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Abstract

We use the Theory of Implicit Heavy-Tailed Self-
Regularization (HT-SR) to develop a new Univer-
sal capacity control metric, α̂, for Deep Neural
Networks (DNNs). HT-SR indicates that modern
DNNs exhibit a Heavy-Tailed Mechanistic Uni-
versality (HT-MU), meaning the spectral density
of layer weight matrices can be fit to a power law,
ρ(λ) ∼ λ−α, with exponents, α ∈ [2, 5], that
lie in common Universality classes from Heavy-
Tailed Random Matrix Theory (HT-RMT). Em-
pirically, smaller α is correlated with better gener-
alization, with α→ 2 universally across different
best-in-class, pre-trained DNN architectures. We
apply this metric to over 50 different, large-scale
pre-trained DNNs, ranging over 15 different archi-
tectures, trained on ImagetNet, but with differing
test accuracies. This metric correlates remark-
ably well with reported trends in test accuracies
of these DNNs, looking across each architecture
(VGG16/. . . /VGG19, ResNet10/. . . /ResNet152,
etc.). Our approach requires no changes to the
underlying DNN or its loss function, it does not
require us to train a model, and it does not even
require access to the ImageNet data.

Introduction. Recent work by Martin and Mahoney (Mar-
tin & Mahoney, 2018; 2019) has developed a new Theory
of Implicit Heavy-Tailed Self-Regularization (HT-SR) for
Deep Neural Networks (DNNs). Among other things, this
theory provides a Universal empirical metric that charac-
terizes the amount of Implicit Self-Regularization—and,
accordingly, the generalization capacity—for a wide range
of publicly-available, best-in-class, pre-trained DNNs, in-
cluding AlexNet, VGG, ResNet, and over 150 other models.
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In more detail, they study the Empirical Spectral Density
(ESD), ρ(λ), of individual layer weight matrices, W, as
well as of convolutional feature maps, through the lens of
Random Matrix Theory (RMT); and they observe that the
individual layer ESDs almost always follow a (truncated)
power law (PL) distribution

ρ(λ) ∼ λ−α, λ ≤ λmax, (1)

where ρ(λ) is the density of the eigenvalues λ of the nor-
malized layer correlation matrix

X =
1

N
WTW, (2)

and λmax is the maximum eigenvalue observed. The PL
exponents nearly all lie within a universal range α ∈ [2, 5],
in nearly every pre-trained production-quality architecture
considered. See Figure 1.

(a) Power law exponents α (b) Average α vs Top5 error

Figure 1. Histogram of PL exponents, and scatter plot of average
α vs Top5 error, for nearly 10, 000 layer weight matrices (and 2D
feature maps) from pre-trained DNNs, trained on ImageNet.

These observations hold across nearly 10, 000 layer weight
matrices (and 2D feature maps), drawn from over 150 dif-
ferent, large-scale pre-trained DNNs.1 This includes DNNs
pre-trained for computer vision (CV) tasks on ImageNet,
as well as DNNs pre-trained for several different natural
language processing (NLP) tasks. Moreover, smaller values
of α correlate well with better generalization accuracies,
with α approaching a universal value, α→ 2, at the lower
limit of the Moderately Heavy Tailed (or Fat Tailed) RMT
Universality class (Martin & Mahoney, 2018; 2019) .

In Statistical Physics, Universality of PL exponents is very
special, and it suggests the presence of a deeper, underlying,

1These are available both in PyTorch and in the OMSR project:
https://github.com/osmr/imgclsmob.

https://github.com/osmr/imgclsmob
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Universal mechanism driving the system dynamics (Sor-
nette, 2006; Bouchaud & Potters, 2003). It is this Heavy
Tailed Mechanistic Universality (HT-MU), as we call it, that
originally motivated our study.

HT-MU applies to the analysis of complicated systems,
including many physical systems (Sornette, 2006), tradi-
tional NNs (Engel & den Broeck, 2001; Nishimori, 2001),
and even models of the dynamics of actual spiking neu-
rons (Friedman et al., 2012). Indeed, the dynamics of learn-
ing in DNNs seem to resemble a system near a phase tran-
sition, e.g., the phase boundary of spin glass, a system
displaying Self Organized Criticality (SOC), or a Jamming
transition (Geiger et al., 2018; Spigler et al., 2018). Of
course, we can not say which mechanism, if any, is at play.
Instead, we use the machinery of HT-RMT as a stand-in for
a generative model of the weight matrices in DNNs, and we
use this to catalog and model the HT behavior of DNNs.

Based on these ideas, we develop here a Universal capacity
control metric, α̂. This metric is a weighted average of the
layer PL exponents, αl, of the DNN layer weight matrices,

α̂ =
1

NL

∑
l∈L

αl log λ
max
l , (3)

where L indexes layers, and λmaxl is the maximum eigen-
value (i.e., Spectral norm) of layer correlation matrices Wl.

Approach. Our approach and intent differ from other the-
oretical studies in the DNN literature, although we can
relate our results back to known results. Most recently,
Liao et al. (Liao et al., 2018) used an appropriately-scaled,
data-dependent Product Norm capacity control metric to
bound worst-case generalization error for several small (not
production-quality, but still interesting) DNN models, and
they showed that the bounds are remarkably tight. There
is, in fact, a large body of work on norm-based capac-
ity control metrics, both recent (Liao et al., 2018; Soudry
et al., 2017; Poggio et al., 2018) and (Neyshabur et al.,
2014; 2015; 2017a; Bartlett et al., 2017; Yoshida & Miy-
ato, 2017; Kawaguchi et al., 2017; Neyshabur et al., 2017b;
Arora et al., 2018b;a; Zhou & Feng, 2018), as well as much
older (Bartlett, 1997; Mahoney & Narayanan, 2009). These
studies seek worst-case complexity bounds, motivated in
some cases to reconcile discrepancies with more traditional
statistical learning theory, and they apply (when applied at
all) to quite small NNs.

This approach contrasts with that of Martin and Ma-
honey (Martin & Mahoney, 2018; 2019), who looked at
empirical properties of a wide range of state-of-the-art mod-
els, and from this developed a metric that provides a posteri-
ori characterization of implicit regularization. Thus, instead
of using statistical learning theory principles to propose a
metric that provides worst-case a priori bounds, we seek
here an average-case or typical case (where “typical” is for
current state-of-the-art publicly-available pre-trained DNN

models) complexity metric, viable in production settings as
a guide to the development of better DNNs at scale.

Theory. Let us write the Energy Landscape (or optimiza-
tion function) for a typical DNN with L layers, with acti-
vation functions hl(·), and with weight matrices and biases
Wl and bl, as follows:
E = hL(WL×hL−1(WL−1×(· · · )+bL−1)+bL). (4)

Typically, this model would be trained on some labeled
data {di, yi} ∈ D, using Backprop (LeCun et al., 2012), by
minimizing the loss L =

∑
i∈D[E(di)− yi].

For simplicity, we do not indicate the structural details of
the layers (e.g., Dense or not, Convolutions or not, Resid-
ual/Skip Connections, etc.), nor do we consider the details
of the optimizer or the training process.

Each layer is defined by one or more layer 2D weight matri-
ces Wl, and/or the 2D feature maps Wl,i extracted directly
from 2D Convolutional (Conv2D) layers. (We have not yet
analyzed LSTM or other complex Layers.) A typical mod-
ern DNN may have anywhere between 5 and 5000 2D layer
matrices / feature maps.

Our capacity metric α̂ depends two parameters, the PL
exponent α (a measure of matrix sparsity) and the maxi-
mum eigenvalue λmax (which corrects for the matrix scale).
Other capacity metrics typically consider either just the spar-
sity or rank-based sparsity (e.g., the Stable Rank) or just the
scale via a matrix norm (e.g., Spectral or Frobenius norm).

We can relate α̂ to these more familiar, data-dependent
metrics. Consider the Product Norm capacity metric, C,
defined as

C ∼ ‖W1‖ × ‖W2‖ · · · ‖WL‖. (5)

Using a standard trick from field theory, we consider the log
Product Norm, which takes the form of an average log norm

log C ∼ log

[
‖W1‖ × ‖W2‖ · · · ‖WL‖

]
∼

[
log ‖W1‖+ log ‖W2‖ · · · log ‖WL‖

]
∼ 〈log ‖W‖〉 = 1

NL

∑
l

log ‖Wl‖.

When ‖W‖ is the Spectral norm, ‖W‖2 ∼ λmax, then
our α̂ of Eqn. (3) is a weighted average of the log Spectral
norms, where the weights are power law exponents α. In
this sense, our universal metric α̂ behaves like an average-
case version of what is a worst-case bound, but it is more
suitable for applying to large, production-level DNNs.

When ‖W‖ is the Frobenius norm, ‖W‖2F , we can use
results of HT RMT to interpret the PL exponents α as a
type of Soft or Stable Rank. Specifically, when α is very
small, we can relate α to the more familiar Stable Rank
Rlogs , expressed in log-units (and up to the 1

N scaling):
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Rlogs :=
log ‖W‖2F
log λmax

≈ α. (6)

Using this, a promising direction is to implement our capac-
ity metric as a regularizer to improve DNN training by im-
plementing a Stable Rank regularizer (similar to how Spec-
tral/Frobenius norm regularization is often implemented).

Methodology. To evaluate our metric, we introduce a new
methodology to analyze the performance of large-scale pre-
trained DNNs, including the VGG and ResNet series of
models, as well over 150 other widely available pre-trained
models, and we study how capacity metrics correlate with
the reported test accuracies.

This approach offers several advantages over common prac-
tice in the area, most notably the following.

• We do not need access to the original ImageNet data, just
the pre-trained models (i.e., as distributed with PyTorch, on
github, and/or from the ModelZoo).
• We do not need to engage in expensive training/retraining,
architecture adjustment, hyperparameter tuning, etc.
• Our results are easily reproducible. To make things
more reproducible, we provide a python command tool,
WeightWatcher (wei), that works with both PyTorch
(v1) and Keras (v2) models, and that computes a wide range
of average log capacity metrics.

We have applied our Universal capacity control metric α̂
to a wide range of large-scale pre-trained production-level
DNNs. For Linear DNN layers, we simply replace the log
Norm with our metric, whereas for Conv2D Layers, we
associate the “Norm” of the 4-index Tensor Wl to the sum
of the nl = c× d terms for each feature map, as follows:

Linear Layer: log ‖Wl‖ → αl log λ
max
l

Conv2D Layer: log ‖Wl‖ →
nl∑
i=1

αl,i log λ
max
l,i .

Results. Our Universal metric correlates very well with
the reported average test accuracies across many series
of pre-trained DNNs. See Figures 2 and 3. In Figure 2,
we present two complex examples of pre-trained models
with similar architectures of differing depths. Figure 2(a)
presents the VGG series of networks (VGG11, 13, 16, and
19, with and without Batch Normalization (BN), as avail-
able in PyTorch), and Figure 2(b) presents results for a
large set of ResNet architectures, ranging from ResNet10
to ResNet152 (available with OMSR). We generate the α̂
metric using the WeightWatcher tool (wei), (hopefully)
making these results trivial to reproduce. Notice, we do not
have access to the (ImageNet) test data, so we compare α̂
to the reported Top1 test errors. Amazingly, our simple α̂
metric correlates very well with the reported Top1 test errors.
In Figure 3, we demonstrate the improvements obtained by
weighting each term in the sum Eqn. (3) by αl.

(a) α̂ for VGG series (b) α̂ for ResNet series

Figure 2. Top 1 Test Accuracy versus α̂ for pre-trained VGG and
ResNet Architectures and DNNs.

(a) Unweighted average α vs
reported Top1 error

(b) Weighted average (α̂) vs
reported Top1 error

Figure 3. Comparison of unweighted and weighted average PL
exponent (α) versus reported Top1 Error for 156 pre-trained Ima-
geNet PyTorch/OSMR models.

Our empirical results are, to our knowledge, the first time
such theoretical capacity metrics have been reported to pre-
dict (trends in) the test accuracy for any series of DNNs,
let alone for pre-trained production-level DNNs. In par-
ticular, this illustrates the usefulness of these norm-based
metrics beyond smaller models such as MNIST, CIFAR10,
and CIFAR100. Our reproducible results suggest that our
“practical theory” methodology is fruitful more generally for
engineering good algorithms for realistic large-scale DNNs.

Comparison with other metrics. Our Universality met-
ric α̂ can be related to other, more familiar capacity metrics
such as the Spectral Norm, the Frobenius Norm, and robust
measures of matrix rank such as the Stable Rank. This sug-
gests an obvious question: Does the α̂metric “work” simply
because DNN models have explicit regularization (i.e., with
a norm constraint)? More generally, is the α̂ metric just a
variation of these more familiar norm-based metrics?

The short answer is that we believe that HTMU is a new,
more fundamental relation. It complements other met-
rics, but it works more generally on actual DNNs when
other norm-based theoretical metrics inspired by worst-case
bounds fail. In particular, we can identify counter examples,
most notably in compressed DNN models (Cheng et al.,
2017). For compressed models, we have observed that the
average Frobenius Norm increases with decreasing test error,
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whereas the average α decreases, as expected.

To illustrate this, we consider average metrics measured
on ResNet20, trained on CIFAR10, before and after apply-
ing the Group Regularization technique, as implemented
in the distiller package.2 See Figure 4. We analyze
the available pre-trained 4D regularized 5Lremoved base-
line and finetuned models. Figure 4 presents the maxi-
mum eigenvalues (λmax, or Spectral Norm) and PL ex-
ponent α for each individual layer weight matrix Wl.3

The reported baseline test accuracies (Top1 = 91.450 and
Top5 = 99.750) are better than the reported fine-tuned test
accuracies (Top1 = 91.020 and Top5 = 99.670), so tra-
ditional theory suggests that the baseline Spectral Norm
(λmax ∼ ‖W‖2) should be smaller than those of the layers
in the fine-tuned model. Based on previous empirical re-
sults, we may also expect the baseline Frobenius norm to be
smaller. In both cases (Frobenius norm results not shown),
we observe the opposite.

(a) λmax for ResNet20 layers (b) α for ResNet20 layers

Figure 4. Analysis of ResNet20, distilled with Group
Regularization, as implemented in the distiller
(4D regularized 5Lremoved) pre-trained models. Compar-
ison of individual layer Wl maximum eigenvalues (λmax, or
Spectral Norms) and PL exponent α, between baseline (green)
and fine-tuned (red) pre-trained models.

The distiller Group Regularization technique has the
unusual effect of increasing the norms of the W feature
maps for at least 2 of the Conv2D layers. We suspect this
effect arises because the Group Regularization concentrates
Frobenius mass from the five removed Conv2D layers into
the remaining Conv2D layers.

While the matrix norms behave atypically, the α values
do not systematically differ between the baseline and fine-
tuned models. Also (not shown), the average (unweighted)
baseline α is indeed smaller than the fine-tuned average, as
would be predicted by HT-SR Theory.

Discussion. We have presented an unsupervised capacity
control metric which predicts trends in test accuracies of

2For details, see https://nervanasystems.github.
io/distiller/#distiller-documentation and also
https://github.com/NervanaSystems/distiller.

3We only include layer matrices or feature maps withM ≥ 50.

a large-scale pre-trained DNN—without even peeking at
the training data or the test data. This complexity metic,
α̂ of Eqn. (3), is a weighted average of the PL exponents
α for each layer weight matrix, where α is defined in the
recent HT-SR Theory (Martin & Mahoney, 2018; 2019),
and where the weights are the largest eigenvalue λmax of
the correlation matrix X. We examine several commonly-
available, pre-trained, production-quality DNNs, by plotting
α̂ versus the reported test accuracies. This covers classes
of DNN architectures including the VGG models, ResNet,
DenseNet, etc. In nearly every class, and except for only a
few counterexamples, smaller α̂ corresponds to better aver-
age test accuracies, thereby providing a strong predictor of
model quality for large-scale state-of-the-art DNN models.

It is worth emphasizing that we are taking a very non-
standard approach (at least for the DNN and ML commu-
nities). We did not train/retrain lots and lots of (typically
rather small) models, analyzing training/test curves, trying
to glean from them bits of insight that might then extrapo-
late to much-larger more realistic models. Instead, we take
advantage of the fact that there already exist many (typ-
ically rather large) publicly-available pre-trained models,
and we analyze the properties of these models. That is, we
viewed these publicly-available pre-trained models as arti-
facts of the world that achieve state-of-the-art performance
in CV, NLP, and related applications; and we attempted to
understand why. To do this, we extracted data-dependent
metrics to predict generalization performance on production-
quality models. Given well-known challenges associated
with training, and given our results here as well as other
recent results (Martin & Mahoney, 2018; 2019), we suggest
that this methodology be applied more generally.

In theoretical physics, many researchers study NNs us-
ing spin glass models, as in the traditional Gardner analy-
sis (Gardner & Derrida, 1989; Engel & den Broeck, 2001)
and more recent work (Pennington et al., 2017; 2018). It has
been suggested that the energy landscape of DNNs should
resemble the zero-temperature energy landscape of a p-spin
spherical spin glass (Choromanska et al., 2014). Specifically,
this implies there are many local minima that concentrate
at a floor just above the global minima. Here, however, and
following previous results (Martin & Mahoney, 2018; 2019),
we argue that such spin glass models should really employ
HT, not Gaussian, stochastic spin-spin interactions. Such
models would have a very different zero-temperature com-
plexity. Indeed, HT Levy spin-glasses do not have a large
number of low lying minima (Cizeau & Bouchaud, 1993;
Galluccio et al., 1998; Gábora & Kondor, 1999). Instead,
they resemble something like a ruggedly-convex “energy
funnel,” with few local minima, similar in some sense to
the Wolynes-Onuchic Energy landscape (Bryngelson et al.,
1995; Onuchic et al., 1997) suggested in the early protein
folding literature.

https://nervanasystems.github.io/distiller/#distiller-documentation
https://nervanasystems.github.io/distiller/#distiller-documentation
https://github.com/NervanaSystems/distiller
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