
Aossie | Monumento | GSoC’21

GSoC 2021 Proposal

Monumento

Suryansh Singh Tomar

Aossie | Monumento | GSoC’21

Table of contents

GSoC 2021 Proposal 1
Table of contents 2
Personal Information 4
Commitments 4
Introduction to the Project 5

Technologies used by the app at present 5
Scopes of Improvement 5
My Primary Goals 6
Why Monumento? 6

Implementation of the Project Goals 7
Adding support for iOS devices 7

Plan of Action 7
Reference Links 9
Detailed Implementation 10

Adding the Monumento Flutter Module to a new iOS app, connecting the
FlutterEngine, FlutterViewController and Method Channels with the iOS app 10
Detecting Monuments using Cloud Vision API 12
Displaying 3D Models of Monuments on a Horizontal Plane 14

Adding a section in the Flutter Module which will act as a Social Media Platform for
Travellers. 19

Technologies I plan to use 19
Features I am planning to implement 19
Database Model for Cloud Firestore 19
Plan of Action 22
Detailed Implementation of the Screens 24

Feed 24
Notifications Screen 27
Discover Screen 29
Profile Screen 32
Comments Screen 34
New Post Screen 35

Reference Links 35
Refactoring the code and restructuring the app into a suitable Pattern/Architecture. 36

Reference Links 37
Timeline 38

Community Bonding 38
Week 1 38

Aossie | Monumento | GSoC’21

Week 2 and Week 3 39
Week 4 and Week 5 39
Week 6 39
Mid Evaluations 39
Week 7,8,9 39
Week 10 39
Final Week 11 40

My Past Contributions to Monumento 40
Issues Opened: 40
MRs created: 40

Why are you the best person to execute this proposal? 41
Prior Experience 41
Post GSoC plans 41

Aossie | Monumento | GSoC’21

Personal Information

Name: Suryansh Singh Tomar
University: Indian Institute of Technology (BHU), Varanasi
Field of Study: Mining Engineering
Date of Enrollment: July 2019
Expected Graduation date: July 2023
Degree: Bachelor of Technology
Year: Sophomore
Github: https://github.com/PaRaDoX50
LinkedIn: Link
Gitter nick: PaRaDoX50
Email Address: suryansh.stomar.min19@itbhu.ac.in

suryanshtomar.st10@gmail.com
Phone number: (+91) 7000037559
Timezone: Indian Standard Time (UTC +5:30)

Commitments
- How many hours will you work per week on your GSoC project?

I am planning to spend 40 - 50 hours or more on the project per week.

- Do you have access to Mac and iPhone for iOS development?

Yes.

- Other Commitments

I have no other commitments during the GSoC period.

- Do you plan to apply for any other organisation for GSoC’21?

I am only applying to Aossie for GSoC’21 and have no plans to contribute to any
other organisation.

- If you’re selected as a GSoC student, would you like to work on other tasks
besides the projects of your choice?

Yes, I would love to work on other tasks that are not related to my GSoC project.

- If you’re not selected as a GSoC student, would you like to work on the projects
as a general contributor?

https://github.com/PaRaDoX50
https://www.linkedin.com/in/suryansh-singh-tomar-8a61131a1/
mailto:suryansh.stomar.min19@itbhu.ac.in
mailto:suryanshtomar.st10@gmail.com

Aossie | Monumento | GSoC’21

Yes, even if I’m not selected as a GSoC participant, I would happily continue
working as a general contributor.

- Would you like to contribute to Aossie in the long term, after the GSoC program
ends?

Yes, I would like to contribute to Aossie even after GSoC ends.

- What motivated you the most towards applying for GSoC?

There are various reasons for which I wanted to apply for GSoC but my main
motive was to get recognised as a GSoC participant. Also, the stipend was not a
motivating factor but an opportunity to work with a big organisation like Aossie
was.

Introduction to the Project
Monumento is an app that lets you detect monuments and visualise their 3D models on
your screen excellently and interestingly using AR.

Technologies used by the app at present

● Monumento is a Native Android app with most of the screens built using Flutter.
● A Flutter module is embedded in an Android App. Flutter and Native Android

shake hands through the Method Channels provided by Flutter.
● Native Screens are used for core features - Detecting Monuments using

CloudVisionApi, Rendering Models of Monuments using SceneForm SDK.
● All other screens like Authentication, Profile, Home etc. are made using Flutter.
● Firebase is used for authentication, and Firestore for the database.

Scopes of Improvement

● Since most of the app is built using Flutter, we should make full use of it and
make the app support iOS devices as well.

● The app can be of more use if we add a section that will act as a Social Media
Platform for Travellers.

Aossie | Monumento | GSoC’21

● The Business-Logic/API-calls and the UI part of the app need to be separated
correctly. Right now, All the API calls are made from the UI class itself.

● The UI/UX of the app also need improvements, especially the Profile and Intro
screens. And the app also lacks some basic features like Form validation, Profile
Picture selection during the Registration process, Using Gallery as a Source for
image at the time of Monument Detection etc.

My Primary Goals

● Adding support for iOS devices. (Sub Project 1)
● Adding a section that will act as a Social Media Platform for Travellers. (Sub

Project 2)
● Refactoring the code and restructuring the app into a suitable

Pattern/Architecture (Preferably BLoC). (Sub Project 3)
● Improving the overall user experience by implementing some basic features and

fixing all possible bugs as stated in the Scopes of Improvement Section. (Sub
Project 4)

I plan to implement my primary goals in order Sub Project 3 -> Sub Project 1 -> Sub
Project 2 because implementing Part 3 at first will set up an architecture for the whole
app to follow.
I plan to implement Part 4, i.e. fixing bugs and adding the basic features, during the
community bonding period and in between the implementation of other parts.

Why Monumento?
The day I installed Monumento on my device, I kept using it because I enjoyed it.
Roaming around the house to find a horizontal plane and then rendering a massive
Monument was altogether a fun experience.
I always wanted to contribute to a big organisation like Aossie and to a project I liked
using.
Moreover, I love working with Flutter and Native Android. Therefore Monumento was my
go-to project.

Aossie | Monumento | GSoC’21

Implementation of the Project Goals

Adding support for iOS devices

Plan of Action

Technologies I plan to use

1. Swift with UIKit App Delegate (Flutter Module supports UIKit App Delegate and
there is no documentation for other alternatives like SwiftUI) (Click here for the
Flutter + UIKit documentation)

2. ARKit with SceneKit for AR
3. Cloud Vision API for Landmark Detection

The app flow and UI for iOS’s core features will be the same as our already built Android
app.
The user will be able to detect monuments in an image with the input source being the
device's camera or gallery and will be able to render them onto his/her screen. Also, the
user will be able to render the already listed popular monuments directly.

The first step of the implementation will be to embed the flutter module into a new iOS
app.
For embedding the flutter module inside an iOS app, I have referred to the official
documentation.
There are many ways to embed the module into an iOS app, but the most suitable one is
using the CocoaPods dependency manager. It allows rapid integration of the up-to-date
module inside an iOS app.

Now, before starting to implement the native screen, we will set the
FlutterViewController as the rootViewController. Setting FlutterViewController as the
rootViewController means that the first screen displayed to the user when he/she opens
the iOS app will be the flutter screens.
This can be done in the SceneDelegate file.
After the app has started, as soon as the user clicks the button to detect monuments,
he/she will be taken to the native screens. The navigation from the flutter screens to the
native screen will be achieved by setting up the method channels.

https://flutter.dev/docs/development/add-to-app/ios/add-flutter-screen?tab=engine-swift-tab#start-a-flutterengine-and-flutterviewcontroller
https://flutter.dev/docs/development/add-to-app/ios/project-setup#embed-the-flutter-module-in-your-existing-application
https://flutter.dev/docs/development/add-to-app/ios/project-setup#embed-the-flutter-module-in-your-existing-application

Aossie | Monumento | GSoC’21

This will be the overall flow for the Monument Detection (Native Screen) part

Aossie | Monumento | GSoC’21

The users will be able to take a picture or select one from the gallery.
For the detection of the landmarks/monuments, we will use CloudVisionApi, which is
just another REST API that uses HTTP POST operations. For the networking operations,
I plan to use Alamofire, a popular 3rd party networking library for iOS.
Once a landmark is detected, we will get the link for its model from our pre saved static
data and download the model at runtime. Once the model is downloaded, we will use
ARKit and SceneKit to render it on the screen. For learning about rendering 3d models
on a horizontal plane, I referred to this ARKit Tutorial.

Rendered 3D model will look something like this.

I have already implemented a major part of this section and also made a W.I.P MR iOS
Implementation.

Reference Links
https://flutter.dev/docs/development/add-to-app/ios/project-setup
https://flutter.dev/docs/development/add-to-app/ios/add-flutter-screen?tab=engine-swift-tab
https://www.appcoda.com/arkit-horizontal-plane/
https://github.com/Alamofire/Alamofire

https://github.com/Alamofire/Alamofire
https://www.appcoda.com/arkit-horizontal-plane/
https://gitlab.com/aossie/monumento/-/merge_requests/61
https://gitlab.com/aossie/monumento/-/merge_requests/61
https://flutter.dev/docs/development/add-to-app/ios/project-setup
https://flutter.dev/docs/development/add-to-app/ios/add-flutter-screen?tab=engine-swift-tab
https://www.appcoda.com/arkit-horizontal-plane/
https://github.com/Alamofire/Alamofire

Aossie | Monumento | GSoC’21

Detailed Implementation

The implementation will include three parts.

1. Embedding the Monumento Flutter Module to a new iOS app, setting up the
FlutterEngine, FlutterViewController and Method Channels for the iOS app

2. Detecting Monuments using Cloud Vision API
3. Augmenting 3D models on a horizontal plane using ARKit and SceneKit for iOS

Adding the Monumento Flutter Module to a new iOS app, connecting the FlutterEngine,
FlutterViewController and Method Channels with the iOS app

Embedding the Monumento Flutter Module to a new iOS app

Flutter module can be implemented using the CocoaPods dependency manager and
installed Flutter SDK
First, we will have to create a new iOS app and place it in the project directory.
Then, we will have to create a PodFile and Specify the path for the monumento_module.
Our PodFile will look something like this:

After running pod install in the iOS app directory, our module will be ready to work with
the iOS app.

Aossie | Monumento | GSoC’21

Setting up FlutterEngine, FlutterViewController(as default ViewController) and Method
Channels

According to the official Flutter Documentation - “The FlutterEngine serves as a host to
the Dart VM and your Flutter runtime, and the FlutterViewController attaches to a
FlutterEngine to pass UIKit input events into Flutter and to display frames rendered by
the FlutterEngine.”

The piece of code below will start the FlutterEngine and set up the MethodChannels.

Walking through the code line by line:
1. flutterEngine.run() starts the FlutterEngine.
2. MethodChannel is created with the name ”monument_detector” which will be

used to navigate to the native screens of iOS from Flutter Screens.
3. We set up a method call listener, which will listen to the method calls from Flutter

code.
4. If the method navMonumentDetector is called from the Dart code, then the app

will navigate to the native MonumentCaptureViewController just like we navigate
to MonumentDetector Activity in Android.

Aossie | Monumento | GSoC’21

Now, We will also have to set FlutterViewController (Flutter Screens) as the launching or
root screens for the iOS app. We will have to change the rootViewController to
FlutterViewController in the SceneDelegate class.
The piece of code below will do the job.

Walking through the code line by line
1. Accessing the flutterEngine defined in the AppDelegate file.
2. Creating a FlutterViewController using the flutterEngine.
3. Creating a NavigationController using the previously created

FlutterViewController.
4. Setting the previously created NavigationController to the rootViewController of

the app.

Detecting Monuments using Cloud Vision API

We will have to capture or select the image for detection. It can be easily done using the
inbuilt UIImagePickerController. Now, before passing the image to CloudVisionAPI, it
needs to be converted to Base64 String. After converting the Image to Base64 String, it
will be passed to the CloudVisionAPI.
The method (which accepts Base64 Encoded Monuments’s Image and a function
“completion”) will call the Cloud Vision’s API(Which is a REST API) with the HTTP POST
operation.

Aossie | Monumento | GSoC’21

Walking through the code line by line.
1. Setting the “LANDMARK_DETECTION” feature and the base64 image as “image”

for parameters.
2. Using the Alamofire Http Networking Library for calling the CloudVisionAPI.
3. Calling the “completion” callback function and passing the detected landmark

name as an argument after the call to the CloudVisionAPI is completed
successfully.

Aossie | Monumento | GSoC’21

The passed landmark’s name will be used to get the link for its 3D Model from the data
we have locally stored as a map (same as we do it in android).
The link will then be used to download the model from the internet. The process is
explained in the next section.

Displaying 3D Models of Monuments on a Horizontal Plane

Implementation of this part will include these steps (In order):

1. Downloading the 3D Model.
2. Detecting a Horizontal Plane.
3. Rendering the model on to the screen.

Downloading the 3D Model

Currently, we get our models from Google’s Poly which is going to be deprecated on
30th April 2021. Therefore, I suggest that we store our models in Firebase Storage or
any other best suited alternative.

We will download the 3D Model from the link (using the URLSessionDownloadDelegate)
and save it locally using the methods below to reference it later by its file address.

We will start the download task using a method that will look something like:

Aossie | Monumento | GSoC’21

When the download finishes, the method urlSession will be called. It will save the file
locally as “model.Extention”.
The urlSession method will also add a TapGestureRecognizer to the SceneView after
the file is saved locally. The TapGestureRecognizer will handle all the taps on the screen.
It will call a method called addModelToSceneView on every tap.
If the user tapped on a detected horizontal plane, the addModelToSceneView method
will render the model where the user tapped.

The urlSession method will look something like this below.

Aossie | Monumento | GSoC’21

The addTapGestureToSceneView, which will add a TapGestureRecognizer to SceneView
will look something like this below:

The addModelToSceneView is called whenever a Tap is recognized.
The addModelToSceneView method is discussed in more details in the “Rendering the
model on to the screen” section.
Detecting a horizontal plane

Now, detecting a horizontal plane in ARKit is simple. We will simply have to add these
three lines of code while setting up the SceneView.

Setting the planeDetection property of ARWorldTrackingConfiguration to .horizontal, this
tells ARKit to look for any horizontal plane. Once ARKit detects a horizontal plane, that
horizontal plane will be added into sceneView’s session.

Aossie | Monumento | GSoC’21

Every time a new horizontal plane is detected, the renderer method will be called. We
will use it to give a visual appearance to the newly added horizontal plane. The
implementation of the renderer method will look something like below:

Walking through the code line by line

1. Here, we create an SCNPlane to visualize the detected horizontal plane
(ARPlaneAnchor). A SCNPlane is a rectangular "one-sided" plane geometry. We
take the unwrapped ARPlaneAnchor extent's x and z properties and use them to
create an SCNPlane.

2. We give colour to the plane.
3. Finally, we add the planeNode as the child node onto the newly added SceneKit

node.

Aossie | Monumento | GSoC’21

Rendering the model on to the screen

Whenever the user taps on a SceneView, the method addModelToSceneView will be
called. It will first recognize if the tap is on a horizontal plane or not. If the tap is on a
horizontal plane, it will render the model where the user tapped. The method will look
something like below.

Walking through the code line by line
1. hitTest method will search for AR anchors(Horizontal Planes in our case) in the

captured camera image corresponding to the tapped location in the SceneKit
view. If the tap is on a horizontal plane, the code will proceed else it end.

2. We will get the position of the hitTestResult relative to the real world coordinate.
3. Getting the path for the downloaded 3d model and creating a SCNScene using it.
4. Finally, we add the child nodes of the model root node to the root node of the

sceneView.

Aossie | Monumento | GSoC’21

Adding a section in the Flutter Module which will act as a Social Media
Platform for Travellers.

Technologies I plan to use

● Cloud Firestore as Database service
● Cloud Functions for updating some meta-information like Item count, last update

time for a collection etc
● BLoC architecture pattern because it enhances the scalability and reusability of

code.

Features I am planning to implement

● Users will be able to post travel photographs
● There will be a feed where all the posted photographs of the people user follows

will be displayed.
● Users will be able to like, comment and share a post.
● Users will be notified whenever someone likes their post or comments on their

post.

Database Model for Cloud Firestore

To avoid complex and nested queries, a well-structured database model should be used.
Also, without a good database model, we can easily surpass the free usage limit
because of many unnecessary queries.

The structure would look something like this :

users
|------- followers (SubCollection)
|------- following (SubCollection
|------- notifications (SubCollection)

posts

|-------comments (SubCollection)

It is better to use SubCollections instead of Master/Root Collections because properties
like comments, followers, notifications etc., have a direct connection to their respective
document.

Aossie | Monumento | GSoC’21

We will be able to retrieve all the comments for a post with just a CollectionReference, if
we use SubCollections whereas we would have to query results if we use Master/Root
Collections.

The “users” collection will look something like this below

Aossie | Monumento | GSoC’21

The “posts” collection will look something like this below:

Saving duplicate data about the author inside a comment or a post saves us from
performing extra queries to get the author’s data like profile picture, username etc.

The time taken by firestore to run a query is directly proportional to the number of
results/documents it extracts from the query and is independent of the number of
documents the collection has. For example, if we run a query that extracts 10
documents, it will take the same amount of time whether we have 6 million or 60
documents in the collection. This is why I plan to keep a “posts” master collection
instead of a feed subcollection for every user document.

Aossie | Monumento | GSoC’21

Plan of Action

There will be 6 screens for the Social Media section.
1. Feed
2. Notification
3. Discover
4. Profile
5. Comments
6. New Post

At present, these are the screens that are placed at the BottomNavBar of the app.
1. Home
2. Explore Monuments
3. Bookmarked Monuments
4. Profile

I plan to remove the Explore Monuments and Bookmarked Monuments Screen from the
BottomNavigationBar.
After these screens are removed, the user will be able to reach the Bookmarked
Monuments Screen by going to his/her profile tab and clicking on the Bookmarked
Monuments button.
And the user is already able to explore the popular monuments on the Home Screen.

At the BottomNavigationBar, I plan to keep
1. Home
2. Feed
3. New Post
4. Discover
5. Profile

Proposed designs for these screens can be downloaded from here.

https://drive.google.com/file/d/1EVP8j1iVBtqkohSPiuYfbzyJQiNuLZc9/view?usp=sharing

Aossie | Monumento | GSoC’21

The new design for Home Screen :

The “Detect Monument” button will take us to the prebuilt native screens.

The detailed implementation of each screen of the social media part is explained in the next
section.

Aossie | Monumento | GSoC’21

Detailed Implementation of the Screens

Feed

Considering Alex to be a user.

In this section, Alex will be displayed

● all the posts from the people he follows
● posts from the people he does not follow but these will displayed after the post

from the users he follows are done displaying.

This is the same feed-type Instagram uses.

Every time a user will upload a post, an array field named postFor will also be added to
the post document. The field will contain all the user-ids of his/her followers.

Aossie | Monumento | GSoC’21

We will now use this field to get all the posts of the users that Alex follows.

Technically, we will want to retrieve all the post documents which contain Alex’s user-id
in their postFor array field. This can be achieved using a single simple query.

But this query will at once retrieve all the posts uploaded by the users Alex follows
which will be very costly in terms of loading time and data.

We will have to limit the query results and implement lazy loading for the Feed to resolve
this problem.

For limiting the results, we can use the .limit() method provided by Cloud Firestore.

This query will fetch us 10 documents.

And once the user has scrolled through these 10 posts, we will have to load more posts
to display.

We can achieve this behaviour by either using the lazy_loading plugin or by manually
attaching a ScrollController to the ListView and triggering the method to load more
posts when the scroll reaches a certain point.

I prefer the plugin because it eliminates all the boilerplate code.

https://pub.dev/packages/lazy_load_scrollview

Aossie | Monumento | GSoC’21

The lazy loading widget would look something like this:

As soon as the user reaches the end, getMorePostsForFeed method will be called. It will
look something like the method below:

Here the .startAfterDocument method excludes all the documents before the passed
lastDocSnapshot. It also excludes the passed lastDocSnapshot.

The methods .limit() and .startAfterDocument() are the reason why
pagination/lazy-loading using firestore is easy.

Aossie | Monumento | GSoC’21

Liking a Post

Whenever a user will click on the “like” button of the post, the user’s id will be added in
the “likedBy” array field of the post document. Also, the likesCount field will be
incremented by 1.

Notifications Screen

This screen will display all the notifications. The notifications for every user will be
retrieved from the “notifications” SubCollection in the “user” document.

Query to retrieve the notification -

Aossie | Monumento | GSoC’21

This query will retrieve all the notifications. Based on the document’s notificationType
field, we will differentiate and decide whether the notification is about a like on a post,
comment on a post, or any other notification.

We will have to implement lazy loading for this part too.

Aossie | Monumento | GSoC’21

Discover Screen

This screen will consist of a TextField (Search bar), a ListView (to view the search
results) and a GridView (to explore/discover a global feed just like Instagram).

For the user search implementation, we will implement a function inside the onChange
parameter of the TextField to search through all the users. The onChange function will
be triggered whenever there are changes in the TextField(Search Bar).

Cloud Firestore doesn't support native indexing or search for text fields in documents.

Therefore, to search through all the users, we will have to create an array field named
searchParams inside every user document, which will contain all the “Search
Parameters” or “Search Strings”.

Aossie | Monumento | GSoC’21

A “Search Parameter” or a “Search String” is a substring of a string with the first
character, same as the string. For example, “Ale” and “Alex” are two “Search
Parameters” for the word “Alexander”.

The “Search Parameters” or “Search Strings” can be created using the method below

This method iterates through the full name as well as the username of the user.

For example, A user with name “Alex Adams” and username “hopsin” will have

To search through all the users, we will just have to retrieve all the user documents
whose searchParams field contains the keyword any user typed. For example, if any
user types “surya” in the search field, we will find all the documents which contain the
keyword “surya” in their searchParams field.

Aossie | Monumento | GSoC’21

The method to search the users will be something like this:

Here User is a data model.

After loading all the results from the database, we will display them in a ListView.

And for the same reasons mentioned in the Feed section, we will have to implement lazy
loading in this section as well.

After the results are displayed, clicking on any particular result will take us to their
profile. Implementation of Profile screen is discussed in the next section.

And for the global feed part, we retrieve posts from the posts collection randomly.

Aossie | Monumento | GSoC’21

Profile Screen

This screen will display most of the user’s details, like Name, Username, and will display
all the posts uploaded by the user.

All the user details will be retrieved using the method below:

Aossie | Monumento | GSoC’21

To retrieve all the posts uploaded by the user, we will use the “where” query and
postByUid.

These posts will be then passed to a ListView.

And for the same reasons mentioned in the Feed section, we will have to implement lazy
loading in this section as well.

The profile screen will also have a button to “Follow” the user.

When the “Follow” button is clicked

1. The user-id of the person who clicked is saved inside the SubCollection
“followers” of the user document of the person who got followed.

2. The user-id of the person who got followed is saved inside the SubCollection
“following” of the user document of the person who followed

Aossie | Monumento | GSoC’21

Comments Screen

The screen will display all the comments on a post.

And for the same reasons mentioned in the Feed section, we will have to implement lazy
loading in this section as well.

Also, the screen will have a section to add comments.

Whenever a user comments, it will be added to the comments subcollection of the post.

Aossie | Monumento | GSoC’21

New Post Screen

Whenever a user clicks on the “+” button at the centre of BottomNavBar, a bottom sheet
with two source options will slide on to the screen. After selecting the image, the user
will be redirected to a new screen where he/she will be able to add a title and location to
the photograph.
After the “Post” button is clicked, the post will be uploaded and a new post document
will be added to the posts collection of the database.

Reference Links

https://firebase.google.com/docs/firestore/best-practices
https://pub.dev/packages/lazy_load_scrollview
https://www.youtube.com/watch?v=Ofux_4c94FI
https://www.youtube.com/watch?v=haMOUb3KVSo

https://firebase.google.com/docs/firestore/best-practices
https://pub.dev/packages/lazy_load_scrollview
https://www.youtube.com/watch?v=Ofux_4c94FI
https://www.youtube.com/watch?v=haMOUb3KVSo

Aossie | Monumento | GSoC’21

Refactoring the code and restructuring the app into a suitable
Pattern/Architecture.

In my opinion, BLoC will be the most suitable choice because it separates the view layer
from business logic very well. This entails better reusability and testability.
BLoC pattern has a lot more advantages but the one best suited for Monumento is that
it makes migration of the app to a new backend super easy. If in future, we plan to
migrate the app to some custom backend, we will only have to edit the repository (data
handler) part of the app and will not have to touch any of UI and Business-Logic parts.

Since our app will be more complex after the addition of a new social media section, the
emission of separate states with every user interaction will come in very handy.

Aossie | Monumento | GSoC’21

For example, if the device loses the internet connection, we can emit a state stating that
the internet connection is lost and the whole app will then behave accordingly.

I have already migrated the app to BLoC. I have also created a MR for this. Link to the
MR monumento!67 .
The only part left is to implement new Entities and Models.

I think BLoC will be a nice choice but I am open to implementing any architecture our
mentors suggest this summer.

Reference Links

https://bloclibrary.dev/
https://www.miquido.com/blog/flutter-architecture-provider-vs-bloc/

https://gitlab.com/aossie/monumento/-/merge_requests/67
https://bloclibrary.dev/
https://www.miquido.com/blog/flutter-architecture-provider-vs-bloc/

Aossie | Monumento | GSoC’21

Timeline

Community Bonding

(May 17 - June 7)

● I’ll be migrating Native
CloudVisionAPI part to Flutter for
both Android and iOS.

● I’ll try to migrate the native android
AR implementation to Flutter. Also,
I’ll try to implement the AR part for
iOS in Flutter as well. If everything
falls into place, we will be able to
proceed further with the Flutter
module only.

● I’ll be discussing with my mentor to
get inputs on how I can improve
the ideas’ implementation.

● I’ll constantly be adding desired
features and fixing bugs
mentioned in the Scope of
Improvement section as much as I
can.

● I’ll be learning about writing Unit,
Widget, and Integration tests
because I don’t have much
experience writing tests for Flutter.
But I do know the basics.

Week 1
(June 7 - June 13)

● I’ll migrate the app to BLoC
architecture.

● I’ll add Models and Entities for the
already implemented features.

Aossie | Monumento | GSoC’21

Week 2 and Week 3
(June 14 - June 27)

● I’ll set up and embed the Flutter
Module with a new iOS app.

● I’ll complete the iOS
implementation for all the core
features.

● The iOS app will be ready to use at
the end of this period.

Week 4 and Week 5
(June 28 - July 11)

● I will start implementing screens
for the Social Media section

● I’ll complete the Feed Screen and
New Post Screen with every
feature I mentioned above in the
implementation section.

Week 6
(July 12 - July 16)

Mid Evaluations

● At this point, I will be able deliver
an application that will be
completely compatible with iOS
devices and will have a structured
and architectured code.

● Feed Screen and New Post Screen
of Social Media Section will be
completely implemented.

Week 7,8,9
(July 17 - August 8)

● I’ll complete the rest of the
screens, including the Comments
Screen, Profile Screen, Search
Screen and Notification Screen of
the Social Media section.

Week 10
(August 9 - August 15)

● At this time, I will test the
application on different devices
and try to fix as many bugs as
possible.

Aossie | Monumento | GSoC’21

● I’ll write unit, widget and
integration tests for the Flutter
Module.

Final Week 11
(August 16 - August 23)

● I’ll add documentation and will
clean up the application and code
for final submission.

My Past Contributions to Monumento

I started contributing to Monumento in the middle of December 2020 and continued to
explore and learn.

Issues Opened:
Error : Code not compiling on Flutter 2.0 due to intro_views package
Code refactoring required.
Api : Google is shutting down Poly
Code : 20+ Deprecation and other warnings with the new Flutter 2.0
UI/UX : Incorrect Back button behaviour after Sign Up or Sign In

All the issues opened by me are listed here.

MRs created:
WIP: iOS Implementation
Fixes #48 : Migrated the app to BLoC architectural pattern.
Fixes #41 : Added a contributing.md file
Fixes#43 : Back button behaviour fixed

All the MRs created by me are listed here.

https://gitlab.com/aossie/monumento/-/issues/67
https://gitlab.com/aossie/monumento/-/issues/48
https://gitlab.com/aossie/monumento/-/issues/57
https://gitlab.com/aossie/monumento/-/issues/65
https://gitlab.com/aossie/monumento/-/issues/43
https://gitlab.com/aossie/monumento/-/issues?scope=all&utf8=%E2%9C%93&state=all&author_username=PaRaDoX50
https://gitlab.com/aossie/monumento/-/merge_requests/61
https://gitlab.com/aossie/monumento/-/merge_requests/67
https://gitlab.com/aossie/monumento/-/merge_requests/42
https://gitlab.com/aossie/monumento/-/merge_requests/40
https://gitlab.com/aossie/monumento/-/merge_requests?scope=all&utf8=%E2%9C%93&state=all&author_username=PaRaDoX50

Aossie | Monumento | GSoC’21

Why are you the best person to execute this proposal?
I have a fair experience in building apps using Flutter, Firebase, Kotlin, Swift and HTTP
APIs, which is the required tech-stack for the project. I also know the importance of
writing clean and scalable code. I have worked on several projects and with several
startups. Therefore, I do have the skillset and experience to execute this project.

Prior Experience
I have been doing App Development for the last one and a half years. I first started
developing apps for android using Java.

I worked with Acadza as a Native Android (Kotlin) and React Js Developer Intern. During
this Internship, I added Kotlin and React Js to my skill set. I mainly worked with the
MVVM architecture, Hilt DI, Coroutines and Room Persistence library during this period.

I was a Native Android Developer Intern for Signo, a Flutter Developer for Droog and a
Flutter Developer for one more startup. I mainly worked with Firebase, Flutter
Animations, Flutter Architectures during these internships and created an e-Learning
Social Media app from scratch.
I also contributed to the development of our Institute's android app.

I have in the past worked with backend frameworks like Django, DRF, Node Js etc.

And from the last 2-3 months, I have been contributing to open-source organisations.
During this period, I came to know about the Monumento. And since last month, I am
learning Swift and AR to contribute to Monumento and make it support iOS devices.

Post GSoC plans

There are very few chances that some things might go unimplemented because 11
weeks is plenty of time, but still, If it happens, I’ll try to complete them post GSoC.

I’ll keep contributing to Monumento as much as I can and will keep the development
environment running.

Regardless of GSoC, I would love to engage in discussions with the Aossie community
to get exposure to new technologies and Ideas. I would love to be of any help even after
the GSoC period.

https://acadza.com/
https://www.signo.in/
https://droog.in/
https://github.com/PaRaDoX50/droog

