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Types of Images

Color

Gray Scale

Source: Ulas Bagci

Binary image representation

0: Black —— [0]o]o ofo
1: White

Source: Ulas Bagci



Grayscale image representation

Slide credit:
Ulas Bagci
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0 source: Ulas Bagci

Color Image - one channel

Source: Ulas Bagci




Color image representation

Source: Ulas Bagci

Motivation: Image denoising

* How can we reduce noise in a photograph?

Source: S. Lazebnik



Moving average

e Let’s replace each pixel with a weighted average of its
neighborhood

e The weights are called the filter kernel

e What are the weights for the average of a
3x3 neighborhood?
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“box filter”
Source: S. Lazebnik

Defining convolution

e Let f be the image and g be the kernel. The output of convolving f
with g is denoted f * g.

(f * g)[m,n] = Zf[m —kn—lglk 1]
k.l
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Convention:
kernel is “flipped”
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Key properties

e Linearity: filter(f; + f,) = filter(f;) + filter(f,)

¢ Shift invariance: same behavior regardless of pixel
location: filter(shift(f)) = shift(filter(f))

e Theoretical result: any linear shift-invariant operator
can be represented as a convolution

Source: S. Lazebnik
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Properties in more detail

e Commutative:a*b=b*a
¢ Conceptually no difference between filter and signal
Associative:a * (b *c)=(a * b) * c

e Often apply several filters one after another: (((a * b,) * b,) * b,)

¢ This is equivalent to applying one filter: a * (b, * b, * bs)
Distributes over addition: a * (b +c¢)=(a * b) + (a * ¢)
Scalars factor out: ka *b=a *kb =k (a * b)

Identity: unit impulsee=1...,0,0,1,0,0, ...],
a*e=a

Source: S. Lazebnik

12



Annoying details

What is the size of the output?
e MATLAB: filter2(g, f, shape)

e shape = ‘full’: output size is sum of sizes of fand g
e shape = ‘same’: output size is same as f
e shape = ‘valid’: output size is difference of sizes of fand g

full same valid

............................ Source: S. Lazebnik
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Annoying details

What about near the edge?
¢ the filter window falls off the edge of the image
¢ need to extrapolate
¢ methods:

— clip filter (black)
— wrap around

’

— copy edge
— reflect across edge

Source: S. Marschner
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Annoying details

What about near the edge?
¢ the filter window falls off the edge of the image
¢ need to extrapolate
e methods (MATLAB):

— clip filter (black): imfilter(f, g, 0)

— wrap around: imfilter(f, g, ‘circular’)

— copy edge: imfilter(f, g, ‘replicate’)
— reflect across edge: imfilter(f, g, ‘symmetric’)

Source: S. Marschner
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Practice with linear filters
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Original

Source: D. Lowe
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Practice with linear filters

Original Filtered
(no change)

Source: D. Lowe
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Practice with linear filters

o

o

N
~

Original

Source: D. Lowe
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Practice with linear filters

Original Shifted /left
By 1 pixel

Source: D. Lowe
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Practice with linear filters
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Original

Source: D. Lowe
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Practice with linear filters
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Original Blur (with a
box filter)
Source: D. Lowe
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Practice with linear filters
0(0|0 10111
ol2[o]| = ;[1[1]4 ?
0/0|0 1111
(Note that filter sums to 1)
Original
Source: D. Lowe
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Practice with linear filters

0/0]0 1 111]1

0/2|0f == 5 111]1

0/0]0 1011
Original Sharpening filter

- Accentuates differences
with local average

Source: D. Lowe
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Sharpening

before

Source: D. Lowe
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Sharpening

What does blurring take away?

Source: D. Lowe

25

Sharpening

What does blurring take away?

| §

1 (‘ . v
) \
ﬂ smoothei 5

Source: D. Lowe

4 ) ,. I N
) \ !
1 o 3

26



Smoothing with box filter revisited

e What’s wrong with this picture?
e What’s the solution?

Source: D. Forsyth
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Smoothing with box filter revisited

e What’s wrong with this picture?
e What's the solution?

¢ To eliminate edge effects, weight contribution of
neighborhood pixels according to their closeness to the
center

“fuzzy blob”

Source: S. Lazebnik
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Gaussian Kernel

0.003 0.013 0.022 0.013 0.003
0.013 0.059 0.097 0.059 0.013
0.022 0.097 0.159 0.097 0.022
0.013 0.059 0.097 0.059 0.013
0.003 0.013 0.022 0.013 0.003

5x5,6=1

e Constant factor at front makes volume sum to 1 (can be ignored
when computing the filter values, as we should renormalize
weights to sum to 1 in any case)

Source: C. Rasmussen
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Gaussian Kernel

]

o =2 with 30 x 30 o =5 with 30 x 30
kernel kernel
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e Standard deviation o: determines extent of smoothing

Source: K. Grauman
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Choosing kernel width

e The Gaussian function has infinite support, but discrete filters use
finite kernels

00
o= 5with 10x10 kernel o = 5 with 30x30 kernel

Source: K. Grauman

Choosing kernel width

e Rule of thumb: set filter half-width to about 30
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Source: S. Lazebnik
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Gaussian vs. box filtering

Source: S. Lazebnik
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Gaussian filters

e Remove “high-frequency” components from the image (low-pass
filter)

e Convolution with self is another Gaussian

¢ So can smooth with small-c kernel, repeat, and get same result as larger-c kernel would
have

¢ Convolving two times with Gaussian kernel with std. dev. o is same as convolving once with
kernel with std. dev. 0'\/5

e Separable kernel

¢ Factors into product of two 1D Gaussians

Source: K. Grauman
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Separability of the Gaussian filter

T i 5
Golt.y) = ygexp 20
1 x2 y?
= — exp 242 — exp 252
Varo V2ro

The 2D Gaussian can be expressed as the product of two
functions, one a function of x and the other a function of y

In this case, the two functions are the (identical) 1D Gaussian

Source: D. Lowe
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Separability example

2D convolution 2lal2]13 1|55
(center location only)

The filter factors 2 T ox

into a product of 1D 21412 (=]2
filters: AERE 1
2 313
Perform convolytlon |1l2 I1 |* s 15 15 1=
along rows:
4 |4 |6

Followed by convolution
along the remaining column:

Source: K. Grauman
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Why is separability useful?

e What is the complexity of filtering an nxn image with an mxm
kernel?

e O(nZm?)
e What if the kernel is separable?
¢ O(nZm)

Source: S. Lazebnik

37

e Salt and pepper
noise: contains
random occurrences
of black and white
pixels

e Impulse noise:

Salt and pepper noise contains random
occurrences of white
pixels

e Gaussian noise:
variations in intensity
drawn from a
Gaussian normal
distribution

Impulse noise Gaussian noise Source: S. Seitz
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Gaussian noise

e Mathematical model: sum of many independent factors
e Good for small standard deviations
e Assumption: independent, zero-mean noise

Image
Noise

Ideal [mage  Noise process Gaussian i.i.d. (“white") noise:
flaw) = J’(I w +  nley) nlz,y) ~ N(p.o)

Source: M. Hebert
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Reducing Gaussian noise

=1 pixel

=2 pixels

Smoothing with larger standard deviations suppresses noise,
but also blurs the image

Source: S. Lazebnik
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Reducing salt-and-pepper noise

3x3 5x5 <7

What’s wrong with the results?

Source: S. Lazebnik
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Alternative idea: Median filtering

¢ A median filter operates over a window by
selecting the median intensity in the window
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Sort
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 Is median filtering linear? Source: K. Grauman
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Median filter

e What advantage does median filtering have over
Gaussian filtering?

* Robustness to outliers

filters have width 5 :

o INPUT
LR R ) 0. NlED[Aﬁ
. MEAN

Source: K. Grauman
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Median filter

Salt-and-pepper noise

Median filtered

7y,

Source: M. Hebert
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Gaussian vs. median filtering

Gaussian

Median

Source: S. Lazebnik
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Sharpening revisited

before

Source: D. Lowe
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Sharpening revisited

What does blurring take away?

.L srr;oothl(st)

cietail

Source: S. Lazebnik

Unsharp mask filter

fra(f-f*r@=0+a)f —af xg=f*((1+a)e—ag)
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image blurred unlit impulse
image (identity)
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unit impulse

Gaussian Laplacian of Gaussian

Source: S. Lazebnik




