{ "cells": [ { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "# Manipulate the Simulation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "This example shows how to play with the simulation,\n", "such as contingency analysis and manipulate the constraints." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import ams\n", "\n", "import datetime" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Last run time: 2024-01-16 21:45:37\n", "ams:0.8.0.post7.dev0+g2da39e4\n" ] } ], "source": [ "print(\"Last run time:\", datetime.datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\"))\n", "\n", "print(f'ams:{ams.__version__}')" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "ams.config_logger(stream_level=20)" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "## Manipulate the Simulation" ] }, { "attachments": {}, "cell_type": "markdown", "metadata": {}, "source": [ "### Load Case" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Parsing input file \"/Users/jinningwang/Documents/work/ams/ams/cases/5bus/pjm5bus_uced.xlsx\"...\n", "Input file parsed in 0.1210 seconds.\n", "Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.\n", "If expect a line outage, please set 'u' to 0.\n", "System set up in 0.0020 seconds.\n" ] } ], "source": [ "sp = ams.load(ams.get_case('5bus/pjm5bus_uced.xlsx'),\n", " setup=True,\n", " no_output=True,)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The system load are defined in model `PQ`." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idxunamebusVnp0q0vmaxvminownerctrl
uid
0PQ_11.0PQ 11230.03.00.98611.10.9None1.0
1PQ_21.0PQ 22230.03.00.98611.10.9None1.0
2PQ_31.0PQ 33230.04.01.31471.10.9None1.0
\n", "
" ], "text/plain": [ " idx u name bus Vn p0 q0 vmax vmin owner ctrl\n", "uid \n", "0 PQ_1 1.0 PQ 1 1 230.0 3.0 0.9861 1.1 0.9 None 1.0\n", "1 PQ_2 1.0 PQ 2 2 230.0 3.0 0.9861 1.1 0.9 None 1.0\n", "2 PQ_3 1.0 PQ 3 3 230.0 4.0 1.3147 1.1 0.9 None 1.0" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.PQ.as_df()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In RTED, system load is referred as `pd`." ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([3., 3., 4.])" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.pd.v" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Run Simulation" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "RTED can be solved and one can inspect the results as discussed in\n", "previous example." ] }, { "cell_type": "code", "execution_count": 7, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Routine initialized in 0.0117 seconds.\n", "RTED solved as optimal in 0.0146 seconds, converged after 11 iterations using solver ECOS.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 7, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.run(solver='ECOS')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Power generation `pg` and line flow `plf` can be accessed as follows." ] }, { "cell_type": "code", "execution_count": 8, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([2.1, 5.2, 0.7, 2. ])" ] }, "execution_count": 8, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.pg.v" ] }, { "cell_type": "code", "execution_count": 9, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.70595331, 0.68616798, 0.00192539, -1.58809337, 0.61190663,\n", " -0.70192539, 0.70595331])" ] }, "execution_count": 9, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.plf.v" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Change Load" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "The load values can be manipulated in the model `PQ`." ] }, { "cell_type": "code", "execution_count": 10, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 10, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.PQ.set(src='p0', attr='v', idx=['PQ_1', 'PQ_2'], value=[3.2, 3.2])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "According parameters need to be updated to make the changes effective in the optimization model.\n", "If not sure which parameters need to be updated, one can use\n", "``update()`` to update all parameters." ] }, { "cell_type": "code", "execution_count": 11, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 11, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.update('pd')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "After manipulation, the routined can be solved again." ] }, { "cell_type": "code", "execution_count": 12, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "RTED solved as optimal in 0.0017 seconds, converged after 11 iterations using solver ECOS.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 12, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.run(solver='ECOS')" ] }, { "cell_type": "code", "execution_count": 13, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([2.1, 5.2, 1.1, 2. ])" ] }, "execution_count": 13, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.pg.v" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "An alternative way is to alter the load through ``RTED``.\n", "\n", "As ``pd`` has owner ``StaticLoad`` and soruce ``p0``, the parameter update through ``RTED`` actually happens to ``StaticLoad.p0``." ] }, { "cell_type": "code", "execution_count": 14, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "StaticLoad (3 devices) at 0x145144d90" ] }, "execution_count": 14, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.pd.owner" ] }, { "cell_type": "code", "execution_count": 15, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "'p0'" ] }, "execution_count": 15, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.pd.src" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly, the load can be changed using ``set`` method." ] }, { "cell_type": "code", "execution_count": 16, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 16, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.set(src='pd', attr='v', idx=['PQ_1', 'PQ_2'], value=[3.8, 3.8])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Remember to update the optimization parameters after the change." ] }, { "cell_type": "code", "execution_count": 17, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 17, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.update('pd')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that the original load is also updated." ] }, { "cell_type": "code", "execution_count": 18, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idxunamebusVnp0q0vmaxvminownerctrl
uid
0PQ_11.0PQ 11230.03.80.98611.10.9None1.0
1PQ_21.0PQ 22230.03.80.98611.10.9None1.0
2PQ_31.0PQ 33230.04.01.31471.10.9None1.0
\n", "
" ], "text/plain": [ " idx u name bus Vn p0 q0 vmax vmin owner ctrl\n", "uid \n", "0 PQ_1 1.0 PQ 1 1 230.0 3.8 0.9861 1.1 0.9 None 1.0\n", "1 PQ_2 1.0 PQ 2 2 230.0 3.8 0.9861 1.1 0.9 None 1.0\n", "2 PQ_3 1.0 PQ 3 3 230.0 4.0 1.3147 1.1 0.9 None 1.0" ] }, "execution_count": 18, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.PQ.as_df()" ] }, { "cell_type": "code", "execution_count": 19, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "RTED solved as optimal in 0.0023 seconds, converged after 11 iterations using solver ECOS.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 19, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.run(solver='ECOS')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "As expected, the power generation also changed." ] }, { "cell_type": "code", "execution_count": 20, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([2.1 , 5.19999999, 2.30000002, 2. ])" ] }, "execution_count": 20, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.pg.v" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Trip a Generator" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that there are three PV generators in the system." ] }, { "cell_type": "code", "execution_count": 21, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idxunameSnVnbusbusrp0q0pmax...Qc2minQc2maxRagcR10R30Rqapfpg0td1td2
uid
0PV_11.0Alta100.0230.00None1.00000.02.1...0.00.0999.0999.0999.0999.00.00.00.50.0
1PV_31.0Solitude100.0230.02None3.23490.05.2...0.00.0999.0999.0999.0999.00.00.00.50.0
2PV_51.0Brighton100.0230.04None4.66510.06.0...0.00.0999.0999.0999.0999.00.00.00.50.0
\n", "

3 rows × 33 columns

\n", "
" ], "text/plain": [ " idx u name Sn Vn bus busr p0 q0 pmax ... \\\n", "uid ... \n", "0 PV_1 1.0 Alta 100.0 230.0 0 None 1.0000 0.0 2.1 ... \n", "1 PV_3 1.0 Solitude 100.0 230.0 2 None 3.2349 0.0 5.2 ... \n", "2 PV_5 1.0 Brighton 100.0 230.0 4 None 4.6651 0.0 6.0 ... \n", "\n", " Qc2min Qc2max Ragc R10 R30 Rq apf pg0 td1 td2 \n", "uid \n", "0 0.0 0.0 999.0 999.0 999.0 999.0 0.0 0.0 0.5 0.0 \n", "1 0.0 0.0 999.0 999.0 999.0 999.0 0.0 0.0 0.5 0.0 \n", "2 0.0 0.0 999.0 999.0 999.0 999.0 0.0 0.0 0.5 0.0 \n", "\n", "[3 rows x 33 columns]" ] }, "execution_count": 21, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.PV.as_df()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "`PV_1` is tripped by setting its connection status `u` to 0." ] }, { "cell_type": "code", "execution_count": 22, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 22, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.StaticGen.set(src='u', attr='v', idx='PV_1', value=0)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In AMS, some parameters are defiend as constants in the numerical optimization model\n", "to follow the CVXPY DCP and DPP rules.\n", "Once non-parametric parameters are changed, the optimization model will be\n", "re-initialized to make the changes effective.\n", "\n", "More details can be found at [CVXPY - Disciplined Convex Programming](https://www.cvxpy.org/tutorial/dcp/index.html#disciplined-convex-programming)." ] }, { "cell_type": "code", "execution_count": 23, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Re-init RTED OModel due to non-parametric change.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 23, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.update()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then we can re-solve the model." ] }, { "cell_type": "code", "execution_count": 24, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "RTED solved as optimal in 0.0138 seconds, converged after 10 iterations using solver ECOS.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 24, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.run(solver='ECOS')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that the tripped generator has no power generation." ] }, { "cell_type": "code", "execution_count": 25, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([0. , 5.2, 4.4, 2. ])" ] }, "execution_count": 25, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.pg.v.round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "### Trip a Line" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can inspect the `Line` model to check the system topology." ] }, { "cell_type": "code", "execution_count": 26, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
idxunamebus1bus2SnfnVn1Vn2r...tapphirate_arate_brate_cownerxcoordycoordaminamax
uid
001.0Line AB01100.060.0230.0230.00.00281...1.00.04.0999.0999.0NoneNoneNone-6.2831856.283185
111.0Line AD03100.060.0230.0230.00.00304...1.00.0999.0999.0999.0NoneNoneNone-6.2831856.283185
221.0Line AE04100.060.0230.0230.00.00064...1.00.0999.0999.0999.0NoneNoneNone-6.2831856.283185
331.0Line BC12100.060.0230.0230.00.00108...1.00.0999.0999.0999.0NoneNoneNone-6.2831856.283185
441.0Line CD23100.060.0230.0230.00.00297...1.00.0999.0999.0999.0NoneNoneNone-6.2831856.283185
551.0Line DE34100.060.0230.0230.00.00297...1.00.02.4999.0999.0NoneNoneNone-6.2831856.283185
661.0Line AB201100.060.0230.0230.00.00281...1.00.04.0999.0999.0NoneNoneNone-6.2831856.283185
\n", "

7 rows × 28 columns

\n", "
" ], "text/plain": [ " idx u name bus1 bus2 Sn fn Vn1 Vn2 r ... \\\n", "uid ... \n", "0 0 1.0 Line AB 0 1 100.0 60.0 230.0 230.0 0.00281 ... \n", "1 1 1.0 Line AD 0 3 100.0 60.0 230.0 230.0 0.00304 ... \n", "2 2 1.0 Line AE 0 4 100.0 60.0 230.0 230.0 0.00064 ... \n", "3 3 1.0 Line BC 1 2 100.0 60.0 230.0 230.0 0.00108 ... \n", "4 4 1.0 Line CD 2 3 100.0 60.0 230.0 230.0 0.00297 ... \n", "5 5 1.0 Line DE 3 4 100.0 60.0 230.0 230.0 0.00297 ... \n", "6 6 1.0 Line AB2 0 1 100.0 60.0 230.0 230.0 0.00281 ... \n", "\n", " tap phi rate_a rate_b rate_c owner xcoord ycoord amin \\\n", "uid \n", "0 1.0 0.0 4.0 999.0 999.0 None None None -6.283185 \n", "1 1.0 0.0 999.0 999.0 999.0 None None None -6.283185 \n", "2 1.0 0.0 999.0 999.0 999.0 None None None -6.283185 \n", "3 1.0 0.0 999.0 999.0 999.0 None None None -6.283185 \n", "4 1.0 0.0 999.0 999.0 999.0 None None None -6.283185 \n", "5 1.0 0.0 2.4 999.0 999.0 None None None -6.283185 \n", "6 1.0 0.0 4.0 999.0 999.0 None None None -6.283185 \n", "\n", " amax \n", "uid \n", "0 6.283185 \n", "1 6.283185 \n", "2 6.283185 \n", "3 6.283185 \n", "4 6.283185 \n", "5 6.283185 \n", "6 6.283185 \n", "\n", "[7 rows x 28 columns]" ] }, "execution_count": 26, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.Line.as_df()" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here line `2` is tripped by setting its connection status `u` to 0.\n", "\n", "Note that in ANDES, dynamic simulation of *line tripping should use model ``Toggle``.*" ] }, { "cell_type": "code", "execution_count": 27, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 27, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.Line.set(src='u', attr='v', idx=1, value=0)" ] }, { "cell_type": "code", "execution_count": 28, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Re-init RTED OModel due to non-parametric change.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 28, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.update()" ] }, { "cell_type": "code", "execution_count": 29, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "RTED solved as optimal in 0.0145 seconds, converged after 10 iterations using solver ECOS.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 29, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.run(solver='ECOS')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Here we can see the tripped line has no flow." ] }, { "cell_type": "code", "execution_count": 30, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 1.34, 0. , -2.68, -1.12, 0.28, -1.72, 1.34])" ] }, "execution_count": 30, "metadata": {}, "output_type": "execute_result" } ], "source": [ "sp.RTED.plf.v.round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Manipulate the Constraints" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In addition to the system parameters, the constraints can also be manipulated.\n", "\n", "Here, we load the case to a new system." ] }, { "cell_type": "code", "execution_count": 31, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Parsing input file \"/Users/jinningwang/Documents/work/ams/ams/cases/5bus/pjm5bus_uced.xlsx\"...\n", "Input file parsed in 0.0389 seconds.\n", "Zero line rates detacted in rate_a, rate_b, rate_c, adjusted to 999.\n", "If expect a line outage, please set 'u' to 0.\n", "System set up in 0.0049 seconds.\n" ] } ], "source": [ "spc = ams.load(ams.get_case('5bus/pjm5bus_uced.xlsx'),\n", " setup=True,\n", " no_output=True,)" ] }, { "cell_type": "code", "execution_count": 32, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Routine initialized in 0.0095 seconds.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 32, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.init()" ] }, { "cell_type": "code", "execution_count": 33, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 33, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.set(src='rate_a', attr='v', idx=[3], value=1.4)" ] }, { "cell_type": "code", "execution_count": 34, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "True" ] }, "execution_count": 34, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.update('rate_a')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can inspect the constraints status as follows.\n", "All constraints are turned on by default." ] }, { "cell_type": "code", "execution_count": 35, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "OrderedDict([('pglb', Constraint: pglb [ON]),\n", " ('pgub', Constraint: pgub [ON]),\n", " ('pb', Constraint: pb [ON]),\n", " ('plflb', Constraint: plflb [ON]),\n", " ('plfub', Constraint: plfub [ON]),\n", " ('rbu', Constraint: rbu [ON]),\n", " ('rbd', Constraint: rbd [ON]),\n", " ('rru', Constraint: rru [ON]),\n", " ('rrd', Constraint: rrd [ON]),\n", " ('rgu', Constraint: rgu [ON]),\n", " ('rgd', Constraint: rgd [ON])])" ] }, "execution_count": 35, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.constrs" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Then, solve the dispatch and inspect the line flow." ] }, { "cell_type": "code", "execution_count": 36, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "RTED solved as optimal in 0.0156 seconds, converged after 10 iterations using solver ECOS.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 36, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.run(solver='ECOS')" ] }, { "cell_type": "code", "execution_count": 37, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.8 , 0.72, -0.22, -1.4 , 0.49, -0.79, 0.8 ])" ] }, "execution_count": 37, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.plf.v.round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "In the next, we can disable specific constraints, and the parameter name takes both single constraint name or a list of constraint names." ] }, { "cell_type": "code", "execution_count": 38, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Turn off constraints: plflb, plfub\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 38, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.disable(['plflb', 'plfub'])" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Now, it can be seen that the two constraints are disabled." ] }, { "cell_type": "code", "execution_count": 39, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "OrderedDict([('pglb', Constraint: pglb [ON]),\n", " ('pgub', Constraint: pgub [ON]),\n", " ('pb', Constraint: pb [ON]),\n", " ('plflb', Constraint: plflb [OFF]),\n", " ('plfub', Constraint: plfub [OFF]),\n", " ('rbu', Constraint: rbu [ON]),\n", " ('rbd', Constraint: rbd [ON]),\n", " ('rru', Constraint: rru [ON]),\n", " ('rrd', Constraint: rrd [ON]),\n", " ('rgu', Constraint: rgu [ON]),\n", " ('rgd', Constraint: rgd [ON])])" ] }, "execution_count": 39, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.constrs" ] }, { "cell_type": "code", "execution_count": 40, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Disabled constraints: plflb, plfub\n", "Routine initialized in 0.0080 seconds.\n", "RTED solved as optimal in 0.0120 seconds, converged after 11 iterations using solver ECOS.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 40, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.run(solver='ECOS')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "We can see that the line flow limits are not in effect." ] }, { "cell_type": "code", "execution_count": 41, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.71, 0.69, 0. , -1.59, 0.61, -0.7 , 0.71])" ] }, "execution_count": 41, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.plf.v.round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Similarly, you can also enable the constraints again." ] }, { "cell_type": "code", "execution_count": 42, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Turn on constraints: plflb, plfub\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 42, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.enable(['plflb', 'plfub'])" ] }, { "cell_type": "code", "execution_count": 43, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "OrderedDict([('pglb', Constraint: pglb [ON]),\n", " ('pgub', Constraint: pgub [ON]),\n", " ('pb', Constraint: pb [ON]),\n", " ('plflb', Constraint: plflb [ON]),\n", " ('plfub', Constraint: plfub [ON]),\n", " ('rbu', Constraint: rbu [ON]),\n", " ('rbd', Constraint: rbd [ON]),\n", " ('rru', Constraint: rru [ON]),\n", " ('rrd', Constraint: rrd [ON]),\n", " ('rgu', Constraint: rgu [ON]),\n", " ('rgd', Constraint: rgd [ON])])" ] }, "execution_count": 43, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.constrs" ] }, { "cell_type": "code", "execution_count": 44, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Routine initialized in 0.0132 seconds.\n", "RTED solved as optimal in 0.0131 seconds, converged after 10 iterations using solver ECOS.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 44, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.run(solver='ECOS')" ] }, { "cell_type": "code", "execution_count": 45, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "array([ 0.8 , 0.72, -0.22, -1.4 , 0.49, -0.79, 0.8 ])" ] }, "execution_count": 45, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.plf.v.round(2)" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Alternatively, you can also force init the dispatch to rebuild the system matrices, enable all constraints, and re-init the optimization models." ] }, { "cell_type": "code", "execution_count": 46, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Turn off constraints: plflb, plfub, rgu, rgd\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 46, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.disable(['plflb', 'plfub', 'rgu', 'rgd'])" ] }, { "cell_type": "code", "execution_count": 47, "metadata": {}, "outputs": [ { "name": "stderr", "output_type": "stream", "text": [ "Routine initialized in 0.0091 seconds.\n" ] }, { "data": { "text/plain": [ "True" ] }, "execution_count": 47, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.init(force=True)" ] }, { "cell_type": "code", "execution_count": 48, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "OrderedDict([('pglb', Constraint: pglb [ON]),\n", " ('pgub', Constraint: pgub [ON]),\n", " ('pb', Constraint: pb [ON]),\n", " ('plflb', Constraint: plflb [ON]),\n", " ('plfub', Constraint: plfub [ON]),\n", " ('rbu', Constraint: rbu [ON]),\n", " ('rbd', Constraint: rbd [ON]),\n", " ('rru', Constraint: rru [ON]),\n", " ('rrd', Constraint: rrd [ON]),\n", " ('rgu', Constraint: rgu [ON]),\n", " ('rgd', Constraint: rgd [ON])])" ] }, "execution_count": 48, "metadata": {}, "output_type": "execute_result" } ], "source": [ "spc.RTED.constrs" ] } ], "metadata": { "kernelspec": { "display_name": "ams", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "d2b3bf80176349caa68dc4a3c77bd06eaade8abc678330f7d1c813c53380e5d2" } } }, "nbformat": 4, "nbformat_minor": 2 }