
CSCI	305	Homework	2

Due	Date:	February	23,	2018	@	Beginning	of	Class

Name:																																																																																								

Syntax	and	Semantics

1.	 Starting	with	the	following	BNF	grammar:

<exp>	::=	<exp>	+	<mulexp>	|	<mulexp>

<mulexp>	::=	<mulexp>	*	<rootexp>	|	<rootexp>		|

<rootexp>	::=	(<exp>)

										|	a	|	b	|	c

Construct	an	EBNF	grammar	from	this	grammar	with	the	following	modifications.	Use	the
EBNF	extensions	wherever	possible	to	simply	the	grammars.	Include	whatever	notes	to	the
reader	required	to	make	the	associativity	of	the	operators	clear:

a.	Add	subtraction	and	division	operators	(-	and	/)	with	the	customary	precedence	and
associativity.

b.	Then	add	a	left-associative	operator	%	between	+	and	*	in	precedence.

c.	Then	add	a	right-associative	operator	=	at	lower	precedence	than	any	of	the	other
operators.

1.	 Show	that	the	following	grammar	is	ambiguous.	(Note:	To	show	that	a	grammar	is
ambiguous,	you	must	demonstrate	that	it	can	generate	two	parse	trees	for	the	same	string.)

		<person>	::=	<woman>	|	<man>

		<woman>	::=	wilma	|	betty	|	<empty>

		<man>	::=	fred	|	barney	|	<empty>

2.	 For	the	grammar	in	Question	2,	construct	an	unambiguous	grammar	for	the	same	language.	

Language	Systems

1.	 Suppose	the	target	assembly	language	for	a	compiler	has	these	five	instructions:

		push	address

		add

		sub

		mul

		pop	address

In	these	instructions,	and	address	is	the	name	of	a	static	variable	(whose	actual	address	will

be	filled	in	by	the	loader).	The	machine	maintains	a	stack	of	integers,	which	can	grow	to	any
size.	The		push		instruction	pushes	the	integer	from	the	given	memory	address	to	the	top	of
the	stack.	The		add		instruction	adds	the	top	integer	on	the	stack	to	the	next-from-the-top
integer,	pops	both	off,	and	pushes	the	result	onto	the	stack.	The		sub		instruction	subtracts
the	top	integer	on	the	stack	from	the	next-from-the-top	integer,	pops	both	off,	and	pushes	the
result	onto	the	stack.	The		mul		instruction	multiplies	the	top	integer	on	the	stack	by	the	next-
from-the-top	integer,	pops	both	off,	and	pushes	the	result	onto	the	stack.	The		pop		instruction
pops	an	integer	off	the	stack	and	stores	it	at	the	given	memory	address.	So,	for	example,	the
compiler	might	translate	the	assignment		result	:=	offset	+	(width	*	n)		into	this:

			push	offset

			push	width

			push	n

			mul

			add

			pop	result

Using	this	assembly	language,	give	translations	of	the	following	assignment	statements	using
as	few	instructions	as	possible:

a.		net	:=	gross	-	costs		

b.		cube	:=	(x	*	x)	*	x		

c.		final	:=	((a	-	abase)	*	(b	-	bbase))	*	(c	-	cbase)		

2.	 Investigate	the		COMMON		keyword	in	Fortran.	Describe	how	Fortran	common	blocks	work	and
give	an	example.	What	happens	if	two	named	common	blocks	with	the	same	name	contain
different	variables?	What	is	the	difference	between	a	blank	common	and	a	named	common?
What	does	the	linker	have	to	do	to	make	this	language	construct	work?	

