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Abstract

In this paper we extend the monad comprehension calculus, a well-studied user-facing query

formalism sufficient to encode (nested) relational algebra and admitting an easily-optimized iterator-

based execution model, to arbitrary user-defined abstract data types. Following Erwig, our formalism

is parameterized by a bi-cartesian category L representing an ambient type theory and we represent

an implementation of abstract data type F as an F -bi-algebra on L. Using the internal language of the

free bi-cartesian category, we define L-independent implementations of bi-algebras for sets, graphs,

infinite streams, finite maps, state, and people (representing a business object), and demonstrate how

to translate bi-algebras from one choice of L to another; translation from one bi-algebra to another

within the same L is accomplished with natural transformations in the usual way.

1 Introduction

In this paper we are concerned with three recent trends in database systems and theory:

• the development, beginning in the 1990s [19, 11], of query formalisms, compilers, and runtimes

based on the interplay between structural recursion and comprehension syntax, as exemplified

by systems such as Microsoft’s Dyrad-LINQ [20] and Data Parallel Haskell [5]; and

• the development, beginning in the 2000s, of data integration formalisms based on first-order

logic, used to mediate between semantically heterogeneous database schemas, as exemplified in

systems such as IBM’s Clio [12] and Microsoft’s Rondo [13]; and

• the development, beginning in the 2010s, of “big data” query formalisms, compilers, and run-

times based on graph walks over various distributed data stores, as exemplified by systems such

as Apache Tinkerpop [14] and foreshadowed by mixed SQL/Hadoop runtimes such as Hadapt [3].

The above trends are related to each other as follows:

• although query compilers based on structural recursion and comprehension syntax are often

used in relational data integration systems, including Clio and Rondo, using them with graph

databases runs into non-trivial problems [8] with purely functional graph representations; and

• although data integration formalisms based on first-order logic can mediate between schemas

in the same data model, using them to mediate between data models themselves runs into

non-trivial problems with representing logic using logic [1]; and

• although graph-based “big data” systems such Apache TinkerPop organically developed tech-

niques similar to structural recursion, comprehension syntax and logic-based schema mappings,

because of the problems described above, many of these techniques are purely informal, or

formalized operationally [14].
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1.1 Contributions

In this paper we address the challenges above by extending the monad comprehension calculus, a

well-studied user-facing query formalism sufficient to encode (nested) relational algebra and admitting

an easily-optimized iterator-based execution model, to arbitrary user-defined abstract data types.

Following Erwig [7], our formalism is parameterized by a bi-cartesian category L, representing an

ambient type theory, and we represent an implementation of abstract data type F as an F -bi-algebra

on L. After reviewing the internal language of bi-cartesian categories, we use that syntax to define

L-independent implementations of bi-algebras for sets, graphs, infinite streams, finite maps, state,

and people (representing a business object), and demonstrate how to translate bi-algebras from one

choice of L to another; translating from one bi-algebra to another within the same L is accomplished

with natural transformations in the usual way. Our formalism has many uses:

• to generalize compilers that are based on structural recursion and comprehensions, such as

LINQ [20] and Data Parallel Haskell [5], to handle graphs; and

• to generalize data integration formalisms based on first-order logic to account for morphisms

between underlying data models, such as between graphs and relations; and

• to provide a rigorous mathematical foundation / intermediate form for existing graph processing

systems, such as Apache Tinkerpop [14].

To exemplify these uses, we prove theorems relating our formalism to that of algebraic databases [16]

and algebraic property graphs [17], demonstrate how our formalism can interpret the Apache Tinker-

pop Gremlin family of languages [14], and conclude with a discussion of current work on distributed

runtimes for our formalism .

1.2 Outline

This paper is structured as follows:

• In section 2, we describe a standard formalism (which we call CAML) for query processing with

structural recursion and co-recursion, similar to Grust’s monad comprehension calculus [11, 19,

18].

• In section 3, we describe how to extend CAML to allow for arbitrary user-defined abstract data

types, following Erwig’s bi-algebra approach [9, 7], and we describe how to migrate bi-algebras

from one programming language to another by way of CAML.

• In section 4, we implement a set of bi-algebras and morphisms for common abstract data types

such as sets and graphs, following Erwig’s inductive graph approach [8], and demonstrate how

to interpret a fragment of Apache Tinkerpop Gremlin [14] in our formalism.

• In section 5, we relate our formalism to those of algebraic databases [16] and property graphs [17].

We conclude in section 6 with some discussion on distributed runtimes for our formalism. Knowledge

of type theory and category theory at the level of [2] and knowledge of functional query languages at

the level of [11] are required to understand this paper.

2 Categorical Abstract Machine Language (CAML)

In this section we describe a minimal, standard formalism (which we call CAML) for query process-

ing with structural recursion on finite lists and structural co-recursion on infinite streams, similar to

Wong’s nested relational calculus [19], Grust’s monad comprehension calculus [11], Curien’s Categor-

ical Abstract Machine Language [6], and many others.

2.1 Syntax

A type t is defined as a term in the context-free grammar:

t ::= Int | 0 | 1 | t+ t | t× t | t⇒ t | List t | Stream t
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A (t, t′-typed) expression e : t→ t′ is defined as a term in the context-free grammar (where we omit

the | symbols between productions on different lines):

e : t→ t′ ::= idt : t→ t | (e′ : t′ → t′′) ◦ (e : t→ t′) : t→ t′′

constc (c ∈ {0, 1,−1, . . .}) : 1→ Int | add,mul : Int× Int→ Int | neg : Int→ Int

eqt : t× t→ 1 + 1 | δt,t′,t′′ : t× (t′ + t′′)→ (t× t′) + (t× t′′)
ttt : t→ 1 | fstt,t′ : t× t′ → t | sndt,t′ : t× t′ → t′ | 〈e : t→ t′ , e′ : t→ t′′〉 : t→ t′ × t′

fft : 0→ t | inlt,t′ : t→ t+ t′ | inrt,t′ : t′ → t+ t′ | 〈e : t′ → t | e′ : t′′ → t〉 : t′ + t′′ → t

Λ(e : t× t′ → t′′) : t→ t′ ⇒ t′′ | evalt,t′ : (t′ ⇒ t)× t′ → t

int : 1 + (t× List t) → List t | fold(e : τ × (1 + (t× t′))→ t′) : τ × List t → t′

outt : Stream t → t× Stream t | unfold(e : t→ t′ × t) : t→ Stream t′

We abbreviate:

Bool := 1+1 truet := inl◦ttt falset := inr◦ttt f⊗g := 〈f ◦ fst , g◦snd〉 f⊕g := 〈inl◦f | inr ◦g〉

fold′(f) := fold(f ◦ snd) ◦ 〈tt, id〉 unfold′(f) := unfold〈fst ◦ f, 〈fst, snd ◦ f〉〉
As an example, to sum the length of a list we may write: fold′〈const0 | add〉 : List Int→ Int.

So that our formalism can be used without function types, we use parameterized folds, which

additionally require an input parameter of type τ compared to the form usually seen in the literature;

parameterized folds can be defined in terms of the other expressions, but only in a higher-order setting

(requiring eval and Λ). Similarly, the distributivity expression δ can be defined in terms of the other

expressions, but only in a higher-order setting, because not all bi-cartesian categories are distributive,

but all closed ones are [10].

The fragment of CAML that does not contain function types or stream types can express exactly

the primitive recursive functions on lists; dually, the fragment of CAML that does not contain function

types or list types can express exactly the primitive co-recursive function on streams; in the presence

of function types, CAML can express non-primitive-recursive functions on lists and streams, such as

the Ackermann’s function.

2.2 Axiomatic Semantics

The axiomatic semantics of CAML is defined as the smallest equivalence relation ≈ that is also a

congruence (i.e., for which f ≈ f ′ implies g ◦ f ≈ g ◦ f ′, etc):

id ◦ f ≈ f f ◦ id ≈ f f ◦ (g ◦ h) ≈ (f ◦ g) ◦ h eq ◦ 〈e, f〉 ≈ true iff e ≈ f
f : t→ 1 ≈ ttt fst ◦ 〈f, g〉 ≈ f snd ◦ 〈f, g〉 ≈ g 〈fst ◦ f, snd ◦ f〉 ≈ f
f : 0→ t ≈ fft 〈f |g〉 ◦ inl ≈ f 〈f |g〉 ◦ inr ≈ g 〈f ◦ inl | f ◦ inr〉 ≈ f

eval ◦ (Λ(f)⊗ id) ≈ f Λ(eval ◦ (g ⊗ id)) ≈ g 〈inl ◦ snd | inr ◦ snd〉 ◦ δ ≈ snd 〈fst | fst〉 ◦ δ ≈ fst

δ ◦ (id⊗ inl) ≈ inl δ ◦ (id⊗ inr) ≈ inr δ ◦ (f ⊗ 〈inr ◦ g | inl ◦ h〉) ≈ 〈inr ◦ (f ⊗ g) | inl ◦ (f ⊗ h)〉 ◦ δ
fold(f)◦(id⊗int) ≈ f◦〈fst, (tt1⊕(idt⊗fold(f)))◦α〉 g ≈ fold(f) if g◦(id⊗int) ≈ f◦〈fst, (tt1⊕(idt⊗g))◦α〉

g ≈ unfold(f) if g ◦ unfold(f) ≈ ((idt ⊗ g)) ◦ f outt ◦ unfold(f) ≈ (idt ⊗ unfold(f)) ◦ f
with isomorphism: α : Γ× (1 + (A× B))→ 1 + (A× (Γ× B)) and equations stating that Int forms

a commutative ring in the obvious way, our choice of base types, primitives, and their axioms being

ad-hoc in this paper.

The syntactic category CAML is defined as the category formed by taking types as objects and

equivalence classes of expressions modulo ≈ as morphisms. These axioms, minus lists, streams,

arithmetic, and equality, were shown to be decidable in [15].

Remark on Type Isomorphism. Product and sum types have the pleasing property of admit-

ting a complete (and decidable) axiomatization as the least congruence ∼ for which (0,+) and (1,×)

are commutative monoids, × distributes over +, and t×0 ∼ 0. This axiomatization allows mediating

between isomorphic product and sum types automatically, a common operation in query processing.

Surprisingly, although the type constructor ⇒ satisfies Tarski’s “high school algebra axioms” such as

a ⇒ b × c ∼ (a ⇒ b) × (a ⇒ c), type isomorphism with + and × and ⇒ together is not recursively

axiomatizable, and its decidability is unknown [10].
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2.3 Denotational Semantics

The set-theoretic semantics JtK types t is standard and can be recursively defined as a functor from

CAML to the category of sets:

• Int denotes the set of integers, {0, 1,−1, 2,−2, . . .}.

• 0 denotes the empty set {}, also written ∅, and 1 denotes the singleton set {∅}.

• t× t′ denotes the Cartesian product of the sets JtK and Jt′K, where e.g,

{1, 2} × {2, 3} = {(1, 2), (1, 3), (2, 2), (2, 3)}.

• t+ t′ denotes the disjoint union of the sets JtK and Jg′K, where e.g,

{1, 2}+ {2, 3} = {(∅, 1), (∅, 2), ({∅}, 2), ({∅}, 3)},

where we have chosen ∅ and {∅} as left and right “labels”.

• t⇒ t′ denotes the set of functions from JtK to Jt′K.

• List t denotes the set of finite lists of JtK.

• Stream t denotes the set of infinite lists (so-called streams) with elements in JtK.

The set-theoretic semantics JeK of an expression e : t→ t′ is a function JtK→ Jt′K is also standard:

• idt : t → t denotes the identity function on JtK, and f ◦ g denotes the function composition of

JfK with JgK; i.e., Jf ◦ gK(x) := JfK(JgK(x)).

• constc : 1→ Int denotes the constant function returning integer c, and add,mul : Int× Int→ Int

denote integer addition and multiplication, respectively, and neg : Int → Int denotes negation

(subtraction from zero).

• eqt : t × t → Bool denotes the characteristic function of {(x, x) | x ∈ JtK}; i.e., the JtK-equality

function.

• ttt : t→ 1 denotes the function sending any element of JtK to ∅, and fft : 0→ t denotes the only

function from ∅ to JtK.

• fstt,t′ and sndt,t′ denote the first and second projections from Jt× t′K, respectively, and 〈f : t→
t′, g : t→ t′′〉 denotes the function taking each x ∈ JtK to the pair (JfK(x), JgK(x)).

• inlt,t′ and inrt,t′ denote the first and second injections to Jt + t′K, respectively, and 〈f : t′ →
t | g : t′′ → t〉 denotes the case-analysis function taking each (∅, x) ∈ Jt′ + t′′K to JfK(x) and and

each ({∅}, y) ∈ Jt′ + t′′K to JgK(y).

• δt,t′,t′′ : t× (t′ + t′′)→ (t× t′) + (t× t′′) denotes the function taking (x, (l, y)) to (l, (x, y)).

• Λ(e : t × t′ → t′′) : t → t′ ⇒ t′′ denotes the “currying” function taking each x ∈ JtK to the

function taking each y ∈ Jt′K to JeK(x, y), and evalt,t′ denotes the function taking (f : Jt′K →
JtK, g : Jt′K) to f(g).

• int denotes the initial algebra for lists of type t in insert presentation, and fold(e : τ×(1+t×t′)→
t′) : τ × List t→ t′ denotes structural iteration with a parameter of type τ .

• outτ,t denotes the final co-algebra for streams in insert presentation, and unfold(e : t′ → t× t′) :

t′ → Stream t denotes structural co-iteration .

Theorem 1. If f, g : t→ t′ are such that f ≈ g, then JfK = JgK as set-theoretic functions JtK→ Jt′K.
Proof. In Coq, by induction on f ∼= g. �
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2.4 Lambda calculus Form

A more user-friendly syntax for CAML than the variable-free form above is that of a λ-calculus [6]

that allows typed variables, which we write as v:t for variable v and type t. A context is a list of

distinct variable-type pairs:

Γ ::= − | Γ, v:t (v /∈ Γ)

A typing judgment, also called an expression-in-context, Γ ` e : t is a relation on contexts Γ, terms e,

and types t and is inductively defined using the inference rules:

Γ ` v : t v 6= v′

Γ, v′:t′ ` v : t Γ, v:t ` v : t

c ∈ {..., 0, ...}
Γ ` Kc : Int

Γ ` e : t Γ ` f : t

Γ ` eq e f : Bool Γ ` tt : 1

Γ ` e : t× t′

Γ ` fst e : t

Γ ` e : t× t′

Γ ` snd e : t′
Γ ` e : t Γ ` e′ : t′

Γ ` Le, e′M : t× t′
Γ ` e : Int Γ ` e′ : Int

Γ ` e+/∗e′ : Int

Γ ` e : Int

Γ ` − e : Int

Γ ` e : 0

Γ ` fft e : t

Γ ` e : t

Γ ` inlt e : t′ + t

Γ ` e : t′

Γ ` inrt e : t+ t′

Γ, v : t ` e′′ : t′′ Γ, v : t′ ` e′ : t′′ Γ ` e : t+ t′ v /∈ Γ

Γ ` casev e of e
′ | e′′ : t′′

Γ, v:t ` e : t′ v /∈ Γ

Γ ` λv:t.e : t⇒ t′

Γ ` e′ : t′ Γ ` e : t′ ⇒ t

Γ ` ee′ : t

Γ ` e : 1 + t× List t

Γ ` in e : List t

Γ ` e : Stream t

Γ ` out e : t× Stream t

Γ, v : 1 + t× t′ ` e : t′ v /∈ Γ Γ ` f : List t

Γ ` fold (λv.e) f : t′
Γ, v : t ` e : t× t′ v /∈ Γ Γ ` f : t

Γ ` unfold (λv.e) f : Stream t′

We have altered the typeface of keywords above to ensure that they are distinct from the combinator

form of CAML. The translation from the above syntax to the variable-free syntax is standard: contexts

are translated into product types:

[−] := 1 [Γ, v : t] := [Γ]× t

and a typing judgment Γ ` e : t is translated into an expression [e] : [Γ]→ [t] in combinator form by

translating each variable into a projection:

[Γ, v′ : t′ ` v : t] := [Γ ` v : t] ◦ fst[Γ],[t] [Γ, v : t ` v : t] := snd[Γ],[t] [Γ ` Kc : Int] := constc ◦ tt[Γ]

[Γ ` eq e f : Bool] := eq◦〈[e], [f ]〉 [Γ ` e +/∗ e′ : Int] := plus/mul◦〈[e], [f ]〉 [Γ ` −e : Int] := neg◦[e]

[Γ ` fst e : t] := fst[t],[t′] ◦ [Γ ` e : t× t′] [Γ ` snd e : t′] := snd[t],[t′] ◦ [Γ ` e : t× t′]

[Γ ` Le, e′M : t× t′] := 〈[Γ ` e : t], [Γ ` e′ : t′]〉 [Γ ` tt : 1] := tt[Γ] [Γ ` ff e : t] := ff [t] ◦ [Γ ` e : 0]

[Γ ` casev e of e
′ | e′′ : t′′] := 〈[Γ, v:t ` e′:t′′]|[Γ, v:t′ ` e′′:t′′]〉 ◦ δ ◦ 〈id[Γ], [Γ ` e:t+ t′]〉

[Γ ` inlt′ e : t+ t′] := inl[t],[t′] ◦ [Γ ` e : t] [Γ ` inrt′ e : t′] := inr[t],[t′] ◦ [Γ ` e : t′]

[Γ ` λx : t.e : t⇒ t′] := Λ[Γ, x : t ` e : t′] [Γ ` e′e : t′] := eval ◦ 〈[Γ ` e′ : t⇒ t′], [Γ ` e : t]〉

[Γ ` in e : List t] := in[t] ◦ [Γ ` e : 1 + (t× List t)] [Γ ` out e : t× List t] := out[t] ◦ [Γ ` e : Stream t]

[Γ ` fold (λv.e) f : t′] := foldΓ,t,t′ [Γ, v : 1 + (t× t′) ` e : t′] ◦ 〈id[Γ], [Γ ` f : List t]〉

[Γ ` unfold (λv.e) f : Stream t] := unfold′
Γ,t,t′ [Γ, v : t× t′ ` e : t× t′] ◦ 〈id[Γ], [Γ ` f : Stream t]〉
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2.5 The Set Monad

Structural recursion (and co-recursion) has much to recommend it as in intermediate form for query

compilation. In particular, folds (and unfolds) are easily optimized [11]. However, we run into

complications when generalizing fold to non-free collection types. For example, although we may

represent sets as “lists up to permutation”, to do so we require that whenever we fold a function

f through a list l representing a set, for every permutation l′ of l, that f(l) = f(l′), a potentially

undecidable property. For this reason, a restricted form of fold, known as comprehension, is often

proposed as a query language for non-free inductive datatypes, which then compiles into structural

recursion in a way known to respect the defining equations of the non-free type, such as invariance

under permutation.

To exemplify such non-free types, we add types and expressions for the set monad to CAML. The

types and expressions of CAML are extended with:

t ::= . . . | Set t

e ::= . . . | ηt : t→ Set t | ∅t : 1→ Set t | gt : Set t× Set t→ Set t | µt : Set (Set t)→ Set t

map(e : t→ t′) : Set t→ Set t′ | ρt,t′ : t× Set t′ → Set (t× t′)

and the axiomatic semantics with:

map(snd) ◦ ρ ≈ snd ρ ◦ (id⊗ η) ≈ ηmap(f) ◦∅′ ≈ ∅′ ρ ◦ 〈e,∅′〉 ≈ ∅′ µ ◦∅′ ≈ ∅′

ρ ◦ (id⊗ µ) ≈ µ ◦map(ρ) ◦ ρ map(f ⊗ g) ◦ ρ ≈ ρ ◦ (f ⊗map(g)) map(θ) ◦ ρ ≈ ρ ◦ (id⊗ ρ) ◦ θ

g ◦ 〈e, f〉 ≈ g ◦ 〈f, e〉 g ◦〈e, e〉 ≈ e g ◦〈e,∅′〉 ≈ e g ◦〈e,g ◦ 〈f, g〉〉 ≈ g ◦ 〈g ◦ 〈e, f〉, g〉

where θ := 〈fst ◦ fst, 〈snd ◦ fst, snd〉〉 and ∅′ := ∅ ◦ tt. The set-theoretic semantics is extended with:

• J∅tK denotes the function out of J1K returning the empty set, JηtK denotes the function taking

each x ∈ JtK to the singleton set {x}, and JgtK denotes the function taking each pair (x, y) of

sets of JtK to their union x∪ y. These three operations are called the union presentation of sets.

• Jmap(f)K denotes the function taking each set {s1, . . . , sn} to the set {JfK(s1), . . . , JfK(sn)},
and JµtK denotes the function taking a set of sets of JtK, say X, to the “n-ary-union”

⋃
x∈X x,

returning a set of JtK. Collectively these two operations, and ∅, form the set monad with zero.

• Jρt,t′K denotes the function taking each pair (x, {s1, . . . , sn}) ∈ JtK× JSet t′K to the set of pairs

{(x, s1), . . . , (x, sn)}. Such an operation is often called a strength, and a monad with a strength,

such as Set, is called a strong monad.

The set monad can be implemented using lists considered up to permutation and duplication as:

[∅] := in′ ◦ inl ◦ tt [η] := in′ ◦ inr ◦ 〈id, [∅] ◦ tt〉 [g] := fold(〈fst | in′ ◦ inr ◦ snd〉 ◦ δ) ◦ swap

[µt] := fold′〈[∅] | [g]〉 [mapt] := fold′〈[∅] | in′ ◦ inr◦〈f ◦ fst, snd〉〉 [ρt] := fold(〈[∅]◦ tt | in′ ◦ inr◦ω〉◦δ)

where ω := 〈〈fst, fst ◦ snd〉, snd ◦ snd〉 is an isomorphism and so is swap := 〈snd, fst〉. Although not

necessary, we use swap in [g] so that it preserves input list order, which makes our proofs easier.

Theorem 2. Let B denote the function taking lists to sets and map denote the map function on

lists (i.e., map(f)(x1, . . . , xn) = (f(x1), . . . , f(xn)). Then:

BJ[∅]K(x) = J∅K(x) B J[η]K(x) = JηK(x) B J[g]K(x, y) = JgK(Bx,By)

BJ[µ]K(x) = JµK(Bmap(B, x)) B J[map(f)]K(x) = Jmap(f)K(Bx) B J[ρ]K(x, y) = JρK(x,By)

Proof. In Coq. �
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2.6 Comprehensions as Queries

Although we may use the set monad as described above directly, a comprehension is defined as an

expression in the λ-calculus form of CAML that de-sugars into the set monad. Comprehension syntax

has many concrete presentations, as well as a convenient normal form, and in this paper we adopt

the “do/bind notation” of Haskell [18], and extend the λ-calculus version of CAML with:

Γ ` ∅t : Set t

Γ ` e : t

Γ ` sng e : Set t

Γ ` e : Set t Γ ` e′ : Set t

Γ ` e � e′ : Set t

Γ ` e : Set t Γ, v : t ` f : Set t′ v /∈ Γ

Γ ` do v:t← e; f : Set t′

and corresponding translations:

[Γ ` ∅t : Set t] := ∅[t]◦tt[Γ] [Γ ` sng e : Set t] := η◦[Γ ` e : t] [Γ ` e�e′ : Set t] := g◦〈[Γ ` e], [Γ ` e′]〉

[Γ ` do v:t← e; f : Set t′] := µ ◦map([v:t,Γ ` f ]) ◦ ρ ◦ 〈id, [Γ ` e]〉

Set-theoretically, do v ← e; f denotes “flat mapping” f through e; i.e., ∪v∈ef(v).

Theorem 3. Let subst(v 7→ e, f) indicate the capture-avoiding substitution of e for variable v in f

and weaken(v, f) the weakening of f to include and ignore fresh variable v. Then:

J[Γ ` do v ← e; sng v]K = J[Γ ` e]K J[Γ ` do v ← sng e; f ]K = J[Γ ` subst(v 7→ e, f)]K

J[Γ ` do y ← (do x← m; f) ; g]K = J[Γ ` do x← m ; (do y ← f ;weaken(x, g))]K

J[Γ ` do v ← e;∅]K = J[Γ ` ∅]K = J[Γ ` do v ← ∅; f ]K

Proof. In Coq. �
Additional equations are provable, such as commutativity and idempotency of do/bind, but we single

out the equations above because are true in any monad with zero (lists, bags, etc), such as each

type in the Boom hierarchy [4], and they can be oriented to form a strongly normalizing re-write

system [11]. So far, then, our CAML compiler consists of comprehension normalization (representing

a simple query optimizer) and then translation into recursion (representing a simple query compiler).

3 Extending CAML with Bi-Algebra ADTs

4 A Standard Library of Bi-Algebra ADTs

5 Application: Generic Compilation of CQL

6 Conclusion
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