{ "cells": [ { "cell_type": "code", "execution_count": 1, "metadata": {}, "outputs": [], "source": [ "from lifelines.datasets import load_rossi\n", "rossi = load_rossi()" ] }, { "cell_type": "code", "execution_count": 2, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekarrestfinageracewexpmarparoprio
020102710013
117101810018
2251019010113
352012311111
452001901013
\n", "
" ], "text/plain": [ " week arrest fin age race wexp mar paro prio\n", "0 20 1 0 27 1 0 0 1 3\n", "1 17 1 0 18 1 0 0 1 8\n", "2 25 1 0 19 0 1 0 1 13\n", "3 52 0 1 23 1 1 1 1 1\n", "4 52 0 0 19 0 1 0 1 3" ] }, "execution_count": 2, "metadata": {}, "output_type": "execute_result" } ], "source": [ "rossi.head()" ] }, { "cell_type": "code", "execution_count": 3, "metadata": {}, "outputs": [], "source": [ "# let's b-spline age\n", "cph = CoxPHFitter().fit(rossi, \"week\", \"arrest\", formula=\"fin + bs(age, df=4) + wexp + mar + paro + prio\")" ] }, { "cell_type": "code", "execution_count": 4, "metadata": {}, "outputs": [ { "data": { "text/html": [ "
\n", "\n", "\n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", " \n", "
weekarrestfinageracewexpmarparoprio
052.00.00.517.0000001.01.00.01.02.0
152.00.00.517.5510201.01.00.01.02.0
252.00.00.518.1020411.01.00.01.02.0
352.00.00.518.6530611.01.00.01.02.0
452.00.00.519.2040821.01.00.01.02.0
\n", "
" ], "text/plain": [ " week arrest fin age race wexp mar paro prio\n", "0 52.0 0.0 0.5 17.000000 1.0 1.0 0.0 1.0 2.0\n", "1 52.0 0.0 0.5 17.551020 1.0 1.0 0.0 1.0 2.0\n", "2 52.0 0.0 0.5 18.102041 1.0 1.0 0.0 1.0 2.0\n", "3 52.0 0.0 0.5 18.653061 1.0 1.0 0.0 1.0 2.0\n", "4 52.0 0.0 0.5 19.204082 1.0 1.0 0.0 1.0 2.0" ] }, "execution_count": 4, "metadata": {}, "output_type": "execute_result" } ], "source": [ "# now we need to \"extend\" our data to plot it\n", "# we'll plot age over it's observed range\n", "age_range = np.linspace(rossi['age'].min(), rossi['age'].max(), 50)\n", "\n", "# need to create a matrix of variables at their means, _except_ for age. \n", "x_bar = cph._central_values\n", "df_varying_age = pd.concat([x_bar] * 50).reset_index(drop=True)\n", "df_varying_age['age'] = age_range\n", "\n", "df_varying_age.head()" ] }, { "cell_type": "code", "execution_count": 5, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 5, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAD4CAYAAADhNOGaAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAloUlEQVR4nO3deXxU9b3/8dcnCUlIgCQkIWEJJAiyyCoRXHABl+JS0YoWqtVWre1t6Xq7eOv93fZ621uX22p7a1tx12oRtVZaF4qKCyhKkF32sCUCCYQlEEhI+Pz+mIEbQ5Blkpxk5v18POYxc77nnJnPeTDkPed8zzlfc3dERCR2xQVdgIiIBEtBICIS4xQEIiIxTkEgIhLjFAQiIjEuIegCTkZWVpbn5+cHXYaISJsyf/78be6e3bC9TQZBfn4+RUVFQZchItKmmNmGxtp1aEhEJMYpCEREYpyCQEQkxikIRERiXJMEgZmNM7OVZrbGzG5vZP59ZrYw/FhlZjvrzaurN296U9QjIiLHL+KzhswsHngAuBgoAeaZ2XR3//jQMu7+/XrLfxsYXu8t9rn7sEjrEBGRk9MUewQjgTXuXuzuNcBUYPxnLD8J+EsTfK6IiDSBpgiC7sCmetMl4bYjmFkvoAB4s15zspkVmdlcM7uqCeo5qpcXb+bPcxs9jVZEJGa19AVlE4Hn3b2uXlsvdy81s97Am2a2xN3XNlzRzG4DbgPo2bPnSX34K0s2M2ftNiaM6EFyu/iTeg8RkWjTFHsEpUBeveke4bbGTKTBYSF3Lw0/FwNv8en+g/rLTXH3QncvzM4+4grp4zJpZE92Vh1gxrItJ7W+iEg0aoogmAf0NbMCM0sk9Mf+iLN/zKw/kAG8X68tw8ySwq+zgHOAjxuu21TOPiWTnp1T+MuHG5vrI0RE2pyIg8Dda4HJwAxgOTDN3ZeZ2Z1mdmW9RScCU/3TY2MOAIrMbBEwC7ir/tlGTS0uzvjiGXnMLa6guHxPc32MiEibYm1xzOLCwkI/2ZvOlVXu5+xfvcnNowv46WUDmrgyEZHWy8zmu3thw/aYu7K4S8dkLhqQw/PzS6iurTv2CiIiUS7mggBg0qieVOytYebHW4MuRUQkcDEZBOf2yaJ7ent1GouIEKNBEBdnTDwjjzlrtrNh+96gyxERCVRMBgHAtYV5xMcZU+dtOvbCIiJRLGaDIDctmbH9u/Bc0SZqag8GXY6ISGBiNggAJo3MY9ueGt5Yrk5jEYldMR0E55/aha5pyfxFh4dEJIbFdBDEh680fnd1OZsqqoIuR0QkEDEdBADXFeZhwLPaKxCRGBXzQdAtvT0X9OvCtKJNHKhTp7GIxJ6YDwKAL5/Zi7LKal5ZsjnoUkREWpyCADj/1Gx6Z6Xy6Ox1tMWb8ImIREJBQOhK46+ek8+ikl18tHFH0OWIiLQoBUHYF07vQafkBB6dvT7oUkREWpSCICw1KYFJo3ry6tLNlOzQqaQiEjsUBPXceFY+ZsaT728IuhQRkRajIKine3p7xg3K5S8fbmRvdW3Q5YiItAgFQQO3jC6gcn8tL3xUEnQpIiItQkHQwOk9MxiWl85jc9Zz8KBOJRWR6KcgaMTNowtYt20vs1aWBV2KiEiza5IgMLNxZrbSzNaY2e2NzP+KmZWb2cLw49Z6824ys9Xhx01NUU+kLh2US9e0ZB6dsy7oUkREml3EQWBm8cADwKXAQGCSmQ1sZNFn3X1Y+PFweN3OwM+AUcBI4GdmlhFpTZFqFx/HjWflM2fNdpZv3h10OSIizaop9ghGAmvcvdjda4CpwPjjXPdzwEx3r3D3HcBMYFwT1BSxSSPzaN8unse0VyAiUa4pgqA7UP8eziXhtoauMbPFZva8meWd4LqY2W1mVmRmReXl5U1Q9mdLT0nkmhHd+dvCTyivrG72zxMRCUpLdRb/Hch39yGEfvU/caJv4O5T3L3Q3Quzs7ObvMDG3HxOAQfqDqqvQESiWlMEQSmQV2+6R7jtMHff7u6HflY/DIw43nWD1Du7A5cP7sqT761nZ1VN0OWIiDSLpgiCeUBfMysws0RgIjC9/gJm1rXe5JXA8vDrGcAlZpYR7iS+JNzWakwe24e9NXU8Nmd90KWIiDSLiIPA3WuByYT+gC8Hprn7MjO708yuDC/2HTNbZmaLgO8AXwmvWwH8F6EwmQfcGW5rNfrnduKSgTk8NmcdlfsPBF2OiEiTs7Y4EEthYaEXFRW12OctKdnF538/mx99rh/fGtOnxT5XRKQpmdl8dy9s2K4ri4/D4B5pXNAvm0dmr6OqRjejE5HooiA4Tt8e24eKvTU888HGoEsREWlSCoLjNKJXZ87qncmUd4rZf6Au6HJERJqMguAEfPvCPpRVVvNc0aZjLywi0kYoCE7AWb0zGdErgz+9XUxN7cGgyxERaRIKghNgZkwe24fSnfv424JWc92biEhEFAQn6IJTsxncPY0H3lpDbZ32CkSk7VMQnKBDewUbtlfx0sJPgi5HRCRiCoKTcPGAHAZ178R9r6+iulZnEIlI26YgOAlxccbt4wZQsmMff56r6wpEpG1TEJyk0X2zOLdvFr9/czW7dQ8iEWnDFAQR+Mm4/uyoOsCUt4uDLkVE5KQpCCIwqHsaVw7txsOziynbvT/ockREToqCIEI/vKQfdQed+99YHXQpIiInRUEQoZ6ZKVw/qhfPztvE2vI9QZcjInLCFARNYPLYPiQnxPE/M1YGXYqIyAlTEDSBrA5J3HbeKby6dAsfbdwRdDkiIidEQdBEbj23gKwOSdz16gra4qhvIhK7FARNJDUpge9e1JcP11Uwa2VZ0OWIiBw3BUETmnhGHgVZqfzi5eW6TbWItBlNEgRmNs7MVprZGjO7vZH5PzCzj81ssZm9YWa96s2rM7OF4cf0pqgnKO3i4/jZ5wdSXL6XR2avC7ocEZHjEnEQmFk88ABwKTAQmGRmAxsstgAodPchwPPAPfXm7XP3YeHHlZHWE7QL+nXhkoE5/O6N1Xyyc1/Q5YiIHFNT7BGMBNa4e7G71wBTgfH1F3D3We5eFZ6cC/Rogs9ttf7fFQNxnF+8/HHQpYiIHFNTBEF3oP4gviXhtqO5BXi13nSymRWZ2Vwzu+poK5nZbeHlisrLyyMquLnldU5h8pg+vLJkC++sat21ioi0aGexmd0AFAL31mvu5e6FwJeA+83slMbWdfcp7l7o7oXZ2dktUG1kvnZeb/IzU/j59GUas0BEWrWmCIJSIK/edI9w26eY2UXAHcCV7l59qN3dS8PPxcBbwPAmqClwSQnx/PzK0yjetpeH31XHsYi0Xk0RBPOAvmZWYGaJwETgU2f/mNlw4EFCIVBWrz3DzJLCr7OAc4CoObB+Qb8ujDstl9+/uYZSdRyLSCsVcRC4ey0wGZgBLAemufsyM7vTzA6dBXQv0AF4rsFpogOAIjNbBMwC7nL3qAkCgP/3+XDH8T+iarNEJIokNMWbuPsrwCsN2v6j3uuLjrLee8Dgpqihteqe3p5vj+3LvTNW8vaqcs4/tfX3b4hIbNGVxS3g1nMLKMhK5T9eWsq+GnUci0jroiBoAUkJ8fz31YPZsL2Ke2asCLocEZFPURC0kLNOyeQrZ+fz2Jz1zC3eHnQ5IiKHKQha0I/H9aNXZgo/fn4xe6trgy5HRARQELSolMQE7p0wlE07qrj7NR0iEpHWQUHQwkYWdOarZxfw5PsbeG/NtqDLERFREAThR5/rR0FWKj9+YTF7dIhIRAKmIAhA+8R4/ufaIZTu3MevXlkedDkiEuMUBAEZ0aszXzu3N09/sJF3V+sOpSISHAVBgH5w8amckp3KT55fzK6qA0GXIyIxSkEQoOR28fzmumGU76nmh88vwt2DLklEYpCCIGBD89K5/dIBzPx4K4/OWR90OSISgxQErcDN5+RzycAcfvXKchZs3BF0OSISYxQErYCZce+EoeSmJTP5mQXsrKoJuiQRiSEKglYiLaUdD3zpdMoq9/PD5xarv0BEWoyCoBUZmpfOTy8bwOvLt/LIbA1vKSItQ0HQynzl7Hw+d1oOd726go/UXyAiLUBB0MqYGfdMGErX9GQmP/0RFXvVXyAizUtB0AqltQ/1F2zbW8M3/jyfmtqDQZckIlFMQdBKDemRzr0ThvDhugrueHGJOo9FpNk0SRCY2TgzW2lma8zs9kbmJ5nZs+H5H5hZfr15/xZuX2lmn2uKeqLF+GHd+c6FfXlufglT3ikOuhwRiVIRB4GZxQMPAJcCA4FJZjawwWK3ADvcvQ9wH3B3eN2BwETgNGAc8Ifw+0nY9y7sy+VDunLXayuYsWxL0OWISBRqij2CkcAady929xpgKjC+wTLjgSfCr58HLjQzC7dPdfdqd18HrAm/n4TFxRm/vnYoQ3qk872pC1lauivokkQkyjRFEHQHNtWbLgm3NbqMu9cCu4DM41wXADO7zcyKzKyovDy2btuc3C6eh748gvSUdtz6RBFbd+8PuiQRiSJtprPY3ae4e6G7F2ZnZwddTovr0imZh28qZPf+A3ztySL21dQFXZKIRImmCIJSIK/edI9wW6PLmFkCkAZsP851Jey0bmn8duJwlpTuYvIzH3GgTqeVikjkmiII5gF9zazAzBIJdf5Ob7DMdOCm8OsJwJseOh9yOjAxfFZRAdAX+LAJaopaFw/M4b/GD+KNFWX8YNoi6g7qtFIRiUxCpG/g7rVmNhmYAcQDj7r7MjO7Eyhy9+nAI8BTZrYGqCAUFoSXmwZ8DNQC33J3HfM4hhvO7EXl/lrufm0FHZLi+e+rBxPqexcROXHWFi9UKiws9KKioqDLCNy9M1bwwKy1fO3cAn562QCFgYh8JjOb7+6FDdsj3iOQ4Pzwkn7s2V/LQ++uo2NyO75zYd+gSxKRNkhB0IaZGT/7/GlUVtfym5mr6JCUwM2jC4IuS0TaGAVBGxcXZ9xzzRCqquu48x8fk5IYz8SRPYMuS0TakDZzHYEcXUJ8HL+dNIzzT83m9r8u4fE5GtRGRI6fgiBKJCXEM+XGEVwyMIef//1jHpi1JuiSRKSNUBBEkaSEeP5w/elcPbw7985YyV2vrtDtq0XkmNRHEGUS4uP49bVDSUmM509vr2VvdS3/eeVpxMXp1FIRaZyCIArFxRm/uGoQHZISePCdYvbW1HLPNUNIiNcOoIgcSUEQpcyM2y/tT4ekBH49cxV7q2u5/4vDaZ+o4R5E5NP0EzGKmRnfvrAvP/v8QP758VYmPjSXskrdwlpEPk1BEAO+ek4BD94wglVbKrn6gfdYsWV30CWJSCuiIIgRl5yWy3PfOIvagweZ8Mf3eWtlWdAliUgroSCIIYO6p/HSt0bTKzOFmx+fx5Pvrw+6JBFpBRQEMSY3LZlpXz+Lsf1z+I+XlvHz6cuo1QA3IjFNQRCDUpMSePDLI7h1dAGPv7eeLz30AWUaB1kkZikIYlR8nPHvVwzk/i8OY0npLi773WzeW7st6LJEJAAKghh31fDuTJ98DmntE7jh4Q94YNYaDmr4S5GYoiAQ+uZ0ZPrk0Vw+pBv3zljJrU8WsbOqJuiyRKSFKAgECPUb/G7iMO4cfxrvri7n8t/NZv6GiqDLEpEWoCCQw8yMG8/K57lvnI0ZXPun97nntRXU1OqsIpFoFlEQmFlnM5tpZqvDzxmNLDPMzN43s2VmttjMvlhv3uNmts7MFoYfwyKpR5rGsLx0Xv3uuVw7Io8/vLWW8Q/MYeWWyqDLEpFmEukewe3AG+7eF3gjPN1QFXCju58GjAPuN7P0evN/5O7Dwo+FEdYjTaRjcjvunjCEh24spLxyP5//39lMeWctdepIFok6kQbBeOCJ8OsngKsaLuDuq9x9dfj1J0AZkB3h50oLuXhgDjO+dx5j+mfz36+sYNJDc9mwfW/QZYlIE4o0CHLcfXP49RYg57MWNrORQCKwtl7zL8OHjO4zs6TPWPc2Mysys6Ly8vIIy5YTkdkhiT/dMIJfXzuU5Z/s5pL73uH3b66murYu6NJEpAnYsYYyNLPXgdxGZt0BPOHu6fWW3eHuR/QThOd1Bd4CbnL3ufXathAKhynAWne/81hFFxYWelFR0bEWk2awZdd+/usfH/Pyks2ckp3KL64azFmnZAZdlogcBzOb7+6FDduPuUfg7he5+6BGHi8BW8N/zA/9UW/0lpZm1gl4GbjjUAiE33uzh1QDjwEjT27zpKXkpiXzwPWn89hXz6Cm7iCTHprLD6YtZNue6qBLE5GTFOmhoenATeHXNwEvNVzAzBKBF4En3f35BvMOhYgR6l9YGmE90kLG9OvCzO+fz+Qxffj7ok+48Ndv89T76zmgG9iJtDnHPDT0mSubZQLTgJ7ABuA6d68ws0LgG+5+q5ndQOjX/rJ6q37F3Rea2ZuEOo4NWBheZ8+xPleHhlqXNWWV/PvfljK3uILe2an8ZFx/LhmYQyjfRaS1ONqhoYiCICgKgtbH3Xl9eRl3vbqcteV7OSM/g3+7bACn92y0y0hEAnDSfQQix8PMDp9q+surB7FuWxVf+MN7fPPp+azbptNNRVoz7RFIs9hbXctD7xYz5Z1iqmsPMn5oN745pg99unQIujSRmKVDQxKIssr9PPh2MU9/sIHq2oNcNrgrk8f0YUDXTkGXJhJzFAQSqO17qnlk9jqefH8De6pruWhADpPH9mFYXnrQpYnEDAWBtAq7qg7w+HvreXTOOnbtO0BhrwxuOjufcYNyaRevLiuR5qQgkFZlT3UtUz/cyFNzN7BhexU5nZK4flQvJo3sSXbHo95pREQioCCQVungQeetVWU8/t4G3llVTmJ8HJcP6crEM/I4I78zcXG6FkGkqRwtCBKCKEbkkLg4Y2z/HMb2z2Ft+R6een8Dz88v4cUFpeR1bs8XhvfgmtN70DMzJehSRaKW9gik1amqqWXGsi28ML+UOWu34Q4j8ztzzYjuXDq4K52S2wVdokibpEND0iZ9snMfLy4o5YX5JRRv20u7eOOcPllcOiiXiwfm0jk1MegSRdoMBYG0ae7Owk07eWXJZl5duoWSHfuIMxhVkMmlg3O5eGAOXdPaB12mSKumIJCo4e4s+2Q3ry3dwqtLN7O2PHQLi1NzOnBe32zOOzWbkQWdSW4XH3ClIq2LgkCi1uqtlcxaWcbbq8qZt24HNXUHSW4Xx6iCTM7tm8WogkwGdO1Igq5TkBinIJCYUFVTywfFFby9qpx3VpdTHN5bSE2M5/ReGYzM78wZBZ0ZlpeuPQaJOTp9VGJCSmICY/p3YUz/LkBoaM0P11cwb10FH66r4NczVwHQLt7on9uJwT3SGNI9jcE90jg1p6OubpaYpD0CiSk7q2ooWr+Dog07WFK6k8Ulu6jcXwtAUkIcA7t1YkDXTvTL6Ui/3I70y+lIhs5MkiihQ0MijTh40NlYUcXi0l0sKQkFw4otlezad+DwMtkdk+if25FTsjvQOzuVgqzQo1tae135LG2KDg2JNCIuzsjPSiU/K5Urh3YDQmcllVVWs2JLJau2VLJyayUrt1QyrWgTVTV1h9dNTIgjPzOFXpmp5GWk0COjPXmdU8jr3J4eGSl0SNJ/L2kb9E0VacDMyOmUTE6nZM4/Nftwu7tTXllN8ba9rAs/isv3sn7bXmav3sa+A3Wfep/0lHZ0TWtPt7RkctOS6ZbentxOyXRNTz78/goLaQ30LRQ5TmZGl07JdOmUzJm9Mz81z93ZvreGkh372FRRxaYdVZTu2MfmXfv5ZNd+Ptq4gx1VB454z5TEeHI6JZPdMYmcTsl06ZhEdscksjuEn8OPjJRE4nUYSppJREFgZp2BZ4F8YD1wnbvvaGS5OmBJeHKju18Zbi8ApgKZwHzgy+5eE0lNIkEwM7I6JJHVIemog+3sq6ljy+79bN65j7LKarbu3v9/z7urWVyyk22V1eytqTti3TiDzPD7Z3dMIqtD4hGB0aVjKFA6JSdgptCQ4xdRZ7GZ3QNUuPtdZnY7kOHuP2lkuT3ufsRgtWY2Dfiru081sz8Bi9z9j8f6XHUWSzTbW13Ltj3VlFeGHmWV1Yen67dv21NDTd3BI9ZPSoijS6ckcjqGDj916ZQUPhQVeu6W1p7ctGRdRxGDmuWsITNbCVzg7pvNrCvwlrv3a2S5I4LAQj9ZyoFcd681s7OAn7v75471uQoCkdDhqF37DhwOhvI91ZTtPvS8n627q9laGdrb2FNde8T6WR0SQ30Y6cl0TQt1dPcMd3bnZaSQqv6LqNNcZw3luPvm8OstQM5Rlks2syKgFrjL3f9G6HDQTnc/9A0tAbof7YPM7DbgNoCePXtGWLZI22dmpKckkp6SSN+cjp+57J7qWrbu3s/WcJ/F5p37+GTXPj7ZuZ/i8lBnd8NDUlkdEsnrnEJ+ZiqnZKfSO7sDp2R3oFdmivYmoswxg8DMXgdyG5l1R/0Jd3czO9ruRS93LzWz3sCbZrYE2HUihbr7FGAKhPYITmRdkVjXISmBDuE/5I1xd3ZWHWBjRdXhx6aKKjZsr2Ju8XZeXFB6eNk4gx4ZKfTp0oH+uR0Z0LUTA7p2JD8zVfdzaqOOGQTuftHR5pnZVjPrWu/QUNlR3qM0/FxsZm8Bw4EXgHQzSwjvFfQAShtbX0Sal5mRkZpIRmoiQxvp7N5bXcu6bXtZW76HteWh5zVb9/DOqnJqD4Z+lyUlxNEvtyMDcjsxJC+NoT3S6Z+rm/21BZEeGpoO3ATcFX5+qeECZpYBVLl7tZllAecA94T3IGYBEwidOdTo+iISvNSkBAZ1T2NQ97RPtVfX1rGmbA8rNleyYstulm+uZObyrTxbtAmA5HZxDO4eCoWheemMLOhMTqfkIDZBPkOkncWZwDSgJ7CB0OmjFWZWCHzD3W81s7OBB4GDQBxwv7s/El6/N6EQ6AwsAG5w9+pjfa46i0VaL3dnU8U+FpbsZOHGnSwq2cnS0l1U14bOcCrISuXM3p05s3cmowoyyU1TMLQU3WtIRAJzoO4gyzfv5sN1Fcwt3s4H6yoO3+yvICuVc/pkMqZfF84+JYv2ieqIbi4KAhFpNeoOOss372Zu8XbeX7ud94u3U1VTR2JCHGf1zmRMv2zG9s+hZ2ZK0KVGFQWBiLRa1bV1zFu3gzdXlPHWyjKKt4UGFOrbpQOXDe7KFUO6HvMUWTk2BYGItBnrt+1l1soyZizbwgfrKnCHfjkduXxIVy4b3JU+XRo/DVY+m4JARNqkst37eW3ZFv6xeDPz1odCYUDXTkwY0YOrh3enswYOOm4KAhFp87bu3s+rSzbz4oJSFpXsIjE+josH5nDdGXmM7pOlO7Qeg4JARKLKii27eXbeJl5cUMrOqgN0T2/PhBE9+NKonrpW4SgUBCISlapr65j58VaenbeJ2Wu2kRBnXDGkG7eMLjjiArhYpyAQkai3YfteHpuz/vCwoqMKOnPL6AIuHJCjw0YoCEQkhuzad4Bn523kifc2ULpzH70yU/j6eacwYUQPEhNi995HCgIRiTm1dQd5bdkWHnqnmEUlu+ie3p7JY/swYUQP2sXgzfAUBCISs9ydt1aVc//MVSwq2UWPjPZMHtOHa2IsEBQEIhLz3J23VpZz3+urWBwOhO9fdCpXD+9OXAz0IRwtCGInCkUk5pkZY/p34aVvncOjXykkIyWRf31uEeMfmMOH6yqCLi8wCgIRiTlmxtj+Obz0rXO474tD2banmusefJ9vPj2fjdurgi6vxSkIRCRmxcUZVw/vwZv/egHfv+hUZq0o56LfvM2vXl1O5f4DQZfXYhQEIhLz2ifG892L+jLrhxfw+aHdePDtYsb8z9v8Y/EntMV+1BOlIBARCctNS+bX1w1l+uRz6JqWzORnFnDrE0V8snNf0KU1KwWBiEgDQ3qk8+I3z+aOywbw3trtXPybt3l8zjrqDkbn3oGCQESkEQnxcXztvN788/vncXqvDH7+94+55o/vsWLL7qBLa3IKAhGRz5DXOYUnbx7J/V8cxsaKKq743Wz++NbaqNo7iCgIzKyzmc00s9Xh54xGlhljZgvrPfab2VXheY+b2bp684ZFUo+ISHMwM64a3p3Xf3A+Fw/M4e7XVnD9w3Ojpu8g0j2C24E33L0v8EZ4+lPcfZa7D3P3YcBYoAr4Z71FfnRovrsvjLAeEZFm0zk1kT9cfzr3XDOExSW7uPS37/Ly4s1BlxWxSINgPPBE+PUTwFXHWH4C8Kq7x94VGyISFcyM687I4+XvnEt+VirfeuYjfvTcIvZU1wZd2kmLNAhy3P1QHG4Bco6x/ETgLw3afmlmi83sPjNLOtqKZnabmRWZWVF5eXkEJYuIRK4gK5Xnv3EW3x7bhxc+KuHy373L0tJdQZd1Uo550zkzex3IbWTWHcAT7p5eb9kd7n5EP0F4XldgMdDN3Q/Ua9sCJAJTgLXufuexitZN50SkNflwXQXfnbqAir01/PLqwUwY0SPokhp10jedc/eL3H1QI4+XgK3hP+aH/qiXfcZbXQe8eCgEwu+92UOqgceAkSe6YSIiQRtZ0Jm/f3s0p/fM4IfPLeI/XlpKTe3BoMs6bpEeGpoO3BR+fRPw0mcsO4kGh4XqhYgR6l9YGmE9IiKByOqQxFO3jOS283rz5PsbmPTQXLbu3h90Wccl0iC4C7jYzFYDF4WnMbNCM3v40EJmlg/kAW83WP9pM1sCLAGygF9EWI+ISGAS4uP46WUD+N9Jw1m+eTdX/O9s5q1v/be31sA0IiLNYOWWSr7+VBElO/Zx5/hBfGlUz6BL0sA0IiItqV9uR16aPJrRfbP46YtLuPu1FRxspVcjKwhERJpJWvt2PHxjIV8a1ZM/vrWW7z67kOrauqDLOkJC0AWIiESzhPg4fnnVIPIyUrj7tRVs3b2fKV8eQXpKYtClHaY9AhGRZmZm/MsFp/DbicNYuHEn1/zxPTZVtJ4bLCgIRERayPhh3XnqlpFs21PD1X+Yw+KSnUGXBCgIRERa1KjembzwL2eT3C6eSVPm8kHx9qBLUhCIiLS0Pl068Pw3ziY3LZmbHvuQ2au3BVqPgkBEJAC5ack8+/WzyM9M5eYn5vHG8q2B1aIgEBEJSFaHJKbedib9czvy9afm88qSYMY2UBCIiAQoPSWRP986iqF56Ux+5iNeXFDS4jUoCEREAtYpuR1P3jySM3tn8oNpi5j64cYW/XwFgYhIK5CalMCjXzmD80/N5va/LuGF+S23Z6AgEBFpJZLbxfOnG0ZwTp9MfvT8Il5toT4DBYGISCuS3C6eh24sZHjPDL4zdQFvrfys8b6ahoJARKSVSUkMHSY6NSd0NlFzX3SmIBARaYXS2oc6kHtktOeWJ4pYtGlns32WgkBEpJXK7JDE07eeSUZqO2567ENWbqlsls9REIiItGK5ack8c+uZJCXEcf3DH7B+294m/wwFgYhIK5fXOYWnbx3FwG6d6Jjc9MPIaGAaEZE2oE+Xjjx588hmee+I9gjM7FozW2ZmB83siAGR6y03zsxWmtkaM7u9XnuBmX0Qbn/WzFrPkD0iIjEi0kNDS4EvAO8cbQEziwceAC4FBgKTzGxgePbdwH3u3gfYAdwSYT0iInKCIgoCd1/u7iuPsdhIYI27F7t7DTAVGG9mBowFng8v9wRwVST1iIjIiWuJzuLuwKZ60yXhtkxgp7vXNmhvlJndZmZFZlZUXl7ebMWKiMSaY3YWm9nrQG4js+5w95eavqTGufsUYApAYWGht9TniohEu2MGgbtfFOFnlAJ59aZ7hNu2A+lmlhDeKzjULiIiLaglDg3NA/qGzxBKBCYC093dgVnAhPByNwEttochIiIhkZ4+erWZlQBnAS+b2YxwezczewUg/Gt/MjADWA5Mc/dl4bf4CfADM1tDqM/gkUjqERGRE2ehH+Zti5mVAxtOcvUsYFsTltNWaLtjS6xuN8Tuth/Pdvdy9+yGjW0yCCJhZkXuftSL36KVtju2xOp2Q+xueyTbrXsNiYjEOAWBiEiMi8UgmBJ0AQHRdseWWN1uiN1tP+ntjrk+AhER+bRY3CMQEZF6FAQiIjEupoLgaOMiRBsze9TMysxsab22zmY208xWh58zgqyxOZhZnpnNMrOPw+NkfDfcHtXbbmbJZvahmS0Kb/d/httjYrwPM4s3swVm9o/wdNRvt5mtN7MlZrbQzIrCbSf9PY+ZIDjGuAjR5nFgXIO224E33L0v8EZ4OtrUAv/q7gOBM4Fvhf+No33bq4Gx7j4UGAaMM7MziZ3xPr5L6K4Fh8TKdo9x92H1rh046e95zAQBRxkXIeCamoW7vwNUNGgeT2jMB4jSsR/cfbO7fxR+XUnoj0N3onzbPWRPeLJd+OHEwHgfZtYDuBx4ODwdy+OcnPT3PJaC4GjjIsSKHHffHH69BcgJspjmZmb5wHDgA2Jg28OHRxYCZcBMYC0nMN5HG3Y/8GPgYHj6hMY5acMc+KeZzTez28JtJ/091+D1Mcjd3cyi9rxhM+sAvAB8z913h34khkTrtrt7HTDMzNKBF4H+wVbU/MzsCqDM3eeb2QUBl9PSRrt7qZl1AWaa2Yr6M0/0ex5LewRHGxchVmw1s64A4eeygOtpFmbWjlAIPO3ufw03x8S2A7j7TkK3dz+L8Hgf4VnR+H0/B7jSzNYTOtQ7Fvgt0b/duHtp+LmMUPCPJILveSwFQaPjIgRcU0uaTmjMB4jSsR/Cx4cfAZa7+2/qzYrqbTez7PCeAGbWHriYUP9IVI/34e7/5u493D2f0P/nN939eqJ8u80s1cw6HnoNXAIsJYLveUxdWWxmlxE6phgPPOruvwy2ouZhZn8BLiB0W9qtwM+AvwHTgJ6EbuF9nbs37FBu08xsNPAusIT/O2b8U0L9BFG77WY2hFDnYDyhH3fT3P1OM+tN6JdyZ2ABcIO7VwdXafMJHxr6obtfEe3bHd6+F8OTCcAz7v5LM8vkJL/nMRUEIiJypFg6NCQiIo1QEIiIxDgFgYhIjFMQiIjEOAWBiEiMUxCIiMQ4BYGISIz7/8dGLAQBW+rjAAAAAElFTkSuQmCC\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "cph.predict_log_partial_hazard(df_varying_age).plot()" ] }, { "cell_type": "code", "execution_count": 6, "metadata": {}, "outputs": [ { "data": { "text/plain": [ "" ] }, "execution_count": 6, "metadata": {}, "output_type": "execute_result" }, { "data": { "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXwAAAD4CAYAAADvsV2wAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMCwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy86wFpkAAAACXBIWXMAAAsTAAALEwEAmpwYAAAlwUlEQVR4nO3dd3xUZdr/8c+VRuhSQm8iRQMIyNAhsSSAiIDYsKIrYkNKHtfVdfdRd91V18cAIoqABSsqoqCgQFg3oUNCkS5FkU4UARGk5f79kXF/qEHKTHImM9/36zWvOeXO3NfR4cvhTM415pxDRETCX5TXBYiISNFQ4IuIRAgFvohIhFDgi4hECAW+iEiEiPG6gN9TuXJlV69ePa/LEBEpNnJycr51ziUUtC+kA79evXpkZ2d7XYaISLFhZptPtk+XdEREIoQCX0QkQijwRUQihAJfRCRCKPBFRCKEAl9EJEIo8EVEIkRYBv5zs9azfMter8sQEQkpYRf4+w4e5e2F33DVC3P557Q1HDpy3OuSRERCQtgFfvlSscxIS+L61nUYk7WJbiOymL/xO6/LEhHxXNgFPkC5+Fie7NOMt+9sC8ANYxfw8KQV7P/pqMeViYh4JywD/2cdzqvMZ4OTGJBUn3cXf0OX9CxmrdnldVkiIp4I68AHKBkXzZ+7X8CH93akfMlY7hifzaB3lvLdgcNelyYiUqTCPvB/1rz2OXx8fyeGpjTi05U7SB2WxeRl29CXuItIpIiYwAeIi4licEpDpg7qTJ2KpRg8YRn9x2ezY98hr0sTESl0ERX4P2tUtSwf3NOBv1xxAXM3fkuX9CzeXvgNeXk62xeR8BWRgQ8QHWX071yfGUOSaVarPH/+cAU3jlvA19/+6HVpIiKFImID/2d1KpXirf5teapPM1Zt20+3EVmMzdrEcZ3ti0iYCUrgm1k3M1tnZhvM7KEC9qeZ2Woz+8LMZplZ3WDMGyxmRt82dZiZlkynBgn8Y9oa+rwwl3U7f/C6NBGRoAk48M0sGhgFXA4kAjeYWeKvhi0FfM65C4GJwL8CnbcwVCsfz9hbWzHyhpZs/f4QPUbOZtjMLzlyLM/r0kREAhaMM/w2wAbn3Cbn3BFgAtDrxAHOuc+dcwf9qwuAWkGYt1CYGVc2r8HMtGR6XFiDEbPW02PkbJZ+873XpYmIBCQYgV8T2HLC+lb/tpO5A/j0ZDvNbICZZZtZdm5ubhDKOzsVS8cx7PoWvHKbjx9+OkafF+fx909Wc/DIMc9qEhEJRJF+aGtmNwM+4JmTjXHOjXHO+ZxzvoSEhKIr7iQuPb8qM4YmcVPbOrw85yu6DZ/NvA3fel2WiMgZC0bgbwNqn7Bey7/tF8wsBXgE6OmcK1Z9DcrGx/JE72a8O6Ad0VHGjeMW8tAHX7DvkJqxiUjxEYzAXww0NLNzzSwO6AtMOXGAmbUEXiI/7HcHYU5PtK1fiU8Hd+au5Pq8l72F1PRMZqza6XVZIiKnJeDAd84dAwYC04E1wHvOuVVm9jcz6+kf9gxQBnjfzJaZ2ZSTvFzIi4+N5uHLL2DyfZ2oWDqOAW/kMPDtJXyrZmwiEuIslJuH+Xw+l52d7XUZJ3X0eB6j/7ORkf/eQKkS0Tx6ZSK9W9TEzLwuTUQilJnlOOd8Be2L+DttAxEbHcX9lzVk6qBO1K9cmqHvLucPry1m+141YxOR0KPAD4KGVcvy/t0dePTKRBZs2kOXYVm8sWCzmrGJSEhR4AdJdJRxe8dzmTE0iRa1z+GvH62k79gFfKVmbCISIhT4QVa7YineuKMN/7rmQtbu2E+34VmMztzIseNqzyAi3lLgFwIz4zpfbTLSkrm4cQJPfbqWq16Yx+rt+70uTUQimAK/EFUpF8/om1vxwk0XsWPfIXo+P4dnZ6zj8LHjXpcmIhFIgV/IzIzuzaozc2gyPVvUYOS/N3DFc3PI2axmbCJStBT4RaRC6TjSr2vBa7e35tCR41wzeh6Pf7yKHw+rGZuIFA0FfhG7uHEVpg9N4pZ2dXl17td0HZ7F7PXedQUVkcihwPdAmRIx/K1XU967qz1x0VHc8vIi/vj+cvYdVDM2ESk8CnwPtTm3ItMGd+aei89j0tJtpAzL5LOVasYmIoVDge+x+Nho/tTtfCbf15GEMiW4+80c7n0rh90//OR1aSISZhT4IaJpzfJMHtiRP3ZtTMaa3aSmZzExZyuh3NxORIoXBX4IiY2O4r5LGjBtUGcaVinDA+8vp9+ri9n6/cFT/7CIyCko8ENQgypleO+u9jzeswk5X+c3Yxs/72s1YxORgCjwQ1RUlNGvQz2mD03CV68ij05ZxXUvzWdj7gGvSxORYkqBH+JqVSjF+Ntb8+y1zVm/+wCXj5jNqM83cFTN2ETkDAUl8M2sm5mtM7MNZvZQAftLmNm7/v0LzaxeMOaNFGbG1a1qkZGWTMoFVXhm+jp6j5rLym37vC5NRIqRgAPfzKKBUcDlQCJwg5kl/mrYHcD3zrkGwDDg6UDnjUQJZUvwwk2tGH3zRez+4TC9Rs3lX5+t5aejasYmIqcWjDP8NsAG59wm59wRYALQ61djegHj/csTgctMX/x61ro1rU7G0GT6tKzJC//ZSPfnZpP99R6vyxKREBeMwK8JbDlhfat/W4FjnHPHgH1ApYJezMwGmFm2mWXn5qrHzMmULxXLM9c254072nDkWB7XvjSfRyev5ICasYnISYTch7bOuTHOOZ9zzpeQkOB1OSGvc8MEpg9Jol/7ery+YDNdh2WR+aX+ohSR3wpG4G8Dap+wXsu/rcAxZhYDlAe+C8LcApQuEcNjPZsw8e72xMdG0e+VRaS9t4y9B494XZqIhJBgBP5ioKGZnWtmcUBfYMqvxkwB+vmXrwH+7dQzIOha1a3I1EGdGXhJA6Ys205KeibTVuxQewYRAYIQ+P5r8gOB6cAa4D3n3Coz+5uZ9fQPexmoZGYbgDTgN7+6KcERHxvNA10bM3lgR6qVj+fet5Zw95s57N6vZmwikc5C+ezP5/O57Oxsr8soto4dz2Ps7K8YlvEl8TFR/KVHIte2qoV+QUokfJlZjnPOV9C+kPvQVoInJjqKey4+j88Gd+b8auV4cOIX3PLyIrbsUTM2kUikwI8A9RPKMGFAO/7euylLv/meLsOyeHXuVxxXMzaRiKLAjxBRUcYt7eoyIy2ZtvUr8vjHq7l29Dw27P7B69JEpIgo8CNMzXNK8uptrRl2fXO++vZHuo+Yw8hZ69WMTSQCKPAjkJlxVctazExLpkuTqjw780uuHDmHFVvVjE0knCnwI1jlMiV4/saLGHNLK/b8eIReo+bw5Kdr1IxNJEwp8IUuTaoxMy2Z63y1eSlzE5ePmM3CTboRWiTcKPAFgPIlY3nq6gt5q39bjuXlcf2YBTzy4Qp++Omo16WJSJAo8OUXOjaozPQhSdzR6VzeXvQNXYdl8fna3V6XJSJBoMCX3ygVF8NfeyTywT0dKF0ihttfW8zQd5ex50c1YxMpzhT4clIX1anAJ4M6Meiyhny8fDup6Zl8vHy7mrGJFFMKfPldJWKiSUttxCeDOlGzQknuf2cpd76ewy41YxMpdhT4clrOr1aOSfd04M/dz2f2+lxS0jOZsOgbne2LFCMKfDltMdFRDEg6j+lDkmhSoxwPTVrBTeMWsvm7H70uTUROgwJfzli9yqV5u387/nlVM1Zs3UfX4VmMm71JzdhEQpwCX85KVJRxY9s6zEhLouN5lXli6hr6vDiPdTvVjE0kVCnwJSDVy5dkXD8fI/q2YMueg/QYOZvhGV9y5JiasYmEmoAC38wqmtlMM1vvf65QwJgWZjbfzFaZ2Rdmdn0gc0roMTN6tahJRloy3ZtVZ3jGeq4cOYflW/Z6XZqInCDQM/yHgFnOuYbALAr+rtqDwK3OuSZAN2C4mZ0T4LwSgiqWjmNE35a83M/HvkNHueqFufxj6moOHVEzNpFQEGjg9wLG+5fHA71/PcA596Vzbr1/eTuwG0gIcF4JYZddUJUZaUn0bVOHsbO/otuILOZvVDM2Ea8FGvhVnXM7/Ms7gaq/N9jM2gBxwMbfGTPAzLLNLDs3NzfA8sQr5eJj+edVzXjnznYA3DB2AQ9PWsF+NWMT8Yyd6sYZM8sAqhWw6xFgvHPunBPGfu+c+811fP++6sB/gH7OuQWnU5zP53PZ2dmnM1RC2KEjxxmW8SXjZm+iStl4nujdlJTE3z03EJGzZGY5zjlfQftiTvXDzrmU33nhXWZW3Tm3wx/oBbZVNLNywFTgkdMNewkfJeOi+XP3C7iiWXX+9MEX9H89m57Na/DolYlUKlPC6/JEIkagl3SmAP38y/2Ayb8eYGZxwIfA6865iQHOJ8VY89rnMGVgJ4amNOLTlTtIHZbF5GXb1J5BpIgEGvhPAalmth5I8a9jZj4zG+cfcx2QBNxmZsv8jxYBzivFVFxMFINTGjJ1UGfqVCzF4AnL6D8+mx37DnldmkjYO+U1fC/pGn54O57neHXuV/zfjHXEREXxcPfzuaF1HaKizOvSRIqt37uGrzttxTPRUUb/zvWZMSSZC2uV55EPV3LjuAV8/a2asYkUBgW+eK5OpVK81b8tT/Vpxqpt++k6PIsxWRs5dlztGUSCSYEvIcHM6NumDjPTkuncMIF/TlvL1S/OY+3O/V6XJhI2FPgSUqqVj2fsra14/saWbP3+ED2em0P6zC85fEztGUQCpcCXkGNm9LiwBhlpyVzZvAbPzVpPj+fmsOSb770uTaRYU+BLyKpQOo5h17fg1dta8+PhY1z94jz+9vFqDh455nVpIsWSAl9C3iXnV2H60CRualuHV+Z+RdfhWczd8K3XZYkUOwp8KRbKxsfyRO9mvDugHTFRUdw0biF/mvgF+w6pGZvI6VLgS7HStn4lPh3cmbuTz2Pikq2kpmcyY9VOr8sSKRYU+FLsxMdG89Dl5/PRvR2pVKYEA97I4b63l5D7w2GvSxMJaQp8Kbaa1SrPlIEd+Z/URsxctYvUYZlMWrJVzdhETkKBL8VabHQU91/WkGmDO1G/cmnS3lvO7a8tZtteNWMT+TUFvoSFBlXK8v7dHXj0ykQWbtpDl/RM3pj/NXl5OtsX+ZkCX8JGdJRxe8dzmTE0iYvqVuCvk1fRd8wCNuUe8Lo0kZCgwJewU7tiKV7/Qxv+dc2FrN25n24jZvPif9SMTUSBL2HJzLjOV5uMtGQuaZzA05+tpfcLc1m9Xc3YJHIp8CWsVSkXz0u3+HjxpovYue8wPZ+fw/9NX8dPR9WMTSJPwIFvZhXNbKaZrfc/V/idseXMbKuZPR/ovCJn4vJm1clIS6JXi5o8//kGrnhuNjmb93hdlkiRCsYZ/kPALOdcQ2CWf/1k/g5kBWFOkTN2Tqk4nr2uOeP/0IafjuZxzej5PDZlFT8eVjM2iQzBCPxewHj/8nigd0GDzKwVUBWYEYQ5Rc5acqMEpg9N4tZ2dRk//2u6DMsi68tcr8sSKXTBCPyqzrkd/uWd5If6L5hZFPAs8MCpXszMBphZtpll5+bqD6EUjjIlYni8V1Peu6s9JWKjuPWVRTzw/nL2HVQzNglfpxX4ZpZhZisLePQ6cZzLv6e9oDtd7gWmOee2nmou59wY55zPOedLSEg4rYMQOVut61Vk2qDO3HfJeXy4dBspwzL5bOWOU/+gSDEUczqDnHMpJ9tnZrvMrLpzboeZVQd2FzCsPdDZzO4FygBxZnbAOfd71/tFikR8bDR/7Ho+3ZtV58GJX3D3m0u4vGk1Hu/VhCpl470uTyRognFJZwrQz7/cD5j86wHOuZucc3Wcc/XIv6zzusJeQk2TGuX56L6OPNitMbPW7iY1PYv3s7eoGZuEjWAE/lNAqpmtB1L865iZz8zGBeH1RYpMbHQU917cgE8Hd6ZR1TL8ceIX3PrKIrbsOeh1aSIBs1A+e/H5fC47O9vrMiRC5eU53ly4mac/XYsDHuzamFvb1yMqyrwuTeSkzCzHOecraJ/utBU5iago49b29Zg+NAlfvYo89vFqrntpPht2qxmbFE8KfJFTqFWhFONvb82z1zZn/e4DdB8xm1Gfb+ComrFJMaPAFzkNZsbVrWqRkZZMSmIVnpm+jl7Pz2Xltn1elyZy2hT4ImcgoWwJXripFaNvvojcA4fpNWouT3+2Vs3YpFhQ4IuchW5Nq5MxNJk+LWvy4n820n3EbBZ/rWZsEtoU+CJnqXypWJ65tjlv3NGGI8fzuHb0fP538koOqBmbhCgFvkiAOjdMYPqQJG7rUI83Fmym67AsMtWMTUKQAl8kCEqXiOGxnk2YeHd74mOj6PfKItLeW8beg0e8Lk3kvxT4IkHUqm5Fpg7qzMBLGjBl2XZS0jOZtmKH2jNISFDgiwRZfGw0D3RtzOSBHalWPp5731rC3W/msHv/T16XJhFOgS9SSJrUKM9H93bkocvP5z/rcrksPZP3FqsZm3hHgS9SiGKio7g7+Tw+HdyZC6qX48EPvuCWlxfxzXdqxiZFT4EvUgTqJ5Rhwp3teKJ3U5Zt2UvX4Vm8POcrjufpbF+KjgJfpIhERRk3t6vLjKFJtK1fkb9/spprRs9j/a4fvC5NIoQCX6SI1TinJK/e1prh17fg629/5Irn5vDcrPUcOaZmbFK4FPgiHjAzeresycy0ZLo2rUb6zC/p+fwcvti61+vSJIwp8EU8VLlMCUbe0JKxt/r4/uAReo+ay5PT1qgZmxSKgALfzCqa2UwzW+9/rnCScXXMbIaZrTGz1WZWL5B5RcJNamJVZgxN5vrWtXkpaxOXj5jNgk3feV2WhJlAz/AfAmY55xoCs/zrBXkdeMY5dwHQBtgd4LwiYad8yVie7HMhb/dvy/E8R98xC3jkwxX88NNRr0uTMBFo4PcCxvuXxwO9fz3AzBKBGOfcTADn3AHnnH4JWeQkOjSozPQhSfTvdC7vLPqGLsOy+HytzpEkcIEGflXn3A7/8k6gagFjGgF7zWySmS01s2fMLPpkL2hmA8ws28yyc3PVcVAiU8m4aP7SI5EP7ulA2fgYbn9tMUMmLGXPj2rGJmfvlIFvZhlmtrKAR68Tx7n8+8ULuoskBugMPAC0BuoDt51sPufcGOeczznnS0hIOJNjEQk7LetU4JP7OzP4soZMXbGD1PRMpizfrvYMclZOGfjOuRTnXNMCHpOBXWZWHcD/XNC/O7cCy5xzm5xzx4CPgIuCeAwiYS0uJoqhqY34+P5O1KpQkkHvLOXO13PYpWZscoYCvaQzBejnX+4HTC5gzGLgHDP7+XT9UmB1gPOKRJzzq5Vj0r0deaT7BczZkEtKeiYTFn2js305bYEG/lNAqpmtB1L865iZz8zGATjnjpN/OWeWma0ADBgb4LwiESk6yrgzqT6fDU6iSY1yPDRpBTeOXcjm7370ujQpBiyUzw58Pp/Lzs72ugyRkJSX55iweAtPTlvD0bw8HujSmNs7nkt0lHldmnjIzHKcc76C9ulOW5FiKirKuLFtHWakJdHxvMo8MXUNfV6cx7qdasYmBVPgixRz1cuXZFw/HyP6tmDLnoP0GDmb4Rlfqhmb/IYCXyQMmBm9WtRk5tAkujerzvCM9Vw5cg7Lt+z1ujQJIQp8kTBSqUwJRvRtycv9fOw7dJSrXpjLP6au5tARNWMTBb5IWLrsgqrMSEuib5s6jJ39Fd1GZDFv47delyUeU+CLhKly8bH886pmvHNnOwBuHLuQhyetYL+asUUsBb5ImGt/XiU+G5zEXUn1eXfxN6SmZ5KxepfXZYkHFPgiEaBkXDQPd7+AD+/tSIVScfR/PZv731nKdwcOe12aFCEFvkgEaV77HKYM7ERaaiM+W7mDlPRMJi/bpvYMEUKBLxJh4mKiGHRZQ6YO6kzdSqUZPGEZd4zPZvveQ16XJoVMgS8SoRpVLcsH93Tgrz0Smb/xO7oMy+LNBZvJy9PZfrhS4ItEsOgo445O5zJ9SBLNa5fnLx+t5IaxC/jqWzVjC0cKfBGhTqVSvHlHW56+uhmrd+yn2/AsXsrcyLHjas8QThT4IgLkt2e4vnUdMtKSSWqUwJOfruWqF+axZsd+r0uTIFHgi8gvVC0Xz5hbWvH8jS3ZvvcQV46cw7Mz1nH4mNozFHcKfBH5DTOjx4U1yEhLpmfzGoz89waueG4OOZu/97o0CYACX0ROqkLpONKvb8Grt7fm4OFjXDN6Ho9/vIqDR455XZqchYAD38wqmtlMM1vvf65wknH/MrNVZrbGzJ4zM30tj0gxcUnjKkwfmsTNbevy6tyv6TIsiznr1YytuAnGGf5DwCznXENgln/9F8ysA9ARuBBoCrQGkoMwt4gUkbLxsfy9d1Peu6s9cdFR3PzyQh6cuJx9h9SMrbgIRuD3Asb7l8cDvQsY44B4IA4oAcQC6t4kUgy1Obci0wZ35p6Lz+ODJdtITc9k+qqdXpclpyEYgV/VObfDv7wTqPrrAc65+cDnwA7/Y7pzbk1BL2ZmA8ws28yyc3Nzg1CeiARbfGw0f+p2Ph/d25FKZUpw1xs53PfWEnJ/UDO2UHZagW9mGWa2soBHrxPHufwOTL+5L9vMGgAXALWAmsClZta5oLmcc2Occz7nnC8hIeGMD0hEik6zWuWZMrAjf+zamJmrd5E6LJNJS7aqGVuIijmdQc65lJPtM7NdZlbdObfDzKoDuwsYdhWwwDl3wP8znwLtgdlnUbOIhJDY6Cjuu6QBXZtU5cGJX5D23nKmLN/OP65qRs1zSnpdnpwgGJd0pgD9/Mv9gMkFjPkGSDazGDOLJf8D2wIv6YhI8dSgSlnev7sDj12ZyKKv9tAlPZM35n+tZmwhJBiB/xSQambrgRT/OmbmM7Nx/jETgY3ACmA5sNw593EQ5haREBIdZdzWMb8Z20V1K/DXyavoO2YBm3IPeF2aABbK19p8Pp/Lzs72ugwROQvOOd7P2coTn6zmp2N5DE1pxJ2dzyUmWvd7FiYzy3HO+Qrap//yIlIozIzrfLXJSEvm0sZVePqztfR+YS6rtu/zurSIpcAXkUJVpVw8o29pxYs3XcTOfYfp+fxcnpm+lp+OqhlbUVPgi0iRuLxZdTLSkujdoiajPt/IFc/NJmfzHq/LiigKfBEpMueUiuPZ65oz/g9t+OloHteMns9jU1bx42E1YysKCnwRKXLJjRKYMTSJfu3rMX5+fjO2rC91Z31hU+CLiCdKl4jhsZ5NeP+u9pSIjeLWVxbxwPvL2XvwiNelhS0Fvoh4ylevItMGdea+S87jw6XbSEnP4tMVO079g3LGFPgi4rn42Gj+2PV8pgzsSNVyJbjnrSXc/UYOu/f/5HVpYUWBLyIho0mN8nx0X0ce7NaYf6/bTUp6Ju9nb1EztiBR4ItISImNjuLeixvw6eDONK5Wlj9O/IJbX1nElj0HvS6t2FPgi0hIOi+hDO8OaM/fejVhyebv6To8i9fmfqVmbAFQ4ItIyIqKMm5tX4/pQ5Pw1avIYx+v5rqX5rNht5qxnQ0FvoiEvFoVSjH+9tY8e21zNuQeoPuI2Yz6fANHj+d5XVqxosAXkWLBzLi6VS1mDk0mNbEqz0xfR6/n57Jym5qxnS4FvogUKwllSzDqposYfXMrcg8cpteouTz9mZqxnQ4FvogUS92aViNjaDJXX1STF/+zke4jZrP4azVj+z0KfBEptsqXiuVf1zTnzTvacuR4HteOns9fP1rJATVjK1BAgW9m15rZKjPLM7MCv2HFP66bma0zsw1m9lAgc4qI/FqnhpWZPiSJ2zvW482Fm+mSnsnn63Z7XVbICfQMfyXQB8g62QAziwZGAZcDicANZpYY4LwiIr9QukQMj17ZhIl3d6BUiRhuf3Uxae8u4/sf1YztZwEFvnNujXNu3SmGtQE2OOc2OeeOABOAXoHMKyJyMq3qVmDqoE4MurQBU5ZvJ3VYJlO/2KH2DBTNNfyawJYT1rf6txXIzAaYWbaZZefmqj+2iJy5EjHRpHVpzJSBnaheviT3vb2Eu97IYVeEN2M7ZeCbWYaZrSzgUShn6c65Mc45n3POl5CQUBhTiEiESKxRjg/v7cDDl59P5pe5pKRn8u7ibyL2bD/mVAOccykBzrENqH3Cei3/NhGRQhcTHcVdyeeRmliVhyat4E8frGDK8u08edWF1KlUyuvyilRRXNJZDDQ0s3PNLA7oC0wpgnlFRP6rfkIZJtzZjid6N2X5ln10HZ7Fy3O+4ngENWML9NcyrzKzrUB7YKqZTfdvr2Fm0wCcc8eAgcB0YA3wnnNuVWBli4icuago4+Z2dZkxNIl29Svy909Wc83oeazf9YPXpRUJC+VrWT6fz2VnZ3tdhoiEIecck5dt5/GPV/Hj4eMMvLQBdyefR1xM8b4f1cxynHMF3hdVvI9MROQsmRm9W9YkIy2Zrk2rkT7zS3o+P4cvtu71urRCo8AXkYhWqUwJRt7QkrG3+vj+4BF6j5rLk9PWhGUzNgW+iAiQmliVmWnJXN+6Di9lbaLb8CwWbPrO67KCSoEvIuJXLj6WJ/s04+3+bclz0HfMAh75cAU//HTU69KCQoEvIvIrHRrkN2Pr3+lc3ln0DanpWfx77S6vywqYAl9EpAAl46L5S49EPrinA+VKxvCH17IZMmEpe4pxMzYFvojI72hZpwKf3N+ZISkNmbpiBynpmUxZvr1YtmdQ4IuInEJcTBRDUhrxyf2dqV2xFIPeWcqdr+ewc1/xasamwBcROU2Nq5Vl0j0d+MsVFzBnQy6p6Zm8s6j4NGNT4IuInIHoKKN/5/pMH5JE05rleXjSCm4cu5DN3/3odWmnpMAXETkLdSuV5u072/Jkn2as3JbfjG3c7E0h3YxNgS8icpbMjBva1GFmWjKdGlTmialr6PPiPNbtDM1mbAp8EZEAVSsfz9hbfTx3Q0u27DlIj5GzGTbzS44cy/O6tF9Q4IuIBIGZ0bN5DTLSkunerDojZq2nx8jZLNuy1+vS/kuBLyISRBVLxzGib0te7udj/6Fj9HlhLk98sppDR7xvxqbAFxEpBJddUJWZaUnc0KYO4+Z8RdfhWczb+K2nNSnwRUQKSdn4WP5xVTMmDGhHlMGNYxfy8KQv2O9RM7ZAv+LwWjNbZWZ5ZlbgN6yYWW0z+9zMVvvHDg5kThGR4qZd/Up8OjiJu5Lq8+7iLaSmZ5KxuuibsQV6hr8S6ANk/c6YY8D/OOcSgXbAfWaWGOC8IiLFSsm4aB7ufgEf3deRCqXi6P96NgPfXsK3Bw4XWQ0BBb5zbo1zbt0pxuxwzi3xL/9A/heZ1wxkXhGR4urCWucwZWAnhqY0YvqqnaSmZ/LR0m1F0p6hSK/hm1k9oCWw8HfGDDCzbDPLzs3NLbLaRESKSlxMFINTGjJ1UGfqVS7NkHeXccf4bLbvPVSo854y8M0sw8xWFvDodSYTmVkZ4ANgiHNu/8nGOefGOOd8zjlfQkLCmUwhIlKsNKpalol3d+B/eyQyf+N3dBmWxZsLNpNXSO0ZYk41wDmXEugkZhZLfti/5ZybFOjriYiEi+go4w+dziU1sSoPT1rBXz5ayZTl23nt9taUijtlRJ+R4L5aAczMgJeBNc659MKeT0SkOKpdsRRv3NGG97O3krP5+6CHPQT+a5lXmdlWoD0w1cym+7fXMLNp/mEdgVuAS81smf/RPaCqRUTCkJlxXevaPH3NhYXy+gH9FeKc+xD4sIDt24Hu/uU5gAUyj4iIBE532oqIRAgFvohIhFDgi4hECAW+iEiEUOCLiEQIBb6ISIRQ4IuIRAgrig5tZ8vMcoHNZ/njlQFvv17GGzruyKLjjiync9x1nXMFNiIL6cAPhJllO+cK/FKWcKbjjiw67sgS6HHrko6ISIRQ4IuIRIhwDvwxXhfgER13ZNFxR5aAjjtsr+GLiMgvhfMZvoiInECBLyISIcIu8M2sm5mtM7MNZvaQ1/UUJjN7xcx2m9nKE7ZVNLOZZrbe/1zByxqDzcxqm9nnZrbazFaZ2WD/9rA+bgAzizezRWa23H/sj/u3n2tmC/3v+XfNLM7rWoPNzKLNbKmZfeJfD/tjBjCzr81shf+Lo7L92876vR5WgW9m0cAo4HIgEbjBzBK9rapQvQZ0+9W2h4BZzrmGwCz/ejg5BvyPcy4RaAfc5/9/HO7HDXAYuNQ51xxoAXQzs3bA08Aw51wD4HvgDu9KLDSDgTUnrEfCMf/sEudcixN+//6s3+thFfhAG2CDc26Tc+4IMAHo5XFNhcY5lwXs+dXmXsB4//J4oHdR1lTYnHM7nHNL/Ms/kB8CNQnz4wZw+Q74V2P9DwdcCkz0bw+7YzezWsAVwDj/uhHmx3wKZ/1eD7fArwlsOWF9q39bJKnqnNvhX94JVPWymMJkZvWAlsBCIuS4/Zc2lgG7gZnARmCvc+6Yf0g4vueHAw8Cef71SoT/Mf/MATPMLMfMBvi3nfV7Pfhfiy4hwznnzCwsf+/WzMoAHwBDnHP780/68oXzcTvnjgMtzOwc8r9P+nxvKypcZtYD2O2cyzGziz0uxwudnHPbzKwKMNPM1p6480zf6+F2hr8NqH3Cei3/tkiyy8yqA/ifd3tcT9CZWSz5Yf+Wc26Sf3PYH/eJnHN7gc+B9sA5ZvbzyVu4vec7Aj3N7GvyL9FeCowgvI/5v5xz2/zPu8n/C74NAbzXwy3wFwMN/Z/gxwF9gSke11TUpgD9/Mv9gMke1hJ0/uu3LwNrnHPpJ+wK6+MGMLME/5k9ZlYSSCX/M4zPgWv8w8Lq2J1zDzvnajnn6pH/5/nfzrmbCONj/pmZlTazsj8vA12AlQTwXg+7O23NrDv51/yigVecc//wtqLCY2bvABeT3zJ1F/Ao8BHwHlCH/NbS1znnfv3BbrFlZp2A2cAK/v813T+Tfx0/bI8bwMwuJP9DumjyT9bec879zczqk3/2WxFYCtzsnDvsXaWFw39J5wHnXI9IOGb/MX7oX40B3nbO/cPMKnGW7/WwC3wRESlYuF3SERGRk1Dgi4hECAW+iEiEUOCLiEQIBb6ISIRQ4IuIRAgFvohIhPh/G4lwFGfcNrAAAAAASUVORK5CYII=\n", "text/plain": [ "
" ] }, "metadata": { "needs_background": "light" }, "output_type": "display_data" } ], "source": [ "# compare to _not_ bspline-ing:\n", "cph = CoxPHFitter().fit(rossi, \"week\", \"arrest\", formula=\"fin + age + wexp + mar + paro + prio\")\n", "\n", "age_range = np.linspace(rossi['age'].min(), rossi['age'].max(), 50)\n", "\n", "# need to create a matrix of variables at their means, _except_ for age. \n", "x_bar = cph._central_values\n", "df_varying_age = pd.concat([x_bar] * 50).reset_index(drop=True)\n", "df_varying_age['age'] = age_range\n", "\n", "cph.predict_log_partial_hazard(df_varying_age).plot()" ] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] }, { "cell_type": "code", "execution_count": null, "metadata": {}, "outputs": [], "source": [] } ], "metadata": { "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.7" } }, "nbformat": 4, "nbformat_minor": 2 }