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Why extract features?

• Motivation: panorama stitching
• We have two images – how do we combine them?

Source：S. Lazebnik
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Why extract features?

• Motivation: panorama stitching
• We have two images – how do we combine them?

Step 1: extract features

Step 2: match features

Source：S. Lazebnik
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Why extract features?

• Motivation: panorama stitching
• We have two images – how do we combine them?

Step 1: extract features

Step 2: match features

Step 3: align images Source：S. Lazebnik
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Characteristics of good features

• Repeatability
• The same feature can be found in several images despite geometric and photometric 

transformations 

• Saliency
• Each feature is distinctive

• Compactness and efficiency
• Many fewer features than image pixels

• Locality
• A feature occupies a relatively small area of the image; robust to clutter and occlusion

Source：S. Lazebnik
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Applications  

Feature points are used for:
• Image alignment 

• 3D reconstruction

• Motion tracking

• Robot navigation

• Indexing and database retrieval

• Object recognition

Source：S. Lazebnik
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Finding Corners

• Key property: in the region around a corner, 
image gradient has two or more dominant 
directions

• Corners are repeatable and distinctive

C.Harris and M.Stephens. "A Combined Corner and Edge Detector.“
Proceedings of the 4th Alvey Vision Conference: pages 147--151. Source：S. Lazebnik
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Corner Detection: Basic Idea

• We should easily recognize the point by looking through a 
small window

• Shifting a window in any direction should give a large change
in intensity

“edge”:
no change along the 
edge direction

“corner”:
significant change 
in all directions

“flat” region:
no change in all 
directions

Source: A. Efros
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Corner Detection: Mathematics
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Change in appearance of window w(x,y) 
for the shift [u,v]:

I(x, y)

E(u, v)

E(3,2)

w(x, y)

E(0,0)

Source：S. Lazebnik
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Corner Detection: Mathematics
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IntensityShifted 
intensity

Window 
function

orWindow function w(x,y) =

Gaussian1 in window, 0 outside
Source: R. Szeliski

Change in appearance of window w(x,y) 
for the shift [u,v]:
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Corner Detection: Mathematics
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We want to find out how this function behaves for 
small shifts

Change in appearance of window w(x,y) 
for the shift [u,v]:

E(u, v)

Source：S. Lazebnik
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Corner Detection: Mathematics
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Local quadratic approximation of E(u,v) in the neighborhood of 
(0,0) is given by the second-order Taylor expansion:
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We want to find out how this function behaves for small shifts

Change in appearance of window w(x,y) 
for the shift [u,v]:

Source：S. Lazebnik
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Corner Detection: Mathematics
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Second-order Taylor expansion of E(u,v) about (0,0):
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Corner Detection: Mathematics
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Second-order Taylor expansion of E(u,v) about (0,0):
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Source：S. Lazebnik
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Corner Detection: Mathematics

The quadratic approximation simplifies to
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where M is a second moment matrix computed from image derivatives:
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The surface E(u,v) is locally approximated by a quadratic 
form. Let’s try to understand its shape.

Interpreting the second moment matrix
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First, consider the axis-aligned case (gradients are 
either horizontal or vertical)

If either λ is close to 0, then this is not a corner, so look for 
locations where both are large.

Interpreting the second moment matrix

Source：S. Lazebnik
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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Source：S. Lazebnik
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Consider a horizontal “slice” of E(u, v):

Interpreting the second moment matrix

This is the equation of an ellipse.
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The axis lengths of the ellipse are determined 
by the eigenvalues and the orientation is 
determined by R direction of the 

slowest change

direction of the 
fastest change
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Diagonalization of M:

Source：S. Lazebnik
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Visualization of second moment matrices

Source：S. Lazebnik
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Interpreting the eigenvalues

1

2

“Corner”
1 and 2 are large,

1 ~ 2;

E increases in all 
directions

1 and 2 are small;

E is almost constant 
in all directions

“Edge” 
1 >> 2

“Edge” 
2 >> 1

“Flat” 
region

Classification of image points using eigenvalues of M:

Source：S. Lazebnik
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Corner response function

2
2121

2 )()(trace)det(   MMR

α: constant (0.04 to 0.06)

“Corner”
R > 0

“Edge” 
R < 0

“Edge” 
R < 0

“Flat” 
region

|R| small

Source：S. Lazebnik
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Harris detector: Steps

1. Compute Gaussian derivatives at each pixel

2. Compute second moment matrix M in a Gaussian 
window around each pixel 

3. Compute corner response function R

4. Threshold R

5. Find local maxima of response function 
(nonmaximum suppression)

C.Harris and M.Stephens. “A Combined Corner and Edge Detector.” 
Proceedings of the 4th Alvey Vision Conference: pages 147—151, 1988. Source：S. Lazebnik
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Harris Detector: Steps

Source：S. Lazebnik
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Harris Detector: Steps

Compute corner response R

Source：S. Lazebnik
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Harris Detector: Steps

Find points with large corner response: R>threshold

Source：S. Lazebnik
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Harris Detector: Steps

Take only the points of local maxima of R

Source：S. Lazebnik
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Harris Detector: Steps

Source：S. Lazebnik
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Invariance and covariance

• We want corner locations to be invariant to photometric 
transformations and covariant to geometric transformations
• Invariance: image is transformed and corner locations do not change

• Covariance: if we have two transformed versions of the same image, 
features should be detected in corresponding locations

Source：S. Lazebnik

28

29



2020/3/22 Beijing University of Posts and Telecommunications 30

Affine intensity change

• Only derivatives are used => 
invariance to intensity shift I  I + b

•  Intensity scaling: I  a I

R

x (image coordinate)

threshold

R

x (image coordinate)

Partially invariant to affine intensity change

I  a I + b

Source：S. Lazebnik
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Image translation

• Derivatives and window function are shift-invariant

Corner location is covariant w.r.t. translation
Source：S. Lazebnik

30

31



2020/3/22 Beijing University of Posts and Telecommunications 32

Image rotation

Second moment ellipse rotates but its shape 
(i.e. eigenvalues) remains the same

Corner location is covariant w.r.t. rotation
Source：S. Lazebnik
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Scaling

All points will 
be classified 
as edges

Corner

Corner location is not covariant to scaling!
Source：S. Lazebnik
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