
About You

Why are you interested in working with Oppia, and on your chosen project?
To learn angular, I bought an online course. I searched for 'courses in angular', selected the
top-rated one, and purchased it without the blink of an eye. Fast forward to 30th Jan 2021; the
Oppia 2021 Strategy meet showed the stories of children from countries like Palestine, India etc.
and how Oppia has helped them. Not just them, their parents too. The meeting made me realise
how easy it was for me to learn anything I wanted to. I am privileged. But not everyone is...

250 million children in the world do not have basic literacy and numeracy; children in countries
amidst conflicts drop out of school, girls are denied education. The right to education may exist,
but the means certainly do not. This is where Oppia comes into play. Oppia aims to provide
education to all underserved children across the world in an effective, accessible and engaging
way.

I started contributing to Oppia back in September'20, and ever since, I have enjoyed contributing.
I feel happy that even a tiny bug fix done by me plays a role in providing education to
underserved children. And this is what keeps me motivated.

Project chosen - Automated QA Team - Write Frontend Tests .

Oppia uses AngularJs/Angular 2+ for the frontend and has a massive codebase. It is crucial to
test this code in order to catch any bug before it reaches the ‘develop’ branch. Increasing the
code coverage would also be helpful to other developers, as 100% coverage would reduce the
chances of any bug popping out at a later stage. I find digging through the huge codebase and
debugging very interesting. This project would be the best way for me to gain expertise in unit
testing and Angular.

Prior experience
I have been into development for the past year, have learnt quite a few technologies and started
contributing to open source in this time period. I am familiar with TypeScript and Python, and
various front-end and backend frameworks like Angular/AngularJS, VueJS, Django Rest
Framework. I have worked on a few college projects and personal projects which are visible on
my GitHub profile.

I have been contributing to Oppia for the past 6 months, and have submitted a number of PRs,
gaining familiarity with the codebase. I am currently working with the Learner and Creator
Experience team.

http://github.com/aishwary023

PRs submitted:
1. #12189 - Migrated components and wrote unit tests.
2. #12216 - Added unit tests for components.
3. #11021 - Migrated and added unit tests for a service.
4. #12010 - Added e2e test for the student user journey.
5. #11701 - Added e2e test for topic and story viewer page.

List of all of my pull requests and issues created .

Contact info and timezone(s)
Email - aishwary.saxena.min19@iitbhu.ac.in
Phone - +91 8299329212
Timezone - Indian Standard Time (IST) (+5:30 GMT)
Preferred Method of communication - Hangouts, Email, WhatsApp

Time commitment
● I would be working on the GSoC project throughout the 10-week period, from 7th June to

16th August.
● I would commit at least 3-4 hrs per day during the coding period, or more if required.
● Currently, my college campus is closed, but it may so happen that the campus reopens

during the summer to complete lab courses. If that is the case, I would increase the time
before returning to the campus to 5-6 hrs per day and I would commit 2-3 hrs per day
once I am on campus.

Essential Prerequisites
● I am able to run a single backend test target on my machine.

https://github.com/oppia/oppia/pull/12189
https://github.com/oppia/oppia/pull/12216
https://github.com/oppia/oppia/pull/11021
https://github.com/oppia/oppia/pull/12010
https://github.com/oppia/oppia/pull/11701
https://github.com/oppia/oppia/pulls?q=author%3Aaishwary023
https://github.com/oppia/oppia/issues?q=is%3Aissue+author%3Aaishwary023+
mailto:aishwary.saxena.min19@iitbhu.ac.in

● I am able to run all the frontend tests at once on my machine.

● I am able to run one suite of e2e tests on my machine.

Other summer obligations
I have no other commitments during the summer. But I may have to go to my college campus a
bit early, as mentioned above .

Communication channels
I would be communicating with my mentor through the common preferred mode of
communication (Hangouts, Email, WhatsApp), daily or on a weekly basis, with quick updates
and questions through the communication channel (Hangouts, WhatsApp etc.).

Application to multiple orgs
I would be applying only in Oppia.

Project Details

Product Design

Why do we need to test our code?

Providing education to underserved children in an interactive way is Oppia's goal. Anyone can
create and share interactive learning activities using Oppia's website. These interactive lessons
are known as explorations, and currently, Oppia has numerous explorations.

Hence, Oppia has a huge codebase. It is possible that some bug may slip in if we do not test
the code properly. Testing the code rigorously ensures that the quality of code is maintained,
saving time for developers and providing a better, bug-free experience to our users (i.e the
students).

Unit tests are a must in any codebase because:
● Unit tests help us validate our work. We might think the code that we have written is

correct, but it often happens that we have an unknown bug in the code, which can be
caught by unit tests.

● For unit testing, we must break down our code into small parts. This helps to make the
code modular , readable and understandable.

● Unit tests can also be seen as code-documentation , as they can help someone how a
particular piece of code works.

● Sometimes it may happen that a bug slips into production, and this introduces
regression which could take a large amount of time to get fixed. Unit tests help us to
catch bugs at an early stage and prevent regressions .

● Unit tests can help us refactor codes without worrying about breaking anything.

What is a unit test?

Consider you are building a car, and you have to take the car for a test ride each time you want
to check if the car seats are correctly fitted? That would be very cumbersome and would result
in wastage of time and resources.

That is why the method of unit testing exists. In literal terms, unit testing means testing the
smallest unit of code. It can be a function, a class, or even an if-statement.

Fig - Why do we need tests? An example component & some questions that unit tests answer.

Problem

Oppia’s codebase consists of:
● Services
● Directives
● Components
● Other files

These files are written in both Angular and AngularJS, and the migration of these files is
currently going on. In case of an AngularJS directive, we would need to migrate it to a
component and then test the code.

Also, not 100% of these files have been covered. Some files do not have a test file, while some
are not fully tested.

As of 18th March 2021, this the statistics of frontend test coverage:

*Table was generated using the functions in ‘check_frontend_test_coverage.py’

Hence, there are 9990 lines to cover.

Goal
At the end of this GSoC project our goal is to achieve:

● 100% coverage of Component, Directive and Services.
● Ensure that all new files added have unit tests along with them.

Work Plan
● Completing unit testing of partially covered files.
● Adding new test files to components/directives/services with no coverage.
● Migrating directives to components:

○ Adding a spec file and writing tests, if the spec file is not present.

File type Lines Lines covered Lines to cover

Component 7680 7280 400

Directive 10854 2657 8197

Service 11689 10296 1393

Other 9828 9028 800

Total 40051 29261 10790

Total (without other
files)

30370 20479 9990

Technical Design

Architectural Overview

Files to be tested lie in the following folders:

● /core/templates:
○ /base-components - contains the core non-reusable components
○ /components - contains the reusable components
○ /directive - contains directives not associated with files in /components
○ /domain - contains the files with logic for frontend
○ /expressions -contains files to make expressions work
○ /pages - contains all the pages of the website
○ /services - contains all the services used in the website

● /extensions:
○ /interactions - contains the files which have the interactive component of a card
○ /objects/templates - all objects that are used in the website
○ /rich_text_components - contains components for custom widgets
○ /value_generators/template - contains copier and random selector value

generator
○ /visualizations - contains files for statistics display functionality

Fig - Flow to test the files

*Migrate the file - Migrating AngularJS Directive to AngularJS Component.
Components in AngularJS are nothing but a special kind of directive, which were introduced in
AngularJS 1.5.

Migrating a directive to a component
Before writing tests for a directive, we need to migrate it to a component. We can register a
component with the following line:

Fig. Code to register a component in AngularJS

Let’s take a look at an example, we have concept-card.directive.ts

● First we change the component registration line, as given above.
● Now we change the component definition properties
● Remove the restrict: ‘E’ property, as components are restricted to elements only
● Change bindToController to bindings
● Remove UrlInterpolationService and directly import the template using require()
● We can remove the controllerAs property too, as it’s default value in a component is $ctrl

Hence, the component would look something like this

Components
Components are the building block of an Angular 2+ application, consisting of:

● HTML Template
● Typescript file -- defining the behavior
● CSS selector
● and a CSS file

Currently the oppia codebase consists of 162 components, out of which 138 have 100%
coverage, while 24 components do not have 100% coverage. Thus, currently 400 lines of
components are to be covered.

Fig. Starter template of a component in Angular 2+

Fig. Starter template of a component in AngularJS

List of components to be tested

Component Lines to cover

list-of-sets-of-translatable-html-content-ids-editor.component.ts 67

oppia-interactive-fraction-input.component.ts 62

opportunities-list.component.ts 43

subtopic-preview-tab.component.ts 37

contributions-and-review.component.ts 36

sharing-links.component.ts 34

oppia-interactive-continue.component.ts 17

set-of-translatable-html-content-ids-editor.component.ts 15

skill-mastery.component.ts 14

collection-local-nav.component.ts 9

social-buttons.component.ts 8

profile-link-image.component.ts 8

collection-navbar.component.ts 7

translatable-html-content-id.component.ts 7

skill-editor-navbar-breadcrumb.component.ts 6

background-banner.component.ts 5

collection-footer.component.ts 5

oppia-response-fraction-input.component.ts 5

oppia-short-response-fraction-input.component.ts 5

oppia-response-continue.component.ts 3

oppia-short-response-continue.component.ts 3

summary-list-header.component.ts 2

profile-link-text.component.ts 1

topic-editor-page.component.ts 1

Services
Services are files that can contain a wide variety of things, like a function, value or feature
required in the app. Services are a great way to share data among classes that don’t know each
other. Oppia’s codebase contains services that are in AngularJS and Angular 2+.

Currently, Oppia’s codebase contains 328 services out of which 72 files are untested and 256
services have been fully tested. Thus, 1393 lines of code of services have to be tested.

Fig - Factory definition of service in AngularJS

Fig - Class definition of service in Angular2+ along with downgradeInjectable to make the

service usable in AngularJS files

List of services to be tested

Service Lines to cover

graph-layout.service.ts 192

exploration-engine.service.ts 149

exploration-save.service.ts 120

stats-reporting.service.ts 92

question-player-engine.service.ts 91

exploration-player-state.service.ts 61

audio-player.service.ts 47

messenger.service.ts 40

story-update.service.ts 35

suggestion-modal-for-exploration-editor.service.ts 30

exploration-states.service.ts 28

topic-editor-state.service.ts 27

topics-and-skills-dashboard-backend-api.service.ts 26

voiceover-recording.service.ts 26

exploration-creation.service.ts 25

item-selection-input-validation.service.ts 24

graph-detail.service.ts 23

contribution-opportunities.service.ts 22

story-creation.service.ts 20

collection-editor-state.service.ts 20

state-editor.service.ts 18

skill-creation.service.ts 17

topic-creation.service.ts 17

editable-story-backend-api.service.ts 16

context.service.ts 16

numeric-input-validation.service.ts 15

change-list.service.ts 14

story-editor-state.service.ts 13

contribution-and-review.service.ts 12

learner-view-rating.service.ts 12

question-update.service.ts 11

autogenerated-audio-player.service.ts 11

request-interceptor.service.ts 11

music-phrase-player.service.ts 7

collection-update.service.ts 6

state-top-answers-stats.service.ts 6

url-interpolation.service.ts 5

audio-preloader.service.ts 5

learner-answer-info.service.ts 5

skill-editor-state.service.ts 5

contribution-opportunities-backend-api.service.ts 4

translate-text.service.ts 4

version-tree.service.ts 4

current-interaction.service.ts 4

player-transcript.service.ts 4

refresher-exploration-confirmation-modal.service.ts 4

state-property.service.ts 3

read-only-collection-backend-api.service.ts 3

email-dashboard-data.service.ts 3

graph-input-validation.service.ts 3

number-with-units-validation.service.ts 3

editable-collection-backend-api.service.ts 2

pretest-question-backend-api.service.ts 2

expression-interpolation.service.ts 2

exploration-diff.service.ts 2

answer-classification.service.ts 2

entity-creation.service.ts 2

csrf-token.service.ts 2

html-escaper.service.ts 2

promo-bar-backend-api.service.ts 2

utils.service.ts 2

svm-prediction.service.ts 2

base-interaction-validation.service.ts 2

code-repl-prediction.service.ts 2

language-util.service.ts 1

expression-evaluator.service.ts 1

fatigue-detection.service.ts 1

Directives
Directives are a feature of AngularJS, which act as markers to DOM, that tell the AngularJS
compiler to attach some behaviour to the element or transform the element to another form.

Directives can be elements (E), attributes (A), class names (C), and comments (M). Type of
directive can be specified using the ‘restrict’ property. Oppia’s codebase contains only element
and attribute type of directive, while the un-tested files only have directives with restrict: ‘ E’ i.e
element type.

Oppia’s codebase consists of 217 directives out of which only 15 are completely tested, while
202 directives are partially or completely un-tested. Thus, a total of 8197 lines of directives have
to be covered.

List of directives to be tested

player-correctness-feedback-enabled.service.ts 1

translation-file-hash-loader-backend-api.service.ts 1

fraction-input-validation.service.ts 1

graph-input-rules.service.ts 1

music-notes-input-rules.service.ts 1

Directive Lines to cover

conversation-skin.directive.ts 545

filepath-editor.directive.ts 431

state-responses.directive.ts 293

graph-viz.directive.ts 272

oppia-interactive-music-notes-input.directive.ts 271

questions-list.directive.ts 259

image-with-regions-editor.directive.ts 257

question-player.directive.ts 224

admin-roles-tab.directive.ts 151

collection-player-page.directive.ts 142

topic-editor-navbar.directive.ts 142

top-navigation-bar.directive.ts 130

admin-misc-tab.directive.ts 130

answer-group-editor.directive.ts 123

audio-bar.directive.ts 120

oppia-interactive-logic-proof.directive.ts 101

state-interaction-editor.directive.ts 99

version-diff-visualization.directive.ts 99

question-editor.directive.ts 96

outcome-editor.directive.ts 90

admin-dev-mode-activities-tab.directive.ts 89

oppia-interactive-code-repl.directive.ts 88

ck-editor-4-rte.directive.ts 87

tutor-card.directive.ts 87

schema-based-list-editor.directive.ts 86

rule-editor.directive.ts 86

oppia-interactive-image-click-input.directive.ts 85

state-hints-editor.directive.ts 81

thumbnail-uploader.directive.ts 78

skill-selector.directive.ts 73

rubrics-editor.directive.ts 66

exploration-summary-tile.directive.ts 66

story-summary-tile.directive.ts 66

collection-editor-navbar.directive.ts 66

outcome-destination-editor.directive.ts 65

hint-and-solution-buttons.directive.ts 62

story-editor-navbar.directive.ts 62

collection-node-creator.directive.ts 61

math-expression-content-editor.directive.ts 61

admin-jobs-tab.directive.ts 58

skill-concept-card-editor.directive.ts 58

misconception-editor.directive.ts 58

state-solution-editor.directive.ts 57

progress-nav.directive.ts 54

oppia-interactive-pencil-code-editor.directive.ts 54

feedback-popup.directive.ts 53

image-uploader.directive.ts 49

learner-dashboard-icons.directive.ts 49

skill-editor-navbar.directive.ts 46

state-content-editor.directive.ts 45

collection-details-editor.directive.ts 45

supplemental-card.directive.ts 45

schema-based-unicode-editor.directive.ts 42

state-editor.directive.ts 42

skill-prerequisite-skills-editor.directive.ts 42

oppia-interactive-graph-input.directive.ts 41

oppia-interactive-item-selection-input.directive.ts 40

schema-based-float-editor.directive.ts 39

oppia-interactive-interactive-map.directive.ts 39

oppia-noninteractive-image.directive.ts 39

topic-questions-tab.directive.ts 37

learner-view-info.directive.ts 36

oppia-interactive-multiple-choice-input.directive.ts 34

oppia-interactive-number-with-units.directive.ts 34

admin-config-tab.directive.ts 33

create-activity-button.directive.ts 32

worked-example-editor.directive.ts 32

skill-misconceptions-editor.directive.ts 32

base-content.directive.ts 31

hint-editor.directive.ts 31

normalized-string-editor.directive.ts 31

unicode-string-editor.directive.ts 31

learner-local-nav.directive.ts 29

oppia-interactive-drag-and-drop-sort-input.directive.ts 29

oppia-interactive-end-exploration.directive.ts 29

oppia-interactive-set-input.directive.ts 28

concept-card.directive.ts 27

select2-dropdown.directive.ts 27

solution-explanation-editor.directive.ts 27

input-response-pair.directive.ts 27

skills-mastery-list.directive.ts 26

promo-bar.directive.ts 25

admin-page.directive.ts 25

exploration-footer.directive.ts 25

topic-editor-stories-list.directive.ts 25

response-header.directive.ts 24

rule-type-selector.directive.ts 24

skill-description-editor.directive.ts 24

logic-question-editor.directive.ts 24

audio-file-uploader.directive.ts 23

score-ring.directive.ts 23

fraction-editor.directive.ts 23

role-graph.directive.ts 22

oppia-interactive-text-input.directive.ts 22

skills-list.directive.ts 21

oppia-noninteractive-video.directive.ts 21

collection-summary-tile.directive.ts 20

topic-summary-tile.directive.ts 19

oppia-noninteractive-math.directive.ts 19

review-material-editor.directive.ts 18

music-phrase-editor.directive.ts 18

collection-editor-page.directive.ts 17

number-with-units-editor.directive.ts 17

collection-node-editor.directive.ts 16

coord-two-dim-editor.directive.ts 16

oppia-noninteractive-link.directive.ts 16

codemirror-mergeview.directive.ts 15

skill-rubrics-editor.directive.ts 15

oppia-interactive-numeric-input.directive.ts 15

parameter-name-editor.directive.ts 15

skill-questions-tab.directive.ts 14

story-editor-navbar-breadcrumb.directive.ts 14

drag-and-drop-positive-int-editor.directive.ts 14

skill-selector-editor.directive.ts 14

oppia-noninteractive-skillreview.directive.ts 14

object-editor.directive.ts 12

rating-display.directive.ts 12

learner-answer-info-card.directive.ts 12

code-string-editor.directive.ts 12

subtopic-summary-tile.directive.ts 11

oppia-response-graph-input.directive.ts 11

oppia-response-music-notes-input.directive.ts 11

oppia-short-response-music-notes-input.directive.ts 11

graph-property-editor.directive.ts 11

logic-error-category-editor.directive.ts 11

oppia-root.directive.ts 10

alert-message.directive.ts 10

collection-editor-navbar-breadcrumb.directive.ts 10

oppia-response-drag-and-drop-sort-input.directive.ts 10

oppia-short-response-drag-and-drop-sort-input.directive.ts 10

random-selector.directive.ts 10

side-navigation-bar.directive.ts 9

focus-on.directive.ts 9

story-node-editor.directive.ts 9

topic-editor-navbar-breadcrumb.directive.ts 9

oppia-short-response-interactive-map.directive.ts 9

real-editor.directive.ts 9

schema-based-dict-editor.directive.ts 8

schema-based-int-editor.directive.ts 8

mathjax-bind.directive.ts 8

collection-editor-tab.directive.ts 8

story-editor.directive.ts 8

oppia-response-item-selection-input.directive.ts 8

oppia-short-response-item-selection-input.directive.ts 8

html-select.directive.ts 7

solution-editor.directive.ts 7

oppia-response-code-repl.directive.ts 7

oppia-short-response-multiple-choice-input.directive.ts 7

boolean-editor.directive.ts 7

schema-based-choices-editor.directive.ts 6

question-difficulty-selector.directive.ts 6

oppia-response-multiple-choice-input.directive.ts 6

oppia-response-numeric-input.directive.ts 6

oppia-short-response-numeric-input.directive.ts 6

int-editor.directive.ts 6

list-of-tabs-editor.directive.ts 6

list-of-unicode-string-editor.directive.ts 6

nonnegative-int-editor.directive.ts 6

set-of-unicode-string-editor.directive.ts 6

oppia-response-image-click-input.directive.ts 5

oppia-short-response-image-click-input.directive.ts 5

oppia-response-interactive-map.directive.ts 5

oppia-response-number-with-units.directive.ts 5

oppia-short-response-number-with-units.directive.ts 5

oppia-short-response-set-input.directive.ts 5

subtitled-html-editor.directive.ts 5

oppia-noninteractive-collapsible.directive.ts 5

oppia-visualization-enumerated-frequency-table.directive.ts 5

warnings-and-alerts.directive.ts 4

outcome-feedback-editor.directive.ts 4

oppia-short-response-code-repl.directive.ts 4

oppia-short-response-graph-input.directive.ts 4

oppia-response-logic-proof.directive.ts 4

oppia-short-response-logic-proof.directive.ts 4

oppia-response-pencil-code-editor.directive.ts 4

oppia-short-response-pencil-code-editor.directive.ts 4

oppia-response-set-input.directive.ts 4

oppia-response-text-input.directive.ts 4

oppia-short-response-text-input.directive.ts 4

graph-editor.directive.ts 4

html-editor.directive.ts 4

sanitized-url-editor.directive.ts 4

subtitled-unicode-editor.directive.ts 4

oppia-noninteractive-tabs.directive.ts 4

schema-based-dict-viewer.directive.ts 3

schema-based-primitive-viewer.directive.ts 3

schema-based-unicode-viewer.directive.ts 3

schema-based-bool-editor.directive.ts 1

schema-based-custom-editor.directive.ts 1

schema-based-editor.directive.ts 1

schema-based-expression-editor.directive.ts 1

schema-based-html-editor.directive.ts 1

Implementation Approach

Difficulty of files
In order to complete the assigned files in the allotted time, a difficulty criteria must be created to
determine how much time to devote to file. The files can be divided into 3 categories - Easy,
Moderate and Hard based on the number of lines to be covered in that file.

Time to test files

Now as per the project requirement, 3300 lines of code is to be tested in a period of 10 weeks,
which means 330 lines of code in a week to test, which I think would be easily covered
according to the time period given in the above table, considering the time to get PRs reviewed
and merged and tackling flakes, if any.

schema-based-custom-viewer.directive.ts 1

schema-based-html-viewer.directive.ts 1

schema-based-list-viewer.directive.ts 1

schema-based-viewer.directive.ts 1

angular-html-bind.directive.ts 1

correctness-footer.directive.ts 1

continue-button.directive.ts 1

topics-and-skills-dashboard-navbar-breadcrumb.directive.ts 1

oppia-response-end-exploration.directive.ts 1

oppia-short-response-end-exploration.directive.ts 1

Number of Lines At Least 250 Upto 250 Upto 100

Difficulty Hard Moderate Easy

Hard Moderate Easy

1 file in 3 days 2-3 files in 4 days 1-2 files per day

Testing Approach

Understanding the working of a file
To write tests for a file, we must have a clear understanding of what is going on in the codebase.
Now, when the source code is written by someone else, it gets a little hard to write tests for that
file. Before beginning with the tests, we must understand what the code does, how it works,
what files it is dependent upon, how the file is communicating with other files, are there any
HTTP requests made by the code, does the code have any promises etc.

● Begin with starting the local server and trying out the page/component we are going to
test. Oppia’s ‘How to access Oppia webpages’ wiki is quite useful for this.

● To know where the file is being used, do a global search with the selector name. For
example, for a file named collection-editor-tab.directive.ts , search for
<collection-editor-tab> which would tell us where the file is being used, and then we can
access the page.

● Now, a component or directive starts by initializing the data in it’s init lifecycle hook.
Hence, the function to understand is the init function.

● Follow the calls made inside the init block and get an idea of what those functions are
doing.

● Now there would be some functions which are not called anywhere in the file. Do a
global search of the function name and see where they are being called. This would give
us an idea of how this file is used by other files. For service, a global search along with
the service name tells us where and how the service is used. Example, for
admin-data.service.ts we can do a global search of adminDataService.getDataAsync(to
know where the getDataAsync() function is being called.

● Return type of functions and arguments also gives an insight to what the function is
doing. Usually, the type names are self explanatory about the data they contain.

● Log data to the console to get a better understanding of the file.

Components
After understanding the working of a component with the above steps, we move on to writing
the tests.

● If a spec file does not exist already, we will create one in the same folder. Name of the
spec file should be the same as the component, but with .spec.ts ending.

● Oppia’s codebase currently does not enforce DOM testing, so we can implement class
testing.

● We begin with the starting boilerplate

Fig - Boilerplate to start component testing

● Then we can import all dependencies and inject them using TestBed.inject()
● TestBed - it is used to configure and initialize the testing environment. We can inject

services and other dependencies using TestBed. It acts like a dummy Angular module.
● createComponent() - after configuring TestBed, we use createComponent() to create

an instance of the component, which we can use in our tests to use the methods and
properties of the component.

● ComponentFixture - it is a test harness used to debug and test a component
● beforeEach() - rather than adding the same code to each unit test, we can add it to the

before each block, which runs before every test. Similarly, there exists a afterEach()
block which runs after each test. We can use the afterEach() block to clear any data we
want. There are other Jasmine hooks like beforeAll, afterAll which are also used in the
codebase.

● expect() - this block is used for assertions. It has various matchers like toBe(), toEqual(),
toBeDefined() etc., which can be chained along to assert a line of code.

After setting up the environment, we can continue with the class testing approach.

Services
Services are the easiest to test. Services can be tested using the class testing approach.
TestBed can be used for dependency injection. For asynchronous functions in services, we can
use HttpClientTestingModule and HttpTestingController.

Directives
After migrating a directive to a component we can start testing it. First we need to set up the
testing environment. We start with dependency injection.

We use angular.mock.inject(..) in a beforeEach block to inject our dependencies and configure
spies. If we need to test async code we need to add HttpClienttestingModule into the imports
inside a beforeEach block. To import upgraded services we can use importAllAngularServices() .

After setting up the environment, we test the component file.

Unreachable code
Sometimes, it may so happen that some part of the code is unreachable. There can be two such
possibilities, first that the code is inside a block whose condition would never be true because of
the logic, and second when the condition would not be true in normal circumstances. Let’s see
this by an example:

● In the following code inside the if block at line 24 was unreachable. Hence the coverage
was not 100%.

● Now if we try to understand the code, the if block is inside an else block which is only
executed when RatingComputationService.areRatingsShown(ratingFrequencies) is true.

● Looking at the areRatingsShown() function, we can see that it only returns true when,
totalNumber >= MINIMUM_ACCEPTABLE_NUMBER_OF_RATING (which is always 1).

● Hence when the control reaches the else block, it means totalNumber is >= 1. So, the if
condition at line 24 will never be true, and the code is unreachable.

● To solve the coverage problem, we can remove(delete) this block of code, which makes
the coverage 100%.

● Hence, there may be cases where a little debugging would tell us why the code is
unreachable and how we can improve the code.

Now for the second case, let’s take an example:

● In some services, there are functions A which are called by other functions B, and we
test function B. Now what happens is sometimes, a condition in A never gets executed,
as it may be placed as a check if something changes in the future, and the code does
not break.

● Let us see the example of language-util.service.ts which has 1 untested line:

● getAutogeneratedLanguages() is called by other functions, and the value of type is
hardcoded:

● Now, we can simply test the getAutogeneratedLanguages() function, by calling it in an

expect block.

but this gives an error,

● This is because we are trying to invoke the function, but .toThrow expects a function.

● So the test becomes

● Now the test will pass, and the line is covered.

● Similarly, there can be cases where we can spy on the function and try to invoke the
case which was left untested, or even refactor the code to test the line.

Avoiding flaky tests
When tests are non-deterministic, that is, they can pass or fail for the same code they are called
flaky tests. A flaky tests hampers development flow, so it is important to write code in a way to
not introduce flaky tests. And if a flaky test goes into the develop branch, it should be identified
and corrected as soon as possible.

Reasons for tests to be flaky can be:
● Tests depending on each other
● Not having a clean state setup before each test
● Not handling dynamic content carefully

To avoid writing flaky tests we must follow the AAA of testing. Arrange, Act, Assert.This means
that we should divide our tests into three sections.

● In the first section we should set-up our tests, the mocks, spies etc we will be using.
● Next, in the act section we should invoke the methods we want to test.
● And, lastly, in the asset section we should add the ‘expect’ statements, and whether the

assertions were true or false.

Now, if somehow we introduce a flaky test into the develop branch, we would have to fix them
immediately. First we should identify the flaky tests, by running the tests a few times and noting
down the flaking tests. Then we begin by fixing the flaking tests one by one.

I am planning to create my milestones with enough buffer time to handle unexpected problems
like flaky tests. As soon a flake is reported, an issue would be files for the same and I would be
assigned to the issue. Any issue for flaking tests would be given high priority as a flaky test
would hamper development flow.

Tricky Scenarios

● Testing Error()

Let’s take music-note-input-rule.service.ts as an example. The service has 1 untested
line,

Testing an error is tricky because, if we directly invoke the method and expect it to throw
an error, then the test will fail. Instead, we should wrap the return value inside a function.

Would throw an error, and the test would fail; But the code below would test the line.

Now, the line is covered.

● Testing HTTP

Suppose we need to test the following code:

We can do so by using fakeAsync , HttpTestingController and flushmicrotasks()

● In AngularJS, for HTTP tests we can use $httpBackend .
For example, in creator-dashboard-page.component.spec.ts we have,

$httpBackend() will ensure that the mock request call will be executed.

● Testing Promises

There are many ways to test a promise, one of them is to use whenStable , suppose we
need to test this code:

Here we need to make sure that setStatusMessage is called with the correct message
when the Promise is resolved or rejected. We can test the resolved case by:

And the rejected case by,

● In AngularJS we can mock a promise using $q API. $q.defer() returns the instance of the
promise. We can use the following properties after we create a deferred object:

○ resolve - resolves the derived promise
○ reject - rejects the derived promise
○ promise - promise object associated with it
○ notify - gives updates on the status of the promise’s execution

Example - to setup csrf token

● Testing Observables

In topic-editor-page.component.ts the following line is not covered,

Here, we can spyOn the method onUndoRedoChangeApplied()$ which has return type
Observable (not EventEmitter). We can test in the following way:

Now the line is covered.

● Handling Window Reload

To test a window reload, we can not directly call it in native form, as the tests would fail.
Instead we can spy on windowRef and use returnValue() with it.

For ex, we can test native reload() function using an empty mock

Milestones

Milestone 1
Key Objective : Complete approximately 1800 lines of code
Time : June 7 - July 12

Milestone 2
Key Objective : Complete the remaining lines of code (approximately 1500 lines)
Time : July 17 - August 16

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

1.1 300 lines of code have been tested - 7/06/2021 12/06/2021

1.2 300 lines of code have been tested - 12/06/2021 17/06/2021

1.3 300 lines of code have been tested - 17/06/2021 22/06/2021

1.4 300 lines of code have been tested - 22/06/2021 27/06/2021

1.5 300 lines of code have been tested - 27/06/2021 2/07/2021

1.6 300 lines of code have been tested - 2/07/2021 07/07/2021

1.7 Complete any remaining work, flakes or
things that may go wrong

- 7/07/2021 11/07/2021

No. Description of PR Prereq PR
numbers

Target date
for PR
submission

Target date
for PR to be
merged

2.1 300 lines of code have been tested - 17/07/2021 22/07/2021

2.2 300 lines of code have been tested - 22/07/2021 27/07/2021

2.3 300 lines of code have been tested - 27/07/2021 01/08/2021

2.4 300 lines of code have been tested - 01/08/2021 06/08/2021

2.5 300 lines of code have been tested - 06/08/2021 11/08/2021

2.6 Complete any remaining work, flakes or
things that may go wrong

- 11/08/2021 15/08/2021

Optional Sections

Additional Project-Specific Considerations

Documentation Changes
● Improving the existing guide to write frontend tests in order to help future developers.
● Add debugging docs made during the course of the project.

