Local feature: Corners

Lu Peng
School of Computer Science,
Beijing University of Posts and Telecommunications

Machine Vision Technology

Semantic information Metric 3D information
Pixels Segments Images Videos Camera Multi-view Geometry
Local features
10 4 4 2 2 2 2 2

2020/3/22 Beijing University of Posts and Telecommunications




Why extract features?

e Motivation: panorama stitching

¢ We have two images — how do we combine them?

Source: S. Lazebnik
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Why extract features?

e Motivation: panorama stitching

¢ We have two images — how do we combine them?

Step 1: extract features

Step 2: match features

Step 3: align images Source: S. Lazebnik
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Characteristics of good features

Repeatability
¢ The same feature can be found in several images despite geometric and photometric
transformations

Saliency

e Each feature is distinctive
Compactness and efficiency

e Many fewer features than image pixels
Locality

o A feature occupies a relatively small area of the image; robust to clutter and occlusion
Source: S. Lazebnik
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Applications

Feature points are used for:
* Image alighment
¢ 3D reconstruction
e Motion tracking

Robot navigation

Indexing and database retrieval

Object recognition

Source: S. Lazebnik
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Finding Corners

e Key property: in the region around a corner,
image gradient has two or more dominant
directions

e Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147--151. Source: S. Lazebnik
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Corner Detection: Basic Idea

e We should easily recognize the point by looking through a
small window

e Shifting a window in any direction should give a large change
in intensity

“flat” region: “edge”: “corner”:
no change in all no change along the significant change

directions edge direction . . .
in all directions Source: A. Efros
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Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,v]:

E(u,v)= Zw(x,y)[l(x+u,y+v)—](x,y)]2

x’y

I(x, )

E(u, v)

.

Source: S. Lazebnik
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Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,v]:

2
E(u,V) = ZW(x,y)[I(X‘l‘u,y+V)_I(x,y)]
X,y
Window Shifted

Window function W(X,)) = JPP— -

1 in window, O outside Gaussian

Source: R. Szeliski
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Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,v]:

E(u,v)= Zw(x,y)[l(x+u,y+v)—1(x,y)]2

x’y

We want to find out how this function behaves for
E(u,v)

small shifts

L Source: S. Lazebnik
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Corner Detection: Mathematics

Change in appearance of window w(x,y)
for the shift [u,v]:

E(u,v)= Zw(x,y)[](x+u,y+v)—I(x,y)]2

We want to find out how this function behaves for small shifts

Local quadratic approximation of E(u,v) in the neighborhood of
(0,0) is given by the second-order Taylor expansion:

E(u,v) ~ E(0.0)+[u v][E”(O’O)} L v][EMOaO) Ew(o,oq{u}

E.(0,0)| 2 E_(0,0) E (0,0)]v

Source: S. Lazebnik
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Corner Detection: Mathematics

E(u,v)= Zw(x,y)[l(x+u,y+v)—1(x,y)]2

Second-order Taylor expansion of E(u,v) about (0,0):

Eu(O,O)} 1 {E 0,00 E, (0,0)}{@

+—[u v]
E,(0,0) E,0,0) E,(0,0)

E(u,v)= E(0,0)+[u v][ 5

v

E,(u,v) = Z 2w, y) [I(x +u,y +v) — 10, YL (x +u,y + v)
Xy

En(uv) = Z 2w(x, V) Li(x +u,y +v)I,(x +u,y +v) + Z 2w, H(x +w,y +v) =106 e (x +u,y + v)
xy xy

E,,(u,v) = Z 2w,y L, (x+u,y+v)(x+uy+v)+ Z 2w, Y) U(x +u,y +v) — I(x,y)]lxy(x +uy+v)
xy xy

Source: S. Lazebnik
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Corner Detection: Mathematics

E(u,v)= Zw(x,y)[](x+u,y+v)—I(x,y)]2

x’y
Second-order Taylor expansion of E(u,v) about (0,0):

E,00)] 1, [E,©00) E,©0.0]u
E(u,v)= E(0,0)+[u v] E (0.0) +5[u v] E (00) E.(00)|v

EQO)=0 1 Eu(00)= ) 2wy LEx k)
1 x,y

BOO=0 | En©00)=) 2wy L&)
: xy

E,(0,0) = 0 :

Eun(0,0) = ) 2w(6,y) L (x, 1)1y (1,5)
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Source: S. Lazebnik

Corner Detection: Mathematics

The quadratic approximation simplifies to
u
Ewu,v) = [u v] M
1%

where M is a second moment matrix computed from image derivatives:

> I
M => w(x, . -
2 y{% 15}

| Xy Y Is] _ I _ .
M= {Zlﬂy zfyzz] —Z[Iy ] [I: I,] = > VI(VI)
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Source: S. Lazebnik




Interpreting the second moment matrix

The surface E(u,v) is locally approximated by a quadratic
form. Let’s try to understand its shape.

7 I
M=) w(x, * r
; ( y)]xly r

Source: S. Lazebnik
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Interpreting the second moment matrix

First, consider the axis-aligned case (gradients are
either horizontal or vertical)

17 11
M = Z wix,y) )
-~ 11, I

If either A is close to 0, then this is not a corner, so look for
locations where both are large.

Source: S. Lazebnik

2020/3/22 Beijing University of Posts and Telecommunications 17
17



Interpreting the second moment matrix

u
Consider a horizontal “slice” of E(u, v): [u v] M { }: const
\%

This is the equation of an ellipse.

v

Source: S. Lazebnik
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Interpreting the second moment matrix

u
Consider a horizontal “slice” of E(u, v): [u v] M { }= const
v
This is the equation of an ellipse.
. o S A4 0
Diagonalization of M: M =R R
0 4,
The axis lengths of the ellipse are determined

by the eigenvalues and the orientation is
determined by R

direction of the
fastest change

direction of the
slowest change

Source: S. Lazebnik
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Visualization of second moment matrices

Source: S. Lazebnik
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Interpreting the eigenvalues

Classification of image points using eigenvalues of M:

A, and A, are small;
E is almost constant :> “Flat”
in all directions region

;\41 Source: S. Lazebnik
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Corner response function

R=det(M)—-atrace(M)’ = A4 —a(A +4,)°

a: constant (0.04 to 0.06)

G‘Flat,’
region

Source: S. Lazebnik
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Harris detector: Steps

Compute Gaussian derivatives at each pixel

Compute second moment matrix M in a Gaussian
window around each pixel

3. Compute corner response function R
4. Threshold R

5. Find local maxima of response function
(nonmaximum suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.”
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988. Source: S. Lazebnik
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Harris Detector: Steps

Source: S. Lazebnik
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Harris Detector: Steps

Compute corner response R

Source: S. Lazebnik
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Harris Detector: Steps

Find points with large corner response: R>threshold

Source: S. Lazebnik
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Harris Detector: Steps

Take only the points of local maxima of R

Source: S. Lazebnik
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Harris Detector: Steps

Source: S. Lazebnik

2020/3/22 Beijing University of Posts and Telecommunications

Invariance and covariance

e We want corner locations to be invariant to photometric
transformations and covariant to geometric transformations
¢ Invariance: image is transformed and corner locations do not change

¢ Covariance: if we have two transformed versions of the same image,
features should be detected in corresponding locations

Source: S. Lazebnik
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Affine intensity change

[—>al+b

=1

* Only derivatives are used =>
invariance to intensity shift/ > 7+ 5

* Intensity scaling: I > a l
¢ ¢ M N
A A N T \ /’\ |
’/ = { \Jg \

\ ,/ A | \/
{ \/ \\j’ \\ | \' \

I
X (image coordinate)

threshold

X (image coordinate)
Patrtially invariant to affine intensity change

Beijing University of Posts and Telecommunications
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Source: S. Lazebnik

Image translation

>

>

» Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation

Beijing University of Posts and Telecommunications
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Source: S. Lazebnik



Image rotation

&7 S

Second moment ellipse rotates but its shape
(i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation

Source: S. Lazebnik
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Scaling

£ I [/F/G\
Corner

All points will
be classified
as edges

Corner location is not covariant to scaling!

Source: S. Lazebnik
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