{ "cells": [ { "cell_type": "markdown", "metadata": {}, "source": [ "# DCOPF Verification\n", "\n", "Prepared by [Jinning Wang](https://jinningwang.github.io)." ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "## Conclusion\n", "\n", "For test cases, DCOPF results from AMS are identical to that from MATPOWER." ] }, { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "import datetime\n", "\n", "import numpy as np\n", "import pandas as pd\n", "\n", "import ams" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "name": "stdout", "output_type": "stream", "text": [ "Last run time: 2024-03-02 16:57:25\n", "ams: 0.9.1\n" ] } ], "source": [ "print(\"Last run time:\", datetime.datetime.now().strftime(\"%Y-%m-%d %H:%M:%S\"))\n", "\n", "print(f'ams: {ams.__version__}')" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Using built-in MATPOWER cases as inputs." ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "cases = [\n", " ams.get_case('matpower/case14.m'),\n", " ams.get_case('matpower/case39.m'),\n", " ams.get_case('matpower/case118.m'),\n", " ams.get_case('npcc/npcc.m'),\n", " ams.get_case('wecc/wecc.m'),\n", " ams.get_case('matpower/case300.m'),]\n", "\n", "case_names = [case.split('/')[-1].split('.')[0] for case in cases]" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [], "source": [ "ams_obj = np.zeros(len(cases))\n", "\n", "for i, case in enumerate(cases):\n", " sp = ams.load(case, setup=True)\n", " sp.DCOPF.init()\n", " sp.DCOPF.solve(solver='ECOS')\n", " ams_obj[i] = sp.DCOPF.obj.v" ] }, { "cell_type": "markdown", "metadata": {}, "source": [ "Following MATPOWER results are obtained using MATPOWER 8.0b1 and Matlab R2023b." ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [], "source": [ "mp_obj = np.array([7642.59177699, 41263.94078588,\n", " 125947.8814179, 705667.88555058,\n", " 348228.35589771, 706292.32424361])" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
AMSMATPOWER
case147642.5917877642.591777
case3941263.94250741263.940786
case118125947.880575125947.881418
npcc705667.885563705667.885551
wecc348228.355882348228.355898
case300706292.325366706292.324244
\n", "
" ], "text/plain": [ " AMS MATPOWER\n", "case14 7642.591787 7642.591777\n", "case39 41263.942507 41263.940786\n", "case118 125947.880575 125947.881418\n", "npcc 705667.885563 705667.885551\n", "wecc 348228.355882 348228.355898\n", "case300 706292.325366 706292.324244" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" } ], "source": [ "res = pd.DataFrame({'AMS': ams_obj, 'MATPOWER': mp_obj},\n", " index=case_names)\n", "res" ] } ], "metadata": { "kernelspec": { "display_name": "ams", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.9.18" }, "orig_nbformat": 4, "vscode": { "interpreter": { "hash": "d2b3bf80176349caa68dc4a3c77bd06eaade8abc678330f7d1c813c53380e5d2" } } }, "nbformat": 4, "nbformat_minor": 2 }