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Abstract

SymPy is currently supporting Stochastic Processes, Random matrices, Joint, Continuous,
and Discrete distributions in its stats module. Compound Distributions introduced in 2018,
does not provide complete support. Therefore, I plan to do the following during this summer.

• Sampling from external libraries.

• Adding and testing currently implemented Stochastic Processes.

• Assumptions of dependence between Random Variables.

• Improving and adding support for Compound Distributions.

• Improving Joint Distributions Framework and adding more distributions.

• Adding support for Mixture Distributions.
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1 About Me

1.1 The Student

• Name: Smit Lunagariya

• Email: smitlunagariya.mat18@itbhu.ac.in

• GitHub: https://github.com/Smit-create

• Gitter-id: Smit-create
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1.2 The University

• Name: Indian Institute of Technology - (BHU), Varanasi

• Major: Mathematics and Computing

• Year: Sophomore

• Degree: Integrated Dual Degree

1.3 Programming Experience & Mathematical Background

I have been programming for the last two years, and for the past year in python. Apart from
python, I have experience in C, C++, Java. I work on Ubuntu 18.04 LTS and use the atom as my
editor because it has an inbuilt version control system and is easy and simple to use. I use pdb as
a python debugger. I am also familiar with Git and GitHub workflow.

I have background knowledge in Mathematical and Computer Science courses which include
Linear Algebra and Abstract Algebra, Probability and Statistics, Information Technology Python
Workshop, Data Structure, Mathematical Methods(ongoing), Numerical Techniques(ongoing), Operating
Systems(ongoing), and Algorithms(ongoing).

I have also undertaken many online courses including Deep Learning, Advanced Reinforcement
Learning, Convolutional Neural Networks, and Stochastic Processes(NPTEL).

I use Python for programming as well as for scientific computing. The syntax of the python
programming helps to do complex coding in fewer steps and also helps to enhance the code
readability. The latest feature of python which I have used is walrus operator (:=) which allows
us to assign variables inside an expression and was introduced in Python 3.8.

I began to use SymPy in the first week of December, 2019 and was quite impressed with
multiple functionalities provided by it. My most favourite feature in SymPy is Fourier and Laplace
Transforms which I also use for my academic course on Mathematical Methods.

>>> from sympy import *

>>> from sympy.abc import x, s

>>> fourier_transform (1/(1+x**2), x, s)

pi*exp(-2*pi*s)

>>> laplace_transform(cos(2*x)*x**3, x, s)

(6*(s**4 - 24*s**2 + 16)/((s**2 + 4)**2*(s**4 + 8*s**2 + 16)), 0, True)

>>> laplace_transform(sin(3*x)/x, x, s)

(-atan(s/3) + pi/2, 0, True)

1.4 My Motivation

I had found my interest in Probability and Statistics during my school days and continued exploring
the literature related to it. It also forms one of the most important basis of growing Artificial
Intelligence. Therefore, I started exploring the stats module of SymPy. I was really fascinated
by its ability to symbolically solve the complicated expressions of density, expectation and cdf

with the support of powerful integrate and solvers module.
Moreover, it also supports Stochastic Processes and Random matrices which are my favourite

features in the stats module. Stochastic Processes were introduced in the last year’s GSoC and
can be extended to provide support for more of such processes. I found that my interest matches
with SymPy and therefore started exploring it more to know its powerful features.

3



1.5 Contributions

I started using SymPy in the beginning of the December, 2019. I made my first contribution
in the middle of December, 2019 and continued to explore, learn and contribute to the library
consistently.

1.5.1 Merged PR’s - Related to stats

• 18935 - Added coskewness function

• 18655 - Increases code coverage of crv_types(stats)

• 18639 - Corrected Documentation in finite rv types

• 18614 - Fixed DiscreteUniform to produce correct density and cdf

• 18577 - Fixed compute_expectation to use non-sympify parameters

• 18446 - Added Moyal Distribution

• 18336 - Fixed Wrong Integral from SingleContinuousPSpace

• 18311 - Fixed a bug in probability method in ContinuousPSpace

• 18300 - Added Median

• 18289 - Added sampling methods of Discrete Random Variables

• 18233 - Added Hermite Distribution

• 18173 - Added Bernoulli Process

• 18152 - Added Powerfunction Distribution

• 18096 - Added Levy Distribution

1.5.2 Merged PR’s - Related to other modules

• 18698 - Fixes sqf_list to combine same multiplicity factors

• 18677 - Added backend option in plotting

• 18640 - Fixes TypeError in piecewise_simplify

• 18605 - Fixes Idx object to accept non-integer bound

• 18597 - sqrt(x).is_negative return False instead of None

• 18566 - Fixed bug in Heuristic gcd for polynomial gcd

• 18537 - Fixed aspect_ratio parameter with MatplotlibBackend

• 18535 - Fixes polynomial solve with Golden Ratio and Tribonacci Constant

• 18472 - Handing Integers containing I

• 18450 - Fixes recursion error in Limit

• 18434 - Handling Float Integrals

• 18405 - Fixes test failure with cache off

• 18390 - Removed deprecated in assumptions
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• 18276 - Using gmpy in integer_nthroot and igcd

• 18159 - Fix Attribute error in matrix and polynomial multiplication

• 18141 - Fixes ValueError from meijerg

• 18061 - Added assumption in DynamicSymbols

1.5.3 Open PR’s

• 18754 - Added sampling methods of crv_types

– Working on one of important the part of the proposal i.e. Sampling from External Libraries

– Discussing and implementing various API designs that involves changing the sample methods across
many stats files, such that the implementation is in an organized manner and makes it easy to extended
for adding more of such external libraries.

1.5.4 Open Issues

• 18920 - Incorrect plot of exponential expression

• 18901 - Incorrect plot with constants

• 18796 - Integrate: Takes long time and produces unevaluated output

• 18702 - solveset with quartic equations is slow and gives complicated results

• 18423 - Test failure with cache off

• 18359 - solveset produces two different results

• 18323 - Incorrect output while comparing symbolic expression

• 18299 - Quantile function gives NaN

1.5.5 Discussions

• 18718 - Reparametrization and KL Divergence

– Discussing the API and examples related to KL Divergence Implementation.

• 18730 - Mixture models and Mixture Distributions

– Discussing the API for implementation of Mixture Distributions.

– Proposing an idea for the stats plot wrapper for plotting cdf and density of random variables.

1.5.6 Reviewed PR’s

• 18961 - Giving ‘digits‘ a ‘bits‘ argument

• 18960 - [WIP] Add multinomial coefficients

• 18958 - Including Polar Decomposition

• 18952 - Adding Multinomial Coefficients

• 18951 - 90 degree rotation of matrix elements

• 18950 - for 90 degree rotation of matrix elements
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• 18947 - Solves bug in limit

• 18945 - Move Matrix test out of test_matrices.py

• 18923 - Test for the stats module

• 18905 - Tangent on the curve at a particular point

• 18903 - Evaluate nested floor/ceiling

• 18902 - tangent to curve

• 18900 - Functions and test cases added

• 18880 - adding latus rectum in parabola file in geometry module

• 18875 - Quartenion: added tests to increase test coverage

• 18858 - Improve code coverage of test_polygon.py

• 18856 - Singularity handling for plots improved

• 18734 - Docstring updated to clarify the statement about load value

• 18681 - Added Refine function for symmetric matrices

2 The Project

In this section I will provide the details and explanation regarding my project during this summer.
I will first explain the plan briefly and then provide theory and implementation design in the
further sections.

2.1 Brief Overview

The stats module provides a powerful support for finite, continuous, and discrete distributions.
Joint and Compound distributions lack a well defined framework as it will require code cleaning
and improvement. I will be also focusing on extending the support of Stochastic Processes by
adding more of such process and also implement Mixture Distributions which are currently
not supported by the stats module. Therefore, my focus during the summer would be on the
following:

• Extend the Stochastic processes

• Improve the implementation of Joint and Compound Distributions and add more examples

• Implement Mixture Distributions

• Adding assumptions of dependence

• Sampling from external libraries
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2.2 The Plan

In this section, I will explain the plan and workflow of my project. The execution details regarding
the same are presented in the following subsection. I would also discuss in detail regarding the
validity of my plan with the mentor and would refine it further under his guidance during the
project period.

Stochastic processes were introduced in the stats module in last year’s GSoC and currently
support Markov Processes(both Continuous and Discrete), and Bernoulli Process. I would further
extend this to provide support for more of the Stochastic Processes. The below given flowchart
shows the hierarchy order in the stochastic_process_types.py. Implementation design and
code for each of the process and its examples follows in the next subsection.

The compound distributions were introduced in the stats module in GSoC 2018, but they do
not provide complete support and require much refinement. The following snippet shows some
of the failing examples of Compound Distributions:

>>> from sympy.stats import *

>>> from sympy.abc import x

>>> G = Gamma('G' ,2,3)

>>> T = Poisson('T', G)

>>> density(T)

CompoundDistribution(PoissonDistribution(G))

>>> density(T)(x)

Integral(G*G**x*exp(-4*G/3) /(9* factorial(x)), (G, 0, oo))

>>> cdf(T)(x)

Traceback (most recent call last):

...

AttributeError: 'JointPSpace ' object has no attribute 'compute_cdf '

>>> E(T)

Traceback (most recent call last):

...

NotImplementedError: Expectations of expression with unindexed

joint random symbols cannot be calculated yet.

Currently, it shares a joint probability space with joint distributions. This needs to be changed
and provide a new Compound Probability Space and more examples will be added related to
compound distributions. I would continue the PR #17036 by Ritesh Kumar which require many
changes in the Compound Probability Space which I have proposed in the following subsection
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along with the example outputs.
One of the interesting part of this project would be to provide support for Mixture Distributions.

These are currently not supported.

>>> from sympy.stats import *

>>> from sympy.abc import x

>>> N = Normal('N',1, 2)

>>> M = Normal('M', 3, 4)

>>> X = 0.3*N + 0.7*M

>>> density(X)(x).simplify ()

0.230245262479199* exp ( -0.0609756097560978*x**2 + 0.292682926829268*x - 9/32)

/sqrt(pi)

>>> P(X > 1)

Traceback (most recent call last):

...

sympy.integrals.meijerint._CoeffExpValueError: expr not of form a*x**b:

1.25560538116592

>>> cdf(X)(x)

Traceback (most recent call last):

...

ValueError: CDF not well defined on multivariate expressions

Adding Mixture Distributions would include creating a new file named mixture_rv.py consisting
of temporary MixturePSpace(it will map to corresponding Probability Space), class MixtureDistribution,
and a RV Mixture - Random Variable representing MixtureDistribution and other helper functions.
I have provided the complete implementation code and the examples of using Mixture Distributions
in the next subsection.

2.3 Execution and Implementation

In this section, I will discuss the theory and the implementation code of the project. I will divide
the whole project into four phases which include Community Period, and three official coding
phases and explain each of these separately.

2.3.1 Community Bonding Period

During this phase, I will start discussing the API and the implementation details of the Compound
Distributions and the Mixture Distributions with the mentor. Since I have been contributing to
the library for the past four months, it would be easier for me to get into the community.

As many distributions are supported in the stats module under Discrete and Continuous
Random variable, I would like to add more of such distributions as some of them might be
useful in further implementation of Joint and Compound Distributions. While adding these
distributions, I will make sure to increase the code coverage and add all the necessary tests, upon
which I worked in my PR #18655. I will be adding the following distributions during this phase:

• Borel Distribution (Discrete)

• Conway-Maxwell-Poisson Distribution (Discrete)

• Lomax Distribution (Continuous)

• Symmetric Pareto Distribution (Continuous)

• Bounded Pareto Distribution (Continuous)
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All the above distributions will follow the same template as:

class NameofDistribution(SingleContinuousDistribution/SingleDiscreteDistribution):

_argnames = (...)

set = # the set on which the distribution is defined

@staticmethod

def check (...):

# check the validity of the arguments passed

def pdf(self , ...):

# the probability density fucntion of the distribtuion

# Add further ad-hoc methods only if integrate fails to produce

# the expected results

An instance of adding such distributions is shown by the implementation of Bounded Pareto
Distribution:

class BoundedParetoDistribution(SingleContinuousDistribution):

_argnames = ('alpha', 'left', 'right')

@property

def set(self):

return Interval(self.left , self.right)

@staticmethod

def check(alpha , left , right):

_value_check(alpha.is_positive , "Shape must be positive.")

_value_check(left.is_positive , "Left value should be positive.")

_value_check(right > left , "Right should be greater than left.")

def pdf(self , x):

alpha , left , right = self.alpha , self.left , self.right

num = alpha * (left**alpha) * x**(-alpha -1)

den = 1 - (left/right)**alpha

return num/den

def BoundedPareto(name , alpha , left , right):

""" Create a continuous random variable with a Bounded Pareto Distribution """

return rv(name , BoundedParetoDistribution , (alpha , left , right))

Example:

>>> from sympy.stats import *

>>> from sympy import symbols

>>> from sympy.abc import x

>>> L, H = symbols('L, H', positive=True)

>>> B = BoundedPareto('B', 1, L, H)

>>> E(B)

H*L*log(H)/(H - L) - H*L*log(L)/(H - L)
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>>> cdf(B)(x)

Piecewise((-H*L/(x*(H - L)) + H/(H - L), L <= x), (0, True))

>>> density(B)(x)

L/(x**2*(1 - L/H))

Presently, stats provides symbolic classes of Probability, Expectation, Variance and Covariance

in symbolic_probability.py. The class Probability lacks doit method. Therefore, I will work
upon adding the doit method to this class during this phase. This can be implemented as:

def doit(self , **hints):

expr = self.args [0]

condition = self._condition

if not expr.has(RandomSymbol):

return expr

if isinstance(expr , And):

rv_combs = list(itertools.combinations(expr.args , 2))

if all([not dependent (* rv_pair) for rv_pair in rv_combs ]):

return Mul(*[ Probability(arg , condition).doit() for

arg in expr.args])

if isinstance(expr , Or):

return Add(*[ Probability(arg , condition) for arg in expr.args])-

Probability(And(*expr.args), condition).doit()

if condition is not None:

return Probability(And(expr , condition)).doit()

/Probability(condition).doit()

return self

Examples of using this doit method of class Probability are:

>>> from sympy import And , Or

>>> from sympy.stats import Probability , Bernoulli

>>> A = Bernoulli('A', 0.1)

>>> B = Bernoulli('B', 0.2)

>>> C = Bernoulli('C', 0.3)

>>> Probability(Or(A>0, B>0)). doit()

Probability(A > 0) - Probability(A > 0)* Probability(B > 0) + Probability(B > 0)

>>> Probability(And(A>0, B>0), C>0). doit()

Probability(A > 0)* Probability(B > 0)

Apart from these, I will also work upon adding the sampling methods of continuous, finite and
discrete random variables from the external libraries. I am currently working upon adding the
sampling methods for continuous random variables in my PR #18754. Once the implementation
design is approved, I will add these methods for finite and discrete random variables.

2.3.2 Phase 1

During the first phase, I will work completely upon extending the support of Stochastic Processes
and testing the existing algorithms.
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A stochastic process means that one has a system for which there are observations at certain
times, and that the outcome, that is, the observed value at each time is a random variable. It is
concerned with concepts and techniques, and is oriented towards a broad spectrum of mathematical,
scientific and engineering interests. Stochastic processes are widely used as mathematical models
of systems and phenomena that appear to vary in a random manner.

I would follow the hierarchy flowchart as shown in the previous section and generalize some
of the methods that are common to many of such processes. The functions or the data structure
that are common to some of the process are implemented as:

dict_rv_subs = {

'Poisson ': lambda rv: Poisson(rv.name , lamda=rv.pspace.process.lamda*rv.key),

'Wiener ': lambda rv: Normal(rv.name , mean=0, std=sqrt(rv.key)),

'Bernoulli ': lambda rv: Bernoulli(rv.name , p=rv.pspace.process.p, succ=rv.pspace.process.success , fail=rv.pspace.process.failure),

'RandomWalk ': lambda rv: Bernoulli(rv.name ,p=rv.pspace.process.p,succ=1,fail=-1),

'Gamma': lambda rv: Gamma(rv.name , theta =1/rv.pspace.process.jump_size ,

k=rv.pspace.process.jump_rate*rv.key)

# This dictionary maps indexed RV with simple RV having same name and

# distributionas of the indexed RV which helps in computing using the

# functions that are presently implemented for simple RV

}

The above dictionary is common to five processes and helps to create a map between the
indexed and the simple random variable. Using this dictionary in the below function, _rvindexed_subs

we will substitute the indexed RV.

def _rvindexed_subs(process , expr , condition=None):

"""

Substitutes the RandomIndexedSymbol with the RandomSymbol with

same name , distribution and probability as RandomIndexedSymbol.

"""

rvs_expr = random_symbols(expr)

if len(rvs_expr) != 0:

swapdict_expr = {}

for rv in rvs_expr:

if isinstance(rv, RandomIndexedSymbol ):

newrv = dict_rv_subs[process ](rv)

swapdict_expr[rv] = newrv

expr = expr.subs(swapdict_expr)

rvs_cond = random_symbols(condition)

if len(rvs_cond) != 0:

swapdict_cond = {}

for rv in rvs_cond:

if isinstance(rv, RandomIndexedSymbol ):

newrv = dict_rv_subs[process ](rv)

swapdict_cond[rv] = newrv

condition = condition.subs(swapdict_cond)

return expr , condition

The following function is used to calculate the expectation of the expression having the indexed
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random variable. This will calculate the expectation for the indexed RV of the processes in the
dict_rv_subs with the aid of dict_rv_subs and _rvindexed_subs.

def _expectation_stoch(process , expr , condition=None , evaluate=True , ** kwargs ):

"""

Computes expectation.

Parameters

==========

expr: RandomIndexedSymbol , Relational , Logic

Condition for which expectation has to be computed. Must

contain a RandomIndexedSymbol of the process.

condition: Relational , Logic

The given conditions under which computations should be done.

Returns

=======

Expectation of the RandomIndexedSymbol.

"""

new_expr , new_condition = _rvindexed_subs(process , expr , condition)

new_pspace = pspace(new_expr)

if new_condition is not None:

new_expr = given(new_expr , new_condition)

if new_expr.is_Add: # As E is Linear

return Add(*[ new_pspace.compute_expectation(

expr=arg , evaluate=evaluate , ** kwargs)

for arg in new_expr.args])

return new_pspace.compute_expectation(

new_expr , evaluate=evaluate , ** kwargs)

Now, the following function is used to calculate the probability of the expression having the
indexed random variable. This will calculate the probability of expression containing the indexed
RV of the processes in the dict_rv_subs with the aid of dict_rv_subs and _rvindexed_subs.

def _probability_stoch(process ,condition ,given_condition=None ,evaluate=True ,**kw):

"""

Computes probability.

Parameters

==========

condition: Relational

Condition for which probability has to be computed. Must

contain a RandomIndexedSymbol of the process.

given_condition: Relational/And

The given conditions under which computations should be done.

Returns

=======

Probability of the condition.
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"""

new_condition , new_givencondition = _rvindexed_subs(process , condition ,

given_condition)

if isinstance(new_givencondition , RandomSymbol ):

condrv = random_symbols(new_condition)

if len(condrv) == 1 and condrv [0] == new_givencondition:

return BernoulliDistribution(_probability_stoch(process ,

new_condition), 0, 1)

if any([ dependent(rv, new_givencondition) for rv in condrv ]):

return Probability(new_condition , new_givencondition)

else:

return _probability_stoch(process , new_condition)

if new_givencondition is not None and \

not isinstance(new_givencondition , (Relational , Boolean )):

raise ValueError("%s is not a relational or combination of\

relationals" % (new_givencondition ))

if new_givencondition is False:

return S.Zero

if new_condition is True:

return S.One

if new_condition is False:

return S.Zero

if not isinstance(new_condition , (Relational , Boolean )):

raise ValueError("%s is not a relational or combination of\

relationals" % (new_condition ))

if new_givencondition is not None: # If there is a condition

# Recompute on new conditional expr

return _probability_stoch(process , given(new_condition ,

new_givencondition , **kw), **kw)

result = pspace(new_condition ). probability(new_condition , **kw)

if evaluate and hasattr(result , 'doit'):

return result.doit()

else:

return result

Hence, these functions _rvindexed_subs, _expectation_stoch, _probability_stoch along
with the dict_rv_subs helps in the expectation and probability computation of the expression
involving indexed RV. This is done to avoid code repetition and maintain organized way of
implementation.

Also, joint_distribution method of class StochasticProcess needs a minor fix in-order
to produce the result in the case when the distribution of the process is time dependent as in case
of Poisson, Wiener etc. This below change would make it work for all the cases.
if not args [0]. pspace.process.distribution:

# checks if there is any distribution available

return JointDistribution (*args)

I will now begin explaining the processes individually.
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• Poisson Process

A Poisson Process is a model for a series of discrete event where the average time between events
is known, but the exact timing of events is random. The arrival of an event is independent of
the event before (waiting time between events is memory-less). Therefore, Poisson Process is a
Discrete state Continuous Time Stochastic Process.

The probability of the random variable N(t) following the Poisson process being equal to n is
given by:

P{N(t) = n} = (λt)n exp(−λt)
n!

The implementation of Poisson Process is given in the following code snippet using the functions
that are described above.

class PoissonProcess(ContinuousTimeStochasticProcess ):

index_set = _set_converter(Interval(0, oo))

def __new__(cls , sym , lamda):

sym = _symbol_converter(sym)

lamda = _sympify(lamda)

return Basic.__new__(cls , sym , lamda)

@property

def state_space(self):

return S.Naturals0

@property

def symbol(self):

return self.args [0]

@property

def lamda(self):

return self.args [1]

def distribution(self , rv):

return PoissonDistribution(self.lamda*rv.key)

def density(self , x):

return (self.lamda*x.key)**x / factorial(x) * exp(-(self.lamda*x.key))

def expectation(self , expr , condition=None , evaluate=True , ** kwargs ):

""" Computes expectation."""

return _expectation_stoch('Poisson ',expr ,condition ,evaluate ,** kwargs)

def probability(self , condition ,given_condition=None ,evaluate=True ,** kwargs ):

""" Computes probability."""

return _probability_stoch('Poisson ', condition , given_condition ,

evaluate , ** kwargs)

Following are the examples of using the Poisson Process:

>>> from sympy import Eq

>>> from sympy.stats import PoissonProcess , E, P
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>>> X = PoissonProcess('X', 3)

>>> E(X(2))

6

>>> P(Eq(X(3), 2))

81*exp(-9)/2

>>> X.joint_distribution(X(1), X(2))

JointDistributionHandmade(Lambda ((X(1), X(2)),

3**X(1)*6**X(2)* exp(-9)/( factorial(X(1))* factorial(X(2)))))

>>> N = X(1) + X(2) + X(3)

>>> E(N)

18

• Wiener Process

The Wiener process can be constructed as the scaling limit of a random walk, or other discrete-time
stochastic processes with stationary independent increments. This is known as Donsker's theorem.
The process has independent increments means that if 0 ≤ s1 < t1 ≤ s2 < t2 then Wt1 −Ws1and
Wt2 −Ws2are independent random variables, and the similar condition holds for n increments.
Hence, the Wiener process is Continuous state Continuous time Stochastic Process.

The unconditional probability density function, which follows normal distribution with mean
= 0 and variance = t, at a fixed time t:

fWt(x) =
exp(−x2/2t)√

2πt

The implementation of the Wiener Process is given in the following code snippet:

class WienerProcess(ContinuousTimeStochasticProcess ):

index_set = _set_converter(Interval(0,oo))

def __new__(cls , sym):

sym = _symbol_converter(sym)

return Basic.__new__(cls , sym)

@property

def state_space(self):

return S.Reals

@property

def symbol(self):

return self.args [0]

def distribution(self , rv):

return NormalDistribution(mean=0, std=sqrt(rv.key))

def density(self , x):

return exp(-(x)**2/(2*x.key)) / (sqrt (2*pi)*sqrt(x.key))

def expectation(self , expr , condition=None , evaluate=True , ** kwargs ):

return _expectation_stoch('Wiener ',expr ,condition ,evaluate ,** kwargs)

def probability(self , condition ,given_condition=None ,evaluate=True ,** kwargs ):
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return _probability_stoch('Wiener ', condition , given_condition ,

evaluate , ** kwargs)

Following are the examples of using the Wiener Process:

>>> from sympy.stats import WienerProcess , P , E, variance

>>> W = WienerProcess('W')

>>> E(W(4.67))

0

>>> variance(W(4))

4

>>> P(W(4.5) > 2)

0.122251191528291* sqrt (2)

>>> W.joint_distribution(W(3), W(5))

JointDistributionHandmade(Lambda ((X(3), X(5)),

sqrt (15)* exp(-X(3)**2/6)* exp(-X(5)**2/10)/(30* pi)))

• Random Walk

A Random walk also known as a stochastic or random process, describes a path that consists of
a succession of random steps on some mathematical space such as the integers. An elementary
example of a random walk is the random walk on the integer number line, Z , which starts at 0
and at each step moves +1 or −1 with some probability. Hence, random walk is the Discrete state
and Discrete Time Stochastic Process. The probability distribution of the random walk at some
particular time can be interpreted as the Bernoulli Process with succ = 1 and f ail = −1 and p
being the probability of getting success.

P{X(t) = 1} = p and P{X(t) = −1} = 1− p

The implementation of the Random Walk is given in the following code snippet:

class RandomWalk(DiscreteTimeStochasticProcess ):

index_set = S.Naturals0

def __new__(cls , sym , p):

_value_check(p >= 0 and p <= 1, 'Value of p must be between 0 and 1.')

sym = _symbol_converter(sym)

p = _sympify(p)

return Basic.__new__(cls , sym , p)

@property

def state_space(self):

return S.Integers

@property

def symbol(self):

return self.args [0]

@property

def p(self):

return self.args [1]
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def distribution(self):

return BernoulliDistribution(self.p, succ=1, fail=-1)

def density(self , x):

return Piecewise ((self.p, Eq(x, 1)),

(1 - self.p, Eq(x, -1)),

(S.Zero , True))

def path(self , position=0, steps =5):

"""

Parameters

==========

position : Integer

Intial position

steps: Positive Integer

Number of steps required in the path.

Returns

=======

path : list

List of positions at a particular step.

"""

path = []

for step in range(steps):

if random.random () <= self.p:

position += 1

else:

position -=1

path.append(position)

return path

def expectation(self , expr , condition=None , evaluate=True , ** kwargs ):

return _expectation_stoch('RandomWalk ',expr ,condition ,evaluate ,** kwargs)

def probability(self ,condition ,given_condition=None ,evaluate=True ,** kwargs ):

return _probability_stoch('RandomWalk ', condition , given_condition ,

evaluate , ** kwargs)

The examples of the Random Walk are:

>>> from sympy.stats import RandomWalk , E, P

>>> from sympy import Eq

>>> R = RandomWalk('R', 0.6)

>>> E(3*R[4])

0.6

>>> R.path(steps =9)

[1, 0, 1, 0, 1, 2, 3, 4, 5] # Random results

>>> P(Eq(R[4], -1))

0.4

>>> progress = R[1] + R[2] + R[3]

>>> P(Eq(progress , 1))
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0.432

>>> R.joint_distribution(R[8], R[10])

JointDistributionHandmade(Lambda ((R[8], R[10]), Piecewise ((0.6, Eq(R[10], 1)),

(0.4, Eq(R[10], -1)), (0, True ))* Piecewise ((0.6, Eq(R[8], 1)),

(0.4, Eq(R[8], -1)), (0, True ))))

• Gamma Process

A Gamma process is a random process with independent gamma distributed increments. The
parameter γ controls the rate of jump arrivals and the scaling parameter λ controls the jump
size. The marginal distribution of a gamma process at time t is a gamma distribution with mean
γt/λ and variance γt/λ2. Therefore, Gamma Process is the Continuous State Continuous Time
Stochastic process. The probability density function f at some time t is given by

f (x; t, λ, γ) =
λγtxγt−1 exp(−λx)

Γ (γt)

The implementation of the Gamma Process is given in the following code snippet:

class GammaProcess(ContinuousTimeStochasticProcess ):

index_set = _set_converter(Interval(0,oo))

def __new__(cls , sym , jump_size , jump_rate ):

sym = _symbol_converter(sym)

jump_size = _sympify(jump_size)

jump_rate = _sympify(jump_rate)

return Basic.__new__(cls , sym , jump_size , jump_rate)

@property

def state_space(self):

return _set_converter(Interval(0,oo))

@property

def symbol(self):

return self.args [0]

@property

def jump_size(self):

return self.args [1]

@property

def jump_rate(self):

return self.args [2]

def distribution(self , rv):

return GammaDistribution(k=rv.key*self.jump_rate , theta =1/ self.jump_size)

def density(self , x):

k = x.key*self.jump_rate

theta = 1/self.jump_size

return x**(k - 1) * exp(-x/theta) / (gamma(k)*theta**k)
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def expectation(self , expr , condition=None , evaluate=True , ** kwargs ):

return _expectation_stoch('Gamma',expr ,condition ,evaluate ,** kwargs)

def probability(self ,condition ,given_condition=None ,evaluate=True ,** kwargs ):

return _probability_stoch('Gamma', condition , given_condition ,

evaluate , ** kwargs)

The examples of using Gamma Process are:

>>> from sympy.stats import GammaProcess , P, E, variance

>>> from sympy import symbols

>>> y, t, l = symbols('y, t, l', positive=True)

>>> G = GammaProcess('G', l, y)

>>> E(G(t))

t*y/l

>>> variance(G(t))

t*y/l**2

>>> G = GammaProcess('G', 2, 1)

>>> P(G(3) > 4)

41*exp(-8)

>>> G.joint_distribution(G(2), G(4))

JointDistributionHandmade(Lambda ((G(2), G(4)),

32*exp(-2*G(2))* exp(-2*G(4))*G(2)*G(4)**3/3))

• Birth Death Process

The birth–death process is a special case of Continuous-time Markov process where the state
transitions are of only two types: "birth", which increases the state variable by one and "deaths",
which decreases the state by one. When a birth occurs, the process goes from state n to n + 1.
When a death occurs, the process goes from state n to state n− 1. The process is specified by birth
rates {λi}i=1,2,...,∞and death rates {µi}i=1,2,...,∞ . Hence, Birth-Death Process is the Discrete State
Continuous Time Stochastic process. The implementation of the Birth Death Process is given in
the following code snippet:

class BirthDeathProcess(ContinuousMarkovChain ):

def __new__(cls , sym , state_space , birth_rate=None , death_rate=None):

sym = _symbol_converter(sym)

state_space = _set_converter(state_space)

if (birth_rate and death_rate) is not None:

if state_space.is_finite_set and

not (len(birth_rate) == len(death_rate) == len(state_space )):

raise(ValueError , "Birth and death rates should\

be defined for each state.")

birth_rate = ImmutableMatrix(birth_rate)

death_rate = ImmutableMatrix(death_rate)

return Basic.__new__(cls , sym , state_space , birth_rate , death_rate)

@property

def birth_rate(self):

return self.args [2]
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@property

def death_rate(self):

return self.args [3]

@property

def generator_matrix(self):

if not self.state_space.is_finite_set:

return None

n = len(self.state_space)

mat = zeros(n, n)

mat[0, 1] = self.birth_rate [0]

mat[0, 0] = -self.birth_rate [0]

mat[n-1, n-1] = -self.death_rate[n-1]

mat[n-1, n-2] = self.death_rate[n-1]

for s in range(1, n-1):

mat[s, s+1] = self.birth_rate[s]

mat[s, s] = -(self.birth_rate[s] + self.death_rate[s])

mat[s, s-1] = self.death_rate[s]

return mat

Examples of using the Birth Death Process are:

>>> from sympy.stats import BirthDeathProcess , P, E

>>> from sympy import symbols , Eq

>>> B = BirthDeathProcess('B', [0,1], [1,1], [1,2])

>>> B.limiting_distribution ()

Matrix ([[2/3 , 1/3]])

>>> A, t = B.generator_matrix , symbols('t', positive=True)

>>> B.transition_probabilities(A)(t)

Matrix ([[2/3 + exp(-3*t)/3, 1/3 - exp(-3*t)/3],

[2/3 - 2*exp(-3*t)/3, 1/3 + 2*exp(-3*t)/3]])

>>> E(B(2), Eq(B(0), 1))

2*exp(-6)/3 + 1/3

>>> P(Eq(B(1), 1), Eq(B(0), 1))

2*exp(-3)/3 + 1/3

• Queueing Process

A queueing process is a model of waiting lines, constructed so that queue length and waiting
times can be predicted. Networks of connected queues allow similar models for more complex
situations where routing between queues plays a role. Queueing Process represents a queue with
general arrival and service distributions. The Queueing Processes can be interpreted as the special
cases of Birth Death process in which the birth rate represents the arrival rate and the service rate
represents the death rate. The number of servers and the length of the queue depends on the
type of the Queueing model. I will be working on adding the M/M/1 and M/M/1/N Queueing
models and will discuss necessary changes in the API with mentor. Following is the code for both
of these Queueing models:

class MMOne(BirthDeathProcess ):

def __new__(cls , sym , arrival_rate , service_rate ):

sym = _symbol_converter(sym)

arrival_rate = _sympify(arrival_rate)
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service_rate = _sympify(service_rate)

state_space = S.Naturals0

return Basic.__new__(cls , sym , state_space , arrival_rate , service_rate)

@property

def arrival_rate(self):

return self.args [2]

@property

def service_rate(self):

return self.args [3]

def limiting_distribution(self):

return GeometricDistribution(self.arrival_rate/self.service_rate)

# Will be implementing expectation and probability methods for Queueing Process

For M/M/1/N Queueing models:

class MMOneN(BirthDeathProcess ):

def __new__(cls , sym , num_servers , arrival_rate , service_rate ):

sym = _symbol_converter(sym)

num_servers = _sympify(num_servers)

arrival_rate = _sympify(arrival_rate)

service_rate = _sympify(service_rate)

state_space = set(range(num_servers ))

birth_rate = [arrival_rate ]* num_servers

death_rate = [service_rate ]* num_servers

return BirthDeathProcess.__new__(cls , sym , state_space ,

birth_rate , death_rate)

@property

def num_servers(self):

return len(self.args [1])

@property

def arrival_rate(self):

return self.args [2][0]

@property

def service_rate(self):

return self.args [3][0]

def eff_arrival_rate(self):

return self.arrival_rate *(S.One - self.limiting_distribution ()

[self.num_servers -1])

def throughput(self):

return self.service_rate *(S.One - self.limiting_distribution ()[S.Zero])

# Will be implementing expectation and probability methods for Queueing Process
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Examples of using both of these Queueing models are:

>>> from sympy.stats import MMOne , MMOneN

>>> M = MMOne('M', 1, 2)

>>> M.limiting_distribution ()

GeometricDistribution (1/2)

>>> M = MMOneN('M', 3, 1, 2)

>>> M.limiting_distribution ()

Matrix ([[4/7 , 2/7, 1/7]])

>>> M.eff_arrival_rate ()

6/7

>>> M.throughput ()

6/7

I will be adding these processes in stochastic_process_types.py and add the tests of each
them in order to increase the code coverage and check the validity of the implemented code.

2.3.3 Phase 2

During this phase, I will work upon adding the Compound Distributions, create a well defined
frame work and improved code quality for Joint Distributions.

• Compound Distributions

A compound distribution is the probability distribution that results from assuming that a random
variable is distributed according to some parameterized distribution, with (some of) the parameters
of that distribution themselves being random variables.

Presently, SymPy does support Compound Distributions, but the implementation is not well
structured and not well defined. Compound Distribution is created in joint_rv.py and is provided
with the same Probability Space as the Joint distributions, this also leads to a mix-up in the
joint_rv.py.

I went through the PR #17036 by Ritesh Kumar in last year’s GSoC who had implemented
the similar logic, but can be used for only Normal Distributions(with only mean as RV) . Also
the compound probability space created in that patch contains many methods that are not useful
for the compound distributions . Therefore, it needs some refinement such as some methods like
compute_expectation, marginal_distribution, etc. are not useful when this compound distribution
is mapped to some continuous or discrete distribution. I would continue and complete the PR
and make it generalize to be able to extend its scope by adding more examples on the top of
the existing one. I will make two files, compound_rv.py and compound_rv_types.py similar to
other stats files. The compound_rv_types.py will contain a dictionary that will map compound
distributions to the corresponding Continuous or Discrete Distribution. After cleaning up Compound
Probability space and I will create a new file for adding examples named compound_rv_types.py

in the following way:

def create_compound(sym , dist):

comp_dist = compound_rv_map[dist.compound_distribution.__class__.__name__]

(sym , dist)

return comp_dist if comp_dist is not None else dist

compound_rv_map = {

'NormalDistribution ': lambda sym , dist: compute_normal(sym , dist),

'PoissonDistribution ': lambda sym , dist: compute_poisson(sym , dist),
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'ExponentialDistribution ': lambda sym , dist: compute_exponential(sym , dist),

'GammaDistribution ': lambda sym , dist: compute_gamma(sym , dist)

}

def compute_normal(sym ,dist):

mean , std = dist.compound_distribution.args

if random_symbols(mean):

from sympy.stats.crv_types import NormalDistribution

if isinstance(mean.pspace.distribution , NormalDistribution ):

mu, sigma = mean.pspace.distribution.args

return SingleContinuousPSpace(sym , NormalDistribution(mu,

sqrt(sigma ** 2 + std ** 2)))

else:

from sympy.stats.crv_types import (RayleighDistribution ,

LaplaceDistribution)

if isinstance(std.pspace.distribution , RayleighDistribution ):

sigma = std.pspace.distribution.args [0]

return SingleContinuousPSpace(sym , LaplaceDistribution(mean , sigma))

def compute_poisson(sym , dist):

from sympy.stats.drv_types import NegativeBinomialDistribution

from sympy.stats.crv_types import GammaDistribution

rate = dist.compound_distribution.args [0]

if isinstance(rate.pspace.distribution , GammaDistribution ):

k, theta = rate.pspace.distribution.args

return SingleDiscretePSpace(sym , NegativeBinomialDistribution(k,

theta /(1+ theta )))

# Similarly will contain the functions for gamma , exponential and other such

# compounded distributions which can be extended easily.

This will be accessed by Compound Probability space with the help of function create_compound

with the following change in the __new__ method of CompoundPSpace.

class CompoundPSpace(ProductPSpace ):

"""

Represents a compound probability space. Represented using a distribution

and parameter(s) of which one or more are distributed

according to some distribution.

"""

def __new__(cls , sym , dist):

if isinstance(sym , str):

sym = Symbol(sym)

if not isinstance(sym , Symbol ):

raise TypeError("s should have been string or Symbol")

dist = create_compound(sym , dist)

if not isinstance(dist , CompoundDistribution ):

return dist

return Basic.__new__(cls , sym , dist)

Using the above changes, we can use the compound distributions as shown in the following

23



examples:

>>> from sympy.stats import *

>>> Y = Rayleigh('Y', 4)

>>> X = Normal('X', 1, Y)

>>> X.pspace.distribution

LaplaceDistribution (1, 4)

>>> P(X > 1)

1/2

>>> Y = Gamma('Y', 3, 2)

>>> X = Poisson('X', Y)

>>> X.pspace.distribution

NegativeBinomialDistribution (3, 2/3)

>>> P(X > 4)

416/729

>>> Y = Normal('Y', 1, 2)

>>> X = Normal('X', Y, 2)

>>> P(X > 4)

3*(-4* sqrt(pi)*erf (3/4)/3 + 4*sqrt(pi )/3)/(8* sqrt(pi))

>>> X.pspace.distribution

NormalDistribution (1, 2*sqrt (2))

• Joint Distributions

Moving the Compound Distributions to a new file, will make joint_rv.py solely devoted to joint
distributions.

The two classes namely MultivariateNormalDistribution and MultivariateLaplaceDistribution

of joint distribution in joint_rv_types.py are presently not mapped with the multivariate random
variable. They are presently created using continuous random variables of Normal and Laplace
and also there are no tests in either of the test files for these distributions. I will map them with
a multivariate random variable and use this random variable when someone tries to create a
Multivariate RV using continuous Normal and Laplace random variables. Currently we have in
crv_types.py as:

from sympy.stats.joint_rv_types import MultivariateNormalDistribution

return multivariate_rv(

MultivariateNormalDistribution , name , mean , std)

So, I will create a MultivariateNormal and MultivariateLaplace RV in joint_rv_types.py,

as follows:

def MultivariateNormal(syms , mean , std):

""" Creates a joint random variable with multivariate normal distribution."""

return multivariate_rv(MultivariateNormalDistribution , syms , mean , std)

def MultivariateLaplace(syms , mean , std):

""" Creates a joint random variable with multivariate laplace distribution."""

return multivariate_rv(MultivariateLaplaceDistribution , syms , mean , std)

This will help in maintaining the uniformity throughout the stats module and also I will add
the relevant tests for both of these classes.

The test file of joint_rv.py, i.e. test_joint_rv.py also needs attention as there are many tests
currently which are tested using string comparison that needs to be changed to dummy_eq, also all
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the imports are not moved to the top of the file, etc. Hence, test_joint_rv.py also needs code
cleaning and improved code quality.

After creating a well defined framework and improved code quality in joint_rv.py, I will add
more joint distributions in joint_rv_types.py. I will be following the same pattern of the current
implementation and will add the distributions which will follow the below given template.

class NameofDistribution(JointDistribution ):

_argnames = (...)

is_Continuous = True/False

@property

def set(self):

pass

# Interval/set on which distribution is defined

@staticmethod

def check(arguments ):

pass

# check if the arguments passed are valid

def pdf(self , *args):

pass

# probability density function of the distribution

def marginal_distribution(self , indices , *syms):

pass

# override the marginal_distribution only if the JointDistribution fails

# to produce it correctly

I will be adding the following joint distributions :

1. Wishart

2. Matrix Gamma

3. Normal Inverse Gamma

4. Inverse Wishart

5. Normal Wishart

6. Inverse Matrix Gamma

An instance of the Matrix Gamma is:

class MatrixGammaDistribution(JointDistribution ):

_argnames = ('alpha', 'beta', 'scale_matrix ')

is_Continuous = True

@staticmethod

def check(alpha , beta , scale_matrix ):

if not isinstance(scale_matrix , MatrixSymbol ):

_value_check(scale_matrix.is_positive_definite , "The shape\

matrix must be positive definite. ")
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_value_check(scale_matrix.shape [0] == scale_matrix.shape[1], "Should\

be square matrix")

_value_check(alpha.is_positive , "Shape parameter should be positive.")

_value_check(beta.is_positive , "Scale parameter should be positive.")

@property

def set(self):

k = self.scale_matrix.shape [0]

return S.Reals**k

def pdf(self , *args):

alpha , beta , scale_matrix = self.alpha , self.beta , self.scale_matrix

p = scale_matrix.shape [0]

args = ImmutableMatrix(args)

sigma_inv_x = -scale_matrix.inv()* args/beta

return ((det(scale_matrix ))**(- alpha ))*( det(args )**( alpha -(p+1)/2))*\

exp(sigma_inv_x.trace ())/( beta **(p*alpha ))/ gamma(alpha)

While adding these distributions as well as the examples of compound distributions, I will
make sure to add all the relevant tests and examples.

2.3.4 Phase 3

During this phase, I will work on adding the Mixture Distributions, adding Assumptions of
dependence and adding densities of Circular ensembles in Random Matrices.

• Mixture Distributions

A mixture distribution is a mixture of two or more probability distributions. Random variables
are drawn from more than one parent population to create a new distribution. The parent populations
can be univariate or multivariate, although the mixed distributions should have the same dimensionality.
In addition, they should either be all discrete probability distributions or all continuous probability
distributions.

The distributions can be made up of different distributions (e.g. a normal distribution and a
t-distribution) or they can be made up of the same distribution with different parameters. For
adding the support of mixture distributions, I will create a new file consisting of all the functions
and classes needed for Mixture Distributions. I will create a temporary Mixture Probability Space
which will ultimately map to the corresponding, Continuous, discrete, finite or Joint probability
space. The class MixtureDistributionwill be containing methods such as set on which distribution
is defined, probability density function, etc. The class MixtureDistribution will be accessible
with the help of Mixture random variable. This can be done in the following by creating the new
file mixture_rv.py:

def rv(symbol , cls , args):

dist = cls(sympify(args))

pspace = MixturePSpace(symbol , dist)

return pspace.value

def mixture_map(sym , distribution ):

x = Symbol('x')
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mixt_map = {

'is_Continuous ': lambda sym , distribution: SingleContinuousPSpace(sym ,

ContinuousDistributionHandmade(distribution.pdf , distribution.set)),

'is_Joint ' : lambda sym , distribution: JointPSpace(sym ,

JointDistributionHandmade(distribution.pdf , distribution.set)),

'is_Discrete ' : lambda sym , distribution: SingleDiscretePSpace(sym ,

DiscreteDistributionHandmade(distribution.pdf , distribution.set)),

'is_Finite ': lambda sym , distribution: SingleFinitePSpace(sym ,

FiniteDistributionHandmade(distribution.pdf , distribution.set))

}

return mixt_map[dist_type_check(distribution )](sym , distribution)

def dist_type_check(dist):

dist = list(dist.wt_dict )[0]

if isinstance(dist.pspace.distribution , ContinuousDistribution ):

return 'is_Continuous '

elif isinstance(dist.pspace.distribution , JointDistribution ):

return 'is_Joint '

elif isinstance(dist.pspace.distribution , DiscreteDistribution ):

return 'is_Discrete '

else:

return 'is_Finite '

class MixturePSpace(PSpace ):

""" This is just a temporary ProbabilitySpace as it will

map to the original ProbabilitySpace based on the type of distribution

passed.

"""

def __new__(cls , sym , distribution ):

if isinstance(sym , str):

sym = Symbol(sym)

if not isinstance(sym , Symbol ):

raise TypeError("sym should have been string or Symbol")

pspace = mixture_map(sym , distribution)

return Basic.__new__(cls , sym , distribution , pspace)

@property

def value(self):

return self.args [2]. value

class MixtureDistribution(Basic , NamedArgsMixin ):

""" Represents the Mixture distribution """

_argnames = ('wt_dict ')

def __new__(cls , wt_dict ):

wt_list = [_sympify(wt) for wt in wt_dict.values ()]

set_ = list(wt_dict )[0]. pspace.domain.set

for rv in wt_dict.keys ():

if not isinstance(rv, RandomSymbol ):

raise TypeError("Each of element should be a random variable")

if rv.pspace.domain.set != set_:

raise ValueError("Each random variable should be defined\
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on same set")

for wt in wt_list:

if not wt.is_positive:

raise ValueError("Weight of each random variable should\

be positive")

return Basic.__new__(cls , wt_dict)

@property

def set(self):

return list(self.wt_dict )[0]. pspace.distribution.set

def pdf(self , x):

y = Symbol('y')

sum_wt = sum(self.wt_dict.values ())

wt_dict = {}

for rv, wt in self.wt_dict.items ():

wt_dict[rv] = _sympify(self.wt_dict[rv]/ sum_wt)

pdf_ = S(0)

if isinstance(list(wt_dict )[0]. pspace.distribution ,

SingleFiniteDistribution ):

for rv in wt_dict.keys ():

pdf_ = pdf_ + wt_dict[rv]*rv.pspace.distribution.pmf(y)

else:

for rv in wt_dict.keys ():

pdf_ = pdf_ + wt_dict[rv]*rv.pspace.distribution.pdf(y)

return Lambda(y, pdf_)(x)

def Mixture(name , wt_dict ):

""" Creates a random variable with mixture distribution """

return rv(name , MixtureDistribution , wt_dict)

Examples of using the Mixture Distributions is:

>>> from sympy.stats import *

>>> M = Normal('M', 3, 4)

>>> N = Normal('N', 1, 2)

>>> X = Mixture('X', {N:3, M:5})

>>> E(X). simplify ()

9/4

>>> P(X>0)

-5*erfc (3* sqrt (2)/8)/16 - 3*erfc(sqrt (2)/4)/16 + 1

>>> variance(X). simplify ()

-1325* erfc (3* sqrt (2)/32)/256 - 1325* erf(3* sqrt (2)/32)/256

- 267* erfc (5* sqrt (2)/16)/256 - 267* erf(5* sqrt (2)/16)/256 + 597/32

• Assumptions of Dependence

Currently, stats module does not support dependence of random variables. The following code
snippets shows that the density and expectation of the random variables does not evaluate and
takes undefined time for computation.

>>> from sympy.stats import *
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>>> from sympy import And

>>> N = Normal('N', 1, 2)

>>> M = Normal('M', 3, 4)

>>> density(N + M, And(N > 0, M > 3))

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

KeyboardInterrupt

>>> density(N + M, M > 3)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

KeyboardInterrupt

>>> E(N + M, N > 0)

Traceback (most recent call last):

File "<stdin >", line 1, in <module >

KeyboardInterrupt

An attempt was made in the last year’s GSoC to add these dependencies in PR #17387 by
Gagandeep Singh, I would continue this PR as the most common assumption of dependency is
Covariance or correlation coefficient between two random variables. I would discuss more with
the mentor regarding other assumptions and complete the PR by adding other required methods
in the class DependentPSpace which include compute_expectation, compute_cdf, etc.

• Mode and Pearson Mode Skewness

The mode of the data is one of the most important statistical and analytical tool. Presently, stats
module doesn’t have any function to compute the mode of a random variable.

The mode of a set of data values is the value that appears most often. If X is a discrete random
variable, the mode is the value x(i.e, X = x) at which the probability mass function takes its
maximum value. When the probability density function of a continuous distribution has multiple
local maxima it is common to refer to all of the local maxima as modes of the distribution. A
mode of a continuous probability distribution is often considered to be any value x at which its
probability density function has a locally maximum value, so any peak is a mode.

The implementation of mode for continuous random variable is just by its definition according
to which it is the value at which the derivative of the density function goes to zero. This will be
done with separate cases, as for finite distributions, it will return the position at which the pmf

is maximum, and for continuous it will solve using the derivative of the density function. For
instance, the mode for the Normal distribution is same as its mean:

>>> from sympy.stats import Normal , density , Binomial

>>> from sympy import solveset , S, diff

>>> from sympy.abc import x, m, s

>>> X = Binomial('X', 4, S.Half)

>>> d = density(X).dict

>>> max(d, key=d.get)

2 # mode of X

>>> N = Normal('N', m, s)

>>> d = density(N)(x)

>>> solveset(diff(d, x), x)

FiniteSet(m) # mode of N
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Pearson mode skewness helps to find out if we have positive or negative skewness. If we have
a distribution and we know the mean, mode, and standard deviation (σ), then the Pearson mode
skewness formula is:

(mean−mode)
σ

Therefore, after adding the function to calculate the mode of the random variable, I will be
adding the function to calculate the Pearson mode skewness and find whether the distribution is
positively or negatively skewed.

• Circular Ensembles

Circular Ensembles were introduced in Random Matrices in the last year’s GSoC by Gagandeep
Singh. Going through his report, I found that the densities of the Circular Ensembles are yet to
be added as it involves Haar measure. Moreover, it can be implemented after reading this paper.
I would go through this paper again during the summer and add the densities of the Circular
Ensembles under random_matrices.py

2.3.5 Stretch Goal

I would like to add methods which create random plots of the Stochastic processes, which makes
its easy to visualize the effects of various parameters passed while creating the instance of the
process. I will discuss more on this with the mentor regarding the API and implementation
details.

3 The Timeline

I will be completing the proposed project and make stats more powerful to handle the various
functionalities by increasing its scope and making it more robust. I also assure that I will be
devoting my summer vacation to this project. The present COVID-19 outbreak is expected to
cause disruptions in my college academic schedule for the summer. Nevertheless, I have planned
for eventuality and will take utmost care to make sure that it does not affect my project during
the summer. My current semester examination is expected to complete around end of May, hence
during this time, I will manage to devote 20-25 hours per week. It is expected to have summer
vacation just before the official coding period begins and, therefore, I will be easily able to devote
45-50 hours per week solely to this project. I neither have any commitments during this summer,
so I will be available to work even more if it is needed to complete the project within the time
bounds. My next semester will commence from July 23. However, during beginning of the
semester, I don’t have much load and work, hence, I will be able to continue with the same pace
and devote 40-45 hours per week during the final phase of the project. I will try to be ahead of
deadlines so that we don’t face pressure, however, if in case, due to some reasons, we lag behind,
I will devote extra time to the project to cover it.

3.1 Community Bonding Period

Since I have been contributing to the library for the past four months, it would be easier for me
to start working on my project and discuss the implementation details further with the mentor. I
would also explore other modules during this phase that are related to stats such as integrate,
solvers, etc. and get familiar with the functionalities supported by them.
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3.1.1 Week 1 (May 4 - May 11)

• Discuss the API related to Mixture and Compound Distributions with the mentor, and study
the codebase of stats and its helper modules- solvers and integrate.

3.1.2 Week 2 (May 11 - May 18)

• Adding Borel Distribution, Conway-Maxwell-Poisson Distribution, Lomax Distribution.

• Adding their test cases.

3.1.3 Week 3 (May 18 - May 25)

• Adding Symmetric Pareto Distribution, Bounded Pareto Distribution.

• Adding doit method in symbolic Probability.

• Adding tests cases of each of these implemented classes and functions.

3.1.4 Week 4 (May 25 - May 31)

• Finalize the API for adding sampling methods in PR #18754 and add the same for discrete
and finite distributions.

3.2 Phase 1

3.2.1 Week 5 (June 1 - June 8)

• Testing the current framework and algorithms.

• Adding functions that are common to some process(generalized framework) to avoid code
repetition.

• Adding Poisson Process and its test cases.

3.2.2 Week 6 (June 8 - June 15)

• Adding Gamma Process and its test cases.

• Adding Wiener Process and its test cases.

3.2.3 Week 7 (June 15 - June 22)

• Adding Random Walk and its test cases.

• Adding Birth Death Process and its test cases.

3.2.4 Week 8 (June 22 - June 29)

• Adding Queuing Processes and its types with their test cases.

31

https://github.com/sympy/sympy/pull/18754


3.3 Phase 2

3.3.1 Week 9 (June 29 - July 6)

• Creating a new file for Compound Distributions and adding support for it.

3.3.2 Week 10 (July 6 - July 13)

• Continuing the Compound Distributions as adding more examples and tests.

• Cleaning and Improving the Joint Distributions.

3.3.3 Week 11 (July 13 - July 20)

• Adding Wishart Distribution , Matrix Gamma Distribution, Normal Inverse Gamma Distribution
and their test cases.

3.3.4 Week 12 (July 20 - July 27)

• Adding Inverse Wishart Distribution, Normal Wishart Distribution, Inverse Matrix Gamma
Distribution and their test cases.

3.4 Phase 3

3.4.1 Week 13 (July 27 - August 3)

• Creating a new file and adding support for Mixture Distributions.

3.4.2 Week 14 (August 3 - August 10)

• Adding Assumptions of Dependence between the random variables and its examples and
test cases.

3.4.3 Week 15 (August 10 - August 17)

• Adding mode and Pearson mode skewness functions and their test cases.

3.4.4 Week 16 (August 17 - August 24)

• Adding densities of Circular Ensembles.

3.5 Project Deliverables

• Complete proposed project plan within the given time bound.

• Complete Documentation of each functions or classes added following numpy docstyle.

• Test cases for each newly as well as improved functions or classes to increase the code
coverage with an aim of above 95% for the stats module.

• Code quality following the PEP8 style guide.
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3.6 Post GSoC

I will firstly focus on the work that has remained incomplete during the project and try to complete
it as soon as possible and get it merged. I would even like to continue to contribute to sympy as
it matches my two major interests which include Mathematics and Computation. I would help
the new contributors and also keep contributing to the one of the best Computer Algebra System-
SymPy. Being contributing to this library for past few months, makes me proud to be a part of such
a helpful and wonderful community. I will also do research regarding more robust techniques and
features that can be added to stats and make it more powerful.

I would also like to thank Gagandeep Singh(@czgdp1807), Aaron Meurer(@asmeurer), Kalevi
Suominen(@jksuom), Christopher Smith(@smichr), Oscar Benjamin(@oscarbenjamin), S.Y. Lee(
@sylee957) and all other members of the community who helped me a lot in contributing to this
library and provided motivation to learn and explore more in the library.

4 References

4.1 Community Bonding Period
• Borel Distribution

• Conway Maxwell Poisson Distribution

• Lomax Distribution

• Symmetric Pareto Distribution

• Bounded Pareto Distribution

• Sampling Methods

– SciPy docs

– PyMc docs

– NumPy docs

4.2 Phase 1
• Stochastic Process-1

• Stochastic Process-2

• Random Walk

• Wiener Process

• Poisson Process

• Birth Death Process

• Gamma Process

• Queueing Process
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4.3 Phase 2
• Compound Distribution-1

• Compound Distribution-2 -sympy PR #17036 by Kumar Ritesh

• Joint Distributions

– Wishart Distribution

– Normal-Wishart Distribution

– Matrix Gamma Distribution

– Normal-inverse-gamma Distribution

– Inverse-Wishart Distribution

– Inverse matrix Gamma Distribution

4.4 Phase 3
• Mixture Distribution-1

• Mixture Distribution-2

• Assumption of Dependence - sympy PR #17387 by Gagandeep Singh

• Mode

• Pearson Mode Skewness

• Circular Ensembles - Gagandeep Singh's report GSoC 2019

• Paper related to Circular Ensembles

4.5 Past Year Proposals
• Gagandeep Singh(@czgdp1807) GSOC-2019

• Jogi Miglani(@jmig5776) GSOC-2019

• Ritesh Kumar(@ritesh99rakesh) GSOC-2019

4.6 Potential Mentor

• Gagandeep Singh - @czgdp1807
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