
CHAPEL

Socket Library
Google Summer of Code 2021

Introduction

I am Lakshya Singh, a Computer Science and Engineering undergraduate student

at the ​Indian Institute of Technology (BHU) pursuing a Bachelor of Technology in

my second year. I was introduced to the world of programming and software

development in my first year. Since then, I have been very enthusiastic about deep

diving into various fields of Computer Science. The areas that capture my interests

are Data Structures, Algorithms, Operating Systems, Natural Language Processing

and Information & Security. For most of my programming journey, I have worked

primarily with Web-based technologies, my niche and C/C++ programs, and I have

recently been diving into Deep Learning as well.

Relevant Coursework for the Project
★ Operating Systems

★ Algorithms

★ Data Structures

★ Computer System and Architecture

★ Object-Oriented Programming

★ Client and Server Architecture

Why do I wish to participate in the Google Summer of
Code?
Being a technology enthusiast even before I entered college, I always enjoyed the

time I spent debugging my code and PC. During my first year, I was amazed at how

genuinely vast the world of Computer Science is, and there is so much for me to

learn, which I genuinely enjoy. My first interaction with open source was Linux and

NPM; it was a whole new realisation. I was using a project someone else developed,

and it’s helping me scale up my projects so quickly. The idea of collaborating with so

many people working together to build amazing things attracted me to open source.

So I started contributing to OSS in this year’s Hacktoberfest. I contributed to many

organisations. It was delightful to work with so many people getting reviews from

them, improving my skills and knowledge base, interacting with them, which

wouldn’t have been possible without open source.

I have similar aspirations from Google Summer of Code. I want to work more in an

open-source community where we have several people from different parts of the

world working as a team and building projects collaboratively. And what better than

Google Summer of Code, which will also allow me to hone my skills and acquire new

ones under quality mentoring organisations and best mentors’ guidance.

Why do I wish to work with the Chapel project in
particular?
The Chapel Project is an excellent opportunity for me to deep dive into the

distributed and parallel programming and better understand what happens under

the hood of a language that has been a black box for me before I started

contributing to chapel code base. I have always been keen to make my programs

and applications more performant, fast and easy to understand, which are among

the few sub-domains of chapel ideology and principles.

The project has great mentors who are always willing to provide the best possible aid

and are very responsive, friendly and ready to share their knowledge. This has been a

fantastic experience for me. It allows me to interact with mentors and other

contributors and gain more knowledge while staying connected with the

community and contributing more to the project through discussion and code.

What do you hope to learn over the summer?
Over the summers, I hope to learn more about Socket programming and set up

HTTP enabled services allowing me to know more about how we implement

modules from scratch rather than working on higher-level APIs. I also intend to learn

more about parallel and distributed programming and optimise it and effectively

implement it for performance. The valuable experience of working with the Chapel

community will allow me to learn more about how we maintain such a huge code

base and efficient workflow strategies associated with it. I hope to learn more about

software development overall under the guidance of knowledgeable and

experienced mentors.

How well can you comprehend and understand English?
How strong is your written English?
I am proficient in communicating with people in English. I can proficiently speak,

read and write in English as well as comprehend it. I do many Parliamentary Debates

and MUNs, which has improved my Language skills over time, even though Hindi is

my first language.

Do you have any other commitments for the summer
period? Do you have planned vacations?
I have my official college summer break from 12th May to 22nd July, and during the

official GSOC Period, I have no other commitments for the summers, so I will be able

to devote more than 25 hours/week as per GSoC 2021 Guidelines. I will also be

accessible during weekends after my semester starts in August and will keep the

community updated about my progress.

Contact

● Name: Lakshya Singh

● Github Username: king-11

● Email: lakshay.sing1108@gmail.com

● Timezone: IST (UTC +5:30)

● The time zone will remain the same during the summers.

● The time I will comfortable in working with :

○ UTC 0330 - 0630 (IST 0900 - 1200)

○ UTC 1330 - 1430 (IST 1900 - 2000)

○ UTC 1730 - 1930 (IST 2300 - 0100)

● I can start my day a couple of hours early, even around IST 0600 (UTC 0130)

in the morning and can end it late until IST 0200 (UTC 2030) if it helps

communicate with other developers.

Coding Experience

Describe your experience with Chapel, C, C++, and any
other programming experience you wish to mention.
C and C++ have been my primary language for most of the course-related work that I

have done under the courses mentioned above in the Introduction Section. I also do

competitive programming for which I primarily use C++ and always stay on the

lookout for new features to improve the code readability and performance.

I am also familiar with Python Programming and Scripting. I have used Python for

Machine Learning Model Development, setting up Backend Server using Django and

DjangoREST and small scripting purposes.

I am also familiar with Web Development Programming Languages like Javascript,

Typescript, SASS, NodeJS, which I have primarily used in developing several projects

and have also worked with SQL and Shell Programming.

http://github.com/king-11
mailto:lakshay.sing1108@gmail.com

Chapel

I started coding in the chapel at the start of February. And followed the getting

started pages :

● I started with Learning Chapel Page and went over to the youtube Talk by

Brad Chamberlain to get insights into Chapel’s principles and working.

● I went through the ​Learn X in Y minutes​docs for Chapel and fiddled around

with the code in it.

● I have gone through the Primers as my initial introduction to distributed and

parallel programming into the chapel world.

● I made several pull requests to the Chapel Project and also found some issues

while working on it.

● I worked with a few modules of Chapel like Path, DateTime, Heap, IO and

Sort.

Describe any experience with compiler development,
parallel computing, or any other knowledge you know
will be useful for the task.
I have been learning more about Parallel Programming under the Operating

Systems Course I have this semester, where I worked on implementing several

Parallel Programming and Deadlock Prevention algorithms. I am well versed in

Parallel Programming concepts like mutex locks, semaphores, deadlocks etc.

Programs I have implemented in due course of time using C/C++ include :

● Producer-Consumer Problem using Mutex Locks, Semaphores and Threading.

● Banker’s Algorithm using Threading

● Matrix Multiplication using Threading

● Process communication using Pipes

● Process Scheduling

https://chapel-lang.org/learning.html
https://www.youtube.com/watch?v=ko11tLuchvg
https://www.youtube.com/watch?v=ko11tLuchvg
https://learnxinyminutes.com/docs/chapel/
https://chapel-lang.org/docs/primers/

I have gone through the C Interoperability and IO Module, which will be necessary

for implementing socket library functions and have also worked on PR #17453, which

required me to use and enforce custom C functions for use in the Chapel DateTime

Standard Module.

I have implemented several HTTP Server primarily for use as REST and GraphQL APIs

from the ground up using vanilla NodeJS and Python and worked with higher-level

APIs of frameworks like Django and Express. While implementing these projects, I

have gained insights into working with Web Services like web sockets and internet

protocols necessary for the project.

I haven’t developed any production-ready application using C, which can be insecure

if designed from scratch. So I have only used C to experiment and learn network

programming basics to understand lower-level APIs system calls better.

Projects involving the use of REST API and Socket Programming :

● Peer IO Backend: I developed this Project in a 24 hr Hackathon which serves

as a REST API and provides access to services like Authentication, Database

Access, etc., in a non-blocking manner using NodeJS, Express, MongoDB.

● Shopify: A shopping website I developed with my teammate as a part of our

course project. My role was to write new views for handling HTTP requests,

optimising existing queries made to the database, and ensuring proper error

handling. Technologies used were Django, PostgreSQL, Heroku.

● Chat Server: A client-server chat CLI application developed using Python

sockets module

● ZenLibrary: A full stack web application developed solely my be for helping

avid book readers. I worked both as Frontend and Backend Developer in the

App utilised GraphQL API created using Apollo and MongoDB, whereas the

frontend used NextJS.

● Discord Bot: Developed a serverless function that utilises Discord’s relatively

new Interaction Commands. Works on webhooks that are based on HTTP

Request handlers in a stateless manner. The tech stack was purely NodeJS,

while the server code had to be adjusted for vercel deployment.

https://github.com/chapel-lang/chapel/pull/17453
https://github.com/king-11/Images_Backend
https://github.com/king-11/P2P_Backend
https://github.com/Peer-IO/Backend
https://github.com/m-e-l-u-h-a-n/shopify
https://github.com/m-e-l-u-h-a-n/shopify/tree/main/chatServer
https://github.com/king-11/ZenLibrary
https://github.com/COPS-IITBHU/discord-bot

Familiarity with tools
● I feel very comfortable with Git, which I have been using for more than a year

now. I know how to use some of its essential features like rebasing, checkout,

resets, reflog, etc., to maintain my repository correctly. I have even done a

course on Advanced Git by Nina Zakharenko, which provided me with more

profound insights.

● ​I use the GCC compiler system for compiling the C code that I write and am

familiar with several of its flags.

● As part of our institute’s CyberSec team, I have participated in several CTFs (

Capture the Flag) competitions. I have used tools like gdb, Valgrind, strace,

ltrace, etc., for binary exploitation, pwning and reversing tasks.

● I am not that much proficient with make except for the part I have used

several times in other open-source projects.

What experience do you have as part of a development
team?
I have been a part of various development teams during my journey as a software

developer for over 1.5 years. I have primarily worked as a Web Developer but have also

interacted with several other developers from various fields.

Technex Tech Team
I was part of the team which was handed the task of developing a website for
Technex’21 within a month. Technex is the Technical Fest of IIT BHU, which organises
a plethora of technical events in various fields and organises Think Talks with the
industry’s pioneers. As the backend was already developed, most of our task involved
creating a unique front-end design and attaching the frontend to the backend while
ensuring proper error handling. We worked in a team of 7, where we decided on design
principles that are neat and scalable and meet organisers’ needs.

Club of Programmers (COPS)
I am a COPS IIT BHU, a group of enthusiasts who share a common interest in
Computer Science. Under various sub-division of the club, we work on several fields
like Competitive Programming, Machine Learning, Software Development and Cyber
Security. I have worked under several projects taken by the Club, including several
projects for aiding the student community and fun side projects and competitive

https://github.com/mackenmd/Git-In-depth
https://technex.co.in/

projects for hackathons. All projects can be found at the Github Organization COPS IIT
(BHU).

Hackathons and CTFs
I have participated in several hackathons and completed all of them. Usually, we try to
have the maximum number of people as allowed by hackathon organisers. It enables
us to learn from each other and build up to something pretty cool and helpful quickly.
Hackathons have allowed me to work on projects tirelessly to finally achieve a working
prototype in a stipulated time of 1-2 days.

As I am also a part of the CyberSec Group of IIT BHU, I have participated in several
CTFs where we band together to hack our way through the challenges thrown at us.
This has provided me insights into web security, and we as a team used to develop
over partial work done by others and develop upon it.

What is the biggest project you have worked on as a
software developer? What did you learn in that project?
What was your role in that project over time?
The biggest project I have worked on is Hackalog as a student developer under the

Club of Programmers. This project aimed to provide a platform for conducting

hackathons and dev sprints for the student community. When it was at the release

phase, I joined the team where work had to be done more rigorously and quickly and

supposed to be bug-free.

This was the first time I was working with React, and I wasn’t familiar with any of the

concepts like JSX, hooks, CSS modules etc., that were used in it. As the project was in

the release phase, I had to keep my learning and work going side by side. I went

through the docs for React, React Hooks and NextJS. I tried to level up my

knowledge to get insights into their work and hence can optimise them.

My responsibilities involved refactoring the code for performance, checking for

optimisation opportunities in react hooks, memory leaks, adding accessibility

support, optimising the SEO experience, and adding support for Markdown editor

abilities. I updated the workflow to provide support for better continuous integration

and added clean code practices. We also had code review conducted amongst the

peers as well as had group discussions on the project. The repository can be found at

this link.

https://github.com/COPS-IITBHU/
https://github.com/COPS-IITBHU/
https://hackalog.copsiitbhu.co.in/
https://github.com/COPS-IITBHU/hackalog-frontend

Is any of the code you have written already open source?
Can you point us to some code you have written?
I started my open source contribution in Hacktoberfest of 2020, where I contributed

to several organisations daily. Apart from the ones I stated above, the major projects I

have worked on can be found on my Github Profile. The organisations I have worked

within past are

Organisation Repository Pull Requests Made

DX Heroes DX Scanner Link

Operation Code Resources_API Link

IIT BHU Insti App Lite Hai Backend Link

HTTP-APIs ● Hydrus
● Hydra Python Core

Link 1
Link 2

Datenanfragen Website Link

- Letra Extension Link

Apart from this, I also try to contribute to open-source tools that I use by discussing

or creating issues wherever necessary after triaging.

What have you already contributed to the Chapel
project? Please list pull requests and issue numbers.
I have made several pull requests, created a few issues, and am currently triaging

some issues, which I will create. I have also discussed a few performance issues in

standard modules with core contributors, which I intend to take up soon.

https://github.com/king-11
https://dxheroes.io/
https://github.com/DXHeroes/dx-scanner
https://github.com/DXHeroes/dx-scanner/pulls?q=author%3Aking-11
https://operationcode.org/
https://github.com/OperationCode/resources_api
https://github.com/OperationCode/resources_api/pulls?q=author%3Aking-11
https://play.google.com/store/apps/details?id=com.iitbhu.litehai
https://github.com/IIT-BHU-InstiApp/lite-hai-backend
https://github.com/IIT-BHU-InstiApp/lite-hai-backend/pulls?q=author%3Aking-11
https://www.hydraecosystem.org/00-Home
https://github.com/HTTP-APIs/hydrus
https://github.com/HTTP-APIs/hydra-python-core
https://github.com/HTTP-APIs/hydrus/pulls?q=author%3Aking-11
https://github.com/HTTP-APIs/hydra-python-core/pulls?q=author%3Aking-11
https://www.datarequests.org/
https://github.com/datenanfragen/website
https://github.com/datenanfragen/website/pulls?q=author%3Aking-11
https://github.com/jayehernandez/letra-extension
https://github.com/jayehernandez/letra-extension/pulls?q=author%3Aking-11

Pull Requests

PR Number Fixes Description Status

#17453 #16922 Extend C’s strptime to
support ‘%f’ and change
function type to ref in
datetime.strptime().

Merged

#17443 #16552 Add datetime and date
mixed operator

Merged

#17395 #16733 Add function to retrieve time
since epoch

Merged

#17388 #16767 Add support for
manipulation of parts of a
path, i.e. basename, dirname
and extension

Merged

#17293 #17178 Optimise the number of
recursive calls made in Quick
Sort using Tail Optimization

Under Review

#17559 #8758 Adding Long Filename
support for chapel programs

Under Review

Issues

Issue Number Description

#17439 date.today() doesn’t support local time as of now, which can
cause issue with mixed type operators like datetime.now() -
date.today()

#17178 Quicksort makes several recursive calls that can be used,
reducing the heap-allocated and time needed to make those
calls.

https://github.com/chapel-lang/chapel/pull/17453
https://github.com/chapel-lang/chapel/issues/16922
https://github.com/chapel-lang/chapel/pull/17443
https://github.com/chapel-lang/chapel/issues/16552
https://github.com/chapel-lang/chapel/pull/17395
https://github.com/chapel-lang/chapel/issues/16733
https://github.com/chapel-lang/chapel/pull/17388
https://github.com/chapel-lang/chapel/issues/16767
https://github.com/chapel-lang/chapel/pull/17293
https://github.com/chapel-lang/chapel/issues/17178
https://github.com/chapel-lang/chapel/pull/17559
https://github.com/chapel-lang/chapel/issues/8758
https://github.com/chapel-lang/chapel/issues/17439
https://github.com/chapel-lang/chapel/issues/17178

Survey

Had you heard about Chapel before the Summer of
Code? If so, where? If not, where would you advise us to
advertise?
I heard about Chapel from one of my friends who learnt about Chapel through

GSOC Archives. He seemed pretty excited about the parallelism in Chapel, which

intrigued me to look into Chapel.

Chapel’s significant usage seems to be for research purposes, so I suppose

conduction talks for university professors and students can surely increase its uptake

in the community. Also, with the addition of HTTP and Socket module, the

opportunity for performant backend development in the chapel will open, which can

be advertised on platforms like dev.to, daily.dev, etc.

What was the first question concerning Chapel that you
could not find an answer to quickly?
The first question that I could not answer quickly was how to include custom C

functions/files in the chapel’s build process used in standard modules. I found the

solution after discussing with Lydia and Lee on the Gitter channel and Github Issue

thread.

What will keep you actively engaged with the Chapel
community after this summer is over?
As long as I see issues bubbling up in the chapel, I will stay involved as the core team

seems very active in developing the project and interacting with them will allow me

to contribute and learn from them. I will also try to improve the HTTP Library even

after the end of the GSOC period, as it will undoubtedly allow me to create even

better HTTP services.

https://dev.to/
https://daily.dev/

Are you applying to any other organisations for this
year’s Google Summer of Code? If so, what is the order
of your preference in case you are accepted to multiple
organisations?
No, I am not applying to any other organisations except chapel for this year’s Google

Summer of Code.

Prerequisites

What operating system(s) do you work with?
I primarily work with Manjaro (Arch Linux) for coding purposes, while I also have

Windows 10 with Windows subsystem for Linux (Ubuntu) configured.

Are you able to install software on the computer you
plan to use?
I have been using Manjaro for over a year now after doing a lot of Distros hopping. I

am pretty comfortable with installing any software in it, courtesy of the Arch User

repository. I was able to set up Chapel in my system successfully.

Will you have access to a computer with an internet
connection for your development?

Yes, my PC has access to a stable high-speed internet connection for the

development period.

Self Assessment

What does useful criticism look like from your point of
view as a committing student?
I think criticism is an opportunity for us to look back on our work and improve our

current practices and skills. As a committing student, one should accept constructive

criticism and use it to improve themselves further.

What techniques do you use to give constructive advice?
How do you best like to receive constructive feedback?
I try to give constructive advice by reviewing the progress made and pointing out

the specific parts of the implementation where excellent implementation details

were taken care of. I also try to add updates that can ensure better readability,

scalability, and performance regarding why they are helpful and keep myself open to

others’ views.

What is your development style? Do you prefer to figure
out/discuss changes before you start coding? Or do you
choose to code a proof-of-concept to see how it turns
out?
I prefer to start coding after discussing all the significant aspects of implementation

details and edge cases of a problem encountered in the future. This can be seen in

the contributions I have made till now, where after finalising the discussion, I create a

PR ready for review with all the implementation done as per discussion. Sometimes I

also take the other way around when I need to explain what I am aiming for as the

debate needs a prototype to discuss further or clarify the community’s issue.

The Task

Describe the task you intend to work on. If it’s one of
the tasks from our ideas list, let us know which
elements of it you want most to focus on, if you know?
The task is to develop a Socket Module for Chapel, which allows for increased use

cases for Chapel. It will also involve creating an HTTP Server Module on top of the

socket Module.

The key elements that will be of significant concern during the project include:-

1. Socket Module to integrate C Socket Functions

2. Writing good test cases and documentation

3. Ensuring Concurrency, Parallelism and Non-Blocking Nature of Procedures.

4. Building an HTTP Server on top of Socket Module

Description

I went through C and Python Socket Library

Documentation. I tried out several small programs

whose primary objective was to get familiarised with

performance and parallelism in sockets and several

other parts related to the protocols used.

After which, I came up with the following flow for the

project, which is somewhat inspired by how Python

implements its socket and HTTP services. With

consideration that will focus on developing

network-related servers in a single module instead of

two.

Sockets

Sockets are an abstraction over Pipes that allow communication between processes

even if they aren’t running on the same system, unlike Pipes. The most widely used

Sockets are BSD sockets which are also known as Unix Sockets more commonly.

Socket Module involves making system calls to the kernel through the program,

which allows us to work with sockets at the network level.

There are two types of sockets Client and Server both require several steps in

creating a connection as listed below :

● Create Socket -
Returns a file descriptor for

communication.

● Bind - Unique Address
assigned to the Socket which

consists of two parts IP
Address and Port

● Listen - Server Sockets
starts listening for requests

from client sockets

● Connect - Client
Socket makes connection

requests to server socket by
specifying its Unique

Address.

● Accept - Server Socket
accepts client socket

connection request

● Send, Receive - Are
used for communication

between sockets by sending
and receiving packets of data

Users can create a socket to follow various available protocols, each with different
characteristics as per the user’s needs. The widely used ones are:

● Stream Sockets: These sockets use Transmission Control Protocol (TCP) as a
reliable means for transferring data and communication between processes.
These involve establishing a connection between the processes hence are
stateful sockets.

● Datagram Sockets: These are diametrical opposite of Stream Sockets. Each
written data is sent in the form of packets to the specified address in an
unreliable manner. There is no need to establish a connection for these
sockets, and hence are stateless.

Note: I have written all the code snippets provided in the document below.

Pseudo Script to connect to Google’s IP using Stream Socket

Internals of Socket Module

The socket module will consist of a socket record with methods for initialising the
socket and getting a file object from the file descriptor returned by calling the C

socket function; bind, listen and accept will work as stated above. In contrast, read
and write will work using Chapel IO.

A pseudo script/structure for the socket module will look as follows :

Adapting To Chapel

While the GNU C Socket Module provides the ability to interact with sockets, calls

made by it are blocking and single-threaded. Some of the procedure calls that need

to be customised for Chapel include :

1. Accept

2. Receive

3. Connect

4. Write

The Socket Module for Chapel needs to be made to ensure all procedures are

non-blocking and can use multiple threads for task distribution. Design decision

need to be made about how will parallelism and concurrency be secured with the

sockets, some of the methods that I will explore:

● Using Select’s

multiplexing

capabilities to work

with making receive

calls non-blocking and

dealing with erroneous

sockets. Select allows

the program to sleep

until one or more file

descriptors are ready

for IO.

● We will look further into ioctl to mark sockets as non-blocking and deal with

associated errors that the program will generate.

● Exploring the compatibility of SOCK_NONBLOCK and accept4 with various

systems

● Using a custom C procedure to set the O_NONBLOCK bit of a file descriptor

non-blocking with the fcntl system call. Module implementation needs to

provide methods to handle errors like EAGAIN, EINPROGRESS,

EWOULDBLOCK, etc.

Depending on the decision taken for making the socket, non-blocking will have to

handle exceptions when read and write operation will take place using Chapel’s IO

Module.

Utilising Chapel IO

Chapel’s IO module has support for working with file descriptors using openfd and

openfp. Instead of working with C’s read/recv and write functions, we can interpolate

Chapel’s IO module to work seamlessly with socket file descriptors providing

first-hand support for parallelism. Chapel IO will also work in accepting sockets from

socket.accept, which can then use regular IO Channels for reading and writing.

The file object returned will be stored inside the class, encapsulating it from users. It

will provide access to read and write operation on socket file descriptors after the

connection is established for TCP Sockets, whereas for UDP functions similar to C’s

sendTo and readFrom need to be implemented using Chapel’s IO.

Also, currently, the Chapel IO makes blocking reads and writes. The project duration

will involve making it work in a non-blocking manner. This will require setting up

communication between the running process and read/write a procedure that will

convey that the read/write operation requested by the file object is completed and

any further task related to it can proceed now. I will explore possible methods in the

run of the project to make the procedures non-blocking.

Chapel Sys Module Imports

The need to implement many of the enums and structures will not be required as

we can import them from the Sys package directly. The functions over there are a

direct port of C functions. Therefore, they will be needed to be changed for

non-blocking versions while some procedures can be directly used, like :

● sys_close

● sys_fcntl

● sys_bind

● sys_select

Utility Functions

The module will include socket creation and communication functions and have

utility structures abstracted for chapel’s need to make it easy for users to create Web

Services while working with the socket module. Some of the procedures are :

● gethostname method to retrieve a list of IP addresses from the domain

name.

● Procedure for converting ip_address in string form and port in integer form to

standardised byte forms

● Inverse Procedures for converting from byte forms of port and IP Address to

readable forms

● getprotocol for converting strings to protocol enum values

We can build the module by taking Design Decisions from Python’s Socket Module

while extending C Socket Module’s capabilities as per design decisions. Unlike C’s

functional format of Socket Module, we would like to make the procedures in an

Object-Oriented architecture instead, allowing for encapsulation of several features

and hiding implementation details from users, only making higher-level APIs

available to them.

Example Utility Functions

https://github.com/python/cpython/blob/3.8/Lib/socket.py

Network Server

The Network Server will be implemented as a part of the HTTP/server module. The
classes listed are intended to simplify the task of writing servers based on commonly
used Protocols. The basic idea for them is to inherit from a parent BaseServer class
and build upon them as per the need for protocol.

We will create a
BaseRequestHandler class
which the user will pass on to
the server class.
BaseRequestHandler will
contain a handle() method that
the user will be required to
override, or else a primary
handler will be implemented.

We will create server classes (listed below) which will be instantiated by passing the

BaseRequestHandler class instance and server address, i.e. IP and Port :

● TCP Server: This will use the TCP Protocol for providing continuous
connection and data streaming capabilities between client and server. The
user will be required to give the handler and address needed to connect and
parameters for binding or to communicate so that client and server can be
distinguished.

● UDP Server: This uses datagrams, which are discrete packets of information

that may arrive out of order or be lost while in transit. The parameters are the

same as for TCP Server.

Base Server Class

The base server class will have the following methods attached to it, which will create

and start the server :

● init procedure will handle the creation, binding of the socket and begin

listening based on the provided arguments for IP and Port.

● handleRequest method will deal with a single request by opening the client

socket for reading and writing. It will check whether the client is readable or

the timeout hasn’t occurred, after which it calls processRequest while

handling any errors

● startServer handles any new request using processRequest. It will observe

for shutdown using a shared atomic variable till then it will keep on listening

for new request

● processRequest method will create a new task for accepted connection by

creating a new object BaseRequestHandler provided during instantiation and

add the task into a list of tasks

● handleError will provide basic error handling and can be overridden by the

user

● stopServer will set the atomic Variable and then starts reaping/joining all the

ongoing tasks.

HTTP Server

Hypertext Transfer Protocol (HTTP) uses TCP as a network transport layer. An HTTP

Communication differs from regular TCP communication as the data being

transferred between clients and server includes several details about itself, its host,

the protocol used etc. Parts of an HTTP Response are :

● Headers

● Body

● Response Status Code

● Method

The HTTP Server will be required to parse this information associated with the

request into different records. Based on the type of request, the user will be required

to provide a Base Handler to deal with the request.

HTTP Support several methods, some of the widely used ones are as below :

1. GET: The GET method requests a representation of the specified resource.

Requests using GET should only retrieve data

2. POST - The POST method is used to submit an entity to the selected resource.

3. DELETE - The DELETE method deletes the specified resource.

4. PUT - The PUT method replaces all current representations of the target

resource with the request payload.

Parsing HTTP Request

Parsing the HTTP Request and

verifying whether the request

is valid is an additional task for

the HTTP server built over the

TCP server.

As stated above, we need to

parse components for

requests like headers, version

of HTTP, resource URL,

method and body.

The HTTP class’s parseRequest function will utilise regex expressions to extract out

the components and verify the header. The implementation of parseRequest and

associated record will look as follows :

We can build the HTTP Server upon the TCP Server Class of the Network Servers

designed above for Chapel.

The examples built in the community will be taken as a starting point as some of the

projects have been worked upon a lot and can help speed up the process. One of

them is a C multithreaded server pico, and I also found that a complete HTTP

module is implemented in chapel-http.

The HTTP server’s demonstration will include the initial task of handling GET Method

requests while developing upon the GET Method handler’s principles and extending

it to other methods in later phases of the module.

Persistent Connections (Optional)

HTTP/1.1 includes a keep-alive mechanism that allows for multiple requests through

the same connection. Otherwise, the connection is closed after a single

request-response cycle between client and server.

It’s up to the server whether it accepts the keep-alive connection or not. We can

choose to implement the functionality for persistent connections at the end of the

project given time availability so that the server can support HTTP/1.1 completely.

To provide persistent connections, we will be required to keep the connections open

until a request without the keep-alive header is observed. For the rest operations, the

HTTP server can close the connection as soon as we have handled the request.

The request parsing will involve checking for properties like timeout and max

request-response cycle before closing the connection. We can have defaults for both

values to deal with idle connections and ensure that CPU time is not wasted

checking those connections.

https://gist.github.com/laobubu/d6d0e9beb934b60b2e552c2d03e1409e
https://github.com/marcoscleison/chapel-http

Base HTTP Module Implementation

Why is this task exciting to you? Why did you choose
this particular task? What do you hope to learn by
working on it?
I have been working in the field of Web Development for over a year now. I have also

worked on web security which is of significant concern in today's world. This

particular task excites me because it will allow me to work with the lower-level APIs

of Web Technology, which I have always wanted, instead of just working with Higher

Level Abstractions. This task will help me get insights to answer better the question

How the Web works?

I have chosen this particular project because I have always looked around for a while

working with Web Technologies is Better Performance. I have moved from Django

to NodeJS from ReactJS to VueJS in search of performance, which Chapel provides at

first hand and is one of the core fundamentals of the language. This seems to be a

longstanding wishlist from Chapel Community and will be a leap for Chapel’s usage

in the community.

The task will provide me with a deeper understanding of the working of Web

Services and associated Protocols. It will also allow me to understand better the

development and architecture of other famous Backend Frameworks like Django,

Express, etc. By the end of this project, I would have gained a better knowledge of

socket programming and HTTP services and details about their internal moving

parts. As a student, this project will allow me to interact with knowledgeable and

experienced mentors. I will get to know about developing libraries from the ground

up and working on large open-source projects.

Provide a rough estimated timeline for your work on the
task. This timeline should take into account any
non-coding time, such as exams, GSoC midterms, and
vacation. Describe milestones you expect to achieve as
you work towards the task.

Pre GSOC Period

April 14, 2021 - May 17, 2021

April 14, 2021 - May 17, 2021 ➢ Work on issues : #16394, #8758,
#17439, #7662 and merge pending PRs

➢ Triage possibility of optimisation in
Heap Module for merging list

➢ Work on timezone class
implementation for DateTime module

➢ Learn more about non-blocking IO
and C networking.

➢ Stay connected with the community
and learn chapel

Community Bonding Period

May 17, 2021 - June 7, 2021

May 17, 2021 - May 30, 2021 ➢ Learn more about Data Parallelism
and Task Parallelism

➢ Discuss Approaches to integrate
parallelism in Socket and HTTP
Module

➢ Read through IO, C Interoperability,
Sys Module

May 31, 2021 - June 6, 2021 ➢ Implement mock structure and
pseudo-code for Library

➢ Discuss design decision
➢ Priorities Task at hand in

sub-components

https://github.com/chapel-lang/chapel/issues/16394
https://github.com/chapel-lang/chapel/issues/8758
https://github.com/chapel-lang/chapel/issues/17439
https://github.com/chapel-lang/chapel/issues/7662

Coding Period

June 7, 2021 - August 16, 2021

June 7, 2021 - June 21, 2021 ➢ Finalise the design decisions for the
socket module

➢ Start integrating C functions into
socket module to ensure non-blocking
nature

➢ Develop necessary sub-records for
essential socket interaction

➢ Add test and example for essential
socket functions

June 22, 2021 - June 27, 2021 ➢ Update procedures for parallelism
➢ Bug fixes and refactors module

architecture for optimisation
➢ Add more tests as needed

June 28, 2021 - July 7, 2021 ➢ Add utility functions for Socket
Module

➢ Add tests for updated server functions

July 8, 2021 - July 11, 2021 ➢ Discuss design for the network server
and its final implementation

➢ Add classes for Network Servers

Mid Term Evaluations

July 12 - 16, 2021

July 19, 2021 - July 22, 2021 ➢ Add new test cases for Network Server
Classes.

➢ Bug fixes and refactoring code for the
network server module

➢ Design Decision for HTTP module
prepare pseudo-codes

July 22, 2021 - August 5, 2021 ➢ Start implementing the HTTP module
➢ implement abstract and base classes

for HTTP module
➢ Add new test and examples for the

HTTP module

August 6, 2021 - August 11, 2021 ➢ Final code refactoring

➢ Update docs and examples
➢ Bug fixes and check for memory leaks
➢ Update procedures for better

performance and compatibility

August 12, 2021 - August 15, 2021 ➢ Discuss with the community about
next steps

➢ Get ideas about current
implementation and chance for
improvements

➢ Decide next milestones for module

Students Submit Code and Final Evaluations

August 16 - 23, 2021

Post GSOC Period

Based on community and core developers’ recommendation, work on new HTTP
and network server modules. Stay connected with the community and keep on

adding and improving the project.

References

● https://summerofcode.withgoogle.com/how-it-works/

● https://www.man7.org/linux/man-pages/man7/socket.7.html

● https://linux.die.net/man/3/send

● https://docs.python.org/3/howto/sockets.html

● https://dzone.com/articles/parallel-tcpip-socket-server-with-multi-threading

● https://www.educative.io/edpresso/how-to-implement-tcp-sockets-in-c

● https://www.gnu.org/software/libc/manual/html_node/Sockets.html

● http://www.dcs.gla.ac.uk/~johnson/teaching/CS-1Q/slides/lecture4/net.pdf

● https://chapel-lang.org/gsoc/ideas.html#sockets-library

● https://www.binarytides.com/socket-programming-c-linux-tutorial/

● https://realpython.com/python-sockets/

https://summerofcode.withgoogle.com/how-it-works/
https://www.man7.org/linux/man-pages/man7/socket.7.html
https://linux.die.net/man/3/send
https://docs.python.org/3/howto/sockets.html
https://dzone.com/articles/parallel-tcpip-socket-server-with-multi-threading
https://www.educative.io/edpresso/how-to-implement-tcp-sockets-in-c
https://www.gnu.org/software/libc/manual/html_node/Sockets.html
http://www.dcs.gla.ac.uk/~johnson/teaching/CS-1Q/slides/lecture4/net.pdf
https://chapel-lang.org/gsoc/ideas.html#sockets-library
https://www.binarytides.com/socket-programming-c-linux-tutorial/
https://realpython.com/python-sockets/

● https://docs.python.org/3/library/http.server.html

● https://docs.python.org/3/library/socketserver.html

● https://gist.github.com/laobubu/d6d0e9beb934b60b2e552c2d03e1409e

● https://github.com/marcoscleison/chapel-http

https://docs.python.org/3/library/http.server.html
https://docs.python.org/3/library/socketserver.html
https://gist.github.com/laobubu/d6d0e9beb934b60b2e552c2d03e1409e
https://github.com/marcoscleison/chapel-http

