

DWIT COLLEGE

DEERWALK INSTITUTE OF TECHNOLOGY

Tribhuvan University

Institute of Science and Technology

IMAGE COMPRESSION USING DEEP AUTOENCODER

A PROJECT REPORT

Submitted to

Department of Computer Science and Information Technology

DWIT College

In partial fulfillment of the requirements for the Bachelor’s Degree in Computer

Science and Information Technology

Submitted by

Ashim Regmi

August, 2016

DWIT College

DEERWALK INSTITUTE OF TECHNOLOGY

Tribhuvan University

SUPERVISOR’S RECOMENDATION

I hereby recommend that this project prepared under my supervision by ASHIM REGMI

entitled “IMAGE COMPRESSION USING DEEP AUTOENCDODER” in partial

fulfillment of the requirements for the degree of B.Sc. in Computer Science and

Information Technology be processed for the evaluation.

…………………………………………

Sarbin Sayami

Assistant Professor

IOST, Tribhuvan University

i

DWIT College

DEERWALK INSTITUTE OF TECHNOLOGY

Tribhuvan University

LETTER OF APPROVAL

This is to certify that this project prepared by ASHIM REGMI entitled “IMAGE

COMPRESSION USING DEEP AUTOENCODER” in partial fulfillment of the

requirements for the degree of B.Sc. in Computer Science and Information Technology has

been well studied. In our opinion it is satisfactory in the scope and quality as a project for

the required degree.

……………………………………

Rituraj Lamsal [Internal Examiner]

 Lecturer

IOST, TU.

…………………………………………

Hitesh Karki

Chief Academic Officer

DWIT College

…………………………………………..

Jagdish Bhatta [External Examiner]

IOST, Tribhuvan University

…………………………………………..

Sarbin Sayami [Supervisor]

Assistant Professor

IOST, Tribhuvan University

ii

ACKNOWLEDGEMENT

First of all, I would like to thank DWIT College for providing me with the opportunity and

resources need for this project. Also, I am really thankful to my respected and esteemed

guide Mr. Sarbin Sayami who helped me to complete this project.

Secondly, I would like to give special thanks to Ms.Nikita Gautam who helped me during

the project.

At the end, I would like to express my sincere thanks to all my friends and others who

helped me directly or indirectly during this project work.

iii

Tribhuvan University

Institute of Science and Technology

Student’s Declaration

I hereby declare that I am the only author of this work and that no sources other than the

listed here have been used in this work.

...

Ashim Regmi

Date: August, 2016

iv

ABSTRACT

Big enterprises and organizations store a vast amount of images. The current technologies

of image compression use similar characteristics within an image to compress the image.

Deep Autoencoder neural network trains on a large set of images to figure out similarities

between the images in the set. The network then uses those similarities to compress them

and represent them using fewer codes than usually possible from current compression

techniques. This document builds on to demonstrate how Deep Autoencoder neural

network can be used to train on and compress large sets of images. MNIST handwritten

digits dataset is used as training and testing set. 28 x 28 image is converted to a vector of

size 784 x 1 which is then fed to the network. The 784 x 1 vector is then gradually

compressed in each iteration of the training phase of the network. Once the vector is

compressed, the middle hidden layer of the network will hold a compressed feature vector

which can be stored or transmitted. This compressed feature vector later can be converted

back to obtain a near approximation of the original image.

Keywords: Image compression, Deep Autoencoder

v

TABLE OF CONTENTS

ACKNOWLEDGEMENT ... ii

ABSTRACT .. iv

TABLE OF CONTENTS ... v

LIST OF FIGURES ... vii

LIST OF TABLES ... viii

LIST OF ABBREVIATION ... ix

CHAPTER 1: INTRODUCTION .. 1

1.1 Background .. 1

1.2 Problem Statement ... 2

1.3 Objective .. 2

1.4 Scope .. 2

1.5 Limitation ... 2

1.6 Outline of Document.. 3

CHAPTER 2: REQUIREMENT AND FEASIBILITY ANALYSIS 4

2.1 Literature Review... 4

2.1.1 Image compression using Huffman coding .. 4

2.1.2 Comparison with PCA and JPEG ... 4

2.1.3 Representing and generalizing nonlinear structure in data 5

2.1.4 Deep Autoencoders as feature detectors ... 6

2.1.5 The enhanced compression model .. 7

2.2 Requirement Analysis .. 9

2.2.1 Functional requirements.. 9

2.2.2 Non-functional requirements .. 9

2.3 Feasibility Analysis .. 10

vi

2.3.1 Schedule feasibility ... 10

2.3.2 Operational feasibility ... 11

2.3.3 Technical feasibility .. 11

CHAPTER 3: SYSTEM DESIGN ... 12

3.1 Methodology .. 12

3.1.1 Data collection .. 12

3.1.2 Network architecture setup ... 13

3.1.3 Training ... 13

3.2 System Design ... 16

3.2.1 Class diagram .. 16

3.2.2 Event diagram ... 17

3.2.3 Sequence diagram ... 18

CHAPTER 4: IMPLEMENTATION AND TESTING ... 19

4.1 Implementation .. 19

4.1.1 Tools used ... 19

4.1.2 Major classes and methods ... 19

4.2 Testing.. 20

CHAPTER 5: MAINTENANCE AND SUPPORT PLAN ... 22

CHAPTER 6: CONCLUSION AND RECOMMENDATION ... 23

6.1 Conclusion ... 23

6.2 Recommendations .. 23

APPENDIX .. 24

REFERENCES .. 26

vii

LIST OF FIGURES

Figure 1 - Outline of document .. 3

Figure 2 - Decompressing image ... 7

Figure 3 - Lossless compressing model ... 7

Figure 4 - Lossy compression model ... 7

Figure 5 - Functional requirements .. 9

Figure 6 - Critical path schedule .. 11

Figure 7 - Data sample showing matrix of digit 5 ... 12

Figure 8 - Data sample showing digit 1 ... 12

Figure 9 - Deep Autoencoder architecture ... 13

Figure 10 - Restricted Boltzmann Machine ... 14

Figure 11 - Class diagram .. 16

Figure 12 - Event diagram ... 17

Figure 13 - Sequence diagram ... 18

viii

LIST OF TABLES

Table 1 - Activities of project with their duration ... 10

Table 2 - Mutual Information for different iterations .. 21

ix

LIST OF ABBREVIATION

CT - Computed Tomography

PCA - Principal Component Analysis

RBM - Restricted Boltzmann Machine

SGD - Stochastic Gradient Descent

MNIST - Mixed National Institute of Standards and Technology

GUI - Graphical User Interface

Image Compression Using Deep Autoencoder

1

CHAPTER 1: INTRODUCTION

1.1 Background

In many cases, group of images stored in a file system are almost identical for example, X-

ray images in a medical database, large set of fingerprint images in a police database, CT

scan images of brain, etc. These images have similar histograms, edge distributions and

similar pixel intensities in same areas. These similarities in a set of images can be helpful

to reduce size when storing, transmitting and analyzing them by applying inter-image

encoding techniques. Deep Autoencoders are one of the techniques that encode inter-image

pixels. (Karadimitriou, 1996)

In digital image compression, there are four types of redundancies that can be used to

compress images:

- Coding redundancy

- Inter pixel redundancy

- Psycho visual redundancy

- Set redundancy

Coding, inter pixel and psycho visual redundancy are exploited by the current methods of

image compressions. These three types of redundancies appear in monochrome images.

However, in a set of similar images, significant amount of inter-image redundancy is

present. The so called similar images have following features:

- similar pixel intensities in the same areas,

- comparable histograms,

- similar edge distributions and

- analogous distribution of features.

The correlation between images is measured by product-moment correlation coefficient, or

Pearson’s r. When images having above features are measured using the coefficient, the

correlation obtained is high. This statistical correlation is due to the presence of inter-image

redundancy. This redundancy is so called set redundancy. This set redundancy can be used

to improve image compression ratio. (Karadimitriou, 1996)

Image Compression Using Deep Autoencoder

2

1.2 Problem Statement

The existing technology of image compression JPEG, MPEG-4 VTC, JPEG-LS, PNG and

JPEG 2000 standards compress images by transforming, quantizing and encoding the

quantized pixels. These technologies encode general traits in images and fail to encode

common traits in a set of images. Successful applications of neural networks to encode

common traits in large set of images have been well established. (D. Santa-Cruz, 2000)

1.3 Objective

The main goal of this project is:

- To use Deep Autoencoder neural network to compress gray level images to obtain a 4:1

compression ratio on MNIST handwritten digits dataset.

1.4 Scope

This project demonstrates the use of Deep Autoencoder neural network to compress 28 x

28 pixel gray scale image to a size of 14 x 14 image.

It is able to reconstruct only the approximation of the original image.

1.5 Limitation

- This application cannot compress colored images.

- This application can compress images of size 28 x 28 only.

Image Compression Using Deep Autoencoder

3

1.6 Outline of Document

Hereafter, the document is outlined as follows:

Figure 1 - Outline of document

Preliminary

Section

 Title Page

 Supervisor’s Recommendation

 Letter of Approval

 Acknowledgement

 Abstract

 Table of Contents

 List of Figures and Tables and

Abbreviations

Introduction

Section

 Background of Project

 Statements of Problems

 Project Objective, limitations and

scope.

Literature Review

Section

 Previous works on image

compression using Deep

Autoencoder and other algorithms

System Design

Section

 Class Diagram

 Event Diagram

 Sequence Diagram

Implementation and

Testing Section

 Implementation of the algorithms

for training neural network,

compressing and decompressing the

images.

Conclusion and

Recommendation Section
 Final conclusion and

recommendation for future use

Image Compression Using Deep Autoencoder

4

CHAPTER 2: REQUIREMENT AND FEASIBILITY

ANALYSIS

2.1 Literature Review

Deep Autoencoders perform nonlinear dimensionality reduction on input images to reduce

them to a compressed representation. It has been used a number of times in the past to

compress images. The results obtained from these implementations and the insights gained

from their work are mentioned below.

2.1.1 Image compression using Huffman coding

Huffman Coding is a lossless compression algorithm which assigns codes to the pixels

based on the frequency of occurrence. Pixels occurring more frequently will have shorter

codes whereas pixels that occur less frequently will have the same length codes. The result

is variable length codes that contain integral number of bits. The codes end up having

unique prefix property. The codes are stored on a binary tree. The binary tree is built using

the codes, starting from the leaves and moving up to the root of the tree.

An experiment was performed to compress a gray scale image using Huffman coding

algorithm. Huffman coding was used to reduce the number of bits required to represent

each pixel. Experiment results showed that up to a 0.8456 compression ratio was obtained

on the image. (D. Santa-Cruz, 2000)

2.1.2 Comparison with PCA and JPEG

Anand Atreya and Daniel O’Shea have presented their use of Deep Autoencoders. Their

first step was to train the autoencoder. First the images were fed into the nonlinear encoding

layer. This encoding layer gradually compressed the input image pixels into a compressed

feature vector. After the encoding was complete, the compressed feature vector was again

fed into the decoding layer which then reversed the process of the encoding layer to obtain

the reconstruction of input images. The difference between the reconstruction and input

images was regarded as error to further minimize the difference. Also, a sparsity parameter

was used to ensure sparsity of the activation vectors in each layer except the output layer.

Image Compression Using Deep Autoencoder

5

The next step was to find an ideal set of quantization values using k-means clustering to

encode the activation values.

Finally, they compared this compression algorithm with other common algorithms like

JPEG and PCA. They found that Deep Autoencoder image compression algorithm

outperformed JPEG in high compression and reduced quality scheme. Also, Deep

Autoencoder showed better non-linear representation of the input image than that of PCA

and hence Deep Autoencoder had better reconstruction quality. They observed that Deep

Autoencoder was able to find out statistical regularities in a specific domain of images

which was not possible by JPEG. (O'Shea, 2009)

2.1.3 Representing and generalizing nonlinear structure in data

G. E. Hinton and R. R. Salakhutdinov have also presented the use of autoencoder to reduce

the dimensionality of data. They trained a stack of Restricted Boltzmann machines (RBMs)

to pre-train the neural network with each RBM consisting a layer of feature detectors. After

the pretraining, the RBMs were unrolled to get full layers of the neural network which at

last were fine-tuned using Backpropagation algorithm to reduce the data reconstruction

error.

RBM is a two layer network in which the input binary pixels are connected to the hidden

layer using symmetrical weights. The binary pixels are the nodes in the visible layer and

the hidden layer activations are updated using sigmoid function on the sum of all the

products of inputs and their respective weights. Again a sigmoid function is used on the

sum of all the products of hidden values and their respective weights. The hidden layer here

acts as a feature detector. The number of nodes in the hidden layer is always kept smaller

than the number of pixels in the input image so that the hidden layer does not end up

learning an identity function. With gradual decrease in number of pixels in the hidden

layers, more RBMs are added onto the network with first layer of feature detectors as visible

layer until a desired encoding state is reached. It is mentioned in the paper that each layer

of the detectors captures strong, high-order correlations and this is an efficient way to

progressively reveal low-dimensional, nonlinear structure. After pretraining the network,

the encoder part of the neural network is then unrolled to get the decoder part where same

weights of autoencoder are used. The weights are later adjusted in the fine tuning stage to

get optimal reconstruction. They in general concludes that backpropagation together with

Image Compression Using Deep Autoencoder

6

Deep Autoencoder is a brute force towards efficient representing and generalizing

nonlinear structure in data. (R. R. Salakhutdinov, 2006)

2.1.4 Deep Autoencoders as feature detectors

Andrew Y. Ng and others have demonstrated the use of large-scale unsupervised learning

algorithms for building high-level features which includes the use of stack of RBMs to

construct autoencoders.

They have presented the training using unlabeled data to create high-level, class-specific

feature detectors. They have trained a 9-layer locally connected sparse autoencoder with

pooling and local contrast normalization on a large dataset of images (the model has 1

billion connections, the dataset has 10 million 200 x 200 pixel images). They trained the

network using model parallelism and asynchronous stochastic gradient descent (SGD) on

a cluster of 1,000 machines (16000 cores) for 3 days. They proved that it is possible to train

a face detector without having to label images as containing a face or not.

They have used sparse Deep Autoencoder with three important constituents: local receptive

fields, pooling and local contrast normalization. The local receptive field method is used to

scale the autoencoder to large images. The idea behind this method is that each feature in

the autoencoder can connect only to a small region of the lower layer. Also, to achieve

invariance to local deformations, they employed local L2 pooling and local contrast

normalization. L2 pooling allowed to learn invariant features. The deep autoencoder was

constructed by replicating three times the same stage composed of local filtering, local

pooling and local contrast normalization. The output of one stage is input to the next one

and the overall model is lastly interpreted as a nine-layered network. The first and second

sublayers are known as filtering and pooling respectively. The third sublayer performs local

subtractive and divisive normalization and it is inspired by biological and computational

models. The weights are not shared which allow the learning of more invariances other than

translational invariances. In a nutshell, they show that Deep Autoencoders perform well as

feature detectors in case of images. (Andrew Y. Ng, 2012)

Image Compression Using Deep Autoencoder

7

2.1.5 The enhanced compression model

The enhanced compression model compresses 8 bits per pixels to 3 bits per pixels. Also,

the compression model used is lossless and perfectly recovers the image. Present

compression models follow one of the basic theoretical compression models depicted in

Figure 3 and Figure 4. Figure 3 presents the lossless compression model and Figure 4

presents the lossy compression model. The lossless and lossy compression differ only in

the “Quantization” step as show below. Compression is generally obtained by eliminating

different kind of redundancy. Pixel mapping reduces the interpixel redundancy,

Quantization reduces psychovisual redundancy and symbol encoding in final step

eliminates the coding redundancy.

Figure 3 - Lossless compressing model

Figure 4 - Lossy compression model

f(x, y) : origin image,

f `(x, y) : compressed image.

Figure 2 - Decompressing image

Image Compression Using Deep Autoencoder

8

Above compression models are sufficient for compressing individual images. However, for

a set of similar images containing set redundancy the general compression models are not

sufficient. The enhanced compressed model proposes to handle set redundancy in image

compression by introducing ‘Set Mapping’ in compression step and ‘Inverse Set Mapping’

in decompression step.

Deep Autoencoder learns the set mapping and inverse set mapping between multiple

images automatically. In a way, the Deep Autoencoder is similar to the enhanced

compression model proposed. (Karadimitriou, 1996)

Image Compression Using Deep Autoencoder

9

2.2 Requirement Analysis

2.2.1 Functional requirements

Figure 5 depicts the functions performed by a user on the system. The user can upload an

image, compress the image or decompress the uploaded image.

2.2.2 Non-functional requirements

The non-functional requirements for this project are:

- Image must be of size 28 x 28

- Image must be grayscale or monochrome image

- Image can be compressed only after the application has been trained on a set of images

from same domain.

Figure 5 - Functional requirements

Image Compression Using Deep Autoencoder

10

2.3 Feasibility Analysis

2.3.1 Schedule feasibility

This project comprises following components:

- Deep Autoencoder Neural Network Implementation in Octave

- Compressor function in Java

- Decompressor function in Java

- User Interface in Java Swing

The critical path schedule is depicted in Figure 6 and the schedule for the implementation

of the above components is represented in Table 1 as:

Table 1 - Activities of project with their duration

Legend Activity Duration Precedence

A Deep Autoencoder Neural Network

in Octave

4 weeks -

B Compressor function in Java 1 week A

C Decompressor function in Java 1 week A, B

D User Interface in Java Swing 1 week -

Image Compression Using Deep Autoencoder

11

Task A can be completed in 4 weeks. So, task B can only be started after 4 weeks and ends

before 5th week. Task C has precedence of A and B. So, task C can only be started when

task A and task B complete successfully. Task D is independent of other tasks. So, it can

be started anytime between 1st and 8th week. The project must be completed in 8 weeks.

The late finish time of other tasks according to that deadline is shown in Figure 5.

2.3.2 Operational feasibility

This application takes an image, compresses it and saves the image on the disk. It can also

take an already compressed image and generate its approximate reconstruction i.e. the

original image. Since, the working mechanism of this application doesn’t result in any

complications, it is operationally feasible.

2.3.3 Technical feasibility

The neural network model is implemented using open source GNU Octave. Also, the

compressor, decompressor functions and user interface are implemented in Java. This

application doesn’t require additional technologies other than those mentioned above and

is technically feasible.

Figure 6 - Critical path schedule

Image Compression Using Deep Autoencoder

12

CHAPTER 3: SYSTEM DESIGN

3.1 Methodology

3.1.1 Data collection

The handwritten digits images from MNIST database is used as the training and testing

dataset. The images are of size 28 x 28 (784 total pixels in each image) and hence the size

of input layer is 784. There are altogether 60000 images in the MNIST database. First

20000 images are used as training data and 1000 images are used as testing data. The data

samples are shown in Figure 7 and Figure 8.

Figure 8 - Data sample showing digit 1

Figure 7 - Data sample showing matrix of digit 5

Image Compression Using Deep Autoencoder

13

3.1.2 Network architecture setup

The neural network used here is a Deep Autoencoder which consists of two symmetrical

deep belief networks that typically have two to four layers of encoding hidden layers and

another two to four layers of decoding hidden layers. Each pair of layers in the deep belief

network is part of a stack of Restricted Boltzmann Machines (RBMs). Each pair consists

of two layers: a visible layer and a hidden layer (feature detecting layer).

The encoding layer consists of three hidden layers with each of size 1000, 500 and 196

respectively. The first hidden layer is sized 1000 nodes because expanding the size in this

way compensates the incomplete representation provided by the sigmoid belief units.

Hence, the encoding layer compresses the 784 pixels into 196 values.

3.1.3 Training

The encoding layer is first pre-trained by forming 3 RBMs: input layer and first hidden

layer, first hidden layer and second hidden layer and second hidden layer and third hidden

layer. Each RBMs are pre-trained at first to produce a 196 size compressed feature vector.

Then, the RBMs are unrolled to form the decoding layer of the deep belief network. Hence,

the decoding layer consists of two hidden layers and one output layer of size 500, 1000 and

784 respectively. The decoding layer then transforms the compressed feature vector by feed

Figure 9 - Deep Autoencoder architecture

Image Compression Using Deep Autoencoder

14

forwarding it through the layers to obtain the approximate reconstruction of the input

image.

Each RBM is of the form as shown in Figure 10. K is the size of the middle hidden layer.

This hidden layer learns the features of the input layer which is of size N. These machines

when placed progressively decreasing the K’s value form an encoding layer which

gradually generalize over the original input.

The gradient for the sigmoid function of the nodes in the network was computed as:

where sigmoid is given by:

Figure 10 - Restricted Boltzmann Machine

Image Compression Using Deep Autoencoder

15

The cost function used for the network was:

J - cost function

m - no. of images

y - target images(in this project, input images)

h - network output

Image Compression Using Deep Autoencoder

16

3.2 System Design

3.2.1 Class diagram

There are mainly five classes in the application namely: MatrixUtil, ImageUtil,

NeuralNetwork, UI Handler and ThetaHandler as shown in Figure 11.

UI Handler does the work of receiving input image from the user and display the output

image. The input image is obtained and stored in the buffer in

java.awt.image.BufferedImage object. When user presses the ‘Compress’ button, compress

method of NeuralNetwork class is called which compresses the image using three other

classes: ThetaHandler, MatrixUtil and ImageUtil. ThetaHandler class reads theta (weights)

from file, MatrixUtil class provides methods for multiplying two matrices, converting

matrix to vector and vector back to matrix and ImageUtil class provides methods to get

pixels from image and get image back from pixel values.

Figure 11 - Class diagram

Image Compression Using Deep Autoencoder

17

3.2.2 Event diagram

The events in the application is shown in Figure 12. First of all, the network is trained for

10000 iteration. In this process, the network learns to compress and reconstruct the original

image as perfectly as possible. Then the network’s output is tested.

Secondly, the user uploads an image to the application. Then, the application compresses

the image and returns the compressed image.

Figure 12 - Event diagram

Image Compression Using Deep Autoencoder

18

In the final step, user uploads an already compressed image which application

decompresses and returns the reconstruction of original image.

3.2.3 Sequence diagram

The sequence of events in the application is shown in Figure 13. This diagram shows how

the user interacts with the application.

Figure 13 - Sequence diagram

Image Compression Using Deep Autoencoder

19

CHAPTER 4: IMPLEMENTATION AND TESTING

4.1 Implementation

4.1.1 Tools used

Efficient Java Matrix Library (EJML)

It is a matrix library for manipulating matrices. The SimpleMatrix class of the library is

used in this project to hold the pixels of the image, multiply the matrices and hold the

values of hidden layers.

GNU Octave

It is an open source version of the MATLAB. It is mostly used for numerical computations.

The deep autoencoder neural network was implemented in Octave. The cost function of the

network was minimized using fmincg function available in Octave.

Java Swing

It is a GUI toolkit for Java. It provides GUI components that can be used to build a UI

design. The user interface for the application was implemented and designed using Java

Swing.

4.1.2 Major classes and methods

1. NeuralNetwork.java

It is the major class which contains two methods: compress() and decompress().

- compress(BufferedImage) : SimpleMatrix

The compress method takes a BufferedImage.java object and compresses the image in the

object and returns a compressed matrix representation of the image.

- decompress(SimpleMatrix) : BufferedImage

Meanwhile, the decompress method takes the compressed matrix returned by compress

method and generates best possible approximation of the original image.

Image Compression Using Deep Autoencoder

20

The compress and decompress methods use the weights that are obtained after training the

neural network in Octave.

2. MatrixUtil.java

This class contains three methods: multiply (), convertMatrixToVector () and

convertVectorToMatrix ().

- multiply(SimpleMatrix, SimpleMatrix) : SimpleMatrix

This method takes two matrices and returns the multiplication result.

- convertMatrixToVector (SimpleMatrix) : SimpleMatrix

This method takes a matrix of arbitrary size and converts it to a vector which is a one-

dimensional vector.

- convertVectorToMatrix (SimpleMatrix) : SimpleMatrix

This method takes a one dimensional matrix or a vector and converts it to a two dimensional

matrix.

4.2 Testing

The quality of the image reconstructed by the Deep Autoencoder can be measured using a

number of techniques. In this project, Mutual Information (MI) is used to compare the

reconstructed images with original images.

Given two images I1 and I2, the MI between them can be calculated as:

where

Also, joint entropy can be calculated as:

where p(x, y) is the joint probability distribution of pixels associated with images I1 and

I2. The joint entropy decreases when there is a one-to-one mapping between the pixels in

Image Compression Using Deep Autoencoder

21

A and B and increases when the statistical relationship between the pixels diminish. Mutual

information finds the most complex overlapping between any two images. A complex one-

to-one mapping is indicated by a maximum mutual information. (Daniel B. Russakoff.

Carlo Tomasi, 2004)

The mutual information is calculated for 1000 test images in 5, 100, 1000 and 10000

iterations which are shown in the Table 4.1 below:

Table 2 - Mutual Information for different iterations

Iterations Mutual Information

5 1.5044

100 1.8495

1000 2.3086

10000 2.3177

Image Compression Using Deep Autoencoder

22

CHAPTER 5: MAINTENANCE AND SUPPORT PLAN

The neural network implementation of the application is written in GNU Octave. Later

on, this implementation can be shifted to Java and the user can be allowed to train on

custom images of different sizes.

Also, the performance evaluation of the application will be constantly measured. The

occurrence of any errors will be fixed.

Image Compression Using Deep Autoencoder

23

CHAPTER 6: CONCLUSION AND RECOMMENDATION

6.1 Conclusion

This application is able to compress the MNIST handwritten digits images up to 4:1

compression ratio. The output obtained transforms the 0-255 values in original image to

only two gray scale values 0 or 255 in the reconstructed image. This is due to the

thresholding operation performed in the training phase.

6.2 Recommendations

The neural network implemented in this application doesn’t pre-train the neural network.

The network can be pre-trained using stacked Restricted Boltzmann Machines (RBMs) to

obtain approximation of initial weights. This significantly improves the reconstruction

quality and training time of the neural network.

Image Compression Using Deep Autoencoder

24

APPENDIX

Figure: Before compression

Figure: After compression

Image Compression Using Deep Autoencoder

25

Figure: After image is reconstructed from compressed form

Image Compression Using Deep Autoencoder

26

REFERENCES

Andrew Y. Ng, Q. V. (2012). Building High-level Features Using Large Scale

Unsupervised Learning. 29th International Conference on Machine Learning, (pp.

2-5). Edinburgh, Scotland, UK.

D. Santa-Cruz, T. E. (2000). JPEG 2000 still image coding versus other standards.

Daniel B. Russakoff. Carlo Tomasi, T. R. (2004). Image Similarity Using Mutual

Information of Regions. In J. M. Tomas Pajdla, Computer Vision - ECCV 2004

(pp. 596-607). Berlin: Springer Berlin Heidelberg.

Karadimitriou, K. (1996). SET REDUNDANCY, THE ENHANCED COMPRESSION

MODEL, AND METHODS FOR COMPRESSING SETS OF SIMILAR IMAGES.

Louisiana: Department of Computer Science, Louisiana State University.

O'Shea, A. A. (2009). Novel Lossy Compression Algorithms with Stacked Autoencoders.

Stanford University.

R. R. Salakhutdinov, G. E. (2006, July 28). Reducing the Dimensionality of Data with

Neural Networks. SCIENCE VOL 313, pp. 505-507.

