Async Support for TensorFlow Backend in FFmpeg

Organization - Intel Video and Audio for Linux
Applicant - Shubhanshu Saxena



Table of Contents

Table of Contents

Basic Information

Abstract

Why Intel Video and Audio for Linux?
Deliverables

How is Performance Gained?

Asynchronous Execution in C

Support for Batch Mode in TensorFlow Backend

Implementation Plan
Defining the Data Types for Request-Task based Mechanism
Loading the TensorFlow model
Modifying the synchronous execution function
Adding the asynchronous execution function
Modifying Common Execution Function
Adding function to fill Model Inputs
Adding Inference Callback function
Completion Callback for the Asynchronous Execution
Adding a Function to flush Extra Frames (Batch Mode)
Asynchronous Execution of Requests
Async Support in the Native Backend
Batch Mode

Project Timeline
Community Bonding Period
Week 1
Week 2
Week 3
Week 4
Week 5
Phase 1 Evaluations
Week 6
Week 7
Week 8

10
10

11

1
12
12
13
13
13
14
14

15
16
16
16
16
16
16
16
17
17
17



Week 9
Week 10
Final Evaluations

About Me
Personal Details
Communication
Post-GSoC
Development Environment

Basic Information

17
17
17

17
17
18
18
18

Name: Shubhanshu Saxena

Major: Computer Science and Engineering

Degree: Bachelor of Technology

Year: Sophomore

Institute: Indian Institute of Technology (BHU), Varanasi
Email Address: shubhanshu.saxena.csel9@iitbhu.ac.in
Alternate Email: shubhanshu.eOl@gmail.com

GitHub: shubhanshu02

LinkedIn: shubhanshu-saxena

Resume: https://drive.google.com/file/d/1127rC9gSIDYSJw5JhwCxilK55PV-al8S/view
Telephone: +91-9166058795

Alternate Telephone: +91-8058002224

Timezone: Indian Standard Time (UTC+05:30)

Abstract

This project focuses on implementing an asynchronous mechanism for model inference and
batch execution in the TensorFlow backend of the FFmpeg Deep Neural Network module to
boost model inference performance.

The Tensorflow backend uses the TensorFlow C API, which currently does not provide functions

for asynchronous execution. The support for async behavior can be provided using
multithreading on the existing TensorFlow library functions. We will implement this behavior
through detached threads that work independently of each other.


mailto:shubhanshu.saxena.cse19@iitbhu.ac.in
mailto:shubhanshu.e01@gmail.com
https://github.com/shubhanshu02/
https://www.linkedin.com/in/shubhanshu-saxena/
https://drive.google.com/file/d/1I27rC9gSlDYSJw5JhwCxiIK55PV-aI8S/view?usp=sharing

Several inference frames will be combined to a single input tensor and executed together in a
single batch to enable the batch mode. The DNN module authors saw a performance gain in the
OpenVino backend with asynchronous batch inference against synchronous inference. A similar
performance gain is expected from this project.

Why Intel Video and Audio for Linux?

| am only applying to Intel Video and Audio for Linux for the GSoC 2021. Being a regular user of
Linux, | have always wanted to contribute to some Linux projects. Using hardware acceleration to
boost program performance has fascinated me since the day | started coding. The
implementation of asynchronous behavior using threads made me think out of the box for
something we usually don't see in our regular studies. | would love to contribute to something
that makes me think unconventionally.

Deliverables

1. Async Support in TensorFlow backend (Required)
Currently, the TensorFlow backend supports only the synchronous mode of model
inference, which is single-threaded and slow. Using asynchronous mode in a
multithreaded environment will provide us with a higher CPU utilization and faster
execution due to its non-blocking nature.

2. Async Support in the Native Backend (Optional)
The native backend is used for model inference when the target system does not support
OpenVino or TensorFlow backend. This backend also currently supports only the
synchronous model execution. We can also extend the async support in the TensorFlow
backend using detached threads to the native backend.

3. Support for Batch Mode in TensorFlow backend (Optional)
Loading multiple image frames as a single batch and inferring them at once is less
expensive on the system than processing all frames one by one. Enabling batch inference
for model inference will significantly boost the TensorFlow backend’s performance if
clubbed with the async mode.



How is Performance Gained?

In the current scenario, the TensorFlow backend loads a single frame at once, processes it using
the DNN model, and then returns the result. This step is repeated until all the frames have been
processed. In other words, there is one inference request to the backend for each frame.

After completing this project, the backend will load many frames as a batch, process them using
the DNN model in an asynchronous fashion without inter-dependency or blocking, and then
return the resulting frames. A batch will contain only a single frame when the batch mode isn’t
supported. In other words, there will be one inference request to the backend for each batch.
Each frame in a batch is considered as a task, so each request contains many tasks.

Due to this multi-threaded asynchronous approach, while processing a batch of AV Frames in a
single inference request, we can significantly improve performance.

Asynchronous Execution in C

| intend to use the POSIX thread library to enable asynchronous execution by executing the
TensorFlow sessions in separate threads. For this purpose, the POSIX library has two types of
threads - Joinable or Detached threads.

1. Joinable Threads - If we use joinable threads, we need to join the newly created thread
with the calling thread at the end of its execution. Hence, the calling thread’s
implementation is halted till the thread finishes its work, i.e., making the threads work
synchronously.

2. Detached Threads - If we use detached threads, the newly created thread will work
independent of the calling thread, and we wouldn’t need to wait for its completion for the
calling thread to resume its execution further, hence making the execution asynchronous.

Thus, we will use detached threads to implement the async execution in the following way. The
comparison between these two execution mechanisms is available here.

#include <pthread.h>
#include <stdio.h>
#include <stdlib.h>

#tinclude <unistd.h>



https://github.com/shubhanshu02/async-in-c

typedef struct parameters
{
pthread t thread;

int (*callback)(void *param);
} threadParameters;

int completionCallback(void *param)

{

void *runner(void *arg)

{

threadParameters *param = (threadParameters *)arg;

param->callback(param);

void asyncExecutor()

{

pthread t thread;

pthread attr_t attributes;

pthread attr_ init(&attributes);

pthread attr_ setdetachstate(&attributes, PTHREAD CREATE DETACHED);

threadParameters *tp = (threadParameters
*Imalloc(sizeof(threadParameters));




tp->thread = thread;
tp->callback = &completionCallback;
int returnValue = pthread_create(&thread, &attributes, runner, tp);

if (returnvalue != 0)

{
printf("Error Creating Thread!");
exit(9);

}

int main()

{
asyncExecutor();
asyncExecutor();
pthread_exit(NULL);

Since the target system may not support the POSIX thread library, we need to handle those
cases. FFmpeg handles these cases by checking if the HAVE_PTHREAD_CANCEL macro is
present or not. So, we will add this check to the async execution function. In case POSIX threads
aren't supported by the system, we will complete the execution to sync mode.

Support for Batch Mode in TensorFlow Backend

Currently, batch execution in FFmpeg requires the existence of an async execution mechanism
for the backend. In the async mechanism without batch mode, one inference request to the
backend triggers only a single task execution. But in batch mode, each inference request starts
multiple task executions numbering equal to the batch size. When batch size equals 1, the way of
execution is similar to the implementation without batch mode.

As of now, the FFmpeg DNN module uses the TensorFlow C API to infer on input tensor in NHWC
format of the following dimension:

Dimension = [1, input height, input width, input channels]

The “1” here signifies the tensor contains the images in the batch of 1. In other words, a single
image per tensor. In batch mode, this dimension changes to the batch_size i.e., a single tensor
contains multiple images.

| plan to add the batch mode to the TensorFlow backend by reusing the same request-based
mechanism with the async method. Unless provided, we will set the batch size to 1. Each request



will be executed only when it contains tasks amounting to the batch size in number. On inference,
we will fill the tensor data with data of all images in the batch and then infer the request
asynchronously. In this way, multiple tasks are being executed simultaneously in the same
request, while numerous requests are being executed asynchronously in detached threads.

For example, if we want to apply a DNN filter on a video with 66 frames in batches of 32. We will
execute the first 64 images in batches of 32, but the last two images will be left out. In this case,
we infer the remaining two images asynchronously one frame at a time. This is called flushing,
and we will use the function ff_dnn_flush_tf for this purpose. The Implementation Plan section
contains a section below for necessary changes in the async mode to support batch processing.

Implementation Plan

Like the OpenVino backend, the TensorFlow backend needs to be switched to using the Request
and Task queues to infer the Deep Neural Network models.

This approach mainly helps handle the asynchronous cases where several requests (humbering
to the ‘nireq’ option) are stored in a Request Queue used to execute requests. Following this
approach in the TensorFlow backend will also easily unify the three backends in the future when
the async mode is supported in all three backends.

I am planning to complete this project’s implementation by the following changes to the
TensorFlow backend:

Switching Execution to Request-Task based Mechanism by refactoring the existing code
Adding async function ff_dnn_execute_model_async_tf for the backend.
Adding the function ff_dnn_get_async_result_tf to the backend for getting async results.
Adding a completion callback function to get the resulting frame.
Adding functions to infer a Requestitem asynchronously.

a. tf_infer_request_infer for synchronous inference

b. tf_infer_request_infer_async for asynchronous inference

I N

c. tf_infer_request_free for freeing the infer_request
6. Modifying the async functions to support batch mode.
7. Creating a function ff_dnn_flush_tf for flushing the extra frames in batch mode.

Defining the Data Types for Request-Task based Mechanism

The structures TFOptions and TFModel need to be changed in order to add async execution
queues and a ‘number of requests’ options to the TensorFlow backend. At the end of this step,
these structures will have the following definition:



typedef struct TFOptions{
char *sess config;

int nireq;
} TFOptions;

typedef struct TFModel{
TFContext ctx;
DNNModel *model;
TF_Graph *graph;
TF_Session *session;
TF_Status *status;

SafeQueue *request_queue;
Queue *task queue;
} TFModel;

The request_queue is a SafeQueue instance, a queue with mutex locks to keep the queue’s
consistency when it is accessed by multiple threads simultaneously, while the task_queue is a
simple Queue used to store the task items. Since the execution order may not remain the same in
async mode, the task_queue is necessary to retain the order of image frames in the video. The
Requestltem has a list of Taskltems containing the frames to be inferred in that batch. In all, a
Requestltem is the basic unit for inference, while a Taskltem includes details about a single image
frame.

To switch to a request-based inference mechanism, we define the data types Requestitem and
Taskiltem. The total number of Requestitems in an async inference call remains constant and
equal to nireq defined in the TensorFlow backend options. The Requestltem contains the task it
is currently executing while the Taskltem contains all the inference task details. These are defined
in the following way:

typedef struct TaskItem {
TFModel *tf model;
const char *input name;
AVFrame *in_frame;
const char *output_name;
AVFrame *out frame;
TF_Tensor output_tensors;

int do_ioproc;
int done;
int async;

} TaskItem;




typedef struct RequestItem {
tf_infer_request *infer_request;
TaskItem **tasks;

int task_count;
int (*completion_ callback)(void *args);
} RequestItem;

Loading the TensorFlow model

The first call to the TensorFlow backend is on the ff_dnn_load_model_tf function, which loads
the TensorFlow graphs from the model file and initializes the DNN modules necessary for
inference.

The function has the following declaration:

DNNModel *ff dnn_load model tf(const char *model filename, DNNFunctionType

func_type, const char *options, AVFilterContext *filter ctx)

Pseudocode for the updated function:

1. Allocate space for DNNModule and TFModel

2. Set default options using av_opt_set_defaults. Or parse options from the model context
using av_opt_set_from_string.

3. Load TensorFlow graphs using load_tf_model. Or try loading the native model using
load_native_model.

4. Set nireq i.e., number of async inference requests to the default value if not provided. The
default value is a rough estimation in the OpenVino backend equal to cpu_count/ 2 + 1.

5. Initialize the request queue and task queue

6. Create inference requests for asynchronous execution and push them to the back of the
request_queue of the model.

7. Return the created DNNModel instance.

Modifying the synchronous execution function

For synchronously inferring the TensorFlow model, the function ff_dnn_execute_model_tf is
used with the following declaration.

DNNReturnType ff_dnn_execute_model_ tf(const DNNModel *model, const char
*input_name, AVFrame *in_frame,const char **output names, uint32 t nb_output,

AVFrame *out frame)

For using the same key code for both async and sync mode, this function calls another function,
execute_model_tf, which runs the inference on the TF_SessionRun.



Pseudocode for ff_dnn_execute_model_tf:

1. Create an inference Requestitem and Taskltem.

Check if the input frame and the output frames are null. If yes, return DNNError.

Set the task->async to O.

Set all the function parameters in the Taskltem and assign the task to the Requestitem.
Execute the task using execute_model_tf with the created request.

o~ WwN

Adding the asynchronous execution function

This function creates a new Taskltem and initializes it with the task parameters. Now, it pushes it
to the end of the task_queue of the model. Next, it pops the front of the request queue from the
model and adds this task to the tasks array in the extracted request. Finally, it calls the
execute_model_tf on this request.

This function will have the following declaration:

DNNReturnType ff _dnn_execute_model async_tf(const DNNModel *model, const char
*input_name, AVFrame *in_frame, const char **output names, uint32 t nb_output,

AVFrame *out frame);

Pseudocode for ff_dnn_execute_model_async_tf

Check if the input frame and the output frames are null. If yes, return DNNError.
Create a new Taskltem and initialize it with the task parameters.

Set the async to 1in this Taskltem.

Push this task to the back of the task_queue in TFModel.

Pop the front of the request_queue in the TFModel.

Assign this task to request->tasks[request->task_count++].

Execute the popped request with execute_model_tf asynchronously.

No ok wh=

Modifying Common Execution Function

All three backends use a common execution function to reuse the same key code for both async
and sync execution. In the case of the TensorFlow backend, the function execute_model_tf is
used for common execution with the following declaration:

DNNReturnType ff_dnn_execute_model async_tf(const DNNModel *model, const char
*input_name, AVFrame *in_frame, const char **output_names, uint32_t nb_output,

AVFrame *out_frame);

Pseudocode for execute_model_tf

1. Async Mode
a. Fill model input tensors and input operations
b. Setinference request and completion callback



c. Start async inference request

2. Sync Mode
a. Fill model input tensors and input operations
b. Setinfer request and start inference
c. Call the inference completion callback

Adding function to fill Model Inputs

This function fill_model_input_tf takes the TensorFlow model and the request instance to fill the
input_tensors and tf_input in tf_infer_request required by TF_SessionRun for model inference.
It will have the given definition:

static DNNReturnType fill model input tf(TFModel *tf model, RequestItem

*request)

Pseudocode for fill_model_input_tf

1. Use the existing function get_input_tfto get the TensorFlow operation to be performed

and set the height, width, and input channels from the Tensor shape.

Set DNNData input object’s height and width from input frame’s height and width

Set graph operation in tf_input by its name using TF_GraphOperationByName

Allocate input_tensor using the existing function allocate_input_tensor.

If do_ioproc is 1, preprocess the input frame data to the DNNData input using the

pre_procp function in the model or use the default function ff_proc_from_frame_to_dnn.

6. Allocate space for tf_outputs, i.e., an array of TF_Output items and output_tensors, an
array of TF_Tensors.

o~ 0b

7. lterate over each of the TF_Output items and assign it its graph operation, a
TF_Operation instance, by its name.

Adding Inference Callback function

This function infer_completion_callback creates a local DNNData variable for output and sets
the output from the output_tensors TensorFlow inference request. Next, it transfers the DNN
data to the output frame. Finally, it deletes all the allocated tensors and cleans up all resources.

static void infer completion callback(void *args)

Pseudocode for infer_completion_callback

1. Parse the Requestitem from the args
2. Create a DNNData instance for output and set its parameters from the output_tensor in
the Requestltem.



3. If do_ioproc is 1, post-process the output frame from the DNNData using post_proc
functions if present in the model or ff_proc_from_dnn_to_frame. Else, set the output
frame height and width from the DNNData object.

4. Clean up the allocated resources that won’t be used after inference completion, like
output_tensor, input_tensors, and tf_output.

Completion Callback for the Asynchronous Execution

For the synchronous model inference, we already used infer_completion_callback as a callback
on successful model inference. Since the asynchronous inference runs on a detached thread, we
need to assign it a completion callback in its Requestltem instance.

Adding a Function to flush Extra Frames (Batch Mode)

The function ff_dnn_flush_tf will be used to flush extra frames that do not fit the inference batch
size. In this case, we will infer these frames asynchronously using the functions we defined for the
async mode. It will have the following definition:

DNNReturnType ff _dnn_flush_tf(const DNNModel *model)

Pseudocode for ff_dnn_flush_tf

1. Pop a Requestitem from the request_queue of the TFModel.

2. Ifthe task count is O, push the request back to the queue and return since no pending
task is left to flush.

3. Fill the input_tensors and tf_input in tf_infer_request required by TF_SessionRun for
model inference using fill_model_input_tf.

4. Setthe completion callback

5. Infer the request asynchronously.

Asynchronous Execution of Requests

Each Requestitem contains a pointer to a tf_infer_request. Each tf_infer_request contains the
parameters for the TF_SessionRun required for the execution. This data type is defined as
follows:

typedef struct tf_infer_request {
TF _Output* tf_input;
TF_Tensor* input_tensors;

TF_Tensor* output_tensors;
TF_Output* tf_output;
} tf_infer_request;

For async inference of Requestitems, we need to define the following functions:



1. Synchronous Inference - The function tf_infer_request_infer will be used for the sync
mode execution. It takes the Requestitem as a parameter and calls the TF_SessionRun in
the same calling thread with parameters from the Requestltem and its peek task.

2. Asynchronous Inference - The function tf_infer_request_infer_async will be used for the
async mode of execution and takes the Requestitem as a parameter. It calls the
TF_SessionRun in a separate detached thread and calls the
request->completion_callback function on successful completion of TF_SessionRun.

3. Freeing the Infer Request - After completing tf_infer_request_infer_async, the output
frame has been written from the output_tensors and tf_output. These are no longer
needed for model inference and need to be freed. The function tf_infer_request_free
frees all the allocated resources in the request->infer_request using the functions
TF_DeleteTensor and av_freep.

Note: The same function infer_completion_callback is used as the completion callback of the
infer_request to ensure the same key code isn’t repeated.

Async Support in the Native Backend

The native backend has a similar approach to model inference as that of the TensorFlow model.
First, loads input operations and data into DnnOperand and DNNData instances. Like the
TensorFlow backend calls the TF_SessionRun, this backend calls the pf_exec functions on
individual model layers in a loop to infer the model. Finally, it fetches the output frame from the
model output data.

These layer operations can also be run in detached threads for each frame to support the
asynchronous mode. To keep the code’s readability, we will change this model inference to a
request-based mechanism as we will do for the TensorFlow backend through refactoring of the
existing code.

Batch Mode

After implementation of async mode in the TensorFlow backend, we will require the following
changes to the existing code:
1. Add batch_size to the dnn_tensorflow_options and TFOptions in the TensorFlow
backend.
2. By default, set batch_size = 1 unless not provided.
3. In allocate_input_tensor function:
a. Change input tensor dimensions to support batch inference

input_dims[] = {batch_size, input->height, input->width, input->channels};
b. Change the allocation size of input tensor

TF_AllocateTensor(dt, input_dims, 4, input_dims[@] * input_dims[1] *



input_dims[2] * input_dims[3] * size);

4. Remove av_assertO(dims[0] == 1) in get_input_tf function.

To support batch inference, we will modify the async execution function
ff_dnn_execute_model_async_tf in the following manner:

1. Create and add the task to request_queue.

2. Then,
if (request->task_count == batch_size) {
execute_model tf(request);
}
else {
ff_safe_queue_push_front(tf_model->request_queue, request);
return DNN_SUCCESS;
}

In execute_model_tf function, for async mode:

if (task_count < batch_size) {
return DNN_ERROR;

}
else {
float* tensorData = (float *)TF_TensorData(input_tensor);
for (int i = @; i < batch_size; i++) {
// fill tensorData[i] using DNNData of ith frame
// This is possible because TF_Tensor holds a multidimensional
// array of elements of a single data type.
}
}

For the infer_completion_callback, iterate over all tasks (let index = i) and set the output to the
tensorData[i]. In other words, we are writing all frames from the output tensor.

Project Timeline

Community Bonding Period May 12, 2021 - June
7,2021

- I will review the existing filters and experiment with their TensorFlow implementation to
better understand how they work.



- lwill discuss the existing code for async and batch mode in the TensorFlow and Native
backend with the mentors.

-l will discuss the latest changes in the DNN module with the mentor and plan the
execution accordingly.

- | will review the TensorFlow C API and carefully study it for error handling to avoid
memory leaks in the execution.

Week 1 June 7,2021- June 13, 2021

-l will start implementing the Taskltems and Requestltems and refactoring the existing
code to switch the execution.

- | will start refactoring the existing functions in the TensorFlow backend to use the newly
defined data types.

Week 2 June 14, 2021 - June 20, 2021

- l'will complete the loading, synchronous execution, and freeing the model part of the
refactoring.

- | will start defining functions for infer_request and inference callbacks in the TensorFlow
backend.

Week 3 June 21, 2021 - June 27, 2021

- l'will complete the infer_request functions in the backend and integrate them for
synchronous execution.
- | start adding functions for async execution and async result fetching.

Week 4 June 28, 2021 - July 4, 2021

- | will add the functionality to save and read the async result from the inference
-l will complete the async execution for the TensorFlow backend.

Week 5 July 5, 2021 - July 11, 2021

- This week is devoted to finding memory leaks and debugging the code for errors.
-l will reexamine the inference mechanism for any flaws

Phase 1 Evaluations July 12, 2021 - July 16, 2021

- We can deploy the Asynchronous Inference Mode.

Week 6 July 12, 2021 - July 18, 2021

- | will start implementing the Request-based inference mechanism and refactoring the
existing code in the Native backend similar to the TensorFlow backend.



Week 7 July 19, 2021 - July 25, 2021

- | will add separate functions for async execution and the detached thread functions to
execute Requestltems in the Native Backend with async mode.

Week 8 July 26, 2021 - Aug 1, 2021

- l'will complete the async execution for the Native backend.

Week 9 August 2, 2021 - August 8, 2021

- | will start refining the existing code to support batch mode and change tensor
dimensions based on the batch size.

- | will start modifying the ff_dnn_execute_model_async_tf function to call the execution
function conditionally.

Week 10 August 9, 2021 - August 15, 2021

- | will start modifying the execute_model_tf function to fill the tensor with all images’ data
in the batch.
- ' will start working on the flushing function for extra frames and complete the remaining
work to add the batch mode.
Final Evaluations August 16, 2021 - August 23, 2021

- Batch Mode can be successfully deployed

About Me

Personal Details

My name is Shubhanshu Saxena. | am a sophomore in the Department of Computer Science and
Engineering at the Indian Institute of Technology (BHU), Varanasi. Since my first year of college, |
have been into coding and have grown my interest in exploring different fields of computer
science.

| am also an active contributor to open-source since last year. My open-source contributions can
be viewed here. | have been trying out various technologies ranging from web development,
mobile development to machine learning. Over the last few months, my interest has shifted
towards deep learning.

Apart from the academic stuff, | am an active member of the Developer's Group in the Club of
Programmers, and | am a table tennis player. | have represented my institute in Udghosh 2019 in
the Table Tennis team. Recently, | participated in the Traffic Sign Recognition competition for the


https://github.com/shubhanshu02
https://copsiitbhu.co.in/
https://copsiitbhu.co.in/
http://udghoshleague.org/

Ul team in Inter lIT Tech Meet and worked in the tech team of Technex. | keep on exploring my
interests in different fields through participation in various competitions.

In terms of my technical skills, I'm proficient in C++, Python, JavaScript, Dart and have basic
knowledge in C, but | haven’t applied it in any large-scale project yet. | am a keen learner and
ready to learn anytime. That’s why | feel | can compensate for this. | am also proficient with Git. |
have been practicing TensorFlow for a few months now in my Artificial Intelligence course labs
and have had essential multithreading experience from the Operating Systems course.

Communication

Over the summers, | will be available to work usually around 2 pm to 1 am IST on weekdays
though | can be flexible with my schedule as per the mentors’ availability. | may not be available
for a few days due to some family trip, but I'll inform the mentors about that beforehand. | would
love to spend time with the mentors and the team learning from them over the summers.

| am comfortable with any means of communication - be it email, voice call, or video meetings, as
per the mentors’ convenience. For the language part, | speak English and Hindi.

Post-GSoC

Since this project is vast in terms of scope, some of the points mentioned may be left
unimplemented when we include the optional parts. If such a case happens, | will try to complete
them after GSoC. After the GSoC, | would like to keep contributing to the DNN module and
explore other Intel Open Source projects.

Development Environment

| use Linux as my primary operating system, though | have access to Windows 10 as well.
Currently, | have Ubuntu Budgie 20.10 installed on my pc as the primary operating system. | have
successfully installed FFmpeg from the source code on my laptop.


https://interiit-tech.org/
https://technex.co.in/

