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The Project Proposal 
Objective 

While going through the Reinforcement Learning codebase of MLpack, I noticed that a lot of state-of-the-art 
algorithms are missing. So after comparing various algorithms and brainstorming about their methods of 
implementation, I came up with the ​Rainbow​ (​Hessel et al., ​2017​) and ​Soft Actor-Critic​ (​Haarnoja et al., 
2019​) as the most in-demand and recent algorithms, whose implementation in mlpack would be crucial 
So here are the details of what I expect to have accomplished at the end of the summer. 
 
➔ Improving the current QLearning implementation. 
➔ Implementing Rainbow as an improvement on DQN 
➔ Writing test cases for each of the implementations 
➔ Implementing Soft Actor-Critic (SAC) for continuous action space, along with its tests 
➔ Creating detailed docs for all the above implementations 
➔ Creating necessary environments, for proper testing of algorithms above (after discussion with 

mentor) 
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Background Info 
This includes descriptions of the algorithms / data structures / ideas I plan to implement. I made sure to detail 
background information, such that a person who is reasonably familiar with machine learning and mlpack will be able 
to understand the description without needing to consult other references. 

PART 1​: For the first Part, I would like to add extensions to the Deep Q Learning implementation, and use 
them together to implement Rainbow.  
 
Rainbow is a DQN based off-policy deep reinforcement learning algorithm with several improvements.  
In fact, Rainbow combines seven algorithms together:  
(1) ​DQN (Deep Q-Network) : ​Applying stochastic gradient descent to minimize the loss given by: 

 
 
(2) ​DDQN (Double Deep Q-Network) : ​Conventional Q-learning is affected by an overestimation bias. The 
idea of Double Q-learning is to reduce overestimations by decomposing the max operation in the target into 
action selection and action evaluation. 

 
 
(3) ​Prioritized Experience Replay (PER) : ​DQN samples uniformly from the re-play buffer. Ideally, we want 
to sample more frequently those transitions from which there is much to learn. Thus, PER  samples 
transitions with probability p t relative to the last encountered absolute TD error:

 
(4) ​N-Step Q-Learning ​: Using Q values with N-step Returns, which are more accurate than 1-step Returns

 
     Above equation evaluates loss from Q values with N-step Returns. 
(5) ​Noisy Network​: Combines the final output linear layer of Q-network with a noisy stream

 
where ​b​ and ​ w​ are random variables, and the dot symbol denotes the element-wise product. This 
transformation can then be used in place of the standard linear ​y​ = ​b + Wx​. 

(6) ​Distributional RL​ : Directly learns a distribution of Q values other than average Q values. 



 

(7) ​Dueling Q-Network​ : DQN’s architecture is branched to have two branches. One branch outputs Value, 
and the other branch outputs Advantages

(​source​)  
 
 
The (1), (2) and (3) are already implemented while the others are left. 
For a complete implementation of Rainbow, the remaining extensions are to be added in such a way that all 
of them can work together.  
It is clearly seen that all the extensions working together can have a very good performance, much better 
than vanilla DQN. 

The Rainbow Network architecture ​(​source​)  Improvements of Rainbow over vanilla DQN 
        (​source​)

 

https://nervanasystems.github.io/coach/components/agents/value_optimization/dueling_dqn.html
https://nervanasystems.github.io/coach/components/agents/value_optimization/rainbow.html
https://arxiv.org/pdf/1710.02298.pdf


 

PART 2​: For the second part, I would like to implement an off-policy model-free algorithm by the name of 
SAC (Soft Actor-Critic) for Mlpack​.  
 
Soft Actor-Critic is an off-policy actor-critic deep RL algorithm based on the maximum entropy reinforcement 
learning frame-work. 
 
The algorithm not only boasts of being more sample efficient than traditional RL algorithms but also 
promises to be robust to brittleness in convergence. An actual 4 legged bot called Minotaur Robot(​Link​) has 
been shown to move and generalize well to unseen environments using SAC. 
 
Some of the most successful RL algorithms in recent years such as Trust Region Policy Optimization 
(TRPO), Proximal Policy Optimization (PPO) and Asynchronous Actor-Critic Agents (A3C) suffer from 
sample inefficiency (requires lots of training steps). This is because they learn in an “on-policy” manner, i.e. 
they need completely new samples after each policy update.  
In contrast, Q-learning based “off-policy” methods such as Deep Deterministic Policy Gradient (DDPG) and 
Twin Delayed Deep Deterministic Policy Gradient (TD3PG) are able to learn efficiently from past samples 
using experience replay buffers. However, the problem with these methods is that they are very sensitive to 
hyperparameters and require a lot of tuning to get them to converge.  

(​source​) 
 
 

 
 
 

https://www.youtube.com/watch?time_continue=7&v=KOObeIjzXTY&feature=emb_logo
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Soft Actor-Critic follows in the tradition of the latter type of algorithms and adds methods to combat the 
convergence brittleness. 
It uses the following features: 
➔ The biggest feature of SAC is that it uses a modified RL objective function. Instead of only seeking to 

maximize the lifetime rewards, SAC seeks to also maximize the entropy of the policy.  
➔ Maximizing entropy means to succeed at the task while ​acting as randomly​ ​as possible​ in order to 

ensure better exploration. 
➔ This makes this approach very stable, achieving very similar performance across different random 

seeds. 
 
Pros of SAC: 
➔ SAC is the off-policy approach for RL tasks involving continuous tasks, owing to its superior sample 

efficiency as compared to TRPO and PPO.  
➔ SAC overcomes the brittleness problem in many RL algorithms by encouraging the policy network to 

explore and not assign a very high probability to any one part of the range of actions. 
 

(​source​) 

It is clear from the above graphs, that SAC (yellow) performs consistently across all tasks and outperforms 
both on-policy and off-policy methods in the most challenging tasks. 
 
 
 
 

https://arxiv.org/abs/1801.01290


 

 

Part 1: Full Implementation of Rainbow 
Abstract 

Regarding Rainbow​: I propose to add separate classes in corresponding files, as in ​#2317​, for Dueling, 
Noisy, (a separate Categorical/Distributional without including Dueling and Noisy, if necessary) and finally 
Rainbow. Each of these classes will have their separate Predict(), Forward(), Backward() and 
ResetParameter() functions. All these files would be created within a subfolder in the RL codebase.  
These classes would be accessed as follows: 

 
The constructor of these classes would contain a default Feed Forward Network. Although a custom model 
could be made using: 

 
 
The Q Learning class will remain pretty much the same.  
 
I suggest this change because: 

1.  With this structure, we will not be needing to write the Episode() and Step() functions for all our 
other extensions. It would remain intact in the q_learning class and all the networks will be able to 
use them. 

2. We would not need to write separate conditions for DoubleDQN in each class, as it would be reused 
off of the QLearning’s Step() function. 

 
 
 
 

https://github.com/mlpack/mlpack/pull/2317


 

 
Thus the tree would look like: 
├── q_networks  
    ├── vanilla_dqn.hpp 
    ├── dueling_dqn.hpp  
    ├── noisy_dqn.hpp 
    ├── rainbow.hpp 
    └── Categorical/Distributional.hpp (optional) 
 
I have already implemented a ​pytorch version​ of the proposed structure ​here​. 
 

Plan of Action 

1) Changes required by the different extensions for the implementation of Rainbow are: 
a) DuelingDQN: 

i) Change in the network architecture 
b) NoisyDQN:  

i) Requires the implementation of a noisy linear layer 
ii) Changes in the network. 

c) CategoricalDQN:  
i) Change in network architecture 
ii) Would require changes in loss function, so a separate loss function needs to be made 

d) N-Step DQN:  
i) Requires changes in the replay buffer. 
ii) Change in Update and loss calculation 

 
2) Since Dueling, Noisy and Categorical DQNs are just changes to the network structure, separate 

classes could be created for each of them. ​Prioritized Experience Replay​ and ​DoubleDQN​ are 
already implemented, so no need to do anything for them. 
 

a) VanillaDQN: 
i) This will be able to create a simple DQN as already we have been using. 

 
 
 
 
 
 
 

https://github.com/nishantkr18/RainbowDQN-with-Pytorch


 

 
 
 

b) DuelingDQN: 
i) This will create a network with the advantage and value streams added. 

And the forward propagation: 

 
c) NoisyDQN: 

i) This will create a network with the noisy layers added. In the paper, NoisyNet is used as a 
component of the Dueling Network Architecture, which includes Double-DQN and Prioritized 
Experience Replay. So by default, the network will be constructed with the support for Dueling 
Network. This means that the Noisy Layers are added after the feature layer, i.e. separate 
noisy layers for Advantage and Value streams.

 
 
 



 

ii) One thing to note is that NoisyNet is an alternative to the epsilon-greedy exploration policy 
method. So for Noisy Nets, we need to remove the exploration policy, and directly select the 
action with max value. This could be achieved by a small if (config.NoisyNet == true) check 
before the policy sample statement. 

 
d) Categorical/Distributional: 

i) This network type would incorporate Categorical with Dueling and Noisy structures, to finally 
create RAINBOW.

 
ii) To estimate q-values, we use inner product of each action's softmax distribution and support 

which is the set of atoms: 

This could be provided with: 

 
iii) A second type of class (only Categorical without Dueling and Noisy) could also be created 

along with the full rainbow implementation. We could discuss later whether to implement it. 
 
 

3) N-Step learning:​ following are the exhaustive list of changes required: 
a) In the Replay classes, we would need to create an nStepBuffer, and store all transitions in that 

buffer. 
Then, we would need to prevent storing any transition in the original buffer, unless nStepBuffer is 
full. 

Here, the nStep denotes the N-step learning that we require to perform, i.e. the number of steps that 
we look ahead. 
  



 

b) We would also need to use two buffers here: memory and memory_n for 1-step transitions and 
n-step transitions respectively. It would guarantee that any paired 1-step and n-step transitions 
have the same indices. 
Note that these statements would be implemented in the loss functions and update functions of 
the respective classes(vanilla, dueling, noisy and rainbow). So we can choose to implement 
Nstep Learning for only RAINBOW class, or all the individual classes. 

c) Also, we would need to combine 1-step loss and n-step loss so as to control high-variance / 
high-bias trade-off. 

 
This would complete the implementation of Rainbow. This kind of a structure, 
therefore, essentially allows for the user to have all the variations of Rainbow 
individually as well as a complete Rainbow implementation; with ​maximum code 
reuse​. The option to​ individually select​ which exact extension to include, could 
prove helpful in benchmarking variations of RAINBOW with different environments. 
Again, we could discuss any improvements to the structure. 
 

 

Proposed changes in the existing codebase 

Along with the changes discussed above, the following additional changes need to be made: 
➔ Changes in the file ​methods/reinforcement_learning/replay/prioritized_replay.hpp 
◆ To incorporate N-step learning for Prioritized Experience Replay. Addition of a Store() method, 

which would return a boolean in order to inform if a N-step transition has been generated. 
➔ Addition of NoisyLinear​:  
◆ A Noisy Linear Layer implementation with its separate Forward(), ResetNoise() and Backward() 

methods. 
➔ Addition of tests in ​tests/q_learning_tests.cpp:  
◆ For testing the newly implemented classes. 

 

Testing 

Describes how I will test my project. 

In the paper, it is mentioned that Rainbow (the combination of six extensions of DQN) have state-of-the-art 
performance on the Atari 2600 benchmark. So, maybe we could find some way to train and test it using a 
gym TCP-API (​link​) project, which will allow us to communicate with the gym environment via an IP address. 
But this would only allow us to train and test the agent on our local systems. For the test suitcase, we need 
a faster and easier approach. 

https://github.com/zoq/gym_tcp_api


 

 
So we could reuse already implemented environments in mlpack for testing. Currently for the testing of 
DQN, we set a threshold of 1000 episodes, and train it on different environments with average Reward 
threshold as follows: 
 
  

Environment Name Reward Threshold[R] (test pass if avg_reward > R) 

DQN for CartPole  35 

DQN with PER for CartPole 35 

DDQN for CartPole 40 

DQN for Acrobot  -380.0 

DQN for Mountain Car -370.0 

DQN for DoublePoleCart > 280 for any one episode 

  
Since, all DQN extensions deal with Discrete Action space, the following environments can be reused for 
testing: 
➔ CartPole 
➔ DoublePoleCart 
➔ MountainCar 
➔ Acrobot 

 
We would just need to add higher thresholds for Dueling, Noisy, Distributional and N-Step. And as for the 
exact Reward threshold, I would individually check each of the different extensions, on ​this ​implementation, 
and accordingly set reward thresholds. 
I could also add ​LunarLander​ with discrete action space, as a new environment for testing, after discussing 
with the mentors 
 
 
 
 
 
 
 
 
 
 
 
 
 

https://github.com/Curt-Park/rainbow-is-all-you-need
https://gym.openai.com/envs/LunarLander-v2/


 

Part 2: Full Implementation of Soft Actor-Critic 
 

Abstract 

The architecture of the Soft Actor-Critic model consists of the following networks: 
1. Two identical Q learning networks -> Q1Learning and Q2Learning 
2. Two identical Q target networks -> Q1Target and Q2Target 
3. A policy network (may be Deterministic or Gaussian) 

 
 

 
The V network which represents Value network, was present in the previous version of Soft-Actor-Critic 
Paper, and has now been deprecated. 



 

The API of the algorithm will remain the same as that for QLearning. 
   // define agent, pass the environment, network, 

   // training configurations, replayMethod(default: random) 

   SoftActorCritic<​decltype​(network)> 
                  ​agent​(ContinuousMountainCar, 
                        ​std​::​move​(q1Network),  

 ​std​::​move​(q2Network), 
 ​std​::​move​(policyNetwork), 

                        ​std​::​move​(config), 
                        ​std​::​move​(replayMethod)); 
   ​for​(​int​ episodes = ​0​; episodes < ​1000​; episodes++) 
   { 

       ​double​ episodeReturn = ​agent​.​Episode​(); 
       ​averageReturn​(episodeReturn); 
       ​std​::cout << episodes << ​' '​ << episodeReturn << ​'​\n​'​; 
   } 

  
There would be a default architecture of q1, q2 and policy networks present in the SoftActorCritic class, so 
passing them as parameters would be optional. 
 

Plan of Action 

 
 



 

The constructor of the class would initialize/store the following values. 
 //! Locally-stored hyper-parameters. 

 TrainingConfig config; 

 

 //! Locally-stored learning Q1 and Q2 network. 

 QNetworkType learningQ1Network; 

 QNetworkType learningQ2Network; 

 

 //! Locally-stored target Q1 and Q2 network. 

 QNetworkType targetQ1Network; 

 QNetworkType targetQ2Network; 

 

 ​//! Locally-stored policy network. 
 PolicyNetworkType policyNetwork; 

 

 //! Locally-stored updater. 

 UpdaterType updater; 

 

 //! Locally-stored experience method. 

 ReplayType replayMethod; 

 

 //! Locally-stored reinforcement learning task. 

 EnvironmentType environment; 

 

 //! Locally-stored flag indicating training mode or test mode. 

 ​bool ​ deterministic; 

 
The usual ​Step()​ and ​Episode()​ functions need to be made: 
 /** 

   * Execute a step in an episode. 

   * ​@return ​ Reward for the step. 
   */ 

 ​double ​ ​Step ​(); 
 

 /** 

   * Execute an episode. 

   * ​@return ​ Return of the episode. 
   */ 

 ​double ​ ​Episode ​(); 

 
 
 
In the ​Episode()​ function, the following need to be added: 
➔ Get an initial state from the environment 
➔ Create variable for the counting of total steps and return 
➔ Till the environment ends, do: 

◆ totalReturn += ​Steps() 
◆ If Deterministic, end the loop 
◆ Execute ​Update() 

 
 
 



 

In the ​Step()​ function, the following need to be added: 
➔ Forward pass the state into the policy network to get the action 
➔ Sample reward and next state from environment by passing in the state and action 
➔ Store the transition in buffer 

 
Apart from these, following functions should be present: 

 
➔ Update() 

◆ This function will contain code for the update of all networks. 
◆ In terms of pseudo code: 

 
● Sample a batch from the replay buffer. 

 
● Compute targets for Q_learning functions (Q1 and Q2). Alpha here denotes the entropy 

term. r stands for reward and (1-d) deals with the terminal state. 

This can be achieved with the following lines: 
 // takes input nextStateBatch and gives out nextStateAction and nextStateLogPi 

 ​policyNetwork ​. ​Predict ​(nextStateBatch, nextStateAction, nextStateLogPi); 
 

 // takes input nextStateBatch and nextStateAction, gives out Q1 Q2 targets 

 ​targetQ1Network ​. ​Predict ​(nextStateBatch, nextStateAction, q1NextTarget, 
q2NextTarget); 

 

 // takes the minimum of two Q targets, and 

 minQNextTarget = ​arma ​:: ​min ​(q1NextTarget, q2NextTarget) - 
config ​. ​entropy( ​)*nextStateLogPi; 
 

 // calculates the target Q values 

 nextQValue = rewardBatch + maskBatch * ​config ​. ​gamma ​() * (minQNextTarget); 
 

● Update Q_learning network by one step of gradient descent

 
Could be done by: 
 
 // Update the Q Learning Networks 

 

 ​arma ​::mat Q1, Q2; 
 ​learningQ1Network ​. ​Forward ​(stateBatch, actionBatch, Q1); 
 ​learningQ2Network ​. ​Forward ​(stateBatch, actionBatch, Q2); 
 // backward Propagate the loss: 

 ​arma ​::mat gradients1, gradients2; 
 ​learningQ1Network ​. ​Backward ​(stateBatch, nextQValue, gradients1); 
 ​learningQ2Network ​. ​Backward ​(stateBatch, nextQValue, gradients2); 
 // Update network: 

 ​updatePolicy ​-> ​Update ​( ​learningQ1Network ​. ​Parameters ​(), ​config ​. ​StepSize ​(), gradients1); 



 
 ​updatePolicy ​-> ​Update ​( ​learningQ2Network ​. ​Parameters ​(), ​config ​. ​StepSize ​(), gradients2); 

 
● Update policy network by one step of Gradient Ascent, here, min denotes the minimum 

of the two Q_learning networks (Q1 and Q2)

 
 ​arma ​::mat pi, logPi; 
 ​policyNetwork ​. ​Forward ​(state_batch, pi, logPi); 
 minQPi = ​arma ​:: ​min ​(Q1, Q2); 
 // policy loss calculated from minQPi  

 policyLoss = ​arma ​:: ​mean ​(( ​config ​. ​entropy ​() * logPi) - minQPi); 

The policy loss would then be backward propagated. 
 

● Tune the entropy value by calling ​TuneEntropy() 
 

● Finally, SoftUpdate the ​learning Q_network​ parameters into their ​target Q_network 
parameters. (for both Q1 and Q2) 

 
 ​SoftUpdate ​(targetQ1Network, learningQ1Network, ​config ​. ​rho ​()); 
 ​SoftUpdate ​(targetQ2Network, learningQ2Network, ​config ​. ​rho ​()); 

 
◆ Parameters: ​None 
◆ Return: ​void  

 
➔ SoftUpdate​(target, learning, rho): 

◆ This function would be used for “softly” copying the learning Q_network parameters to the 
target Q_network parameters. Here the value of rho is kept 0.005 according to paper. 

 
◆ Input Parameters: ​The target, learning networks; rho is the Interpolation factor in polyak 

averaging 
◆ Return: ​void  

 
➔ TuneEntropy() 

◆ Would update the entropy term, if config.autoUpdateEntropy() is enabled 
◆ Parameters: ​None 
◆ Return: ​void  

 
➔ Other functions like Forward and Backward passes for the Q and policy networks would be added as 

per necessary. 
➔ Note​: We ​might​ require to divide the code into classes, eg: adding separate classes for Policy and 

Q network(which would contain the forward and backward pass functions). This would depend on 
how long the sac_impl.hpp goes, and its complexity. I’ll keep in mind to discuss this with the mentor, 
after implementing. 

 
 



 

 
 
 
 

Proposed changes in the existing codebase 

➔ Addition of the file ​methods/reinforcement_learning/sac.hpp 
◆ This would contain the definition for the SoftActorCritic class 

➔ Addition of the file ​methods/reinforcement_learning/sac_impl.hpp 
◆ This would contain the implementation for the SoftActorCritic class 

➔ Addition of tests in ​tests/sac_tests.cpp:  
◆ For testing the SAC environment. 

➔ Addition of new environments in ​methods/reinforcement_learning/environment:  
◆ New continuous action space environments could be added for the testing of Soft Actor-Critic  

 

Testing 

Describes how I will test my project. 

Currently, Mlpack has the following environments with continuous action space: 
 
➔ MountainCar Continuous 
➔ DoublePoleCart Continuous 
➔ Pendulum 
➔ LunarLanderContinuous (needs to be merged ​#1912​) 

 
These could be used for testing out Soft Actor-Critic. I will get the appropriate thresholds for rewards for 
each environment, after running the same environment in the original paper’s implementation(​link​), and 
comparing results. 
 
I could also implement a more challenging continuous action-space environment. In my opinion, 
BipedalWalker​ and ​BipedalWalkerHardcore​ would be good options. But since these environments are 
computationally more intensive and challenging, we would require them to run for less number of episodes 
and keep very low test-passing reward barriers, if we decide to use them. After discussing with the mentor, I 
would like to add these to the environment list, if required. 
 
 

 

 

 

https://github.com/mlpack/mlpack/pull/1912
https://github.com/haarnoja/sac
https://github.com/openai/gym/wiki/BipedalWalker-v2
https://gym.openai.com/envs/BipedalWalkerHardcore-v2/


 

Timeline with Proposed Deliverables 

Community Bonding Period May 4 - June 1 
➔ The Project will be discussed in further detail with the mentor.  
➔ I will get more acquainted with the codebase, especially FFN, along with that I plan on getting to 

know the armadillo library as it will be used extensively. 
➔ I’ll try to fix some issues (if any) related to reinforcement learning, while continuing with ​#1912​ (PR 

for PPO).  
➔ I will also try and experiment more with the currently proposed idea, with inputs from the other 

developers. The optional parts, like Distributional DQN, would especially be discussed with the 
mentor, along with any flaws in the overall architecture. 

Week 1 June 1 - 7 
➔ This period would be spent on writing a skeleton layout of the Dueling and Noisy extensions to 

implement.  
➔ I would also spend more time on reading related research papers to get a more robust view of the 

problem, along with articles from ​Spinning Up (OpenAI)​. 

Weeks 2 & 3 June 8 - 21  
➔ Once the skeleton is ready, I’ll finish the​ Dueling​ and ​Noisy ​extensions, this would include writing 

Forward and Backward functions for the networks. 
➔ Noisy Layer would be added as a new layer type to methods/ann/layer 

Week 4 & 5 June 22 - July 5 
➔ I’ll get the Dueling and Noisy extensions merged as a separate PR by writing tests for both of them, 

and getting issues fixed.  
➔ I’ll then proceed with adding support for ​N-Step Learning​, by adding on to the Replay classes, and 

creating its separate loss functions.  
➔ I'll also try to complete the tests for N-step in this time period.  
➔ Detailed documentation for Dueling and Noisy would be completed.  

Week 6 & 7 July 6 - 19 
➔ These two weeks will be spent on the ​Distributional/Categorical​ part of the extension, thus 

completing the Rainbow implementation.  
➔ By now, I’ll make sure to complete documentation for Distributional and N-Step as well, describing 

each function in detail.  
➔ Then, I’ll write tests, while getting the basic layout of SAC ready. I’ll try to get the PR for the rainbow 

merged by the end. 

https://github.com/mlpack/mlpack/pull/1912
https://spinningup.openai.com/


 

Week 8 & 9 July 20 - August 2 
➔ These two weeks will be spent extensively on​ SAC​. I’ll try to complete the full implementation 

including the main update function. 
➔ I’ll also test the code along the way to check if it converges for relatively easy environments like 

Pendulum  

Week 10 & 11 August 3 - 16 
➔ I’ll complete ​writing tests for the SAC​ implementation. 
➔ If required after discussing with the mentor, I would create and test SAC on new environments. 
➔ I’ll provide detailed documentation for Soft Actor-Critic and also a tutorial, if time remains. 

Ultimate Week August 17 - 24 
➔ I would wrap up my implementations by completing all ​pending work​ (if any) from before, including 

implementation, tests and documentation. 
➔ I would try to get all ​PRs merged​, after thorough review from mentors and fellow developers. 
➔ Finally, I will discuss with the mentor regarding future improvements. 

 
 

 

 

 

Personal Details 
I am Nishant Kumar, pursuing graduation in electronics at Indian Institute of Technology (BHU), Varanasi. 
 
I started primarily with coding 2 years back and have grown to like open source, because of its vibrant and 
engaging community. I actively use open source softwares and like to contribute back when I can. I believe 
in solving problems by using the latest technology available, rather than reinventing the wheel.  
 
I have extensively used deep learning frameworks like pytorch and keras with tf for my projects, and have 
always wondered what goes into making such easy to use APIs. Working with Mlpack, I would like to find 
the answer to that! 
 
I have been using ​Ubuntu 16.04​, with ​zsh​ as my favoured shell. I use ​Sublime Text​ for small codes and 
Visual Studio Code​ for working on development projects. 
 



 

Technical Proficiency and coding skills 

1) What languages do you know? Rate your experience level (1-5: rookie-guru) for each. 
➢ Python         :  4 
➢ C++             :  4 
➢ JavaScript   :  3 
➢ Dart             :  2 
➢ Java            :  1

 
2) How long have you been coding in those languages?  

I started using Java when I had Computer Applications in my Class 10 Board examinations. Then 
the next year, I shifted to using C++, and have been using it since then for competitive programming, 
due to its incredible speed. As for python, I have been using it since the past 2 years now, and it 
provides a very fast prototyping platform. That is the reason why I use it for most of my Machine 
learning projects. As for JavaScript, I used it for the implementation of a project of mine an year ago; 
where I made a​ flappy bird game​, which could run on any browser, and used neuroevolution to train 
it. While making the project, I made use of all OOPs concepts that I learnt earlier. And finally, I have 
been using Dart for about 5 months now, for making a flutter app for my Institute.

 

3) Are you a contributor to other open-source projects?  

As of now, I have been developing the Institute App with a team of developers from my Institute. 
Apart from that, I have not had the privilege of working with an organization as such.

 

4) Do you have a link to any of your work (i.e. github profile)? 
➢ Pytorch Implementation of RainbowDQN: ​Code 
➢ JerBot - a biomimetic bipedal bot : ​Code 
➢ A Robust Hand gesture recognition system: ​Link 
➢ Built an agent to play the Flappy Bird using Evolutionary Strategies: ​Demo​, ​Code 
➢ Visual Servoing for making a LUDO solving Robot: ​Code 
➢ Institute App : ​Code 
➢ Other Projects can be found here: ​https://github.com/nishantkr18

 
5) What areas of machine learning are you familiar with? 

I was intrigued by the idea of machine learning when I first saw a video demonstration of an agent, 
trying to find its path through a maze, without any specific set of rules programmed. The curiosity of 
its working led me to the world of machine learning, where I explored all my interests:  

➢ I constructed a neural network from scratch to play the flappy bird game. I used the 
(​Evolutionary Strategy​ i.e. selection of the fittest) technique to obtain the best performing 
network for the game.  

https://nishantkr18.github.io/FlappyBirdOnJavascript/
https://github.com/nishantkr18/RainbowDQN-with-Pytorch
https://github.com/nishantkr18/JerBot
https://github.com/nishantkr18/Dynamic-Gesture-recognition-system
https://nishantkr18.github.io/FlappyBirdOnJavascript/
https://github.com/nishantkr18/FlappyBirdOnJavascript/
https://github.com/nishantkr18/Pixelate-2k19-Technex
https://github.com/nishantkr18/IIT-BHU-app
https://github.com/nishantkr18


 

➢ To dive deeper, I started working with ​CNNs​, and building projects while also participating 
and winning some supervised learning competitions mentioned in my resume.  

➢ When I came across ​Variational Autoencoders​ and ​GANs​, I found it amazing and hence 
learnt about them, by hacking through their codes and tweaking parameters. 

➢ Apart from that, I have used ​XGBoost​ for making a Music Recommendation System, for yet 
another hackathon.  

➢ After having explored the domain of supervised learning, I made my mind to dive deep into 
the topic I began my journey with, i.e. ​Reinforcement Learning​.  

➢ I have in depth knowledge about the implementation of some model-free off-policy algorithms 
like ​DQNs​, ​Soft A-C, A2C​, ​REINFORCE​, along with ​PPO​ and ​TRPO​(on-policy algos). 

 
6) Have you taken any coursework relevant to machine learning?  

➢ Having made a hand gesture recognition system from scratch, I then went for a thorough 
revision of my understanding by enrolling in 'Stanford's ​CS231N ​CNNs for Computer Vision' 
course.  

➢ To better understand the concepts of RL, I started following the "​UCL​'s course on RL by 
David Silver​."  

➢ I have also taken Stanford’s Lectures on Deep Learning ​CS230​.  
➢ As for other parts of my work on machine learning, I rely on ​Medium​ blogs, ​reddit​, 

StackOverflow​ discussions and ​Research Papers​. I learnt a lot by interacting with the 
community out there.  

 

Other open-ended questions 

1) What are your long-term plans, if you have figured those out yet? Where do you hope 
to see yourself in 10 years? 
➢ I plan on working at the junction of research-oriented machine learning and development. 

Because I believe that machine learning problems can only be properly tested when applied to 
real-world problems. So, I hope to see myself in 10 years, working with an eminent research 
facility or organization, implementing frontier research ideas for real-life use-cases. I find the field 
of Artificial Intelligence quite fascinating, so I plan on working for its application on cyber-physical 
systems. If I am lucky enough, I would love to work in places like UC Berkeley, CMU, ETH Zurich 
if I get a chance. 

➢ I would also like to mention that I had long been planning on working on open-source projects, 
and now that I am getting familiar with the workflow, I have no plans on quitting. So, I would like to 
contribute to open-source projects whenever I get time from my work, for fun, learning, and to 
have a sense of belonging, as I have been experiencing for quite some days now! And the 
experience I have had using open source projects, I think OpenSource development will occupy a 
long portion of my life. 

 

 



 

 

 

 

2) Describe the most interesting application of machine learning you can think of, and 
then describe how you might implement it. 
➢ There are countless applications of machine learning almost everywhere around us, which have 

made our lives easier. But all these are uses of supervised and clustering algorithms, along with a 
few applications of Reinforcement Learning here and there.  

➢ But I believe that the most revolutionary invention(or discovery) is yet to come. It can be referred 
to as General Intelligence, which could be thought of as an agent capable of making complex 
decisions on its own and having the ability to reason. The benefit of such an agent will mark the 
end of barriers in communication between humans and machines. Instead of just using machines 
for computation, we could use them to help us; let's say intuitively solve an equation. Maybe time 
travel, or nuclear fusion in a controlled manner, are achievable; yet waiting to be discovered. With 
the help of General Intelligence, we could fasten the process. 

➢ These are dreams which are not that far away. We already have image segmentation and visual 
question answering methods, which could bring out representations from image data. The field of 
natural language processing has shown how to make meaning out of text. Generative models(like 
GANs) can be considered as dreaming in some form. So, we have achieved most human level 
tasks separately, we need a mechanism to bring it all together. 

➢ I believe this is achievable with the combination of reinforcement learning and evolutionary 
strategies. We could compare different agents using various RL techniques and evolve them 
through neuro-evolution. Doing this would make them learn from their mistakes and would be able 
to bring out the best of them from their generation. 

➢ With innovations at this pace, we can expect some form of General Intelligence in less than 30 
years! And as an enthusiast, I feel obliged to keep myself updated with these technologies and 
contribute where-ever I can. 

 

3) Both algorithm implementation and API design are important parts of mlpack. Which 
is more difficult? Which is more important? Why? 
➢ Although both are important parts of mlpack, I personally find API design to be more challenging 

and important at the same time. This is because implementation of an algorithm could be done 
straight forward, but for a proper API design, the developer has to consider a lot of things, 
including the ease of usage and understandability both for fellow/future developers and for end 
users. Also, the codebase needs to be structured in such a way that it is easy for adding new 
features in the future. 

 



 

Communication 

I’m flexible with my schedule and have inculcated the habit of working at night, so time zone difference 
shouldn’t be an issue. I’m comfortable with any of the communication mediums I mentioned above.  
 
I can work full-time on weekdays and am usually available between​ 11 AM IST to 2 AM IST​. On weekends, 
I would love to spend time communicating with the team to learn from them, while working on whatever 
issues occur at that time. 
 
I’ll responsibly keep my mentor updated in case of any emergency that occurs with suitable details. 
 

Post GSoC 

If there are things left unimplemented, I’ll try to complete them post GSoC and will keep contributing to 
Mlpack, by adding other algorithms , which are yet to be implemented like: ​ACKTR​, ​A2C​, ​TD3​, ​DDPG, 
TRPO​. I would also like to contribute more to documentation of the code. 
 

Contributions 

Merged Pull Requests: 
● DoubleDQN doesn't utilize DoubleQLearning​ ​- BugFix relating to testing of DoubleDQN 

implementation. 
Opened Pull Requests: 

● Addition of q_network​ ​- Adds the proposed implementation of QNetwork as a separate class. 
● Proximal Policy Optimization​ - Working on getting last year’s GSoC project, merged with the master 

branch. 

https://github.com/mlpack/mlpack/pull/2302
https://github.com/mlpack/mlpack/pull/2317
https://github.com/mlpack/mlpack/pull/1912

