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Abstract  

Although survey data on happiness are increasingly used in economics and are now an official part 

of UK Government data collection, their reliability is a long-standing issue. Two recent studies 

argue that results based on such data might be reversible under certain kinds of monotonically 

increasing transformations of the associated happiness scale (Bond and Lang 2019; Schröder and 

Yitzhaki 2017). These studies raise a widely applicable question about the extent to which 

subjective data can be used for economic research. In response, we make three contributions. First, 

we derive a simple test of whether OLS coefficients can be reversed by relabelling the categories 

with which happiness is reported. In this context, we also deduce bounds for ratios of coefficients 

under any relabelling and discuss the commonalities between reversals in OLS regressions and 

reversals in ordered probit models. Second, we show that respondents would have to be using 

response scales in a strongly non-linear fashion for such reversals to appear. Yet, we point out, the 

existing empirical evidence suggests approximately linear scale use. Third, using several datasets, 

we empirically show that, in practice, sign reversals seem to be exceptionally rare or even 

impossible for a number of core socio-economic variables. Based on these analyses, we suggest 

new robustness tests that may be helpful for future work using subjective data. 
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1 Introduction 

There is now a vast literature on the determinants and consequences of life satisfaction, happiness, 

and subjective wellbeing. Over the last three decades, that literature has investigated a broad set of 

variables, ranging from classical economic variables like income, inflation, or unemployment, to 

more demographic variables like age, childbirth, marriage, or disability. For overviews of this large 

literature, see e.g. MacKerron (2012), Clark (2018), or Nikolova & Graham (2020). On the basis 

of this work, both national governments (e.g. HM Treasury, 2021) and international organisations 

(e.g. OECD, 2020) have begun to incorporate these measures into policy-making.  

Most of this work relies on survey data, specifically questions like “Taking all things together, how 

satisfied are you with your life?”. Typically, answers are recorded using a small number of ordered 

response categories. OLS regressions or ordered probit models are then used to analyse such data. 

In the more prevalent case of OLS regressions, responses are normally recorded in their rank-

order, i.e., assigning a “1” to the 1st response option, a “2” to the 2nd response option, and so on.  

Strikingly, Schröder and Yitzhaki (2017; henceforth S&Y) showed that the signs of coefficients 

from such OLS regressions can sometimes be reversed by relabelling each of the observed 

response categories. For example, while labelling responses in their rank-order (i.e., 1, 2, 3, 4, etc.) 

may yield a positive coefficient for a given variable, applying a labelling in which differences 

between response categories are increasing (e.g., 1, 2, 4, 8, etc.) might yield a negative coefficient. 

Bond and Lang (2019; henceforth B&L) provide a similar result in an ordered probit setting, 

showing that results from such models can almost always be reversed.  

The papers by B&L and S&Y raise an important issue. Their arguments apply to many kinds of 

subjective data and therefore have implications beyond the literature on subjective wellbeing. 

Moreover, subjective data is increasingly used in policy making and collected by national statistical 

agencies (ONS 2021). It is therefore vital to give a comprehensive assessment of the reasons why, 

and the conditions under which, such reversals are possible. This paper provides such an analysis. 

Fundamentally, the issue we tackle has the following intuition: If wellbeing data merely records 

ordinal information, then the difference in underlying wellbeing between (say) the 1st and 2nd 

response category can be arbitrarily larger or smaller than the difference between (say) the 9 th and 

10th response category. In turn, when the effect of some variable 𝑋 is positive in one part of the 

distribution of reported wellbeing, but negative in another, then the sign of the average effect of 

𝑋 can be flipped by rescaling the different parts of the response scale. For example, if the effect 

of 𝑋 were negative at the bottom of the response scale, but positive at the top, we could adopt the 

assumption that differences between response categories are miniscule at the bottom of the scale 

and extremely large at the top. With that assumption, we could obtain a positive average effect of 

𝑋. However, if we were instead to assume that differences between response categories are 

extremely large at the bottom of the scale, but miniscule at the top, we could obtain a negative 

average effect of 𝑋. Thus, so long as the effect of 𝑋 is heterogenous across response categories, 

we can flip the sign of the average effect of 𝑋 by changing our assumptions about how respondents 

interpret the meaning of each response category. Such heterogeneities can plausibly occur for any 

variable, making this a rather general concern about the potential limits of wellbeing data.  

Our first contribution is to show how to test whether such reversals are possible for OLS 

regression coefficients. This test is quite simple and only requires estimating regressions of 
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dummies indicating each possible dichotomisation of the response scale (i.e., dummies indicating 

whether the respondent chose the 1st category, the 2nd or lower category, the 3rd or lower category, 

etc., for all but the top response category). We also derive bounds on ratios of OLS regression 

coefficients for any positive monotonic transformation of how response options are labelled. 

In that part of the analysis we assume that mean wellbeing within each response category does not 

depend on 𝑋. This assumption may be a shortcoming of the otherwise appealing OLS approach. 

However, given the widespread use of OLS in the field, it seems especially important to clarify the 

degree to which estimating such regressions can be informative. Unfortunately, without this 

assumption, reversals are almost always possible. For example, in the case of ordered probit 

models, which do not rely on this assumption, reversals are possible whenever estimated scale 

parameters depend on 𝑋. Practically, this is always the case in large samples.  

As a second contribution, therefore, we demonstrate that for reversals to occur in practice, 

respondents must interpret response scales in a non-linear manner (see Figure 1). In contrast, we 

point out, the available empirical work suggests that respondents interpret response scales as 

approximately linear. Moreover, by analysing data in which happiness is recorded on both a 

continuous and a discrete scale, we present some first evidence indicating that mean wellbeing 

within response categories does not depend on standard socio-economic characteristics. This 

evidence provides some justification for the OLS approach.  

Our third contribution is to present empirical evidence on the possibility and plausibility of 

reversals in life satisfaction data. In most cases, we find that reversals of OLS regressions 

coefficients are impossible. Similarly, reversals of effects estimated by ordered probit typically 

require respondents to use the response scale in a manner that is more non-linear than what is 

suggested by previous works and our evidence. However, we do find that ratios of coefficients, 

which are key for using wellbeing data in e.g. policy-analysis, are affected by relatively mild 

transformations. Hence, it appears that concerns about non-linear response scales are especially 

relevant when comparing magnitudes of effects across variables.  

 

Figure 1. Illustration of linear and non-linear scale use.  

Caption:  We use ℎ𝑟 to denote reported happiness and ℎ𝑡 to indicate underlying happiness (which is not directly 

observed). Linear scale use is shown at the top. An example of non-linear scale use is shown in the bottom. 

Specifically, in the bottom picture, differences between boundaries of response categories (“thresholds”), 

increase by a constant factor equal to 2.718 (i.e. 𝑒). Most of the variables we analyse require that respondents 

use the response scale in a way that is even more non-linear than shown here.   
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Overall, our analyses should be helpful for researchers looking to perform robustness tests in 

response to the questions raised by B&L and S&Y. For that purpose, our supplementary materials 

provide replication files and additional Stata codes to implement tests of whether sign reversals in 

OLS regressions are possible.1 We also provide Stata code to find bounds on ratios of coefficients 

and code that numerically finds reversal conditions for ordered probit and OLS regressions.   

These, and our findings, should inform future work using subjective data.   

1.1 Background 

Before embarking on our analyses, it may help to contextualise the papers by S&Y and B&L into 

the wider literature on the feasibility of measuring and analysing subjective wellbeing.  

The literature standardly distinguishes between affective measures of “happiness” and evaluative 

measures of “life satisfaction”. Sometimes, a third concept of “eudemonic” wellbeing is 

considered, too (Clark and Senik 2011; OECD 2013). We are agnostic about the relative merits of 

these aspects of subjective wellbeing. See e.g. Sumner, (1996) or Kahneman et al. (1997) for 

discussion. There is also some debate on whether these measures capture respondents’ feelings or 

cognitive judgments (Schwarz and Strack 1999). This likely depends on the particular questions 

asked and we are not committed to either view.  

The intensity of these feelings/judgements is only directly accessible to respondents themselves. 

This is why we have to turn to self-reports. We will denote the underlying intensities of these 

feelings/judgements as ℎ𝑡 (“happiness true”) and the rank-order coded self-reports as ℎ𝑟 

(“happiness report”). To simplify our terminology, we will use the term “happiness” in the more 

theoretical sections (sections 2 and 3). However, we emphasise that our analyses also apply to 

other subjectively reported constructs, such as those relating to life satisfaction or subjective health.      

Levels of ℎ𝑡 are typically motivating the analysis of these self-reports. One standard motivation is 

classically utilitarian. A social planner might want to maximise total or average utility and might 

equate people’s utility with their ℎ𝑡. This is a substantive ethical position which has been debated 

at length within economics and philosophy. For discussion, see e.g. Bentham (1789), Sidgwick 

(1874), Broome (1991), Harsanyi (1996), Ng (1997), Adler (2013), or Frijters & Krekel (2021). 

However, even if we are not merely interested in average or total utility, e.g. if we have a prioritarian 

social welfare function (Adler and Holtug 2019; Parfit 1997), or if we think that values other than 

welfare matter, we still want to learn about quantities of ℎ𝑡 as a core consideration in social choice.  

Of course, estimating the probability of responding with a certain response category of ℎ𝑟 carries 

less epistemological baggage. However, for many applications, such analyses seem difficult to 

motivate when not interpreted in terms of being indicative of ℎ𝑡. That said, Bertrand & 

Mullainathan (2001) prominently questioned whether respondents do keep something like ℎ𝑡 in 

their minds, suggesting that respondents might not have stable attitudes about their wellbeing. 

Citing previous work in psychology, they show that the order in which survey questions are posed, 

as well as a survey question’s specific wording can have a strong impact on people’s response 

behaviour. In addition, respondents often seem to exert little effort towards introspection and are 

prone to social desirability biases.  

 
1 See https://osf.io/sv4zb/.  

https://osf.io/sv4zb/
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Since Bertrand & Mullainathan's (2001) work, several studies responded to these issues.2 For 

example, wellbeing reports correlate with regional compensating differentials (Oswald & Wu, 

2010), neural activity (Kong et al. 2015; Urry et al. 2004), age patterns in anti-depressant use 

(Blanchflower and Oswald 2016), and suicide risk (Koivumaa-Honkanen et al. 2001). Self-reported 

wellbeing levels also correlate with third-party assessments of people’s satisfaction (Schneider and 

Schimmack 2009), and responses are strongly autocorrelated, indicating test-retest reliability of the 

underlying measurement (Krueger and Schkade 2008; Lucas and Donnellan 2012; Michalos and 

Kahlke 2010). Moreover, individuals’ (anticipated) self-reported wellbeing, and people’s 

subsequent choices correlate strongly (Adler, Dolan, and Kavetsos 2017; Benjamin et al. 2012; 

2014; Clark, Senik, and Yamada 2017; Perez-Truglia 2015).  

A second type of issue is raised by questions over the comparability of wellbeing data (Adler 2013; 

Diamond 2008; Viscusi 2020). For example, Fleurbaey & Blanchet (2013) argue that questions 

about wellbeing are likely to be answered relative to some reference group. As another example, 

Barrington-Leigh (2021) argues that respondents with different levels of numeracy will differ in 

their reporting style. If so, the meaning of a given response category will not be the same across 

people. Several papers sought to empirically evaluate the importance of this kind of worry, using 

either data on ‘vignettes’ (Angelini et al. 2014; Kapteyn, Smith, and Van Soest 2010; Montgomery 

2017) or people’s memories (Fabian 2021; Kaiser 2022; Odermatt and Stutzer 2019). Although 

these studies often find differences in scale use across people and over time, the differences are 

typically too small to change substantive conclusions. 

Having noted these largely separate issues, and to contain the scope of the paper, we set these 

issues aside for the analysis to follow. Instead, we assume that scale is common across respondents 

and focus on whether self-reported data can be interpreted cardinally.   

Of course, B&L and S&Y are not the only previous works to examine the cardinal interpretation 

of wellbeing data. In a seminal paper, Ferrer‐i‐Carbonell & Frijters (2004) showed that OLS 

regressions, which make use of assumptions about the cardinal information in self-reported data, 

and ordered probit regression, which treat the data as merely ordinal, yield strikingly similar results. 

Their findings provided a justification for the wide-spread use of OLS in applied work on self-

reported wellbeing. Some others have sought to give more direct empirical arguments in favour of 

a cardinal interpretation of wellbeing data. Those papers include Van Praag (1991), Layard et al. 

(2007), Oswald (2008), and Kristoffersen (2017) and are reviewed in section 4.  

Providing complementary takes on the matter, there are a few other reactions to B&L’s and S&Y’s 

arguments. Bloem & Oswald (2021) and Chen et al. (2019) propose to focus on the median instead 

of the mean, pointing out that rankings of medians are invariant against all positive monotonic 

transformations of the underlying data. Bloem (2021) empirically shows that signs of estimates 

reported in several previous works using ordinal scales are robust to a range of convex and concave 

transformations. Finally, Liu & Netzer (2020) show how identification of rankings of mean 

happiness in two groups can be achieved with data on response times.  

 

 

 
2 This is not to say that there is no work on the validity of such data prior to this. Indeed, even in Easterlin's classic 
work from 1974, significant attention is given to these questions (see e.g. p.96-99 of his paper).  
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1.2 Outlook 

In Section 2, we start with a concrete example of a reversal of an OLS regression coefficient. We 

then explain why this reversal occurs. Thereafter, we provide a general condition with which to 

test whether reversals of OLS regression coefficients are possible.  

Section 3 first explores the general implications of allowing mean wellbeing to vary within each 

response category. Building on B&L, we subsequently analyse reversals of marginal effects in 

ordered probit models. We show that although ordered probit reversals are always possible, they 

depend, like OLS, on assuming that respondents interpret response scales in a non-linear manner.  

In section 4, we then present evidence to suggest that respondents interpret response scales in a 

roughly linear fashion and show that mean wellbeing within response categories does not appear 

to strongly vary with standard socio-economic variables (which, as shown in section 2, turns out 

to be an assumption that can motivate the OLS approach).  

Section 5 provides empirical evidence on the possibility and plausibility of reversals in life 

satisfaction data. We primarily use the German Socio-Economic Panel (SOEP). In the SOEP, life 

satisfaction is recorded with 11 possible response categories. B&L’s analyses rely on questions with 

only three to seven response categories, which are less common in current empirical work. Such 

shorter scales are often viewed as being less informative than 10- or 11-point scales (OECD 2013). 

It is thus particularly useful to study whether plausible reversals can be obtained with such more 

typical data.  

A final section concludes.  

2 Reversals of OLS regression coefficients 

2.1 Intuitions based on a special case 

In this section we first give an example in which an OLS regression coefficient is reversed. We 

then explain why this reversal occurs. Our example is based on a simple special case, using 

aggregate data, only three response categories, and a single explanatory variable. In section 2.2 we 

generalise our analysis to questions with arbitrarily many response options and any number of 

individual-level covariates.  

Here, we use responses to the question “Taken all together, how would you say things are these days – would 

you say that you are very happy, pretty happy, or not too happy?”. These are taken from the 1972–2006 

biannual waves of the GSS. We regress these responses on yearly real log GDP per capita. 

Specifically, we begin by labelling the three response categories of the happiness question in their 

rank-order, i.e. with a 1 for “not too happy”, a 2 for “pretty happy”, and a 3 for “very happy”. Labelling 

response categories in this manner is almost universally adopted in the literature that uses OLS 

regressions of such data. Column (1) of Table 1 shows that such a regression of rank-order coded 

reported happiness on log GDP per capita yields a negative but insignificant coefficient.3  

However, if our data only contains ordinal information, we can also use any other positive 

monotonic transformation of this variable. For example, we could (say) assign a 1 to the 1st 

 
3 This could be interpreted as supporting the “Easterlin Paradox”, which states that there are no long-term effects of 
changes in GDP per capita on mean happiness. However, tests of the paradox would require us to account for business 
cycle fluctuations. See Easterlin & O’Connor (2020), Kaiser & Vendrik (2019), and Stevenson & Wolfers (2008b) for 
discussion. The data used here is also used by B&L and is based on replication data by Stevenson & Wolfers (2008a). 
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response category (“not too happy”), a 2.6 to the 2nd response category (“pretty happy”), and a 3 

to the 3rd response category (“very happy”). Column (2) shows that a regression of the mean of 

such a concave transformation of reported happiness yields a positive coefficient. Hence, we 

obtain a reversal of the estimated OLS coefficient. Why does this occur? 

To explain this, we need some notation. Let ℎ𝑟𝑖𝑡 be respondent 𝑖’s rank-order-coded happiness in 

year 𝑡. Here, we assign a 1 to the first category, a 2 to the second category, and a 3 to the third 

category. Let ℎ�̃�𝑖𝑡 = 𝑓(ℎ𝑟𝑖𝑡) be some positive monotonic transformation of ℎ𝑟𝑖𝑡 and let 𝑙 =

(𝑙1, 𝑙2, 𝑙3) denote a “labelling scheme”, which records how each response category is coded. Each 

labelling scheme 𝑙 corresponds to a particular transformation 𝑓 (i.e. the elements in 𝑙 are the image 

of 𝑓). For example, for rank-order coded reported happiness ℎ𝑟𝑖𝑡, as shown in column (1) of Table 

1, we had 𝑙 = (1, 2, 3). Hence, in this case 𝑓 is just the identity function. For the concave 

transformation in column (2) we had 𝑙 = (1, 2.6, 3), in which case 𝑓 is concave.  

In columns (1) and (2) we estimated regressions of the form: 

ℎ�̃�𝑡 = 𝛼 + 𝛽𝑦𝑡 + 𝜀𝑖𝑡 (1) 

Here, ℎ�̃�𝑡 denotes the yearly sample average of ℎ�̃�𝑖𝑡, i.e. ℎ�̃�𝑡 = 𝑁𝑡
−1 ∑ ℎ�̃�𝑖𝑡𝑖 = 𝑁𝑡

−1 ∑ 𝑓(ℎ𝑟𝑖𝑡)𝑖 , 

where 𝑁𝑡 records the number respondents in year 𝑡. Yearly log GDP per capita is denoted by 𝑦𝑡.  

We can decompose mean reported happiness as the sum of shares in each response category times 

the label we attach to each response category. Let 𝑠𝑘𝑡 denotes the share of respondents in the 𝑘th 

response category. We can then write: 

ℎ�̃�𝑡 = 𝑠1𝑡𝑙1 + 𝑠2𝑡𝑙2 + 𝑠3𝑡𝑙3, (2) 

Differentiating equations (1) and (2) with respect to 𝑦𝑡, we get:  

𝛽 =
𝑑ℎ�̃�𝑡

𝑑𝑦𝑡
=

𝑑𝑠1𝑡

𝑑𝑦𝑡
𝑙1 +

𝑑𝑠2𝑡

𝑑𝑦𝑡
𝑙2 +

𝑑𝑠3𝑡

𝑑𝑦𝑡
𝑙3 (3) 

Since the sum of all derivatives in equation (3) must equal 0 (as 𝑠1𝑡 + 𝑠2𝑡 + 𝑠3𝑡 = 1), we can 

rewrite this as: 

Table 1. An example of reversing an OLS regression coefficient using GSS data.  

 (1) (2) 
 Yearly mean of  

rank-order coded  
reported happiness  

Yearly mean of  
concave transformation of  

reported happiness  

Log GDP per capita -0.028 
(0.029) 

0.019 
(0.031) 

Constant 2.200*** (0.006) 2.535*** (0.006) 

Observations 26 26 

Note: Results from an OLS regression of mean rank-order reported happiness (column 1) and an OLS regression 
of the mean of a concave transformation of reported happiness (column 2). Specifically, in column (1), the first 

response category is labelled with a 1, the second category with a 2 and the third category with a 3. In column 

(2), the first response category is labelled with a 1, the second category with a 2.6 and the third category with a 

3. Yearly means of both variables are regressed on yearly log GDP per capita. Data are from the 1972–2006 
waves of the GSS, as provided in the replication files of Stevenson & Wolfers  (2008a). Standard errors in 
parentheses. * p < 0.10, ** p < 0.05, *** p < 0.01.  
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𝛽 =
𝑑ℎ�̃�𝑡

𝑑𝑦𝑡
= (𝑙1 − 𝑙2)

𝑑𝑠1𝑡

𝑑𝑦𝑡
+ (𝑙2 − 𝑙3)

𝑑(𝑠1𝑡 + 𝑠2𝑡)

𝑑𝑦𝑡

(4) 

Here, the expression 𝑑(𝑠1𝑡 + 𝑠2𝑡) 𝑑𝑦𝑡⁄  denotes the derivative of the cumulative response share 

of the first and second response category (i.e. 𝑠1𝑡 + 𝑠2𝑡)  with respect to 𝑦𝑡.  

The terms 𝑙1 − 𝑙2 and 𝑙2 − 𝑙3 are negative for all positive monotonic transformations of ℎ𝑟. 

Hence, if both derivatives in equation (4) are positive, the effect of 𝑦𝑡 on mean reported happiness 

will remain negative for all positive monotonic transformation of ℎ𝑟. However, if the two 

derivatives do not share the same sign, the sign of 𝛽 will depend on the relative magnitudes of the 

two derivatives and the relative magnitudes of 𝑙1 − 𝑙2 and 𝑙2 − 𝑙3. By setting equation (4) to zero 

and rearranging, we can see how much smaller the magnitude of 𝑙3 − 𝑙2 needs to be than the 

magnitude of 𝑙1 − 𝑙2 in order to achieve a reversal of 𝛽:  

𝑙3 − 𝑙2

𝑙2 − 𝑙1
= −

𝑑𝑠1𝑡 𝑑𝑦𝑡⁄

𝑑(𝑠1𝑡 + 𝑠2𝑡) 𝑑𝑦𝑡⁄
(5) 

In Appendix Table A3, we estimate 𝑑𝑠1𝑡 𝑑𝑦𝑡⁄  and 𝑑(𝑠1𝑡 + 𝑠2𝑡) 𝑑𝑦𝑡⁄  using OLS regressions of 

𝑠1𝑡 and of 𝑠1𝑡 + 𝑠2𝑡 on 𝑦𝑡. We estimate that 𝑑𝑠1𝑡 𝑑𝑦𝑡⁄ = −0.025 and 𝑑(𝑠1𝑡 + 𝑠2𝑡) 𝑑𝑦𝑡⁄ =

0.054. These results imply that when the difference between the 2nd and 3rd response category is 

smaller than difference between the 1st and 2nd category by a factor equal to 0.025/0.054 ≈ 0.46,  

a reversal of the OLS regression coefficient will occur. Thus, as shown in column (4) of Appendix 

Table A3, a concave transformation that assigns a 1 to the 1st category, a 2.37 to the 2nd category, 

and a 3 to the 3rd category yields a coefficient of zero (since (3 − 2.37)/(2.37 − 1) ≈ 0.46). 

However, since our estimate of 𝑑𝑠1𝑡 𝑑𝑦𝑡⁄  is statistically insignificant (with 𝑝 = 0.149), a 

statistically significant reversal is not feasible.  

Finally, notice that 𝑑(𝑠1𝑡 + 𝑠2𝑡) 𝑑𝑦𝑡⁄ = − 𝑑𝑠3𝑡 𝑑𝑦𝑡⁄ . Therefore, an increase in the cumulative 

shares of the 1st and 2nd response category entails a decline of the share of the 3rd response category. 

Since increases in GDP per capita moved some respondents from the 1st to the 2nd response 

category, some “not too happy” people became “pretty happy” (i.e. happier). Conversely, because 

increases in GDP per capita also moved some respondents from the 3rd to the 2nd response 

category, some “very happy” people became “pretty happy” (i.e. less happy). In that sense, the sign 

of the effect of GDP per capita on happiness is heterogeneous across the distribution of reported 

happiness. This may be seen as the underlying cause of the possibility of sign reversals.4 

2.2 A non-reversal condition for OLS regressions 

Building on the intuition of the preceding section, we now state a general non-reversal condition for 

OLS regression coefficients. This non-reversal condition applies to individual-level data for discrete 

dependent variables, and in settings where an arbitrary number of controls is included. Although 

we continue with our notation in terms of ℎ�̃�𝑖 and continue to refer to it as transformed reported 

happiness, the condition is a statement about OLS regressions of discrete variables generally and 

 
4 S&Y and B&L emphasize violations of first-order stochastic dominance (“FOSD”) between groups (cf. S&Y’s 
Condition 1 and B&L’s Section 2) as the root cause of the possibility of reversals. It is therefore worth noting that 
heterogeneity in the signs of derivatives on the (cumulative) response shares is equivalent to a violation of first-order 
stochastic dominance (FOSD) in the cumulative categories between groups with low or high per capita GDP.  
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is not specific to happiness data. Section 2.3 discusses the additional assumptions needed to apply 

this condition to happiness data.  

To fix notation, consider the following individual-level regression equation: 

ℎ�̃�𝑖 = 𝑿𝑖𝜷 + 𝜀𝑖 , (6) 

Here, 𝑿𝑖 is a 1 × 𝑀 vector of explanatory variables with the first element set to 1 (to record a 

constant), and 𝜷 is a 𝑀 × 1 vector of coefficients. Let �̂� be the OLS estimate of 𝜷 in equation 

(6). We are interested in learning whether each element �̂�𝑚 of �̂� has the same sign for every 

positive monotonic transformation ℎ�̃�𝑖 of ℎ𝑟𝑖.  

To do so, define the dummies ℎ𝑑𝑘,𝑖 ≡ 𝟙(ℎ𝑟𝑖 ≤ 𝑘), where 𝑘 indexes the ordered response 

categories, and consider the following regression equation: 

ℎ𝑑𝑘,𝑖 = 𝑿𝑖𝜷𝑘
(𝑑)

+ 𝜀𝑘,𝑖
(𝑑) (7) 

Let �̂�𝑘
(𝑑)

 be the OLS estimate of 𝜷𝑘
(𝑑)

 in equation (7). We assume that all permissible labelling 

schemes have strictly increasing labels. More formally:  

Assumption A1. A labelling scheme 𝑙 = (𝑙1, 𝑙2, . . . , 𝑙𝐾) to record transformed reported 

happiness ℎ�̃�𝑖 is permissible if and only if 𝑙1 < 𝑙2 <. . . < 𝑙𝐾 . Equivalently, only monotonically 

increasing transformations 𝑓 are permissible.  

This assumption is motivated by the idea that although happiness reports may not record 

happiness cardinally, these reports nevertheless record happiness in an ordinal sense. We can now 

state our non-reversal condition:  

Proposition 1 (non-reversal condition). Given Assumption A1, all but the first element of 

�̂� obtained from a regression of ℎ�̃�𝑖 on 𝑿𝑖 will have the same sign for all permissible 

labellings schemes if and only if the corresponding elements of �̂�𝑘
(𝑑)

 have the same sign for 

all 𝑘 = 1,2, … . , 𝐾 − 1. 

A proof of Proposition 1 is given in Appendix A. A key part of the proof is that for any particular 

explanatory variable 𝑋𝑚, the associated estimated OLS coefficients �̂�𝑚 can be written as a sum 

over �̂�𝑘,𝑚
(𝑑)

. Specifically, it turns out that �̂�𝑚 = ∑ (𝑙𝑘 − 𝑙𝑘+1)�̂�𝑘,𝑚
(𝑑)𝐾−1

𝑘=1 .  

Substantively, the non-reversal condition allows us to test whether the sign of the estimated OLS 

coefficient �̂�𝑚 of some explanatory variable 𝑋𝑚 remains the same under every labelling scheme. 

All we need to do is to estimate 𝐾 − 1 regressions of ℎ𝑑𝑘,𝑖 and observe whether the corresponding 

coefficients �̂�𝑘,𝑚
(𝑑)

 on 𝑋𝑚 all carry the same sign. If they do, reversals are impossible.  

Intuitively, the dummies ℎ𝑑𝑘,𝑖 are the individual-level analogues to the cumulative response shares 

of section 2.1. Likewise, estimates �̂�𝑘,𝑚
(𝑑)

 are the individual-level counterparts to the estimated 

derivatives d𝑠1,𝑡/d𝑦𝑡 and 𝑑(𝑠1𝑡 + 𝑠2𝑡)/d𝑦𝑡 in section 2.1. When not all �̂�𝑘,𝑚
(𝑑)

 share the same sign 

across 𝑘, the conditional association of ℎ𝑟𝑖 with 𝑋𝑚 is heterogeneous across response categories. 

Hence, as in section 2.1, such heterogeneities are the cause of the possibility of sign reversals.  
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For the special case where Equation (6) includes only a single explanatory variable, S&Y also 

provide a sufficient condition for the possibility of a sign reversal. Their condition is stated in 

terms of “Line of independence Minus Absolute concentration” curves (“LMA”; see Definitions 1 and 2 

in Yitzhaki 1990), showing that if the LMA curve of ℎ𝑟 with respect to a single explanatory variable 

𝑋 does not intersect 0, no reversals of estimated OLS regression coefficients are possible. 

Although S&Y hint at the possibility of extending their approach to multivariable regressions, they 

do not provide an explicit non-reversal condition in this setting. Following S&Y’s suggestion for 

future research (p. 342), our non-reversal condition fills this gap.  

Finally, for the special case of comparing two groups 𝐴 and 𝐵 our non-reversal condition can be shown 

to reduce to the condition ∑ 𝑠𝐴,𝑞
𝑘
𝑞=1 < ∑ 𝑠𝐵,𝑞

𝑘
𝑞=1  or ∑ 𝑠𝐴,𝑞

𝑘
𝑞=1 > ∑ 𝑠𝐵,𝑞

𝑘
𝑞=1  for all 𝑘 = 1, … , 𝐾 −

1, where 𝑠𝐴,𝑞 and 𝑠𝐵,𝑞 respectively denote observed shares in groups 𝐴 and 𝐵 in category 𝑞. This 

condition is just a statement of first-order stochastic dominance (FOSD) in the cumulative 

distribution functions of ℎ𝑟 between these groups. That rankings of means between groups are 

invariant under all positive monotonic transformations whenever FOSD holds is well known (e.g. 

Hadar and Russell 1969). Our non-reversal condition simply restates the need for FOSD in a 

multivariable OLS setting.  

2.3 OLS-based reversals of effects on underlying happiness  

The non-reversal condition is merely a statement about the properties of OLS regression coefficients. 

In order to make a stronger statement about whether our data can identify the effects of 

explanatory variables on underlying happiness ℎ𝑡𝑖 we need two additional assumptions.  

As in the introduction, let ℎ𝑡𝑖 denote the unobservable cardinal quantity of underlying happiness, 

that we are ultimately interested in. A key assumption is then the following: 

Assumption A2. There exists some permissible labelling scheme 𝑙 or, equivalently, some 

permissible transformation 𝑓 of rank-order coded ℎ𝑟𝑖, such that ℎ𝑡𝑖 = 𝑓(ℎ𝑟𝑖) + 𝜁𝑖 = ℎ�̃�𝑖 +

𝜁𝑖 with E(𝜁𝑖|𝑿𝑖) = 0.   

This kind of assumption is rarely made explicit among studies that do use OLS. For a notable 

exception, see e.g. Layard et al. (2007). Substantively, Assumption A2 maintains that there is some 

set of labels for reported happiness so that underlying happiness ℎ𝑡𝑖 is proxied by ℎ�̃�𝑖 with a 

measurement error 𝜁𝑖 that is mean-independent of 𝑿𝑖. As shown in Appendix A2, Assumption 

A2 is satisfied whenever E(ℎ𝑡𝑖|ℎ𝑟𝑖 = 𝑘; 𝑿𝑖) = E(ℎ𝑡𝑖|ℎ𝑟𝑖 = 𝑘) holds (but not vice versa). 

Substantively, this stricter condition states that mean ℎ𝑡𝑖 within each response category does not 

depend on 𝑿𝑖. Section 4 will provide a tentative test of this stricter condition. 

Additionally, we need a standard assumption adopted in much empirical research:  

Assumption A3. Underlying happiness ℎ𝑡𝑖 is linearly related to 𝑿𝑖 i.e., ℎ𝑡𝑖 = 𝑿𝑖𝜷 +  𝜂𝑖, 

where 𝐸(𝜂𝑖|𝑿𝑖) = 0. 

Variants of Assumption A3 are standardly made in empirical research – both within and beyond 

the literature on subjective wellbeing. Nevertheless, although a linear specification can be quite 

flexible in the sense of allowing for an arbitrary number of covariates, including interactions and 
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higher-order terms, this assumption may not always be met. It may therefore be a useful avenue 

for future research to extend the present analysis to non-linear models. 

With these assumptions in place, we can state the following: 

Proposition 2. Given Assumptions A1-A3, and whenever the conditional of the non-reversal 

condition holds, the sign of the effect of any variable 𝑋𝑖,𝑚 in 𝑿𝑖 on underlying happiness ℎ𝑡𝑖 

is unbiasedly and consistently estimated by an OLS regression of any permissible labelling 

scheme of ℎ�̃�𝑖 on 𝑿𝑖. 

Proposition 2 follows from the linearity of the expectation operator and our assumptions about 

𝜂𝑖 and 𝜁𝑖. A proof is given in Appendix A2. Substantively, Proposition 2 makes clear that, under 

some assumptions, ordinal data on self-reported happiness can indeed be used to study the sign 

of effects of explanatory variables on underlying happiness.  

2.4 Bounds on ratios of OLS coefficients 

When assessing the substantive implications of estimates – especially regarding the relative 

importance of effects of explanatory variables – we are often more interested in ratios of estimated 

coefficients than in their magnitude. For example, the estimation of shadow prices (Bertram and 

Rehdanz 2015; Levinson 2012; Luechinger 2009) or equivalence scales (Biewen and Juhasz 2017; 

Borah, Keldenich, and Knabe 2019; Rojas 2007) principally relies on ratios of coefficients. As 

noted in e.g. Frijters et al. (2020), using wellbeing data for policy analysis also requires making 

comparisons across coefficient magnitudes.    

Unfortunately, when effects are not perfectly homogenous across the distribution of reported 

happiness, ratios of coefficients are affected by positive monotonic transformations of reported 

happiness. Specifically, consider any two coefficients from the vector �̂�, say �̂�𝑚 and �̂�𝑛, which 

correspond to explanatory variables 𝑋𝑚 and 𝑋𝑛. We can then state the following two propositions: 

Proposition 3. Given Assumption A1, the ratio �̂�𝑚/�̂�𝑛 = 𝜌 obtained from an OLS 

regression of ℎ�̃�𝑖 is the same for all permissible labelling schemes of ℎ�̃�𝑖 if the corresponding 

ratios �̂�𝑘,𝑚
(𝑑)

/�̂�𝑘,𝑛
(𝑑)

 take the same value for all 𝑘 = 1, … , 𝐾 − 1. 

As will become clear in section 5, the conditional of Proposition 3 is practically never satisfied, 

meaning that ratios of coefficients are almost always affected by changing how reported happiness 

is labelled. However, we can bound how much this ratio will vary: 

Proposition 4. Given Assumption A1, the infimum of the ratio �̂�𝑚/�̂�𝑛 across all permissible 

labelling schemes for ℎ�̃�𝑖 is given by the smallest of all estimated ratios �̂�𝑘,𝑚
(𝑑)

/�̂�𝑘,𝑛
(𝑑)

 . Vice 

versa, the supremum of �̂�𝑚/�̂�𝑛 across all permissible labelling schemes for ℎ�̃�𝑖 is given by 

the largest estimated ratio �̂�𝑘,𝑚
(𝑑)

/�̂�𝑘,𝑛
(𝑑)

.  

Both propositions follow from the fact that �̂�𝑚 = ∑ (𝑙𝑘 − 𝑙𝑘+1)�̂�𝑘,𝑚
(𝑑)𝐾−1

𝑘=1 . Proofs are given in 

Appendix A. Practically, Proposition 4 enables evaluating the relative impact of explanatory 

variables on happiness across all positive monotonic transformations of ℎ�̃�𝑖. We illustrate this in 

section 5.2. 
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2.5 OLS reversals using exponential transformations  

The technique used to achieve reversals in our proof of the non-reversal condition makes use of highly 

irregular labelling schemes. A more regular approach to obtaining reversals is to impose that the 

differences between adjacent response categories grow or decline by some constant multiplicative 

factor 𝑤 > 0. To do so, set 𝑙2 − 𝑙1 = 1 and impose that (𝑙𝑘+2 − 𝑙𝑘+1)/(𝑙𝑘+1 − 𝑙𝑘) = 𝑤 for 𝑘 =

1, … , 𝐾 − 1. Since �̂�𝑚 = ∑ (𝑙𝑘 − 𝑙𝑘+1)�̂�𝑘,𝑚
(𝑑)𝐾−1

𝑘=1 , we can then write �̂�𝑚 as a polynomial with 

coefficients �̂�𝑘,𝑚
(𝑑)

: 

�̂�𝑚 = ∑ −𝑤𝑘−1�̂�𝑘,𝑚
(𝑑)

𝐾−1

𝑘=1
. (8) 

For 𝑤 < 1 differences between adjacent categories decline and for 𝑤 > 1 differences increase. By 

Descartes’ Rule of Signs (Weisstein 2021a), when �̂�𝑘,𝑚
(𝑑)

 switches signs once across all 𝑘, equation 

(8) will be guaranteed to be zero for exactly one unique value of 𝑤.5 Our empirical results of 

section 5 indicate that this is the prevalent case whenever any sign switches occur.  

For 𝑤 > 1, a labelling scheme like that used in equation (8) can be obtained with the convex 

transformation ℎ�̃� = 𝑓(ℎ𝑟) = 𝑒𝑐ℎ𝑟 where 𝑐 is a positive constant. For 𝑤 < 1, a concave 

transformation of the form ℎ�̃� = 𝑓(ℎ𝑟) = −𝑒𝑐ℎ𝑟 , where 𝑐 is a negative constant, can be used. In 

both cases, we have 𝑤 = 𝑒𝑐.6 In an ordered probit context, B&L use the same transformations, 

facilitating the comparison between the ordered probit and the OLS approach.  

Of course, these are not the only kinds of transformation that one might consider. For example, 

transformations of the form ℎ�̃� = ℎ𝑟𝑐 would also yield a positive monotonic transformation that 

is either concave (for 0 < 𝑐 < 1) or convex (for 𝑐 > 1). However, such transformations would 

not be guaranteed to yield a reversal for some 𝑐.  

Transformations that are neither globally concave nor globally convex are possible, too. For 

example, Ng (2008) suggests that the boundedness of response scales may lead respondents to 

adopt scales in which differences in happiness between categories are large for top and bottom 

response categories, but small for categories in the middle. In other words, ℎ𝑡 may be concave for 

low ℎ𝑟 but convex for high ℎ𝑟. In contrast, Kristoffersen (2010) suggests the opposite, i.e. 

transformations in which differences in happiness between categories are small for extreme 

response options, but large for response categories in the middle. In principle, when there are at 

least two sign switches of �̂�𝑘,𝑚
(𝑑)

 across 𝑘, such transformations with an inflection point could lead 

to simpler reversals of coefficient signs than are feasible with an exponential transformation. 

However, our empirical results of section 5 show that this never occurs in the SOEP data. Instead, 

we see at most one sign switch in �̂�𝑘,𝑚
(𝑑)

 across 𝑘. In such cases with a single sign flip, any 

transformation with an inflection point would be more extreme than a transformation that is either 

 
5 Descartes’ Rule of Signs generally states that the number of positive real roots of this equation is either equal to the 

number of times �̂�𝑘,𝑚
(𝑑)

 switches sign across 𝑘 or less than that by an even number. Hence, when the number of sign 

switches of �̂�𝑘,𝑚
(𝑑)

 is even, no positive real root might exist. Moreover, roots of polynomials with degree higher than 

four cannot in general be found analytically (Weisstein 2021c). In these cases we search for roots numerically. 
6 Since (𝑒𝑐(𝑘+2) − 𝑒𝑐(𝑘+1))/(𝑒𝑐(𝑘+1) − 𝑒𝑐𝑘) = 𝑒𝑐(𝑒𝑐(𝑘+1) − 𝑒𝑐𝑘)/(𝑒𝑐(𝑘+1) − 𝑒𝑐𝑘) = 𝑒𝑐. 
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globally concave or globally convex. For this reason, and to contain the length of the paper, we 

focus on exponential transformations.  

3 Relaxing Assumption A2 and reversals based on ordered probit 

As in noted in section 2.3, OLS regressions of happiness data can be motivated on the basis of 

Assumption A2. This assumption may not always be met. We therefore analyse the consequences 

of relaxing this assumption. Section 3.1 discusses the general implications of doing so and notes 

that even when scale use is linear, reversals of rankings of means between two groups remain 

possible. Section 3.2 discusses how reversals in ordered probit models – which do not rely on 

Assumption A2 – are obtained. In that section we also compare the OLS and ordered probit 

approach, showing that reversals in ordered probit models also require that respondents use 

response scales in a non-linear manner. 

3.1 Relaxing Assumption A2  

Assumption A2 may be seen as restrictive. To analyse the consequences of relaxing this 

assumption, we can replace assumption A2 by a weaker assumption:  

Assumption A4. There exists a collection of thresholds 𝜾 such that ℎ𝑟𝑖 = 𝑘 ↔ 𝜄𝑘−1 < ℎ𝑡𝑖 ≤

𝜄𝑘 , where 𝜄0 < 𝜄1 <. . . < 𝜄𝐾+1. 

Here, 𝜄𝑘 are thresholds that a respondent’s level of underlying happiness ℎ𝑡𝑖 needs to cross in order 

for respondents to report a certain response category. In keeping with the idea that happiness is 

recorded ordinally, these thresholds are strictly increasing, but no restrictions are made on how ℎ𝑡 

may vary within each category of ℎ𝑟.7  

Consider two groups 𝐴 and 𝐵, where group membership may be determined by combinations of 

values of the covariates in 𝑿. As in section 2.2, let 𝑠𝑗,𝑞 denote the share of members of group 𝑗 

responding with response category 𝑞. B&L then state a variant of the following (c.f. B&L, p. 1632): 

Proposition 5: Without maintaining Assumptions A2, whether E(ℎ𝑡𝑖|𝑗 = 𝐴) > E(ℎ𝑡𝑖|𝑗 = 𝐵) 

is not identified from data on ℎ𝑟𝑖 unless Assumption A4 and the following conditions hold: 

P5.I. 𝑠𝐴,1 = 0 

P5.II. 𝑠𝐵,𝐾 = 0 

P5.III. ∑ 𝑠𝐴,𝑞
𝑘
𝑞=1 < ∑ 𝑠𝐵,𝑞

𝑘−1
𝑞=1  for all 𝑘 = 2, … , 𝐾 − 1.  

Mutatis mutandis, analogous conditions hold for identifying whether E(ℎ𝑡𝑖|𝑗 = 𝐴) < E(ℎ𝑡𝑖|𝑗 = 𝐵). 

A proof of Proposition 5 in our notation is given in Appendix A5. The conditionals of this 

proposition are almost never satisfied. Hence, replacing Assumption A2 with Assumption A4 

implies that we can almost never study differences in mean wellbeing between groups. The validity 

of Assumption A2 is thus key in considering how much we can learn from happiness data. In 

section 4, we therefore give an initial assessment of its validity. Although we do find preliminary 

evidence in favour of it being approximately met, more ought to be done to test it.  

 
7 Assumption A2 allows ℎ𝑡 to vary within each category of ℎ𝑟, but in a very restricted way as implied by the identity 

E(𝜁𝑖|𝑿𝑖) = ∑ 𝑠𝑘 ∗ E(𝜁𝑖|ℎ𝑟𝑖 = 𝑘; 𝑿𝑖)
𝐾
𝑘=1 = 0 (see Appendix A2).   
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An interesting special case occurs when differences between thresholds 𝜄𝑘+1 − 𝜄𝑘 are assumed to 

be constant for all 𝑘, i.e. when the response scale is assumed to be linear. As shown in Appendix 

B1, the conditions for identification of rankings of means are less demanding in this special case. 

Specifically, we only require that the difference in mean rank-order coded ℎ𝑟 exceeds the value 1 

between groups. For scales with few response options, e.g. in the GSS with only three response 

options, this is practically never satisfied. Even in the SOEP, where 11 response categories are 

available, a difference of a full point in ℎ𝑟 between two groups occurs rarely. Indeed, as shown in 

Table 2 (see section 5), only the difference between the unemployed and all others (=1.273) exceeds 

this amount. Hence, upon relaxing Assumption A2, reversals of rankings of means are theoretically 

feasible even when respondents use the scale linearly.8 This underlines the importance of 

Assumption A2. Nevertheless, as also shown in Appendix B1, increasing the number of available 

response categories makes identification easier to achieve. This may be an important consideration 

for future data-collection efforts.   

3.2 Reversals based on ordered probit models 

In the case where we do not want to maintain Assumption A2 we may consider the use of an 

ordered probit model. However, B&L show that signs of effects of explanatory variables are almost 

never identified with an ordered probit model. To understand why this is the case and to make a 

comparison with the OLS approach feasible, we will now reconstruct and extend B&L’s argument. 

As part of this analysis, we provide a reversal condition for marginal effects and show that such 

reversals rely, as was also true in the OLS case, on assuming non-linear scale use.  

To motivate the ordered probit model, we require the following : 

Assumption A5.  

A5.I There is a latent index ℎ𝑝𝑖 (“happiness probit”), which is given by: 

ℎ𝑝𝑖 = 𝑿𝑖𝜷
(𝒑) + 𝜀𝑝𝑖 , (9) 

where 𝑿𝑖 contains a constant. 

A5.II Reported happiness and the latent index are related as ℎ𝑟𝑖 = 𝑘 ↔ 𝜏𝑘−1 < ℎ𝑝𝑖 ≤ 𝜏𝑘, 

where 𝜏0 = −∞, 𝜏𝐾 = ∞, 𝜏1 = 0, and 𝜏2 = 1. 

A5.III The error 𝜀𝑝𝑖 is normally distributed9 with mean zero and standard deviation 𝜎𝑖, 

where the log of 𝜎𝑖 is given by:  

ln(𝜎𝑖) = 𝑿𝑖𝜷
(𝒔). (10) 

A5.IV There exists some positive monotonic function 𝑔, such that 𝑔(ℎ𝑝𝑖) = ℎ𝑡𝑖. 

Jointly, these assumptions motivate a heteroskedastic ordered probit (HOP) model which can be 

estimated using maximum likelihood.  

Some remarks about these assumptions may be useful.  First, setting 𝜏1 = 0, and 𝜏2 = 1 selects a 

particular linear transformation of ℎ𝑝𝑖. We could alternatively drop the constants from equations 

(9) and (10) and explicitly estimate the thresholds 𝜏1 and 𝜏2 to yield an equivalent model. Second, 

it is typically assumed that 𝜷(𝒔) = 𝟎, i.e. that the error 𝜀𝑝𝑖 is homoscedastic. The HOP model 

 
8 However, these kinds of reversals cannot directly be obtained with ordered probit models. As shown below, sign 
reversals in ordered probit models instead depend on assuming non-linear scale use.  
9 𝜀𝑝𝑖  could be logistically distributed, yielding an ordered logit model. All our arguments can be adapted to that case.  



 15 

relaxes this assumption. The functional form in equation (10) is chosen for convenience, ensuring 

that 𝜎𝑖 is positive  (Wooldridge 2010). Third, the function 𝑔, which relates the probit index to 

underlying happiness, is analogous to the function 𝑓 discussed in section 2.  There is nothing in 

the data that informs us about this function. Yet, most research implicitly assumes that 𝑔 is linear.  

When 𝑔 is linear, the marginal effect of any particular variable 𝑋𝑚 on mean ℎ𝑡, i.e. 

𝜕E(ℎ𝑡𝑖|𝑿)/𝜕𝑋𝑚, is directly given by our estimate of 𝛽𝑚
(𝑝)

 (times a constant). However, when 𝑔 is 

non-linear, 𝜕E(ℎ𝑡𝑖|𝑿)/𝜕𝑋𝑚 will depend on both 𝛽𝑚
(𝑝)

 and 𝛽𝑚
(𝑠)

. Sign reversals of 𝜕E(ℎ𝑡𝑖|𝑿)/𝜕𝑋𝑚 

then become possible.  

B&L focus on two kinds of exponential functions as choices for 𝑔, namely ℎ𝑡𝑖 = 𝑒𝑐ℎ𝑝𝑖 for some 

𝑐 > 0, and ℎ𝑡𝑖 = −𝑒𝑐ℎ𝑝𝑖 for some 𝑐 < 0. The former function is convex in ℎ𝑝 and the latter 

function is concave in ℎ𝑝. We already introduced these functions when reversing OLS coefficients 

in section 2.5. When 𝑐 > 0, the assumed model for ℎ𝑡𝑖 is given by ℎ𝑡𝑖 = 𝑒𝑐(𝑿𝑖𝜷(𝒑)+𝜀𝑝𝑖).10 Here, 

ℎ𝑡𝑖 will have a conditional distribution that is log-normal with mean (e.g. Weisstein, 2021b): 

E(ℎ𝑡𝑖|𝑿𝒊) = 𝑒𝑐𝜇𝑖+0.5𝑐2𝜎𝑖
2
, (11) 

where 𝜇𝑖 ≡ E(ℎ𝑝𝑖|𝑿𝒊). In the case where 𝑐 < 0, the conditional mean of ℎ𝑡𝑖 is given by: 

E(ℎ𝑡𝑖|𝑿𝒊) = −𝑒𝑐𝜇𝑖+0.5𝑐2𝜎𝑖
2

(12) 

Notice that as the magnitude of 𝑐 increases, the weight we place on the 𝜎𝑖
2 term in determining 

E(ℎ𝑡𝑖|𝑿𝒊) increases. As a consequence, and since 𝜇𝑖 = 𝑿𝑖𝜷
(𝒑) while 𝜎𝑖

2 = 𝑒𝑿𝑖𝜷(𝒔)
, it follows for 

the case of (11) that if 𝜇𝑖 rises with 𝑋𝑖,𝑚 (𝛽𝑚
(𝑝)

>0), but 𝜎𝑖
2 falls with 𝑋𝑖,𝑚 (𝛽𝑚

(𝑠)
<0), the effect of 

𝑋𝑖,𝑚 on E(ℎ𝑡𝑖|𝑿𝒊) will change sign and become negative for sufficiently large 𝑐. Analogously for 

the case of (12), if 𝛽𝑚
(𝑝)

 and 𝛽𝑚
(𝑠)

 have the same sign, the effect of 𝑋𝑖,𝑚 on E(ℎ𝑡𝑖|𝑿𝒊) will change 

sign for a sufficiently negative 𝑐. This thought motivates the following proposition:11 

Proposition 6: Given Assumptions A4 and A5, when ℎ𝑡𝑖 = 𝑒𝑐ℎ𝑝𝑖  for some 𝑐 > 0 or ℎ𝑡𝑖 =

−𝑒𝑐ℎ𝑝𝑖  for some 𝑐 < 0, the value of 𝑐 at which the marginal effect of 𝑋𝑚,𝑖 on E(ℎ𝑡𝑖|𝑿) 

would switch its sign is given by 𝑐 = −𝛽𝑚
(𝑝)

/𝑒2𝑿𝑖𝜷(𝒔)
𝛽𝑚

(𝑠)
. 

Proposition 6 can be obtained by differentiating equation (11) with respect to 𝑋𝑖,𝑚: 

𝜕𝐸(ℎ𝑡𝑖|𝑿𝒊)

𝜕𝑋𝑖,𝑚
= 𝑒𝑐𝜇𝑖+0.5𝑐2𝜎𝑖

2
(𝑐𝛽𝑚

(𝑝)
+ 𝑐2𝑒2𝑿𝑖𝜷(𝒔)

𝛽𝑚
(𝑠)

) (13) 

Setting equation (13) to 0 and solving for 𝑐 yields the condition in Proposition 6. The same 

expression is obtained when differentiating equation (12). When 𝛽𝑚
(𝑝)

 and 𝛽𝑚
(𝑠)

 have opposite (the 

same) sign, Proposition 6 predicts the sign-reversing value of 𝑐 to be positive (negative). The only 

case in which no sign-reversing 𝑐 exists occurs when 𝛽𝑚
(𝑠)

= 0.  

 
10 Generally, any non-linear choice for 𝑔 implies a substantively different assumption about the functional form by 

which ℎ𝑡𝑖  and 𝑿𝑖 relate. The choice of 𝑔 discussed here implies that ln(ℎ𝑡𝑖)/𝑐 is assumed to be linear in 𝑿𝑖.   
11 Instead of deriving Proposition 6, B&L discuss a special case suitable for comparing two groups 𝐴 and 𝐵. In 

that case, the reversal condition for the difference E(ℎ𝑡𝑖|𝐴) − E(ℎ𝑡𝑖|𝐵) is given by 𝑐 = 2(𝜇𝐴 − 𝜇𝐵) (𝜎𝐵
2 − 𝜎𝐴

2)⁄ .  
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A crucial characteristic of obtaining sign reversals of E(ℎ𝑡𝑖|𝑿𝒊) in ordered probit models is that 

they rely – as was the case in the OLS setting – on assuming that individuals use response scales in 

a non-linear manner. To show this, our argument goes as follows: Initially, it appears as though the 

ordered probit model produces estimates of how people use the response scale. The estimated 

thresholds (𝜏0, 𝜏1, . . . , 𝜏𝐾) seem to do just that. However, from Assumptions A4 and A5 we see 

that ℎ𝑟𝑖 = 𝑘 ↔ 𝑔(𝜏𝑘−1) < 𝑔(ℎ𝑝𝑖) = ℎ𝑡𝑖 ≤ 𝑔(𝜏𝑘), where 𝑔(𝜏𝑘) = 𝜄𝑘 . Thus, to obtain the true 

thresholds 𝜄𝑘 , we must transform each estimated threshold 𝜏𝑘 with the function 𝑔. Our beliefs 

about scale use therefore depend on the estimated probit thresholds and our choice of 𝑔. This is 

analogous to the OLS case, where our beliefs about scale use depend on our choice of 𝑓.   

In the special case of ℎ𝑡𝑖 = 𝑒𝑐ℎ𝑝𝑖 , we obtain (𝜄0, 𝜄1, . . . , 𝜄𝐾) = (𝑒𝑐𝜏0 , 𝑒𝑐𝜏1 , . . . , 𝑒𝑐𝜏𝐾) =

(0,1, 𝑒𝑐𝜏2 , . . . , ∞). When differences between the estimated thresholds do not vary, and are thus 

equal to some constant ∆𝜏, then differences between the corresponding thresholds for ℎ𝑡𝑖, 

i.e. (𝜄0, . . . , 𝜄𝐾) will increase (for 𝑐 > 0) or decrease (for 𝑐 < 0) by a factor 𝑒𝑐∆𝜏.12 This is again 

analogous to the OLS case, where an exponential transformation implied that differences between 

response categories grow by a constant factor 𝑒𝑐.  

Moreover, in Appendix B2 we show that ordered probit reversals are driven by sign heterogeneities 

of effects of explanatory variables across the distribution of ℎ𝑝𝑖. This is again in close analogy to 

the OLS case, where reversals made possible by heterogeneities across the distribution of ℎ𝑟𝑖. 

Finally, in Appendix B3 we estimate a heteroskedastic ordered probit model on the same data as 

used in section 2.1. We find that a transformation ℎ�̃�𝑖 = −𝑒−0.73ℎ𝑝𝑖 suffices for a reversal. Such a 

transformation implies that differences between subsequent thresholds shrink by a factor  𝑤 =

0.48. This is close to what we obtained in the OLS case, where 𝑤 = 0.46. We also find that a 

transformation ℎ�̃�𝑖 = −𝑒−2.59ℎ𝑝𝑖 yields a marginal effect of log GDP per capita that is significant 

at the 5% level. In contrast, no statistically significant reversals were possible in the OLS case.  

More generally, it remains a key difference that OLS reversals are rarely possible, while ordered 

probit reversals are almost always possible. Fundamentally, this is due to the fact that OLS 

maintains Assumption A2, while ordered probit does not. Consequently, the ordered probit 

approach requires first-order stochastic dominance (FOSD) in the conditional cumulative 

distribution function of ℎ𝑝𝑖 (which occurs when 𝛽𝑚
(𝑠)

= 0), while OLS merely requires FOSD in 

the response shares for each level of ℎ𝑟𝑖 (which occurs when all 𝛽𝑘,𝑚
(𝑑)

 share the same sign). 

4 Are response scales interpreted linearly? Is Assumption A2 valid? 

Thus far, the discussion established that reversals in both the ordered probit and the OLS case are 

driven by assuming non-linear scale use. Hence, sections 4.1 and 4.2 will investigate whether 

strongly non-linear scale use is the norm. Thereafter, section 4.3 will probe the validity of 

Assumption A2, which we showed to be important in motivating the OLS approach.  

 
12 For 𝑐 > 0, the differences in ℎ𝑡𝑖  between thresholds 𝜄𝑘  and 𝜄𝑘−1 differ from the difference between thresholds 𝜄𝑘−1 

and 𝜄𝑘−2 by a factor (𝑒𝑐𝜏𝑘 − 𝑒𝑐𝜏𝑘−1) (𝑒𝑐𝜏𝑘−1 − 𝑒𝑐𝜏𝑘−2)⁄ . When 𝜏𝑘 − 𝜏𝑘−1 = ∆𝜏 for all 𝑘 = 1, 2, . . . , 𝐾 − 1 (i.e. 

excluding the outer thresholds 𝜏0 and 𝜏𝐾) we can write (𝑒𝑐(𝜏𝑘−1+∆𝜏) − 𝑒𝑐(𝜏𝑘−2+∆𝜏)) (𝑒𝑐𝜏𝑘−1 − 𝑒𝑐𝜏𝑘−2 )⁄ = 𝑒𝑐∆𝜏. By 

analogous reasoning, the same factor is obtained for 𝑐 < 0. Of course, differences between estimated thresholds are 
never exactly constant. However, deviations from this approximation typically imply even more non-linear scale use.   
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4.1 Intuitions on scale use 

The exponential transformations we consider entail that differences in happiness between response 

categories grow or decline by a factor 𝑤 = 𝑒𝑐 (or 𝑤 = 𝑒∆𝜏𝑐  in the ordered probit case). Thus, 

these transformations move us from assuming (approximately) linear scale use to multiplicative 

scale use.  

For response scales with just three categories, as in the GSS, this is not too problematic. For 

instance, to just reverse the coefficient on GDP per capita in the example of section 2, we only 

required a factor 𝑤 = 𝑒−0.78 = 0.46, which implies that a jump in happiness intensity from the 

2nd to the 3rd response category is approximately half as big as a jump from the 1st to the 2nd response 

category. It seems possible that respondents use the response scale in this manner.  

However, the question on life satisfaction in the often-used German SOEP survey has 11 response 

categories. For this case, consider a transformation ℎ�̃�𝑖 = 𝑒𝑐ℎ𝑟 with 𝑐 = 1 as an initial benchmark. 

This value for 𝑐 is less extreme than almost all of the sign-reversing 𝑐’s obtained in our empirical 

results in section 5. With 𝑐 = 1, the difference in ℎ�̃�𝑖 between subsequent response categories 

grows by a factor of 𝑒1 ≈ 2.78. Consequently, the difference in ℎ�̃� between the top two levels of 

ℎ𝑟, (i.e. ℎ𝑟 = 11 and ℎ𝑟 = 10), is roughly 8,100 times larger than the difference between the 

bottom two levels, ℎ𝑟 = 2 and ℎ𝑟 = 1 (since (𝑒11 − 𝑒10)/(𝑒2 − 𝑒1) ≈ 8,100). Substantively, 

this would mean that there are almost no differences in respondents’ underlying feelings across low 

levels of ℎ𝑟 (see Figure 1 on page 3 for an illustration). To assess whether such scale use may 

indeed be common, the next section will survey the previous literature on this question.  

4.2 Previous work on linearity of scale use 

It seems that only four studies empirically investigated whether respondents use response scales 

for feelings or judgements linearly.13 Each of these takes a different approach to the question. Yet, 

all of them conclude that scale use is not far from linear.  

Initial empirical evidence is given in Van Praag (1991). There, Van Praag tested how individuals 

translate five ordered verbal labels (very bad; bad; not bad; not good; good; very good) into cardinal 

quantities in a context-free setting. In a first experiment he asked respondents to assign numbers 

between 1 and 1000 to each of the five verbal labels. In a second experiment, he asked respondents 

to produce lines of certain length corresponding to each of the verbal labels. As shown in panel A 

of Figure 2, Van Praag finds roughly linear scale use across both experiments.14 This is especially 

clear when comparing his results with a multiplicative scale with 𝑐 = 1, as also shown in Figure 2.  

Oswald (2008) pursued a rather different idea. He asked a sample of respondents to report on their 

height using only a bounded slider. The extremes of the slider were labelled as “very short” and 

“very tall”. He then regressed these responses on respondents’ actual and squared height (as 

measured in centimetres). He finds a small but statistically significant negative coefficient on the 

 
13 To clarify further: in this section we are interested in whether the underlying cardinal quantities that respondents 

are asked about in survey questions (like ℎ𝑡) are linear in respondents’ choices of response options (like ℎ𝑟). 
14 Together with Kapteyn and Van Herwaarden, Van Praag also made a theoretical argument in favour of respondents 
adopting a linear response scale (Kapteyn 1977; Kapteyn, Van Praag, and Van Herwaarden 1978; Van Praag 1971; 
1991; 1993). In particular, they show that a linear response scale is minimising the loss in information resulting from 

discretizing a continuous quantity (like ℎ𝑡) with a finite number of response categories. Similar arguments are also 
offered by Parducci (1995) and Plant (2020).  
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squared term. In turn, when inverting the equation he estimated, this implies a small amount of 

convexity when transforming subjectively reported height into actual height. However, as shown 

in panel B of Figure 2 this estimate is much closer to linearity than a multiplicative scale with 𝑐 =

1. Moreover, when distinguishing between genders, the squared term is no longer significant, 

suggesting that the observed convexity in the pooled sample may have been driven by a reporting 

difference across genders.  

Layard et al.'s (2007) strategy to assess linearity is different yet again. Using SOEP data, they 

estimate an OLS regression of rank-order-coded life satisfaction on a wide set of explanatory 

variables and individual fixed effects. They then assume that the error of a similar model with actual 

life satisfaction (i.e. ℎ𝑡) as the dependent variable, is homoscedastic. Any heteroskedasticity in their 

OLS regression of rank-order coded ℎ𝑟 would then indicate a non-linear response scale. They 

indeed find the residual variance to be larger for low predicted ℎ𝑟 than for high ℎ𝑟. As they show, 

if their assumption of homoscedasticity with respect to ℎ𝑡 indeed holds, this pattern implies that 

the response scale is convex. However, as illustrated in panel C of Figure 2, the amount of convexity 

they infer is much less than that of our benchmark scale with 𝑐 = 1.  

Kristoffersen (2017) assumes that psychometrically adjusted scores from the MH5 index of mental 

health are a cardinal measure of ℎ𝑡. Using Australian HILDA data, she regresses these MH5 scores 

on dummies for each of the 11 response categories of the life satisfaction question asked in the 

HILDA survey. As shown in panel D of Figure 2, she finds a largely linear pattern, albeit with the 

Figure 2. Previous evidence on linearity of scale use.  

Note: Solid lines indicate estimates of scale use obtained in previous work. Dotted lines show linear scale use. 

Shaded regions indicate scales implied by exponential transformations with 𝑐 < −1 or 𝑐 > 1. Panel A shows Van 

Praag’s results (1990), specifically his Table 1. Panel B is based on Oswald (2008), and shows the result from 

inverting the equation displayed on page 371. Panel C shows the result of Layard et al. (2007), specifically the lower 

left panel of Figure 4. Panel D shows Kristoffersen’s results (2017), specifically her Table 5.   
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dummy for ℎ𝑟 = 1 being an outlier. Nevertheless, if her assumption of the cardinality of the MH5 

index holds, her results also suggest that strongly non-linear scales are unlikely to be the norm. 

Of course, each of these papers had to make assumptions about the relationship between 

observable quantities and ℎ𝑡. These assumptions may not be met: In Van Praag's (1991) 

experiments, respondents’ behaviour with respect to context-free verbal labels may not be 

representative of how they might use scales to report their happiness. Similarly, Oswald’s finding 

may be particular to people’s subjective height, and might not generalise. Layard et al.'s (2007) 

homoscedasticity assumption may not hold, and Kristoffersen's (2017) assumption that 

psychometrically adjusted MH5 scores are cardinal has been questioned (cf. Bond & Lang, 2013).  

Unfortunately, since intensities of subjective feelings and judgements are unobservable, none of 

these assumptions can be tested. Nevertheless, despite each paper making fundamentally different 

sorts of assumptions, the results from each paper suggest that such response scales are interpreted 

as approximately linear. Hence, in order for strongly non-linear scale use to be the norm, each of 

these studies’ assumptions would have to fail  in the same direction. Therefore, in so far as these 

studies present convergent evidence, we should place less credence on strongly non-linear scales.    

However, the reviewed studies are based on samples from Dutch, German, or English-speaking 

countries. Since it is possible that linearity of scale use depends on respondent’s particular language 

culture, research assessing intercultural and interlinguistic differences in scale use would be an 

important next step (see e.g. Angelini et al. (2014) for initial work in this direction).  

Moreover, the evidence shown here only concerns questions with at least five categories. This 

leaves open that scales with three or four response options, such as those in the GSS and World 

Values Survey, are interpreted in a strongly non-linear manner. In Appendix B4 we investigate this 

possibility by comparing response behavour for ten and eleven-points scales with behaviour for 

three and four-points scales. Using comparable samples for the US and several European countries, 

we find that although three-points scales may be interpreted non-linearly, this does not appear to 

be the case for four-points scales.  

4.3 A tentative test of Assumption A2 

Based on the previous literature, it seems that approximately linear scale use is a reasonable 

description of how respondents answer subjective survey questions. However, whether 

Assumption A2 holds – which would motivate the OLS approach – does not appear to have yet 

been investigated. By utilising data in which respondents reported their data on both a discrete and 

a continuous scale, this section begins to fill this gap   

Specifically, we use the March and April 2011 waves of the Dutch LISS panel, which surveys a 

representative sample of the Dutch population. In March, one randomly selected half of 

respondents reported their happiness on a ten-points discrete scale. All other respondents reported 

their happiness on a continuous scale, using a slider on a computer screen.15 Although the slider 

appeared as continuous to respondents, the data was only recorded with a resolution of 100 distinct 

values (which we scale to range from 1 to 10, like the discrete scale). In April, roles were reversed 

and the first half of respondents answered on the continuous scale and the other half answered on 

 
15 The question reads “Alles bij elkaar genomen, hoe gelukkig zou u zeggen dat u bent?” (Taking all things together, how happy would 
you say you are?), with extremes labelled “helemaal ongelukkig” (completely unhappy) and “helemaal gelukkig” (completely happy). 
This data was originally collected for a project by Raphael Studer and Rainer Winkelmann (see Studer, 2012).  



 20 

the discrete scale. Thus, for a total of 8,538 respondents we observe their happiness on both types 

of scales. The LISS data also contains information on several socio-economic characteristics. 

Among others, these include household income, whether the respondent is employed, is married, 

has children, and the respondent’s disability status.  

Recall from section 2.2 that Assumption A2 is satisfied if mean ℎ𝑡 does not vary with 𝑋 within 

each response category of ℎ𝑟. If this condition were to hold in the data at hand, we should expect 

that the mean of continuously reported happiness does not vary across socio-economic 

characteristics within each of the ten discrete response categories. We test this by estimating a 

regression of continuously reported happiness on dummies for each of the ten discrete response 

options. Each of these dummies are interacted with each of the aforementioned socio-economic 

characteristics. If these interactions terms are small and not statistically significantly different from 

zero, we interpret this as evidence in favour of Assumption A2.  

The results from this exercise are presented in Figure 3. We see that within each discrete response 

category, predicted levels of continuous happiness are relatively homogenous across socio-

economic characteristics. A hypothesis test of equality in predicted continuous happiness across 

groups cannot be rejected in most cases.16 This is tentative evidence in favour of Assumption A2.  

However, there are very few respondents who chose discrete options 1-4 (2.1%), which is the 

reason for the wide confidence intervals associated with these categories. Indeed, for several 

subgroups in the sample, no observations were available for the first and second response 

categories, making a test of Assumption A2 impossible for these categories. Therefore, only results 

for categories 3 to 10 are shown in Figure 3. Although this is not ideal, the fact that so few 

respondents (or none) are observed in these categories implies that the extent to which Assumption 

A2 is satisfied in these categories has less practical importance than for categories with many 

respondents.  

Moreover, for violations of Assumption A2 to facilitate reversals of OLS regression coefficients, 

we require that groups with higher mean discrete ℎ𝑟 have lower continuous ℎ𝑟 within each discrete 

response category (see Appendix B). This not the case in Figure 3. Instead, we see a largely 

inconsistent pattern. At most, groups with higher discrete ℎ𝑟 tend to also have greater continuous 

ℎ𝑟 within each discrete category. Such violations of Assumption A2 bias OLS coefficients from 

regressions of discrete ℎ𝑟 towards zero, but cannot reverse their signs. Indeed, the only difference 

between regressions of continuous ℎ𝑟 and discrete ℎ𝑟 is that coefficients on the former are slightly 

larger than those on the latter (see Appendix Table A4).   

Violations of Assumption A2 thus seem to be mild in our data. This result gives some justification 

for the use of OLS regressions and our non-reversal condition. We would nevertheless welcome the 

collection of more data using a continuous slider to see if our observations can be replicated in 

other data, e.g. in other large-scale surveys like the German SOEP. 

Finally, for discrete response options larger than 4, continuous ℎ𝑟 increases approximately linearly 

in discrete ℎ𝑟. This is also shown  in Studer (2012). For response options lower or equal to 4, we 

observe that mean continuous ℎ𝑟 increases less steeply, but this non-linearity is not as pronounced 

 
16 This test is rejected at the 5% level for the 7th and 8th category when comparing income above or below the median, 
for the 7th, 8th, and 9th category when considering marital status, and the 8th category when considering disability.  
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as would be the case for a multiplicative scale with 𝑐 = 1. Hence, if we are willing to assume that 

the continuous scale allows respondents to report their ℎ𝑡 cardinally (up to a linear transformation), 

this could be interpreted as additional evidence against strongly non-linear scale use in discrete 

scales. This idea is pursued further in Appendix B4.  

5 Empirical Applications       

We now turn to further assessing the empirical relevance of the points of the preceding sections. 

Primarily, we do so by evaluating the possibility and plausibility of reversals for a range of socio-

economic variables using waves 1 (1984) to 32 (2015) of the German Socio-Economic Panel 

(SOEP), which is among the most commonly used dataset in empirical work on happiness. 

However, we can largely replicate our conclusions using the LISS and GSS surveys.  

Similar to the previous section, our explanatory variables of interest are household income, 

unemployment, marriage, having children, and self-reported disability. These variables are also 

similar to those investigated by B&L. Answers to the question “How satisfied are you with your life, all 

things considered” (“Wie zufrieden sind Sie gegenwärtig, alles in allem, mit Ihrem Leben?”) are used as our dependent 

variable. This question is typically taken to elicit evaluative judgements from respondents about 

Figure 3. Continuously reported happiness  ℎ𝑟 does not systematically vary with socio-economic variables within 

each discrete category of ℎ𝑟. 

 

Note: Based on an OLS regression using LISS data, each panel shows predicted values of continuous ℎ𝑟 

conditional on responding with a certain discrete response category of ℎ𝑟 and conditional on being in a certain 

socio-economic group. In each panel, all other variables are set to their mean. Within each discrete category, 

mean continuous happiness does not tend to systematically vary with socio-economic variables, lending support 

to Assumption A2. 95% confidence intervals are given by the shaded regions (based on robust standard errors). 
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their lives as a whole (OECD 2013; Pavot and Diener 2008). Answers are recorded with eleven 

response categories, here labelled from 1 to 11.  

For income we use log net (post-tax) household incomes, deflated to 2005 prices. We equivalize 

incomes using the modified OECD scale.17 Regarding unemployment, we code a dummy that is 1 

when a person reports to be unemployed, and 0 for any other possible employment status. We 

code similar dummies for being married, living with children in the household, and reporting a 

disability. Next to reporting results in which these variables are entered separately, we also report 

results in which all variables are entered jointly along with a set of additional control variables. The 

additional control variables include region and wave dummies, age (linear and squared), a tertiary 

education dummy, a home- ownership dummy, log(household size) and log(1+working hours).  

We first present OLS results. Thereafter, we focus on results from the ordered probit model. 

5.1 OLS reversals using relabelling 

Table 2 shows results for pooled and fixed-effects OLS regressions of ℎ𝑟𝑖𝑡 on each explanatory 

variables of interest.18 Column (1) shows results from separate regressions in which each variable 

is entered individually (being married and having children are always entered jointly), column (2) 

shows results from a pooled regression in which all variables of interest, along with the additional 

controls discussed above, are entered jointly. Column (3) adds individual fixed effects.  

In all specifications, household income, being married, and having children are associated with 

higher life satisfaction, while unemployment and reporting a disability are associated with lower 

life satisfaction. Accounting for fixed effects generally reduces the magnitudes of our estimates. 

To evaluate whether the sign of these coefficients can be reversed, we estimate OLS regressions 

of ℎ𝑑𝑘,𝑖𝑡 for 𝑘 = 1,2, … ,10 when entering variables separately, when including controls, and when 

adding fixed effects. Figure 4 illustrates our results. For most variables and specifications, estimates 

of �̂�𝑘,𝑚
(𝑑)

 have the same sign across all 𝑘. In these cases, reversals are impossible with the data at 

hand. In other words, the sign of the regression coefficient �̂�𝑚 will remain the same under all 

positive monotonic transformations of ℎ𝑟𝑖𝑡.  

However, there are four exceptions to this. First, when failing to include controls, the coefficient 

�̂�10,𝑖𝑛𝑐𝑜𝑚𝑒
(𝑑)

 for income has a positive sign (though its magnitude is small), while the coefficients 

�̂�𝑘,𝑖𝑛𝑐𝑜𝑚𝑒
(𝑑)

 for 𝑘 = 1,2, . . ,9 all have a negative sign. Hence, a sufficiently convex transformation in 

which the difference between labels 𝑙11 and 𝑙10 is much larger than the differences between all 

other labels can reverse the sign of the overall effect of income �̂�𝑖𝑛𝑐𝑜𝑚𝑒. A numerical search shows 

that a multiplicative scale in which spaces between adjacent response categories grow by a factor 

𝑤 = 24.1 (with implied 𝑐 = ln(24.1) = 3.18) is required to achieve such a reversal.  

 
17 We exclude respondents in the top and bottom percentiles of the income distribution since there may be substantial 
measurement error in these observations (Berthoud and Bryan 2011). However, when we include these respondents, 
results are nearly unchanged.  
18 Ferrer-i-Carbonell & Frijters (2004) showed that time-invariant unobserved heterogeneity, due to e.g. individual 

personality traits (Boyce, 2010), biases pooled regression of ℎ𝑟. Fixed-effects regressions are thus standard in the 
literature. Unfortunately, a fixed-effects estimator is not available for ordered probit. In contrast, by demeaning each 

regression of ℎ𝑑𝑘,𝑖𝑡 over respondents 𝑖, our non-reversal condition is directly applicable to the fixed-effects model.  
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Second, the effect of having children can be reversed in a pooled regression when including 

controls. Here, the sign of �̂�1,𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
(𝑑)

 is positive while all other �̂�𝑘,𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
(𝑑)

 are negative. Hence, a 

sufficiently concave transformation may yield a reversal. However, the magnitude of �̂�1,𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
(𝑑)

 is 

small and hardly visible in Figure 4. This entails that we a need a rather extreme transformation. 

Indeed, a transformation ℎ�̃�𝑖𝑡 = −𝑒𝑐ℎ𝑟𝑖𝑡 with 𝑐 = −2.83 or lower is needed, which corresponds 

to differences between adjacent response categories shrinking by a factor 𝑤 = 0.06.  

Third, in a fixed-effects regression with full controls, the sign of �̂�𝑘,𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛
(𝑑)

 is negative for 𝑘 ≤ 7, 

but positive for 𝑘 > 7. In the regression of rank-order ℎ𝑟, the corresponding overall coefficient 

�̂�𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 was positive. Hence, a mild convex transformation with 𝑐 = 0.13, corresponding to a 

factor 𝑤 = 𝑒0.13 = 1.14 is sufficient for a sign reversal. 

Fourth, the coefficient �̂�10,𝑑𝑖𝑠𝑎𝑏𝑖𝑙𝑖𝑡𝑦
(𝑑)

 for disability in a regression with fixed effects is just negative, 

while all other coefficients are positive. Hence, a sufficiently convex transformation can yield a 

reversal. In this case, 𝑐 = 2.53 corresponding to 𝑤 = 𝑒2.53 = 12.5, would be sufficient.  

The effects of unemployment and marriage cannot be reversed in any of our specifications. We 

thus conclude that the common finding that unemployment is associated with lower life 

satisfaction, and that marriage is associated with higher satisfaction is especially robust.  

How likely are any of the theoretically possible reversals? In light of the arguments given in section 

4, scales with 𝑐 values in the order of at least 1 (𝑟 ≥ 𝑒1 = 2.72) or at most −1 (𝑟 ≤ 𝑒−1 = 0.37) 

appear inconsistent with previous work and our evidence based on LISS data. Almost all the just-

sign-reversing transformations found above are outside these values. The only exception was the 

effect of having children in a fixed-effects regression (where 𝑐 = 0.13). Such a transformation is 

reasonably close to linear. We thus conclude that while reversals are possible for several variables 

Table 2. An application of the non-reversal condition for several socio-economic variables available the SOEP data. 
 (1) (2) (3) 
 No controls Full controls Full controls, with fixed 

effects 

Log HH income 0.691*** (0.011)  

reversal occurs at 𝒄=3.18 

0.568*** (0.012)  
reversal impossible 

0.296*** (0.011)  
reversal impossible 

Unemployed -1.273*** (0.019)  
reversal impossible 

-0.917*** (0.018)  
reversal impossible 

-0.638*** (0.015)  
reversal impossible 

Married 0.189*** (0.012)  
reversal impossible 

0.290*** (0.013)  
reversal impossible 

0.168*** (0.014)  
reversal impossible 

Children 0.175*** (0.012)  
reversal impossible  

0.132*** (0.012)  

reversal occurs at 𝒄=−2.83 

0.008 (0.012) 
 reversal occurs at 

𝒄=0.13 
Disability -0.857*** (0.021)  

reversal impossible 
-0.766*** (0.020)  

reversal impossible 
-0.306*** (0.018)  

reversal occurs at 

𝒄=2.53 
Respondents  77,039 77,039 77,039 
Observations 557,999 557,999 557,999 

Note: All coefficients are obtained from OLS regressions of rank-order coded ℎ𝑟. The results of column (1) are 
based on separate regressions for each explanatory variable. The possibility of reversals is assessed based on OLS 

regressions of ℎ𝑑𝑘,𝑖𝑡 for 𝑘 = 1, 2, … ,10 (see Figure 4 and Table A5 for results). Where reversals are possible, 

just-reversing 𝑐 values have been obtained numerically. Model titles indicate the specification estimated in each 
column. Data are from the 1984-2015 waves of the SOEP. Standard errors in parentheses (clustered by 
respondents). * p < 0.10, ** p < 0.05, *** p < 0.01.  
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in at least some specifications, the only clearly plausible reversal is that of the effect of having 

children in a fixed-effects regression. Since that result was strongly insignificant and close to zero 

in Table 2, this does not look to be a particularly striking result. Moreover, the effect of having 

children was the only one for which a statistically significant reversal was possible (to achieve a 

reversal significant at the 5% level, we require 𝑐 = 0.65).   

Appendix D, Figure A3 replicates the above analysis with LISS data. We assess the possibility of 

reversals for both continuously reported happiness and discrete happiness. Three results stand out. 

First, transformations required for continuously reported happiness tend to be more extreme than 

the corresponding transformations required for discrete happiness. Second, in specifications with 

controls, the only case in which reversals are possible with |𝑐| < 1 occurs for the effect of having 

children on happiness reported on a discrete scale (𝑐 = −0.81).  Third, when including controls, 

no reversals are possible for working and for being married. Finally, we performed similar tests for 

available variables in the GSS data (see Appendix D, Table A6). Reversals where only feasible for 

the effect of having children (with 𝑐 = −1.73). 

5.2 Shadow prices and bounds on ratios of coefficients 

A stated earlier, often we are not merely interested in the absolute magnitudes of coefficients. 

Instead, e.g. when estimating shadow prices, equivalence scales, or when assessing the cost-

effectiveness of policy, we wish to learn about ratios of coefficients. However, Proposition 3 

asserted that, when ratios of coefficients from regressions of ℎ𝑑𝑘,𝑖𝑡 differ, these ratios will not be 

invariant under all transformations of ℎ𝑟𝑖𝑡.  

Figure 4. Illustration of the non-reversal condition (coefficient estimates for each regression of ℎ𝑑𝑘,𝑖𝑡). 

 

Note: Each line shows coefficient estimates for different specifications of OLS regressions of ℎ𝑑𝑘,𝑖𝑡 using SOEP 

data. The non-reversal condition is not satisfied when a given line crosses zero. This is rarely the case. Shaded regions 

show 95% confidence intervals (based on standard errors clustered by respondents).  
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In our data, these ratios indeed differ substantially. To illustrate, Figure 5 plots the ratio of the 

coefficients for unemployment, being married, having children and disability against the coefficient 

for income in each of the fixed effects regressions of ℎ𝑑𝑘,𝑖𝑡 (corresponding to the bottom panel 

of Table A5). For unemployment and disability, the ratios of their estimated coefficients with the 

estimated income coefficient tend to increase with 𝑘. Therefore, the absolute magnitudes of the 

ratios of the effects of unemployment and disability on ℎ𝑟𝑖𝑡 to the effect of income on ℎ𝑟𝑖𝑡 will 

decrease (increase) for increasingly convex (concave) transformations of ℎ𝑟𝑖𝑡 (because convex 

(concave) transformations give relatively more weight to higher (lower) levels of ℎ𝑟𝑖𝑡). 

To illustrate that changes in these ratios are indeed of practical importance, we calculated shadow 

prices of each of the variables under consideration. We define the shadow price of e.g. 

unemployment as the amount of additional income needed for an unemployed person with an 

income level 𝑦 to be as satisfied as someone who is not unemployed. This amount is given by 

(𝑒−𝛽𝑢𝑛𝑒𝑚𝑝𝑙𝑜𝑦𝑒𝑑 𝛽ln(𝑖𝑛𝑐𝑜𝑚𝑒)⁄ − 1)𝑦.19 Shadow price ranges for being married, having children, and 

disability can be found analogously. Given Proposition 4, each shadow price fall in a range 

determined by the largest and smallest ratio of coefficients obtained from regressions of ℎ𝑑𝑘,𝑖𝑡.  

Table 3 shows the results of this exercise. We find that the ranges of estimated shadow prices for 

unemployment and disability cover particularly wide ranges. For example, for unemployment the 

 
19 To see this, solve [𝛽ln(𝑦)ln(𝑦 + ∆𝑦) + 𝛽𝑢𝑒] − 𝛽ln(𝑦)ln (𝑦) = 0 for ∆𝑦. 

Figure 5. Ratios of coefficients across regressions of ℎ𝑑𝑘,𝑖𝑡 

 

Note: Displayed are ratios of coefficients for unemployment, being married, children, and disability with 

respect to income. Coefficient ratios would be invariant across all positive monotonic transformations of ℎ𝑟 if 

each line were exactly horizontal. This is most clearly not the case for ratios relating to unemployment and 

disability. All displayed ratios are based on OLS regressions of  ℎ𝑑𝑘,𝑖𝑡 with individual fixed effects (using SOEP 

data, corresponding to the bottom panel of Table A5). Shaded regions represent 95% confidence intervals 

(obtained using the Delta method). 
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estimated shadow price can range from €36,376 to €1,376,076 across all possible transformations 

of ℎ𝑟. Likewise shadow prices for disability may range from -€2,296 (which, counterintuitively, 

implies that a non-disabled person should be compensated) to €119,769. 

These ranges seem too wide to be useful. However, these maximal ranges of possible shadow 

prices rely on extreme transformations of ℎ𝑟𝑖𝑡 in which differences between response categories 

approach zero except for some particular chosen response category. We therefore also evaluate 

how shadow prices change for a transformation ℎ�̃�𝑖𝑡 = ±𝑒𝑐ℎ𝑟𝑖𝑡, with 𝑐 = 0.4 and 𝑐 = −0.4. 

These levels of 𝑐 imply that differences in life satisfaction intensity between adjacent response 

categories increase or decrease by a factor of 𝑒0.4 ≈ 1.5, which we take to still be plausible. That 

exercise shows that shadow prices for unemployment and disability still cover a rather wide range. 

Indeed, based on these figures, we do not know whether an unemployed (disabled) person can be 

compensated with as little as €93,000 (€22,000) or requires as much as €274,000 (€53,000). 

We thus conclude that although sign reversals of the effects of explanatory variables on life 

satisfaction tend to either be impossible or unlikely, ratios of coefficients are substantially affected 

under even mild transformations.  

5.3 Reversals using ordered probit  

We now turn to the case of searching for sign reversals in the context of the heteroskedastic 

ordered probit model. Table 4 shows our results. In column (1) we enter each variable in a separate 

bivariate model. In column (2), all explanatory variables are entered jointly, including all previously 

mentioned controls. To reduce the bias from individual fixed effects being correlated with our 

explanatory variables, we add individual averages of all explanatory variables to the specification 

in column (3) (cf. Ferrer‐i‐Carbonell and Frijters, 2004; Mundlak, 1978; Van Praag, 2015). 

As in the OLS case, higher incomes, being married, and having children are associated with a 

higher mean of the latent probit index (i.e. ℎ𝑝). Unemployment and disability are associated with 

Table 3. Shadow prices for each explanatory variable based on OLS regressions using SOEP data 

Scale Unemployment Marriage Children  Disability 

Rank-order ℎ𝑟𝑖𝑡 €146,050 (
−0.638

0.296
) -€8,278 (

0.168

0.296
) -€500 (

0.008

0.296
) €34,677 (

−0.306

0.296
) 

Lower bound shadow price   €36,376 (
−0.035

0.033
)  -€9,598 (

0.023

0.033
)   €7,669 (

−0.003

0.033
)   -€2,296 (

0.001

0.009
) 

Upper bound shadow price €1,376,076 (
−0.010

0.002
) -€6,478 (

0.001

0.002
) -€3,249 (

0.004

0.002
) €119,769 (

−0.005

0.002
) 

ℎ�̃�𝑖𝑡 = 𝑒𝑐ℎ𝑟𝑖𝑡 with  𝑐 = 0.4   €92,782 (
−3.135

1.772
)  -€8,370 (

1.024

1.772
)   €1,108 (

−0.100

1.772
) €21,968 (

−1.358

1.722
) 

ℎ�̃�𝑖𝑡 = −𝑒𝑐ℎ𝑟𝑖𝑡  with 𝑐 = −0.4 €273,885 (
−0.037

0.014
) -€8,227 (

0.008

0.014
) -€1,590 (

0.001

0.014
) €53,100 (

−0.018

0.014
) 

Note: Shadow prices are estimated at the sample mean of household income. Calculations are based on Table 2, 

column (4), the lower panel of Table A5, as well as fixed-effects regression of ℎ�̃�𝑖𝑡 with 𝑐 = 0.4 or 𝑐 = −0.4 . 

Corresponding ratios of coefficients in parentheses. Negative shadow prices imply that a variable is estimated to 

benefit respondents. For example, at the sample mean of household income and when using rank-order ℎ𝑟𝑖𝑡, a 

person who is not married needs to be compensated with €8,278€ of additional household income to be as satisfied 

as a married person. Since sign reversals were possible for having children and disability, the signs of their shadow 

prices also depend on the chosen scale. Notably, our estimates of the effects of income, unemployment, and 

marriage, obtained from regressions of rank-order ℎ𝑟𝑖𝑡, fall within the ranges reported by Frijters et al. (2020) as 

the current best estimates these variables’ effects (no such estimates are provided for having children or a disability).   
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a lower mean. Analogously to the OLS fixed-effects specification, adding individual averages of all 

explanatory variables markedly reduces the magnitudes of our estimates. Across specifications, the 

magnitudes of these coefficients are roughly twice the magnitudes obtained in the corresponding 

OLS regressions of ℎ𝑟 shown in Table 2. This is because differences between thresholds are 

estimated to be somewhat above 2 for high response categories and somewhat below 2 for low 

response categories. Coefficients are therefore scaled by a factor of approximately 2 when 

compared to the rank-order coding used in Table 2.  

Concerning the estimated standard deviation of the error term, being married, having children, 

and higher incomes reduce 𝜎𝑖𝑡. Unemployment and disability increase 𝜎𝑖𝑡. Since no coefficient on 

Table 4. Heteroskedastic ordered probit (HOP) models for ℎ𝑟 and reversal conditions for each explanatory 
variable using SOEP data. 

 (1) (2) (3) 
 HOP, variables entered 

separately 
HOP, full controls HOP, full controls and 

individual averages 

𝝁
𝒊𝒕

    

Log HH income 1.453*** (0.043) 
c=0.66 

1.209*** (0.039) 
c=1.43 

0.605*** (0.027) 
c=2.34 

Unemployed -2.711*** (0.075) 
c=2.33 

-1.759*** (0.055) 
c=1.84 

-1.181*** (0.040) 
c=2.08 

Married 0.408*** (0.029) 
c=0.61 

0.577*** (0.031) 
c=0.90 

0.349*** (0.031) 
c=2.01 

Children 0.409*** (0.030) 
c=1.14 

0.320*** (0.028) 
c=26.08 

-0.002 (0.024) 
c=-0.02 

Disability -1.804*** (0.062) 
c=1.06 

-1.525*** (0.055) 
c=1.53 

-0.573*** (0.038) 
c=1.15 

Constant  10.336*** (0.224) 10.281*** (0.223) 

𝐥𝐧(𝝈𝒊𝒕)    

Log HH income -0.140*** (0.004) -0.065*** (0.005) -0.021*** (0.005) 

Unemployed 0.066*** (0.006) 0.069*** (0.006) 0.044*** (0.006) 

Married -0.038*** (0.004) -0.049*** (0.005) -0.014** (0.006) 

Children -0.021*** (0.004) -0.001 (0.005) -0.007 (0.006) 

Disability 0.097*** (0.007) 0.073*** (0.007) 0.039*** (0.007) 

Constant  1.281*** (0.024) 1.262*** (0.024) 

Thresholds    
τ0  -∞ (assumed) -∞ (assumed) 

τ1  0.000 (assumed) 0.000 (assumed) 

τ2  1.000 (assumed) 1.000 (assumed) 

τ3  2.377*** (0.036) 2.373*** (0.036) 

τ4  3.775*** (0.068) 3.763*** (0.068) 

τ5  4.875*** (0.094) 4.855*** (0.093) 

τ6  7.032*** (0.145) 6.998*** (0.144) 

τ7  8.366*** (0.177) 8.324*** (0.176) 
τ8  10.499*** (0.228) 10.442*** (0.226) 

τ9  13.781*** (0.306) 13.703*** (0.305) 

τ10  16.257*** (0.365) 16.169*** (0.364) 

τ11  ∞ (assumed) ∞ (assumed) 

Observations 557,999 557,999 557,999 

Note: In most cases, except for the coefficient on children in column (3), required magnitudes of 𝑐 are larger than 
what is consistent with the evidence of section 4. Reversal conditions are evaluated at the sample means of all 
explanatory variables. Column (1) displays results from separate models for each explanatory variable. Since 
constants and thresholds vary (slightly) across regressions in column 1, they are not reported there. Model titles 
denote the specification estimated in each column. Data are from the 1984-2015 waves of the SOEP. Standard 
errors in parentheses (clustered by respondents). * p < 0.10, ** p < 0.05, *** p < 0.01.   
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ln(𝜎𝑖𝑡) is precisely zero, reversals are always possible. In Table 4, the level of 𝑐 needed to reverse 

the sign of marginal effects is shown below each variable’s estimated coefficients.  

Two points are worth noting. First, in most cases the required level of 𝑐 is clearly larger than our 

benchmark of 𝑐 = 1. In these cases, reversals would require assumptions about scale use that are 

not currently supported by the work reviewed in section 4. Second, for income and marriage we 

sometimes find required levels of 𝑐 that are smaller than 1. However, estimated differences 

between thresholds are typically above 2 for the majority of our sample (more than 75% of the 

sample report a level of ℎ𝑟 above 4). Therefore, for any given 𝑐, a transformation  ℎ�̃� = 𝑒𝑐ℎ𝑝 is 

typically more than twice as extreme as a similar transformation of rank-order-coded ℎ𝑟. Hence, 

for a more reasonable comparison with the latter transformations, we should multiply the 𝑐 values 

in Table 4 by roughly 2.20 After this multiplication, none of these required levels of 𝑐 are within 

our benchmark of 𝑐 < 1 except for the insignificant estimate of the effect of having children in 

column 3. As was true in the OLS setting, this is the only case in which a mild transformation 

would reverse the estimated marginal effect.   

Finally, we replicated all these analyses with GSS and LISS data. See Appendix Tables A7 and A8. 

These results largely agree with those shown here. 

6 Conclusions 

This paper has made three main contributions. First, our non-reversal condition provided a test of 

whether reversals of OLS regression coefficients are possible. In this context, we showed that 

reversals are caused by variables having heterogenous effects across the distribution of reported 

happiness. We also compared the ordered probit approach with the OLS approach and argued 

that reversals in both approaches share the same underlying causes.  

Second, we showed that reversals either require analysts to assume that respondents use response 

scales in a strongly non-linear fashion or that Assumption A2 is violated in a particularly severe 

manner. We then presented arguments and evidence to suggest that respondents use the response 

scale in a roughly linear fashion and that extreme violations of A2 are not observed in the available 

data.  

Third, we empirically investigated the possibility and plausibility of reversals for a set of socio-

economic variables. We found that reversals of OLS coefficients are impossible or unlikely in most 

of the cases we considered. Similarly, in the data and models we analysed, reversals using ordered 

probit require extreme transformations of the underlying scale. Although our main analyses rely 

on German SOEP data, which is one of the most common sources of data in the field, we obtain 

similar results using Dutch LISS and American GSS data.  

Practically, our results suggest that when researchers merely wish to identify the direction of effects 

of explanatory variables, standard methods are reasonably robust to the worries flagged by B&L 

and S&Y. However, since effects of explanatory variables are rarely homogenous across the 

 
20 As stated in section 3.2, after a transformation ℎ�̃� = 𝑒𝑐ℎ𝑝, differences between transformed thresholds 

approximately grow by a factor 𝑒∆𝜏𝑐 , where ∆𝜏 is the typical difference between untransformed thresholds. In our 

case, ∆𝜏 ≈ 2. Therefore, differences thresholds approximately grow by a factor 𝑒2𝑐 . In contrast, for rank-order order 

coded ℎ𝑟, differences between transformed categories only grow by a factor of 𝑒𝑐 . Thus, to allow for a comparison 

between the OLS and the ordered probit approach, we should multiply the ordered probit values for 𝑐 by 2.  
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distribution of happiness, ratios of coefficients can be affected even by mild transformations of 

reported happiness. Of course, it is unclear in how far our results would also hold for other 

datasets, other variables, or different model specifications. We therefore believe that future work 

should further investigate these issues on both a theoretical and empirical level.  

We also suggest two new kinds of robustness test that may be applied in related future work.  

First, researchers may want to verify the sensitivity of their results against plausible transformations 

(e.g. for −0.4 < c < 0.4). Practically, this means that researchers may want to test if signs of 

coefficients, significance levels, and ratios of coefficients remain the same when estimating 

regressions of rank-order ℎ𝑟 and when estimating regressions of ℎ�̃� = ±𝑒𝑐ℎ𝑟 for 𝑐 = 0.4 and 

𝑐 = −0.4. Of course, these suggested values for 𝑐 are tentative, and may depend on the specific 

application.  

Second, by ascertaining whether the non-reversal condition is satisfied, future work may attempt to 

verify that the signs of estimated OLS coefficients are immune to reversals. As stated in section 

2.2. the non-reversal condition is satisfied when the signs of �̂�𝑚,𝑘
(𝑑)

 are the same for all 𝑘 = 1,2, … , 𝐾 −

1. If one is willing and able to defend Assumptions A2 and A3, satisfying the non-reversal condition 

practically means that signs of estimated coefficients are particularly robust against the questions 

raised by B&L and S&Y. Stata code that performs these tests are provided in our replication files. 

Moreover, our Proposition 4 enabled evaluating how ratios of coefficients can change across all 

permissible labelling schemes. This may be particularly useful when assessing the relative impact 

of explanatory variables. 

There are at least two important gaps in our analysis. First, our defence of Assumption A2, which 

helped to justify the use of OLS regressions, is tentative and was based on a single dataset. An 

extended investigation into the validity of this assumption would thus be welcome. Second, we set 

potential issues arising from heterogeneities in scale use aside. As argued in e.g. Angelini et al. 

(2014) or Kaiser (2022), such heterogeneities can bias estimates. Hence, future work should seek 

to analyse these issues jointly.  

Lastly, our finding that the relative effects of explanatory variables are not homogenous across the 

distribution of reported happiness shows that estimating mean effects on happiness hides patterns 

in the data that are interesting and informative in their own right. As was previously done using 

quantile regressions (Binder and Coad 2011; 2015; Gupta et al. 2015), such patterns should be 

investigated more broadly.  
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Appendix 

A Proofs  

A1 Proposition 1  

We can write ℎ�̃�𝑖 = ∑ (𝑙𝑘 − 𝑙𝑘+1)ℎ𝑑𝑘,𝑖
𝐾−1
𝑘=1 + 𝑙𝐾 . To see this, suppose that respondent 𝑖 chooses 

some arbitrary category 𝑎. We then have ℎ�̃�𝑖 = 𝑙𝑎. Recall that we defined ℎ𝑑𝑘,𝑖 ≡ 𝟙(ℎ𝑟𝑖 ≤ 𝑘), 

implying ℎ𝑑𝑘,𝑖 = 0 for all 𝑘 < 𝑎 and ℎ𝑑𝑘,𝑖 = 1 for all 𝑘 ≥ 𝑎. We therefore get:  

ℎ�̃�𝑖 = (𝑙1 − 𝑙2)0 + ⋯ + (𝑙𝑎−1 − 𝑙𝑎)0 + (𝑙𝑎 − 𝑙𝑎+1)1 + (𝑙𝑎+1 − 𝑙𝑎+2)1 + ⋯ + (𝑙𝐾−1 − 𝑙𝐾)1 + 𝑙𝐾

= (𝑙𝑎 − 𝑙𝑎+1) + (𝑙𝑎+1 − 𝑙𝑎+2) + ⋯ + (𝑙𝐾−1 − 𝑙𝐾) + 𝑙𝐾

= 𝑙𝑎

(A1) 

Hence, all terms except 𝑙𝑎 in the above expression for ℎ�̃�𝑖 cancel out.  

Stacking over all 𝑁 individuals 𝑖, we get 𝒉�̃� = ∑ (𝑙𝑘 − 𝑙𝑘+1)𝒉𝒅𝒌
𝐾−1
𝑘=1 + 𝑙𝐾𝑰, where 𝑰 is a 𝑁 × 1 

vector of 1s. Also stacking equations (6) and (7) over 𝑖, we get 𝒉�̃� = 𝑿𝜷 + 𝜺 and 𝒉𝒅𝒌 = 𝑿𝜷𝑘
(𝑑)

+

𝜺𝑘
(𝑑)

. The estimated coefficient vector �̂� can then be written as: 

�̂� = (𝑿′𝑿)−1𝑿′𝒉�̃�

= (𝑿′𝑿)−1𝑿′ (∑ (𝑙𝑘 − 𝑙𝑘+1)
𝐾−1

𝑘=1
𝒉𝒅𝒌 + 𝑙𝐾𝑰)

= (𝑿′𝑿)−1𝑿′ (∑ (𝑙𝑘 − 𝑙𝑘+1)
𝐾−1

𝑘=1
((𝑿′𝑿)−1𝑿′)−1�̂�𝑘

(𝑑)
+ 𝑙𝐾𝑰)

= ∑ (𝑙𝑘 − 𝑙𝑘+1)
𝐾−1

𝑘=1
�̂�𝑘

(𝑑)
+ (𝑿′𝑿)−1𝑿′𝑙𝐾𝑰

(A2) 

In moving from the second to the third line above, we used the fact that �̂�𝑘
(𝑑)

= ((𝑿′𝑿)−1𝑿′)𝒉𝒅𝒌, 

and hence ((𝑿′𝑿)−1𝑿′)−1�̂�𝑘
(𝑑)

= 𝒉𝒅𝒌. The term (𝑿′𝑿)−1𝑿′𝑙𝐾𝑰 equals an OLS estimate of a 

regression of a vector of constants 𝑙𝐾𝑰 on 𝑿. Such a regression yields a vector with the first element 

equal to 𝑙𝐾 and all other elements equal to 0. Hence, all but the first element of 

∑ (𝑙𝑘 − 𝑙𝑘+1)�̂�𝑘
(𝑑)𝐾−1

𝑘=1  equal the corresponding elements of �̂�. For each element �̂�𝑚 of �̂� (except 

the first), this entails that �̂�𝑚 = ∑ (𝑙𝑘 − 𝑙𝑘+1)�̂�𝑘,𝑚
(𝑑)𝐾−1

𝑘=1 . Assumption A1 entails that 𝑙𝑘 − 𝑙𝑘+1 is 

negative for all 𝑘 and all permissible labelling schemes. Therefore, when the estimate  �̂�𝑘,𝑚
(𝑑)

 is 

negative for all 𝑘 = 1, … , 𝐾 − 1, the corresponding estimate �̂�𝑚 will be positive for all permissible 

labelling schemes. Vice versa, when �̂�𝑘,𝑚
(𝑑)

 is positive for all 𝑘 = 1, … , 𝐾 − 1, �̂�𝑚 will be negative 

for all permissible labelling schemes. However, when �̂�𝑘,𝑚
(𝑑)

 is positive for some 𝑘, but negative for 

at least one other 𝑘,  we can set 𝑙𝑘 − 𝑙𝑘+1 to −1 for all 𝑘 where �̂�𝑘,𝑚
(𝑑)

 is positive, and set 𝑙𝑘 − 𝑙𝑘+1 

to some negative constant 𝑐 for all 𝑘 where �̂�𝑘,𝑚
(𝑑)

 is negative. Define Δ+ to be the sum of all positive 

�̂�𝑘,𝑚
(𝑑)

 and Δ− to be the sum of all negative �̂�𝑘,𝑚
(𝑑)

. We can then write �̂�𝑚 = 𝑐Δ− − Δ+. Setting this 

expression to 0, we obtain 𝑐 = Δ+/Δ−. This will always yield a negative, and hence permitted, value 

of 𝑐. For values of 𝑐 below 𝑐 = Δ+/Δ−, �̂�𝑚 will be positive and for values of 𝑐 above 𝑐 = Δ+/Δ−, 
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�̂�𝑚 will be negative. This implies the possibility of sign reversal via changes in the relative size of 

Δ+ and Δ−.  

A2 Proposition 2 and condition to satisfy Assumption A2 

A2.1 Proposition 2 

When Assumptions A2 and A3 hold, there exists some labelling scheme such that ℎ�̃�𝑖 = 𝑿𝑖𝜷 + 𝜀𝑖, 

where 𝜀𝑖 = 𝜂𝑖 − 𝜁𝑖. By linearity of the expectation operator, E(𝜀𝑖|𝑿𝑖) = E(𝜂𝑖 − 𝜁𝑖|𝑿𝑖) =

E(𝜂𝑖|𝑿𝑖) − E(𝜁𝑖|𝑿𝑖) = 0. The OLS estimate �̂�𝑚 is thus an unbiased and consistent estimate of 

𝛽𝑚 (including its sign). By the non-reversal condition, and given A1, the sign of �̂�𝑚 will be the same 

for all permissible labelling schemes. Hence, a regression of any other permissible labelling for ℎ�̃�𝑖 

also yields an unbiased and consistent estimate of the sign of �̂�𝑚. 

A2.2 Condition to satisfy Assumption A2 

In section 2.3 we stated that Assumption A2 is satisfied whenever E(ℎ𝑡𝑖|ℎ𝑟𝑖 = 𝑘; 𝑿𝑖) =

E(ℎ𝑡𝑖|ℎ𝑟𝑖 = 𝑘) holds (but not vice versa).  

Assumption A2 states that some permissible transformation of ℎ𝑟𝑖 exists such that ℎ𝑡𝑖 = ℎ�̃�𝑖 + 𝜁𝑖 

with E(𝜁𝑖|𝑿𝑖) = 0. We can write E(ℎ𝑡𝑖|ℎ𝑟𝑖 = 𝑘) = ℎ�̃�𝑖 + E(𝜁𝑖|ℎ𝑟𝑖 = 𝑘) = 𝑙𝑘 + E(𝜁𝑖|ℎ𝑟𝑖 = 𝑘). 

In this case, by setting 𝑙𝑘 = E(ℎ𝑡𝑖|ℎ𝑟𝑖 = 𝑘), it follows that E(𝜁𝑖|ℎ𝑟𝑖 = 𝑘) = 0 for all 𝑘 = 1, … , 𝐾. 

If E(ℎ𝑡𝑖|ℎ𝑟𝑖 = 𝑘; 𝑿𝑖)=E(ℎ𝑡𝑖|ℎ𝑟𝑖 = 𝑘), we also have E(𝜁𝑖|ℎ𝑟𝑖 = 𝑘; 𝑿𝑖) = E(𝜁𝑖|ℎ𝑟𝑖 = 𝑘) = 0.  

Now note that we can write E(𝜁𝑖|𝑿𝑖) = ∑ 𝑠𝑘 ∗ E(𝜁𝑖|ℎ𝑟𝑖 = 𝑘; 𝑿𝑖)𝐾
𝑘=1 , which is analogous to 

equation (2) in section 2.1. If E(𝜁𝑖|ℎ𝑟𝑖 = 𝑘; 𝑿𝑖) =  0 for all 𝑘 = 1, … , 𝐾, we also have that 

E(𝜁𝑖|𝑿𝑖) = 0. In that case, Assumption A2 is satisfied.   

Notably, the reverse is not true: If E(𝜁𝑖|𝑿𝑖) = 0, the identity can be satisfied if 

E(𝜁𝑖|ℎ𝑟𝑖 = 𝑘; 𝑿𝑖) > 0 for some 𝑘 and E(𝜁𝑖|ℎ𝑟𝑖 = 𝑘′; 𝑿𝑖) < 0 for some other 𝑘′.        

A3 Proposition 3  

The proof of Proposition 1 established that �̂�𝑚 = ∑ (𝑙𝑘 − 𝑙𝑘+1)�̂�𝑘,𝑚
(𝑑)𝐾−1

𝑘=1 . For the ratio �̂�𝑚/�̂�𝑛 we 

thus get: 
�̂�𝑚

�̂�𝑛
=

∑ (𝑙𝑘−𝑙𝑘+1)�̂�𝑘,𝑚
(𝑑)𝐾−1

𝑘=1

∑ (𝑙𝑘−𝑙𝑘+1)�̂�𝑘,𝑛
(𝑑)𝐾−1

𝑘=1

. If 
�̂�𝑘,𝑚

(𝑑)

�̂�𝑘,𝑛
(𝑑) = 𝜌 for all 𝑘 = 1, … , 𝐾 − 1, we can substitute �̂�𝑘,𝑚

(𝑑)
=

𝜌�̂�𝑘,𝑛
(𝑑)

 into the expression for 
�̂�𝑚

�̂�𝑛
, yielding 

�̂�𝑚

�̂�𝑛
=

∑ (𝑙𝑘−𝑙𝑘+1)𝜌�̂�𝑘,𝑛
(𝑑)𝐾−1

𝑘=1

∑ (𝑙𝑘−𝑙𝑘+1)�̂�𝑘,𝑛
(𝑑)𝐾−1

𝑘=1

= 𝜌
∑ (𝑙𝑘−𝑙𝑘+1)�̂�𝑘,𝑛

(𝑑)𝐾−1
𝑘=1

∑ (𝑙𝑘−𝑙𝑘+1)�̂�𝑘,𝑛
(𝑑)𝐾−1

𝑘=1

= 𝜌. 

A4 Proposition 4 

In general, we can write the ratio 
�̂�𝑚

�̂�𝑛
 as 

�̂�𝑚

�̂�𝑛
= ∑

(𝑙𝑘−𝑙𝑘+1)�̂�𝑘,𝑛
(𝑑)

∑ (𝑙𝑗−𝑙𝑗+1)�̂�𝑗,𝑛
(𝑑)𝐾−1

𝑗=1

�̂�𝑘,𝑚
(𝑑)

�̂�𝑘,𝑛
(𝑑)

𝐾−1
𝑘=1 , i.e. as a weighted average 

of all ratios �̂�𝑘,𝑚
(𝑑)

/�̂�𝑘,𝑛
(𝑑)

. Suppose �̂�𝑘,𝑚
(𝑑)

/�̂�𝑘,𝑛
(𝑑)

 for 𝑘 = 𝑎 is smallest among all �̂�𝑘,𝑚
(𝑑)

/�̂�𝑘,𝑛
(𝑑)

. By recoding 

ℎ�̃�𝑖 such that 𝑙𝑎 − 𝑙𝑎+1 < 0 and 𝑙𝑘 − 𝑙𝑘+1 = 0 for all other 𝑘 ≠ 𝑎, we can assign all weight to 

�̂�𝑘,𝑚
(𝑑)

/�̂�𝑘,𝑛
(𝑑)

. In that case, �̂�𝑚 �̂�𝑛⁄ = �̂�𝑎,𝑚
(𝑑)

/�̂�𝑎,𝑛
(𝑑)

. However, by Assumption A1,  𝑙𝑘 − 𝑙𝑘+1 = 0 is just 
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not permissible. Therefore,  �̂�𝑚 �̂�𝑛⁄ > �̂�𝑎,𝑚
(𝑑)

/�̂�𝑎,𝑛
(𝑑)

 and lim
𝑙𝑘−𝑙𝑘+1→0 for 𝑘≠𝑎

�̂�𝑚 �̂�𝑛⁄ → �̂�𝑎,𝑚
(𝑑)

/�̂�𝑎,𝑛
(𝑑)

. 

Hence, �̂�𝑎,𝑚
(𝑑)

/�̂�𝑎,𝑛
(𝑑)

 is the infimum of �̂�𝑚 �̂�𝑛⁄ .  

Now suppose �̂�𝑏,𝑚
(𝑑)

/�̂�𝑏,𝑛
(𝑑)

 is largest among all �̂�𝑘,𝑚
(𝑑)

/�̂�𝑘,𝑛
(𝑑)

. By the same argument �̂�𝑚 �̂�𝑛⁄ <

�̂�𝑏,𝑚
(𝑑)

/�̂�𝑏,𝑛
(𝑑)

 and lim
𝑙𝑘−𝑙𝑘+1→0 for 𝑘≠𝑏

�̂�𝑚 �̂�𝑛⁄ → �̂�𝑏,𝑚
(𝑑)

/�̂�𝑏,𝑛
(𝑑)

. Hence, �̂�𝑏,𝑚
(𝑑)

/�̂�𝑏,𝑛
(𝑑)

 is the supremum of 

�̂�𝑚 �̂�𝑛⁄ .     

A5 Proposition 5 

Assumption 4 states that ℎ𝑟𝑖 = 𝑘 ↔ 𝜄𝑘−1 < ℎ𝑡𝑖 ≤ 𝜄𝑘. Let 𝑠𝑗,𝑘 be the share in group 𝑗 ∈ {𝐴, 𝐵} 

that responded with response category ℎ𝑟 = 𝑘. Mean ℎ𝑡 for groups 𝐴 and 𝐵 will then be given by 

the following inequalities: 

∑ 𝜄𝑘−1

𝐾

𝑘=1
𝑠𝐴,𝑘 < E[ℎ𝑡𝐴] ≤ ∑ 𝜄𝑘

𝐾

𝑘=1
𝑠𝐴,𝑘

∑ 𝜄𝑘−1

𝐾

𝑘=1
𝑠𝐵,𝑘 < E[ℎ𝑡𝐵] ≤ ∑ 𝜄𝑘

𝐾

𝑘=1
𝑠𝐵,𝑘

(A2) 

Consequently, the difference E[ℎ𝑡𝐴] − 𝐸[ℎ𝑡𝐵] between the two groups is given by: 

∑ 𝜄𝑘−1𝑠𝐴,𝑘 − 𝜄𝑘𝑠𝐵,𝑘

𝐾

𝑘=1
< E[ℎ𝑡𝐴] − 𝐸[ℎ𝑡𝐵] < ∑ 𝜄𝑘𝑠𝐴,𝑘 − 𝜄𝑘−1𝑠𝐵,𝑘

𝐾

𝑘=1
(A3) 

Suppose we want to ascertain whether E[ℎ𝑡𝐴] − 𝐸[ℎ𝑡𝐵] > 0. To do so, it is sufficient to evaluate 

whether the lower part of the above inequality is positive. We can then write:  

E[ℎ𝑡𝐴] − 𝐸[ℎ𝑡𝐵] > ∑ 𝜄𝑘−1𝑠𝐴,𝑘 − 𝜄𝑘𝑠𝐵,𝑘

𝐾

𝑘=1

= (𝜄0 − 𝜄1)𝑠𝐴,1 + (𝜄𝐾−1 − 𝜄𝐾)𝑠𝐵,𝐾 + ∑ (𝜄𝑘−1 − 𝜄𝑘) (∑ 𝑠𝐴,𝑚

𝑘

𝑚=1
− ∑ 𝑠𝐵,𝑚

𝑘−1

𝑚=1
)

𝐾−1

𝑘=2

(A4) 

The equality in this relation can be shown to hold by expanding the terms relating to group 𝐴 in 

the latter expression. Doing so yields (we repeatedly draw out terms from the summation over 𝑘 

and let some terms cancel): 

(𝜄0 − 𝜄1)𝑠𝐴,1 + ∑ (𝜄𝑘−1 − 𝜄𝑘) ∑ 𝑠𝐴,𝑚

𝑘

𝑚=1

𝐾−1

𝑘=2

= 𝜄0𝑠𝐴,1 − 𝜄1𝑠𝐴,1 + ∑ (𝜄𝑘−1 − 𝜄𝑘) ∑ 𝑠𝐴,𝑚

𝑘

𝑚=1

𝐾−1

𝑘=2

= 𝜄0𝑠𝐴,1 + 𝜄1𝑠𝐴,2 − 𝜄2𝑠𝐴,1 − 𝜄2𝑠𝐴,2 + ∑ (𝜄𝑘−1 − 𝜄𝑘) ∑ 𝑠𝐴,𝑚

𝑘

𝑚=1

𝐾−1

𝑘=3

= 𝜄0𝑠𝐴,1 + 𝜄1𝑠𝐴,2 + 𝜄2𝑠𝐴,3 − 𝜄3𝑠𝐴,1 − 𝜄3𝑠𝐴,2 − 𝜄3𝑠𝐴,3 + ∑ (𝜄𝑘−1 − 𝜄𝑘) ∑ 𝑠𝐴,𝑚

𝑘

𝑚=1

𝐾−1

𝑘=4

= ⋯ = ∑ 𝜄𝑘−1𝑠𝐴,𝑘

𝐾−1

𝑘=1
− 𝜄𝐾−1 ∑ 𝑠𝐴,𝑘

𝐾−1

𝑘=1

= ∑ 𝜄𝑘−1𝑠𝐴,𝑘

𝐾−1

𝑘=1
− 𝜄𝐾−1(1 − 𝑠𝐴,𝐾)

= −𝜄𝐾−1 + ∑ 𝜄𝑘−1𝑠𝐴,𝑘

𝐾

𝑘=1

(A5) 
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By an analogous process, the terms relating to group 𝐵 can be expanded to yield: 

(𝜄𝐾−1 − 𝜄𝐾)𝑠𝐵,𝐾 − ∑ (𝜄𝑘−1 − 𝜄𝑘) ∑ 𝑠𝐵,𝑚

𝑘−1

𝑚=1

𝐾−1

𝑘=2
= 𝜄𝐾−1 − ∑ 𝜄𝑘𝑠𝐵,𝑘

𝐾

𝑘=1
(A6) 

Combining the results of (A5) and (A6) yields the expression in the first line of (A4).  

The expression in (A4) is only guaranteed to be positive for any permissible set of thresholds when 

𝑠𝐴,1 = 𝑠𝐵,𝐾 = 0 and ∑ 𝑠𝐴,𝑚
𝑘
𝑚=1 < ∑ 𝑠𝐵,𝑚

𝑘−1
𝑚=1  for all 𝑘 = 2, … , 𝐾 − 1. To see this, note that when 

sA,1 ≠ 0, we can set the magnitude of 𝜄0 − 𝜄1 to be arbitrarily large and the magnitude of all other 

𝜄𝑘 − 𝜄𝑘+1 to be arbitrarily small, yielding a negative value for this expression. Conversely, when 

sB,K ≠ 0, we can choose the magnitude of 𝜄𝐾−1 − 𝜄𝐾  to be arbitrarily large, and the magnitude of 

all other 𝜄𝑘 − 𝜄𝑘+1 to be arbitrarily small. Finally, when 𝑠𝐴,1 = 𝑠𝐵,𝐾 = 0 the sign of expression (A4) 

only depends on ∑ (𝜄𝑘−1 − 𝜄𝑘)(∑ 𝑠𝐴,𝑚
𝑘
𝑚=1 − ∑ 𝑠𝐵,𝑚

𝑘−1
𝑚=1 )𝐾−1

𝑘=2 . Recall that (𝜄𝑘−1 − 𝜄𝑘) is negative 

for all permissible sets of thresholds. Therefore, if ∑ 𝑠𝐴,𝑚
𝑘
𝑚=1 − ∑ 𝑠𝐵,𝑚

𝑘−1
𝑚=1  is negative for all 𝑘 

the entire expression in (A4) will be positive. However, when ∑ 𝑠𝐴,𝑚
𝑘
𝑚=1 − ∑ 𝑠𝐵,𝑚

𝑘−1
𝑚=1  is positive 

for some 𝑘 and negative for some other 𝑘′ we can set the corresponding 𝜄𝑘−1 − 𝜄𝑘  to be arbitrarily 

large and the corresponding 𝜄𝑘′−1 − 𝜄𝑘′ to be arbitrarily small, yielding a negative sign for the entire 

expression. An analogous result to ascertain whether E[ℎ𝑡𝐵] − 𝐸[ℎ𝑡𝐴] > 0 can be obtained by 

switching indices for groups 𝐵 and 𝐴. 

B Further discussion 

B1 Violations of Assumption A2 when assuming a linear response scale 

This appendix assesses the implications of dropping Assumption A2 while maintaining that 

response scales are linear.  

When assuming that the response scale is linear in ℎ𝑡, we have 𝜄𝑘 − 𝜄𝑘−1 = 𝑑 for all 𝑘, where 𝑑 is 

some constant. As usual, denote the number of available response categories with 𝐾. As in the 

proof of proposition 5, when allowing for mean ℎ𝑡 to vary between two groups 𝐴 and 𝐵 within 

each response category, the expected difference in ℎ𝑡 between the two groups is given by the 

interval provided in relation (A3). In order to verify whether E[ℎ𝑡𝐴] − 𝐸[ℎ𝑡𝐵] > 0, it is sufficient 

to determine the sign of the lower bound of the interval, as given in relation (A4). The reverse case 

is obtained by swapping the indices for the two groups.  

Since, in the present case, 𝜄𝑘 − 𝜄𝑘−1 = 𝑑 for all 𝑘 we can rewrite relation (A4) as: 

𝐸[ℎ𝑡𝐴] − 𝐸[ℎ𝑡
𝐵

] ≥ ∑ (𝜄𝑘 − 𝑑)𝑠𝐴,𝑘 − 𝜄𝑘𝑠𝐵,𝑘

𝐾

𝑘=1
= ∑ 𝜄𝑘(𝑠𝐴,𝑘 − 𝑠𝐵,𝑘)

𝐾

𝑘=1
− 𝑑𝑠𝐴,𝑘 (B1) 

Note that we can write 𝑑 = 𝐾/(𝜄𝐾 − 𝜄0), i.e. as the number of response options divided by the 

difference between the upper and lower limits of ℎ𝑡. Set 𝜄0 = 0 and 𝜄𝐾 = 1. We then have 𝑑 =

1/𝐾, and equation (B1) becomes: 

𝐸[ℎ𝑡𝐴] − 𝐸[ℎ𝑡𝐵] ≥ ∑ 𝜄𝑘(𝑠𝐴,𝑘 − 𝑠𝐵,𝑘)
𝐾

𝑘=1
− 1/𝐾 (B2) 
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The first term in this expression ∑ 𝜄𝑘(𝑠𝐴,𝑘 − 𝑠𝐵,𝑘)𝐾
𝑘=1  is just the difference in mean ℎ𝑡 between 

the two groups when maintaining that ℎ𝑡 does not vary within response categories. Its value can 

be obtained by noting that 𝜄𝑘 = 𝑘𝑑 = 𝑘/𝐾, and calculating ∑
𝑘

𝐾
(𝑠𝐴,𝑘 − 𝑠𝐵,𝑘)𝐾

𝑘=1 . This value can 

also be obtained by simply labelling each 𝑘th response category of ℎ𝑟 as 𝑘/𝐾, and taking the mean 

of this labelling of ℎ𝑟.  

The second term in relation (B2), 1/𝐾, decreases with the number of available response categories 

𝐾. For example, when 𝐾 = 3 as in the GSS, we require that the difference in mean ℎ𝑟 between 

the groups must exceed 1/3 in order to be identified when dropping Assumption 2. For 𝐾 = 11, 

as in German SOEP, we only require that this difference exceeds 1/11. Thus, the amount by 

which group 𝐴 must be happier than group 𝐵 in order for the sign of this difference to be identified 

(while maintaining that the response scale is linear), is inversely proportional to the number of 

response categories. From this point of view, offering respondents a greater number of response 

categories is preferable.  

Finally note that we could also set 𝜄0 = 0 and 𝜄𝐾 = 𝐾, which would correspond to a rank-order 

labelling of ℎ𝑟. In that case, we would have 𝑑 = 𝐾/(𝐾 − 0) = 1 and relation (B2) would read 

𝐸[ℎ𝑡𝐴] − 𝐸[ℎ𝑡𝐵] ≥ ∑ 𝑘(𝑠𝐴,𝑘 − 𝑠𝐵,𝑘)𝐾
𝑘=1 − 1, which is the case we discuss in the main text.  

B2 Ordered probit reversals rely on heterogeneities of effects across ℎ𝑝𝑖 

In section 3.2 we asserted that ordered probit reversals are driven by effect heterogeneities across 

ℎ𝑝𝑖 . This can be shown as follows. First write the normally distributed error 𝜀𝑝𝑖 in Equation (9) as 

𝜎𝑖𝜖𝑖, where 𝜖𝑖~𝒩(0,1) and 𝜎𝑖 is the standard deviation of 𝜀𝑝𝑖 as estimated on the basis of 

equation (10). We can then express the marginal effect of some variable 𝑋𝑖,𝑚 on E(ℎ�̃�𝑖|𝑿𝒊) as an 

integral over error 𝜖𝑖. We then obtain: 

𝜕𝐸(ℎ�̃�𝑖|𝑿𝒊)

𝜕𝑋𝑖,𝑚
=

𝜕 ∫ ℎ�̃�𝑖𝜑(𝜖𝑖)𝑑𝜖𝑖
∞

−∞

𝜕𝑋𝑖,𝑚
= ∫

𝜕ℎ�̃�𝑖

𝜕𝑋𝑖,𝑚

∞

−∞

𝜑(𝜖𝑖)𝑑𝜖𝑖 = 𝐸 (
𝜕ℎ�̃�𝑖

𝜕𝑋𝑖,𝑚
|𝑿𝒊) . (B3) 

Hence, the marginal effect of 𝑋𝑖,𝑚 on mean ℎ�̃�𝑖 (i.e. E(ℎ�̃�𝑖|𝑿𝒊)) equals the mean effect of 𝑋𝑖,𝑚 on 

individual ℎ�̃�𝑖. Now suppose that coefficient 𝛽𝑚
(𝑝)

 of 𝑋𝑖,𝑚 on ℎ𝑝𝑖 is positive while coefficient 𝛽𝑚
(𝑠)

 

of 𝑋𝑖,𝑚 on ln (𝜎𝑖) is negative. In that case, a transformation ℎ�̃�𝑖 = 𝑒𝑐ℎ𝑝𝑖  for some 𝑐 > 0 will yield 

a sign reversal. Analogous arguments can also be given for each of the other possible cases, but are 

omitted for brevity.  

To now show that such reversals are indeed driven by effect heterogeneities, we can elaborate the 

last integral in equation (B3) as: 

                      ∫
𝜕ℎ�̃�𝑖

𝜕𝑋𝑖,𝑚

∞

−∞

𝜑(𝜖𝑖)𝑑𝜖𝑖 = ∫
𝜕𝑒𝑐ℎ𝑝𝑖

𝜕𝑋𝑖,𝑚

∞

−∞

𝜑(𝜖𝑖)𝑑𝜖𝑖 = ∫
𝑑𝑒𝑐ℎ𝑝𝑖

𝑑ℎ𝑝𝑖

∞

−∞

𝜕ℎ𝑝𝑖

𝜕𝑋𝑖,𝑚
𝜑(𝜖𝑖)𝑑𝜖𝑖          

= 𝑐 ∫ 𝑒𝑐ℎ𝑝𝑖

∞

−∞

𝜕ℎ𝑝𝑖

𝜕𝑋𝑖,𝑚
𝜑(𝜖𝑖)𝑑𝜖𝑖 .                                                                              (B4) 
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The derivative 𝜕ℎ𝑝𝑖 𝜕𝑋𝑖,𝑚⁄  in this expression indicates the “local” effect of a unit change in 𝑋𝑖,𝑚 

on ℎ𝑝𝑖 for a given value of error 𝜖𝑖. By virtue of equation (9), the fact that 𝜀𝑝𝑖 = 𝜎𝑖𝜖𝑖, and the 

relation 𝜎𝑖 = 𝑒ln(𝜎𝑖) = 𝑒𝑿𝑖𝜷(𝒔)
, this local effect equals 𝛽𝑚

(𝑝)
+ 𝛽𝑚

(𝑠)
𝜎𝑖𝜖𝑖. Hence, we can write: 

  
𝜕𝐸(ℎ�̃�𝑖|𝑿𝒊)

𝜕𝑋𝑖,𝑚
= 𝑐𝑒𝑐𝑿𝑖𝜷(𝒑)

∫ 𝑒𝑐𝜎𝑖𝜖𝑖 (𝛽𝑚
(𝑝)

+ 𝛽𝑚
(𝑠)

𝜎𝑖𝜖𝑖) 𝜑(𝜖𝑖)𝑑𝜖𝑖 .             

∞

−∞

(B5) 

Thus, the marginal effect of 𝑋𝑖,𝑚 on E(ℎ�̃�𝑖|𝑿𝒊) is proportional to an integral of the “local” effects  

𝛽𝑚
(𝑝)

+ 𝛽𝑚
(𝑠)

𝜎𝑖𝜖𝑖 , each of which are weighted by the term 𝑒𝑐𝜎𝑖𝜖𝑖𝜑(𝜖𝑖). The sign of these local effects 

depends on 𝜖𝑖 and it changes from positive to negative beyond 𝜖𝑖 = −
𝛽𝑚

(𝑝)

𝛽𝑚
(𝑠)

𝜎𝑖

> 0. The weight on 

each local effect, as given by 𝑒𝑐𝜎𝑖𝜖𝑖𝜑(𝜖𝑖), increases with 𝑐. Hence, for sufficiently large 𝑐 the 

negative local effects will start to dominate the positive local effects, yielding a negative mean effect, 

and thus a sign reversal. Hence, reversals in the ordered probit approach are caused by 

heterogeneities in the sign of the local effects of 𝑋𝑖,𝑚 on ℎ𝑝𝑖.
21 This is analogous to the OLS case, 

where sign reversals were caused by heterogeneities in the effects of 𝑋𝑖,𝑚 across the distribution of 

ℎ𝑟𝑖. 

Notably, the point at which reversals occur in equation (B5) is given by our reversal condition 

of Proposition 6. To see this, first observe that the term in front of the integrand never changes 

sign and can thus be ignored. Now expand the integral in equation (B5) as: 

𝛽𝑚
(𝑝)

∫ 𝑒𝑐𝜎𝑖𝜖𝑖𝜑(𝜖𝑖)𝑑𝜖𝑖

∞

−∞

+ 𝛽𝑚
(𝑠)

𝜎𝑖 ∫ 𝑒𝑐𝜎𝑖𝜖𝑖

∞

−∞

𝜖𝑖𝜑(𝜖𝑖)𝑑𝜖𝑖 = 0 (B6) 

The first integral equals 𝐸(ecσiϵi) = 𝑒0.5𝑐2𝜎𝑖
2
. The second integral (𝐼) can be evaluated using 

integration by parts. Note that 𝜖𝑖𝜑(𝜖𝑖) = 𝜖𝑖(2𝜋)−0.5𝑒−0.5𝑒2
= −𝜑′(𝜖𝑖), and let 𝑢 = 𝑒𝑐𝜎𝑖𝜖𝑖 and 

𝑣′(𝜖𝑖) = 𝜖𝑖𝜑(𝜖𝑖). Hence, 𝑢′(𝜖𝑖) = 𝑒𝑐𝜎𝑖𝜖𝑖𝑐𝜎𝑖 and 𝑣(𝜖𝑖) = −𝜑(𝜖𝑖), yielding: 

𝐼 = ∫ 𝑒𝑐𝜎𝑖𝜖𝑖

∞

−∞

𝜖𝑖𝜑(𝜖𝑖)𝑑𝜖𝑖 = −𝑒𝑐𝜎𝑖𝜖𝑖𝜑(𝜖𝑖)|−∞
∞ + 𝑐𝜎𝑖 ∫ 𝑒𝑐𝜎𝑖𝜖𝑖𝜑(𝜖𝑖)

∞

−∞

𝑑𝜖𝑖 (B7) 

Evaluating the first term at either limit of integration leads to: 

lim
𝜖𝑖→±∞

−𝑒𝑐𝜎𝑖𝜖𝑖  𝜑(𝜖𝑖) = lim
𝜖𝑖→±∞

− 𝑒𝑐𝜎𝑖𝜖𝑖(2𝜋)−0.5𝑒−0.5𝜖𝑖
2

= −(2𝜋)−0.5 lim
𝜖𝑖→±∞

𝑒𝑐𝜎𝑖𝜖𝑖−0.5𝜖𝑖
2

= 0.
(B8) 

Hence, 𝐼 =  𝑐𝜎𝑖𝐸(𝑒𝑐𝜎𝑖𝜖𝑖) = 𝑐𝜎𝑖𝑒
0.5𝑐2𝜎𝑖

2
. We therefore obtain: 

𝛽𝑚
(𝑝)

𝑒0.5𝑐2𝜎𝑖
2

+ 𝛽𝑚
(𝑠)

𝑐𝜎𝑖
2𝑒0.5𝑐2𝜎𝑖

2
= (𝛽𝑚

(𝑝)
+ 𝛽𝑚

(𝑠)
𝑐𝜎𝑖

2) 𝑒0.5𝑐2𝜎𝑖
2

= 0. (B9) 

 
21 As noted in e.g. Angrist and Pischke (2009, p.46) when using a linear model to approximate a nonlinear conditional 
expectation function, the non-linearity reveals itself as heteroscedasticity of the error term. 
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Solving for 𝑐 yields 𝑐 = −𝛽𝑚
(𝑝)

/𝑒2𝑿𝑖𝜷(𝒔)
𝛽𝑚

(𝑠)
, which is the expression in Proposition 6. 

B3 Illustration of ordered-probit-based reversals  

One of B&L’s examples concerns the Easterlin Paradox, which, using the same data, we also 

analysed in section 2. For comparison, Table B1 shows the results from a heteroskedastic ordered 

probit (HOP) model.  

Columns (1) and (2) yield estimates of −0.045 and −0.165 for the marginal effects of log GDP 

per capita on 𝜇𝑖 and ln(𝜎𝑖). Applying the condition of Proposition 6 at the mean of log GDP per 

capita yields that with 𝑐 = −0.727 the effect of log GDP per capita on the mean of the 

transformed index ℎ�̃�𝑖 = −𝑒−0.727ℎ𝑝𝑖 becomes 0. Such a 𝑐 implies a response scale with 

transformed thresholds �̃�0 = −∞, �̃�1 = −1, �̃�2 = −0.483, and �̃�3 = 0. Here, the difference 

between thresholds �̃�3 and �̃�2 is smaller than the difference between thresholds �̃�2 and �̃�1 by a 

multiplicative factor 𝑒−0.727 = 0.483 = 𝑤. This is close to the value 𝑤 = 0.46 obtained in section 

2.1. However, the sign-reversing value of 𝑐 in Proposition 6 depends on the level of 𝑿𝑖. Therefore, 

in the present example, the sign-reversing level of 𝑐 lies between the value in Proposition 6 for the 

highest level of log GDP per capita (= 10.80, yielding 𝑐 = −0.81) and its lowest observed level 

(= 10.13, yielding 𝑐 = −0.65).  

Moreover, as shown in column (4), we find that for 𝑐 < −2.588, the effect of log GDP per capita 

on mean ℎ�̃�𝑖 is significantly positive at the 5% level. Thus, a statistically significant reversal is 

feasible for the ordered probit approach, but not for the OLS approach. Finally, column (5) shows 

that for 𝑐 > 0.222, the effect on mean ℎ�̃�𝑖 is significantly negative, which implies a ratio 𝑤 =

𝑒0.222 = 1.249 that is much less than what was needed in the OLS case.  

Finally, despite using the same data, our sign-reversing value of 𝑐 is more negative than B&L’s 

(who obtain 𝑐 = −0.67). This is for three reasons. First, because B&L do not derive a condition 

that is suitable for continuous explanatory variables, they use a heuristic numerical search where 

predictions of E(ℎ�̃�𝑖|𝑿) for a given value of 𝑐 are regressed by OLS on 𝑋 for different 𝑐. Second, 

B&L use a more flexible specification for their ordered probit model, estimating  𝜇𝑖 and ln(𝜎𝑖) 

separately for each year. The value of 𝑐 for which we obtain a statistically significant reversal is 

more extreme than that of B&L because they do not cluster standard errors across years, thus 

potentially downwardly biasing the standard errors they report.  

Table B1. Results for 𝜇, ln(𝜎), and 𝐸(ℎ�̃�𝑖) based on heteroskedastic ordered probit models of ℎ𝑟 using GSS 
data 

 (1) (2) (3) (4) (5) 
 𝜇 ln(𝜎) Effect on mean 

 ℎ�̃�𝑖 for 𝑐 =
−0.727 

Effect on mean 

 ℎ�̃�𝑖 for 𝑐 =
−2.588 

Effect on mean  

ℎ�̃�𝑖 for 𝑐 =
0.222 

Log GDP per capita -0.045 (0.030) -0.165***(0.050) 0.000 (0.016) 0.163**(0.083) -0.015**(0.008) 
Constant 0.716***(0.006) -0.493***(0.010) n.a. n.a. n.a. 

Waves 26 
Observations  46,303 

Note: Untransformed thresholds are set to 𝜏0 = −∞, 𝜏1 = 0, 𝜏2 = 1, 𝜏3 = ∞. Marginal effects in columns (3) 
to (5) are evaluated at the mean of Log GDP per capita. Data are from the 1972–2006 GSS waves, as provided in 
the replication files of Stevenson & Wolfers  (2008a). Standard errors in parentheses (clustered by respondents); 
standard errors in columns (3)-(5) are obtained using the Delta method. * p < 0.10, ** p < 0.05, *** p < 0.01. 
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B4 Comparing scales with different numbers of response options.  

It seems natural to think of response scales with fewer response options as being interpreted as 

collapsed versions of response scales with more response options. In the most extreme case, we 

might think of discrete response scales as collapsed versions of a continuous response scale.  

As noted in section 4.3, we may find it plausible that continuous response scales allow for ℎ𝑡 to 

be recorded cardinally. In that case, if a discrete response scale is observed to be a linear collapse 

of the continuous scale, it would be further evidence in favour of believing that respondents 

interpret discrete response scales linearly.   

Such an analysis is possible with the LISS data used in section 4.3. Specifically, we can evaluate 

which partitioning of the continuous scale would reproduce the observed cumulative response 

shares on the discrete scale. More formally, we find the set of thresholds 𝜏𝑘 , 𝑘 = 0, … , 10, that 

satisfy 𝜏0 = 0 and 𝐹𝑐𝑜𝑛𝑡.(𝜏𝑘) = ∑ 𝑠𝑝
𝑘−1
𝑝=0 , where 𝐹𝑐𝑜𝑛𝑡. is the empirical CDF of responses for the 

question using the continuous scale and 𝑠𝑝 denotes the share of respondents that report response 

category 𝑝 on the question using the discrete scale. The result of this exercise is shown in Figure 

A1. Figure 5 in Studer (2012) shows the result of the same procedure. There this figure served a 

more descriptive purpose. Based on our figure, it indeed seems as though the discrete response 

scale is a linear collapse of the continuous response scale. This is further evidence of approximately 

linear scale use for discrete response scales.  

Figure A1.  Partitioning of continuous happiness to match response shares for discrete happiness (based 

on LISS data). 
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The same idea can also be applied to the issue of whether questions with only three or four 

response options are interpreted linearly by respondents. Thus, we now compare the three-points 

scale of the 2006 GSS wave with responses to the ten-points scale of the 2006 wave of the United 

States sample in the World Values survey (WVS).  

The GSS asks about respondents’ general happiness, while the WVS asks about life satisfaction. 

The comparison is therefore not ideal, but we are unfortunately not aware of a publicly available 

dataset that has a ten-points or an eleven-points scale for a question on happiness in the United 

States. Nevertheless, both samples are representative of the same population, and we hope that 

the two questions measure strongly correlated concepts of ℎ𝑡. 

Table A1 shows cumulative response shares in each category of the two datasets. The observed 

cumulative response shares in these samples suggest that the 1st category (“not too happy”) in the 

GSS questions most closely corresponds to categories 1-5 on a ten-points scale. Likewise, the 2nd 

category (“pretty happy”) seems most likely to correspond to categories 6-8 and the 3rd category 

(“very happy”) corresponds to categories 9-10 on a ten-points scale.  

Assume now that the relative distribution of responses across the ten-points scale in the WVS 

sample (measuring life satisfaction) is a reasonable approximation of the distribution of responses 

we would observe had the GSS sample (measuring happiness) been given a ten-points scale. 

Further assuming that the 10-points scale measures ℎ𝑡 roughly cardinally (as argued in the main 

text section), we can then take mean ℎ𝑟 across categories 1-5 of the WVS variable as indicative of 

mean ℎ𝑡 in the “not too happy” response category of the GSS variable. This yields a mean of 4.14. 

Same arguments apply to mean ℎ𝑟 of categories 6-8 (mean = 7.30) and 9-10 (mean = 9.28) of 

WVS as being indicative of mean ℎ𝑡 in categories “pretty happy” and “very happy” of GSS. See 

panel A of Figure A2 for an illustration of this analysis. 

Furthermore, using WVS (four-points scale for happiness) and ESS (eleven-points scale for 

happiness) data, we also applied a similar procedure to a set of 14 European countries. As shown 

in Table A2 below, that exercise shows that differences between responses on the four-points 

WVS scale collapse in a roughly linear manner onto the eleven-points ESS scale. The figures for 

mean ℎ𝑟 in the fifth column of Table A2 imply adjacent happiness differences from “not at all 

happy” to “very happy” of 2.71, 3.56, and 2.64. The subsequent ratios of these differences are 

Table A1. Cumulative response shares for happiness and life satisfaction in GSS and WVS 

GSS WVS Mean ℎ𝑟 

after 

collapse 

ℎ𝑟 Share in % (cum.) ℎ𝑟 Share in % (cum.) 

1 (“Not too happy”) 11.98 (11.98) 1 (“Completely dissatisfied”) 0.46 (0.46) 4.14 

2 0.90 (1.36) 

3 2.05 (3.41) 

4 3.89 (7.30) 

5 7.32 (14.61) 

2 (“Pretty happy”) 55.80 (67.78) 6 9.71 (24.32) 7.30 

7 23.06 (47.38) 

8 28.27 (75.65) 

3 (“Very happy”) 32.22 (1.00) 9 17.65 (93.29) 9.28 

10 (“Completely dissatisfied”) 6.71 (100.00) 

Note: Data are taken from the 2006 waves of the GSS and WVS. 
 



 44 

given by 1.31 and 0.74, which reveals no obvious pattern, and is not suggestive of a clear concave 

or convex response scale. See panel B of Figure A2 for an illustration of this analysis. 

Taken together, the analysis of this appendix suggests that the convex/concave scales of the degree 

B&L require (see e.g. their section A3.4) may be plausible for questions with three response 

options, but less so for questions with more response options. 

 

 

 

 

 

 

 

 

 

 

 

Figure A2.  Illustration of results of Tables A1 and A2.   
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Table A2. Cumulative response shares for happiness and life satisfaction in ESS and WVS for European countries 
WVS (Happiness) ESS (Happiness) ESS (Life Satisfaction) WVS (Life Satisfaction) 

ℎ𝑟 % share 

(cumulative) 
ℎ𝑟 % share 

(cumulative) 
ℎ�̅� after 

collapse 

ℎ𝑟  % share 

(cumulative) 
ℎ𝑟 % share 

(cumulative) 

1 2.45 (2.45) 0 0.97 (0.97) 0.52 0 3.26 (3.26) 1 2.40 (2.40) 

1 1.04 (2.01) 1 2.15 (5.41) 2 1.99 (4.39) 

2 13.06 (15.51) 2 2.11 (4.12) 3.23 2 3.37 (8.78) 3 4.16 (8.55) 

3 3.88 (8.00) 3 6.10 (14.88) 4 4.55 (13.11) 

4 4.47 (12.47) 4 5.92 (20.80) 5 11.93 (25.04) 

3 58.98 (74.50) 5 14.60 (27.06) 6.79 5 14.78 (35.58) 6 10.83 (35.87) 

6 9.24 (36.30) 6 9.45 (45.03) 

7 18.77 (54.64) 7 18.70 (55.00) 7 16.25 (61.29) 

8 24.14 (79.13) 8 21.24 (82.52) 8 25.27 (79.90) 

4 25.50 (100.0) 9 11.86 (90.99) 9.43 9 9.38 (91.90) 9 11.79 (91.69) 

10 9.01 (100.0) 10 8.10 (100.0) 10 8.31 (100.0) 

Note: Data from WVS wave 5 and ESS wave 3 (both 2006). Population weights applied. Countries included: France, 

Finland, Germany, Great Britain, The Netherlands, Norway, Poland, Romania, Russia, Slovenia, Spain, Sweden, 

Switzerland, Ukraine. WVS response options for happiness are labelled “Not at all happy” (=1), “Not very happy” 

(=2), “Rather happy” (=3), “Very happy” (=4). Extreme response options for happiness in ESS are labelled 

“Extremely unhappy” (=0) and “Extremely happy” (=10). Extreme response options for life satisfaction in ESS are 

labelled “Extremely dissatisfied” (=0) and “Extremely satisfied” (=10). Extreme response options for life 

satisfaction in WVS are labelled “Completely dissatisfied” (=0) and “Completely satisfied” (=10). 
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C Additional Tables 

 
Table A3.  OLS regressions of cumulative response share and of a just-sign reversing response scale using GSS data 

 (1) (2) (3) (4) 
 𝑠𝑡1 

(share in 1st 
response category) 

𝑠𝑡1 + 𝑠𝑡2 
(share in 1st or 2nd 
response category) 

𝑠𝑡3 
(share in 3rd 

response category) 

ℎ�̃�𝑡 
(just sign-reversing 

concave scale)  

Log GDP per capita -0.025 
(0.017) 

0.054** 
(0.019) 

-0.054** 
(0.019) 

0.000 
(0.029) 

Constant 0.121*** 
(0.003) 

0.679*** 
(0.004) 

0.321*** 
(0.004) 

2.400*** 
(0.006) 

Years 26 26 26 26 

Note: Standard errors in parentheses. * p < 0.05, ** p < 0.01, *** p < 0.001.  Log GDP per capita is demeaned across 
years. Data are from the 1972–2006 waves of the GSS, as provided in the replication files of Stevenson & Wolfers  

(2008a). The just sign-reversing concave scale in column (4) has labels  𝑙 = (1, 2.37, 3). Standard errors in parentheses. 
* p < 0.10, ** p < 0.05, *** p < 0.01. Model titles denote the dependent variable used in each column. 

 

Table A4. OLS regressions of continuous and discrete happiness on standard demographics using LISS data 

 (1) (2) 
 Continuous happiness Discrete happiness 

Log HH income 0.332*** (0.057) 0.299*** (0.047) 

Working 0.242* (0.109) 0.203* (0.080) 

Married 0.517*** (0.075) 0.403*** (0.057) 

Has children -0.347** (0.107) -0.268** (0.085) 

Has disability -0.427*** (0.053) -0.318*** (0.042) 

Constant 5.527*** (0.473) 6.211*** (0.406) 

Respondents 3,722 3,722 

Note: Standard errors in parentheses (clustered by respondent). * p < 0.10, ** p < 0.05, *** p < 0.01. Data are from the 
March and April 2011 waves of the LISS. Model titles denote the dependent variable used in each column.  
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Table A5. Full results corresponding to Figure 4, i.e. OLS regressions of ℎ𝑑𝑘,𝑖𝑡 using SOEP data.  

 (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) 
 ℎ𝑑1,𝑖𝑡 

i.e. ℎ𝑟 ≤ 1 

ℎ𝑑2,𝑖𝑡 

i.e. ℎ𝑟 ≤ 2 

ℎ𝑑3,𝑖𝑡 

i.e. ℎ𝑟 ≤ 3 

ℎ𝑑4,𝑖𝑡 

i.e. ℎ𝑟 ≤ 4 

ℎ𝑑5,𝑖𝑡 

i.e. ℎ𝑟 ≤ 5 

ℎ𝑑6,𝑖𝑡 

i.e. ℎ𝑟 ≤ 6 

ℎ𝑑7,𝑖𝑡 

i.e. ℎ𝑟 ≤ 7 

ℎ𝑑8,𝑖𝑡 

i.e. ℎ𝑟 ≤ 8 

ℎ𝑑9,𝑖𝑡 

i.e. ℎ𝑟 ≤ 9 

ℎ𝑑10,𝑖𝑡 

i.e. ℎ𝑟 ≤ 10 

 No Controls 
Log household income -0.006*** 

(0.000) 
-0.010*** 
(0.000) 

-0.021*** 
(0.001) 

-0.039*** 
(0.001) 

-0.061*** 
(0.001) 

-0.145*** 
(0.002) 

-0.180*** 
(0.002) 

-0.166*** 
(0.003) 

-0.066*** 
(0.002) 

0.003** 
(0.001) 

Unemployed 0.015*** 
(0.001) 

0.025*** 
(0.001) 

0.052*** 
(0.002) 

0.100*** 
(0.003) 

0.150*** 
(0.003) 

0.258*** 
(0.004) 

0.295*** 
(0.004) 

0.250*** 
(0.004) 

0.102*** 
(0.002) 

0.028*** 
(0.001) 

Married -0.002*** 
(0.000) 

-0.004*** 
(0.000) 

-0.009*** 
(0.001) 

-0.016*** 
(0.001) 

-0.023*** 
(0.001) 

-0.035*** 
(0.002) 

-0.040*** 
(0.003) 

-0.043*** 
(0.003) 

-0.013*** 
(0.002) 

-0.004*** 
(0.001) 

Children -0.001** 
(0.000) 

-0.002*** 
(0.000) 

-0.004*** 
(0.001) 

-0.009*** 
(0.001) 

-0.014*** 
(0.001) 

-0.032*** 
(0.002) 

-0.042*** 
(0.003) 

-0.039*** 
(0.003) 

-0.029*** 
(0.002) 

-0.003* 
(0.001) 

Disability 0.010*** 
(0.001) 

0.019*** 
(0.001) 

0.037*** 
(0.002) 

0.066*** 
(0.002) 

0.096*** 
(0.003) 

0.176*** 
(0.004) 

0.196*** 
(0.005) 

0.166*** 
(0.004) 

0.077*** 
(0.003) 

0.014*** 
(0.002) 

 Full Controls 
Log household income -0.003*** 

(0.000) 
-0.006*** 
(0.000) 

-0.014*** 
(0.001) 

-0.027*** 
(0.001) 

-0.045*** 
(0.002) 

-0.110*** 
(0.002) 

-0.143*** 
(0.003) 

-0.143*** 
(0.003) 

-0.068*** 
(0.002) 

-0.009*** 
(0.001) 

Unemployed 0.013*** 
(0.001) 

0.022*** 
(0.001) 

0.044*** 
(0.002) 

0.083*** 
(0.003) 

0.121*** 
(0.003) 

0.190*** 
(0.004) 

0.208*** 
(0.004) 

0.160*** 
(0.004) 

0.058*** 
(0.002) 

0.017*** 
(0.001) 

Married -0.003*** 
(0.000) 

-0.005*** 
(0.001) 

-0.011*** 
(0.001) 

-0.021*** 
(0.001) 

-0.030*** 
(0.002) 

-0.053*** 
(0.003) 

-0.063*** 
(0.003) 

-0.065*** 
(0.003) 

-0.031*** 
(0.002) 

-0.008*** 
(0.001) 

Children 0.000 
(0.000) 

-0.001 
(0.000) 

-0.002** 
(0.001) 

-0.005*** 
(0.001) 

-0.010*** 
(0.002) 

-0.020*** 
(0.003) 

-0.029*** 
(0.003) 

-0.035*** 
(0.003) 

-0.023*** 
(0.003) 

-0.008*** 
(0.001) 

Disability 0.009*** 
(0.001) 

0.017*** 
(0.001) 

0.034*** 
(0.002) 

0.060*** 
(0.002) 

0.088*** 
(0.003) 

0.149*** 
(0.004) 

0.164*** 
(0.005) 

0.149*** 
(0.004) 

0.071*** 
(0.003) 

0.026*** 
(0.002) 

 Full controls & fixed effects 
Log household income -0.002*** 

(0.000) 
-0.005*** 
(0.001) 

-0.010*** 
(0.001) 

-0.019*** 
(0.002) 

-0.030*** 
(0.002) 

-0.054*** 
(0.003) 

-0.067*** 
(0.003) 

-0.065*** 
(0.003) 

-0.033*** 
(0.002) 

-0.009*** 
(0.001) 

Unemployed 0.010*** 
(0.001) 

0.016*** 
(0.001) 

0.034*** 
(0.002) 

0.064*** 
(0.003) 

0.091*** 
(0.003) 

0.129*** 
(0.004) 

0.140*** 
(0.004) 

0.103*** 
(0.003) 

0.035*** 
(0.002) 

0.015*** 
(0.001) 

Married -0.001* 
(0.001) 

-0.002*** 
(0.001) 

-0.007*** 
(0.001) 

-0.013*** 
(0.002) 

-0.018*** 
(0.002) 

-0.028*** 
(0.003) 

-0.035*** 
(0.004) 

-0.038*** 
(0.004) 

-0.023*** 
(0.003) 

-0.004** 
(0.002) 

Children -0.000 
(0.000) 

-0.000 
(0.001) 

-0.001 
(0.001) 

-0.004** 
(0.001) 

-0.005*** 
(0.002) 

-0.005** 
(0.003) 

-0.004+ 
(0.003) 

0.000 
(0.003) 

0.008*** 
(0.003) 

0.003** 
(0.002) 

Disability 0.005*** 
(0.001) 

0.009*** 
(0.001) 

0.016*** 
(0.002) 

0.028*** 
(0.003) 

0.044*** 
(0.003) 

0.070*** 
(0.004) 

0.072*** 
(0.004) 

0.053*** 
(0.004) 

0.011*** 
(0.003) 

-0.001 
(0.002) 

Observations 557,999 557,999 557,999 557,999 557,999 557,999 557,999 557,999 557,999 557,999 

Note: Cells in bold have opposite sign, implying possibility of reversal. Data are from the 1984-2015 waves of the SOEP. Standard errors in parentheses (clustered by respondent). * 
* p < 0.10, ** p < 0.05, *** p < 0.01. Model titles denote the dependent variable used in each column. 
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Table A6. OLS regressions of rank-order reported happiness and of ℎ𝑑𝑘,𝑖𝑡 on individual-level variables (using GSS data) 

 (1) (2) (3) (4) (5) (6) 
 Rank-order ℎ𝑟 

(no control) 
Rank-order ℎ𝑟 
(full controls) 

ℎ𝑑1  
(no 

controls) 

ℎ𝑑1 
(full 

controls) 

ℎ𝑑2 
(no 

controls) 

ℎ𝑑2 
(full 

controls) 

Log eq. HH income 0.119*** 
(0.003) 

0.076*** 
(0.004) 

-0.057*** 
(0.002) 

-0.039*** 
(0.002) 

-0.061*** 
(0.002) 

-0.038*** 
(0.003) 

Unemployed -0.330*** 
(0.023) 

-0.213*** 
(0.024) 

0.180*** 
(0.014) 

0.136*** 
(0.014) 

0.150*** 
(0.013) 

0.077*** 
(0.013) 

Married 0.289*** 
(0.011) 

0.289*** 
(0.010) 

-0.102*** 
(0.004) 

-0.101*** 
(0.004) 

-0.188*** 
(0.008) 

-0.188*** 
(0.007) 

Has children 0.032** 
(0.009) 

-0.053*** 
(0.007) 

0.007 
(0.003) 

0.027*** 
(0.004) 

-0.038*** 
(0.007) 

0.026*** 
(0.005) 

Waves 26 26 26 26 26 26 
Observations 41,630 41,630 41,630 41,630 41,630 41,630 

Note: Cells in bold have opposite sign, implying possibility of reversal. Data are from the 1972–2006 waves of the GSS, 
as provided in the replication files of Stevenson & Wolfers  (2008a). Standard errors in parentheses (clustered by year). * 
* p < 0.10, ** p < 0.05, *** p < 0.01. Model titles denote the dependent variable used in each column. 

 
 

Table A7. Results of heteroskedastic ordered probit models for ℎ𝑟 using LISS data  

 (1) (2) 
 HOP, variables entered separately HOP, full controls 

𝝁𝒊𝒕   

Log HH income 0.698 (0.427) 

𝑐 = 0.94 

0.532* (0.317) 

𝑐 = 0.88 
Working -0.031 (0.084) 

𝑐 = −0.04 

0.310 (0.253) 

𝑐 = 0.81 
Married 0.944* (0.497) 

𝑐 = −61.56 

0.935* (0.568) 

𝑐 = −5.31 
Has children -0.244 (0.161) 

𝑐 = −0.47 

-0.576 (0.368) 

𝑐 = −3.45 
Has disability -0.570* (0.308) 

𝑐 = 3.26 

-0.649* (0.387) 

𝑐 = −5.27 
Constant  8.332** (4.233) 

𝐥𝐧(𝝈𝒊𝒕)   

Log HH income -0.141*** (0.032) -0.123*** (0.034) 
Working -0.137*** (0.026) -0.077 (0.059) 
Married 0.003 (0.027) 0.036 (0.043) 
Has children -0.107*** (0.027) -0.034 (0.058) 
Has disability 0.034 (0.027) -0.025 (0.029) 
Constant  0.800 (0.581) 

Thresholds   
τ0  -∞ (assumed) 
τ1  0.000 (assumed) 
τ2  1.000 (assumed) 
τ3  2.434*** (0.865) 
τ4  3.455** (1.433) 
τ5  4.100** (1.798) 
τ6  4.962** (2.289) 
τ7  6.147** (2.970) 
τ8  8.784* (4.494) 
τ9  11.934* (6.320) 
τ10  ∞ (assumed) 

Respondents 3,722 3,722 

Note: Data are from the March and April 2011 waves of the LISS. Standard errors in parentheses (clustered by 
respondents). * p < 0.10, ** p < 0.05, *** p < 0.01. Model titles indicate specifications used in each column.  
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Table A8. Results of heteroskedastic ordered probit models for ℎ𝑟 on individual-level socio-economic variables using 
GSS data  

 (1) (2) 
 HOP, variables entered separately HOP, full controls 

𝝁
𝒊𝒕

   

Log HH income 0.127*** (0.004) 

𝑐 = 1.60 

0.082*** (0.004) 

𝑐 = 1.41 
Working -0.359*** (0.026) 

𝑐 = 7.74 

-0.233*** (0.027) 

𝑐 = 1.38 
Married 0.313*** (0.012) 

𝑐 = −45.30 

0.310*** (0.011) 

𝑐 = −9.72 
Has children 0.040*** (0.010) 

𝑐 − 1.31 

-0.055*** (0.008) 

𝑐 = 10.32 
Constant  -0.077 (0.050) 

𝐥𝐧(𝝈𝒊𝒕)   

Log HH income -0.064*** (0.007) -0.054*** (0.007) 
Working 0.114*** (0.032) 0.136*** (0.029) 
Married 0.020 (0.012) 0.029** (0.012) 
Has children 0.085*** (0.011) 0.005 (0.014) 
Constant  0.037 (0.081) 

Thresholds   
τ0 -∞ (assumed) -∞ (assumed) 
τ1 0.000 (assumed) 0.000 (assumed) 
τ2 1.000 (assumed) 1.000 (assumed) 
τ3 ∞ (assumed) ∞ (assumed) 

Respondents 41,630 41,630 

Note: Data are from the 1972–2006 waves of the GSS, as provided in the replication files of Stevenson & Wolfers  
(2008a). Standard errors in parentheses (clustered by year). * p < 0.10, ** p < 0.05, *** p < 0.01. Model titles indicate the 
specification used in each column. 
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D Additional Figures 
 

 

 

Figure A3. Coefficient estimates for each regression of ℎ𝑑𝑘,𝑖𝑡 using LISS data. 

Note: Continuous happiness is recorded with 100 unique values. Thus, each of the panels on the left shows 99 

regressions of ℎ𝑑𝑘,𝑖𝑡. Required 𝑐 are shown in parentheses.   

 


