for @variables macro

• 2214 Add warm start for constraint’s dual value

2 The Project
In this section, I present a detailed version of proposed plan. This will
include the deliverables, timeline and potential bottlenecks. I expect this
structure to be enhanced under the guidance of a mentor.
I tried to keep mathematics to a minimum in proposal, but the project is
appreciably theoretical in nature. I would like to mention that while the
project description on the idea page refers differentiating optimal solution
of convex optimization problems, I assume it was meant for disciplined
parametrized optimization problems (DPP). Differentiation for a broader
category of convex optimization problems is out of scope of a summer
project.
The words program, model and optimization problem are used interchangeably.

2.1 Adding support for DPPs
The first and foremost requirement is defining a parameter type (or sup-
porting them somehow using existing variable class). A parameter object
would be replaced by actual values only after the model is optimized - in
successive backward calls while AD.
In addition to already existing rules check DCP compliance in Convex.jl,
we’ll need to add two more restrictions to make a model DPP compliant. I
have addressed it as Issue 383 in Convex.jl.

3

https://github.com/JuliaOpt/JuMP.jl/pull/2216
https://github.com/JuliaOpt/JuMP.jl/pull/2214
https://github.com/JuliaOpt/Convex.jl/issues/383

2.2 Differentiation overview
As discussed in the original article [3], solution of a DPP Model can be
viewed as a map S that maps parameters of the problem θ to its solutions
x∗ and we propose to find derivative (Vector object) of S with respect to
θ (Variable object). The authors present the case of modelling the DPP
as a conic optimization problem. Specifically, they show that S can be
decomposed as R ◦ s ◦ C where

• C represents a canonicalizer that maps parameters of DPP to cone
problem data

• s is the solver for cone program

• R represents a retriever that maps solution of cone program to original
DPP

The adjoint of the derivative of DPP can be expressed as

DTS = DTC ◦DT s ◦DTR

In next sections I describe how to find above components.

2.3 Canonicalization
Canonicalization is the method of generating a cone program (another
MathOptInterface.ModelLike object) from the original problem. The gen-
erated cone program can be readily modelled by Convex.jl (refer this blog
for an example).
Canonicalization begins with expanding functions or atoms in their graph
implementations. Convex.jl already has this support in order to support
the underlying solvers. In the original article [3], this results in a canon-
icalization map or a sparse matrix. This map be constructed using the
get_conic_form method.

2.4 Differentiating the cone solver
Obtaining the derivative of the cone program plays a central role in differ-
entiating the original problem. The original article models it as a mapping
ψ from cone problem data to its solution. It can be decomposed to φ ◦ s ◦Q
[5] where

• Q is a static matrix composed of cone program data

4

http://hua-zhou.github.io/teaching/biostatm280-2019spring/slides/20-juliaopt/juliaopt.html#Sum-to-zero-group-lasso
https://github.com/JuliaOpt/Convex.jl/tree/master/src/atoms

• s is an algorithm (an intended function in julia) to solve homoge-
neous self-dual embedding of the cone problem. The article describes an
implicit differentiation procedure to obtain its derivative

• φ is a mapping from self-dual embedding to the cone program. In
implementation, it will be a matrix composed of projections on dual
of cone data

Hence the derivative and adjoint derivative of the cone program can be
obtained as

Dψ = Dφ ◦Ds ◦DQ
DTψ = DTQ ◦DT s ◦DTφ

Obtaining derivative of homogeneous self-dual embedding will be a
major feat. As mentioned in [5], this is a three step process involving implicit
differentiation to get a system of linear equations and solving them:

1. Computing derivative of solution map ψ with respect to perturbation
in cone problem data

2. Computing ajdoint of the derivative with respect to perturbation in
input variables

3. Integration into AD
First two steps require computing matrix inverses and computing pro-

jections on dual of the cone program data. Julia’s inv function in Linear
Algebra package will be suitable for finding inverse of small matrices (refer
3.1). Projections can be found using LazySets.jl [9].

The calculations from first two steps can be readily integrated in any
AD system as third step. The original article provides implementation to
compute derivative of solution map in backward pass. For instance, they use
Tensorflow’s GradientTape function for it. The solution of the optimization
problem will be a function of parameters and we can get the derivative
using gradient function in Zygote.jl. This can be achieved if we stick to
pure Julia solvers such as Pajarito.jl [6] which is capable of handling
conic program.

2.5 Solution retrieval
The method R that maps solution of the cone program x̄∗ to a solution
of original problem x∗ is essentially a linear map R(x̄∗) = x∗ and can be
obtained by slicing.

5

https://github.com/cvxgrp/cvxpylayers/blob/master/cvxpylayers/tensorflow/cvxpylayer.py#L23
https://fluxml.ai/Zygote.jl/latest/#Taking-Gradients-1

3 Road Map
In the wake of COVID-19, national colleges may plan to resume semester
this summer. In that case, I will not be available for a week for exams. Apart
from this I have no prior commitments.

3.1 Caveats
As I have already mentioned, the scope is project is pretty large. I can look
at the following features if time permits:

• inv function will succumb in finding inverse of large matrices while im-
plicit differentiation of Ds. In such cases, PETSc.jl [8] or Krylov.jl
[7] might come handy.

• Another potential bottleneck is non-invertibility of matrices. As men-
tioned in the article, it can be approximated as solving a least squares
program, preferably by LSQR method of IteratedSolvers.jl pack-
age

3.2 Timeline
I expect to complete the following milestones in order.

3.2.1 Community Bonding Period

• Discuss the project with my mentor in further detail.

• Get more acquainted with JuMP.jl, Convex.jl and Zygote.jl. Un-
derstanding implementation of CVXPY’s diffcp package.

• Adding support for parameter class. Make JuMP DPP compliant

3.2.2 Coding Period

• First two weeks of June: Implement a function to obtain canonicaliza-
tion map. Begin implementing a function to find derivative of solution
map.

• Last two weeks of June: Implement a function to find adjoint of deriva-
tive of solution map. It will broadly use the same matrix inverse and
projection methods.

6

https://github.com/JuliaMath/IterativeSolvers.jl/blob/master/src/lsqr.jl

• First two weeks of July: Using perturbation values to obtain derivative
using Zygote.jl. This marks integration with AD.

• Last two weeks of July: Implement a method to obtain retrieval map.
Test overall model differentiation flow.

• First two weeks of August: Testing the differentiation on different pro-
grams(LPs, QPs, etc) and tweaking the software if necessary. Bench
marking against CVXPY and providing tutorials.

• Last two weeks of August: One week for documenting everything
with demonstrations and a buffer week for any unexpected delays.

3.2.3 Post GSoC

Automatic differentiation is a promising emerging branch of computational
mathematics. Julia provides me with a great platform to hone my mathe-
matical skills (symbolic math is love). There are many feats that are out of
scope of a summer project, where JuMP interface can improve. I would be
glad to contribute and enhance it.

References
[1] PEGASOS: primal estimated sub-gradient solver for SVM

https://link.springer.com/article/10.1007/

s10107-010-0420-4

[2] Globalized robust Markov perfect equilibrium for discounted
stochastic games and its application on intrusion detection in wireless
sensor networks, Japan Journal of Industrial and Applied Mathematics
https://link.springer.com/article/10.1007/

s13160-019-00397-9

[3] Differentiable Convex Optimization Layers, NIPS, 2019
http://web.stanford.edu/~boyd/papers/pdf/diff_cvxpy.pdf

[4] Zygote: source to source Automatic Differentiation in Julia
https://github.com/FluxML/Zygote.jl

[5] Differentiating through a cone program, Journal of Applied and Numeri-
cal Optimization, 2019
http://jano.biemdas.com/issues/JANO2019-2-2.pdf

7

https://link.springer.com/article/10.1007/s10107-010-0420-4
https://link.springer.com/article/10.1007/s10107-010-0420-4
https://link.springer.com/article/10.1007/s13160-019-00397-9
https://link.springer.com/article/10.1007/s13160-019-00397-9
http://web.stanford.edu/~boyd/papers/pdf/diff_cvxpy.pdf
https://github.com/FluxML/Zygote.jl
http://jano.biemdas.com/issues/JANO2019-2-2.pdf

[6] Pajarito.jl: https://github.com/JuliaOpt/Pajarito.jl

[7] Krylov.jl: https://github.com/JuliaSmoothOptimizers/Krylov.

jl

[8] PETSc.jl: https://github.com/JuliaParallel/PETSc.jl

[9] LazySets.jl: https://juliareach.github.io/LazySets.jl

8

https://github.com/JuliaOpt/Pajarito.jl
https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://github.com/JuliaSmoothOptimizers/Krylov.jl
https://github.com/JuliaParallel/PETSc.jl
https://juliareach.github.io/LazySets.jl

	About Me
	The Project
	Adding support for DPPs
	Differentiation overview
	Canonicalization
	Differentiating the cone solver
	Solution retrieval

	Road Map
	Caveats
	Timeline
	Community Bonding Period
	Coding Period
	Post GSoC

