Deep Generalized Method of Moments for Instrumental Variable Analysis

Andrew Bennett, Nathan Kallus, Tobias Schnabel

Endogeneity

- $Y = g_0(X) 2\epsilon + \eta$
- $X = Z + 2\epsilon, Z, \epsilon, \eta \sim \mathcal{N}(0, 1)$

IV Model

Intro

- $Y = g_0(X) + \epsilon$
 - $ightharpoonup \mathbb{E}\epsilon = 0$. $\mathbb{E}\epsilon^2 < \infty$
 - $ightharpoonup \mathbb{E}\left[\epsilon \mid X\right] \neq 0$
 - ▶ Hence, $g_0(X) \neq \mathbb{E}[Y \mid X]$
- ▶ Instrument Z has
 - \blacktriangleright $\mathbb{E}\left[\epsilon \mid Z\right] = 0$
 - $ightharpoonup \mathbb{P}(X \mid Z) \neq \mathbb{P}(X)$
- ▶ If had additional endogenous context L, include it in both X and Z
- $ightharpoonup q_0 \in \mathcal{G} = \{q(\cdot;\theta): \theta \in \Theta\}$
 - \bullet $\theta_0 \in \Theta$ is such that $g_0(x) = g(x; \theta_0)$

Intro 00000

IV is Workhorse of Empirical Research

Education, Labor Out-of-wedlock Occurrence of twin births supply fertility (1994) Wages Unemployment State laws Anderson (2000)	Reference
replacement rates benefit rules Labor supply Fertility Sibling-Sex composition Angrist at Sibling-Sex composition Bronars a Supply Fertility (1994) Wages Unemployment State laws Anderson (2000)	
Education, Labor Out-of-wedlock Occurrence of twin births supply fertility Unemployment State laws Anderson (2000)	2000)
supply fertility (1994) Wages Unemployment State laws Anderson insurance tax rate (2000)	nd Evans (1998)
insurance tax rate (2000)	and Grogger
T . Y CIP D . I D . (a)	and Meyer
Earnings Years of schooling Region and time variation in Duflo (20 school construction	001)
Earnings Years of schooling Proximity to college Card (199	95)
Earnings Years of schooling Quarter of birth Angrist at (1991)	nd Krueger
	nd van der (1995)
Earnings Veteran status Draft lottery number Angrist (1990)
Achievement test Class size Discontinuities in class size Angrist as scores due to maximum class-size rule	nd Lavy (1999)
College enrollment Financial aid Discontinuities in financial van der F aid formula	Jaauw (1996)
8 / /	n, McNeil and use (1994)
Crime Police Electoral cycles Levitt (19	997)
Employment and Length of prison Randomly assigned federal Kling (19 Earnings sentence judges	99)
Birth weight Maternal smoking State cigarette taxes Evans and	d Ringel (1999)

Going further

- ► Standard methods like 2SLS and GMM and more recent variants are significantly impeded when:
 - \blacktriangleright X is structured high-dimensional (e.g., image)?
 - ightharpoonup and/or Z is structured high-dimensional (e.g., image)?
 - ightharpoonup and/or g_0 is complex (e.g., neural network)?
- (As we'll discuss)

DeepGMM

- We develop a method termed DeepGMM
 - Aims to addresses IV with such high-dimensional variables / complex relationships
 - Based on a new variational interpretation of optimally-weighted GMM (inverse-covariance), which we use to efficiently control very many moment conditions
 - ▶ DeepGMM given by the solution to a smooth zero-sum game, which we solve with iterative smooth-game-playing algorithms (à la GANs)
 - ▶ Numerical results will show that DeepGMM matches the performance of best-tuned methods in standard settings and continues to work in high-dimensional settings where even recent methods break

- Introduction
- 2 Background
- 3 Methodology
- **4** Experiments

Two-stage methods

 $ightharpoonup \mathbb{E}\left[\epsilon \mid Z\right] = 0$ implies

$$\mathbb{E}[Y \mid Z] = \mathbb{E}[g_0(X) \mid Z] = \int g_0(x) d\mathbb{P}(X = x \mid Z)$$

- ▶ If $q(x;\theta) = \theta^T \phi(x)$: becomes $\mathbb{E}[Y \mid Z] = \theta^T \mathbb{E}[\phi(X) \mid Z]$
 - Leads to 2SLS: regress $\phi(X)$ on Z (possibly transformed) by least-squares and then regress Y on $\hat{\mathbb{E}}\left[\phi(X)\mid Z\right]$
 - Various methods that find basis expansions non-parametrically (e.g., Newey and Powell)
- ► In lieu of a basis, DeepIV instead suggests to learn $\mathbb{P}(X = x \mid Z)$ as NN-parameterized Gaussian mixture
 - Doesn't work if X is rich
 - Can suffer from "forbidden regression"
 - Unlike least-squares, MLE doesn't guarantee orthogonality irrespective of specification

Moment methods

- $ightharpoonup \mathbb{E}\left[\epsilon \mid Z\right] = 0 \text{ implies } \mathbb{E}\left[f(Z)(Y q_0(X))\right] = 0$
 - For any f_1, \ldots, f_m implies the moment conditions $\psi(f_i;\theta_0) = 0$ where $\psi(f;\theta) = \mathbb{E}\left[f(Z)(Y - q(X;\theta))\right]$
 - ▶ GMM takes $\psi_n(f;\theta) = \hat{\mathbb{E}}_n[f(Z)(Y q(X;\theta))]$ and sets

$$\hat{\theta}^{\mathsf{GMM}} \in \operatorname*{argmin}_{\theta \in \Theta} \| (\psi_n(f_1; \theta), \ldots, \psi_n(f_m; \theta)) \|^2$$

- ▶ Usually: $\|\cdot\|_2$. Recently, AGMM: $\|\cdot\|_{\infty}$
- ► Significant inefficiencies with many moments: wasting modeling power to make redundant moments small
 - ► Hansen et al: (With finitely-many moments) this norm gives the minimal asymptotic variance (efficiency) for any $\tilde{\theta} \rightarrow_n \theta_0$:

$$||v||^2 = v^T C_{\tilde{a}}^{-1} v, \ [C_{\theta}]_{jk} = \frac{1}{n} \sum_{i=1}^n f_j(Z_i) f_k(Z_i) (Y_i - g(X_i; \theta))^2.$$

► E.g., two-step/iterated/cts GMM. Generically OWGMM.

Failure with Many Moment Conditions

- When $g(x;\theta)$ is a flexible model, many possibly infinitely many moment conditions may be needed to identify θ_0
 - But both GMM and OWGMM will fail if we use too many moments

This talk

- 1 Introduction
- 2 Background
- Methodology
- **4** Experiments

Variational Reformulation of OWGMM

- \blacktriangleright Let $\mathcal V$ be vector space of real-valued fns of Z
 - $\blacktriangleright \psi_n(f;\theta)$ is a linear operator on \mathcal{V}
 - $ightharpoonup C_{\theta}(f,h) = \frac{1}{n} \sum_{i=1}^{n} f(Z_i) h(Z_i) (Y_i g(X_i;\theta))^2$ is a bilinear form on \mathcal{V}
- Given any subset $\mathcal{F} \subseteq \mathcal{V}$, define

$$\Psi_n(\theta; \mathcal{F}, \tilde{\theta}) = \sup_{f \in \mathcal{F}} \psi_n(f; \theta) - \frac{1}{4} \mathcal{C}_{\tilde{\theta}}(f, f)$$

$\mathsf{Theorem}$

Let $\mathcal{F} = \operatorname{span}(f_1, \dots, f_m)$ be a subspace. For OWGMM norm:

$$\|(\psi_n(f_1;\theta),\ldots,\psi_n(f_m;\theta))\|^2 = \Psi_n(\theta;\mathcal{F},\tilde{\theta}).$$

Hence: $\hat{\theta}^{OWGMM} \in \operatorname{argmin}_{\theta \in \Theta} \Psi_n(\theta; \mathcal{F}, \tilde{\theta})$.

DeepGMM

- \blacktriangleright Idea: use this reformulation and replace $\mathcal F$ with a rich set
 - But not with a hi-dim subspace (that'd just be GMM)
 - \blacktriangleright Let $\mathcal{F} = \{ f(z; \tau) : \tau \in \mathcal{T} \}, \mathcal{G} = \{ g(x; \theta) : \theta \in \Theta \}$ be all networks of given architecture with varying weights τ, θ
 - ► (Think about it as the union the spans of the penultimate layer functions)
- ▶ DeepGMM is then given by the solution to the smooth zero-sum game (for any data-driven θ)

$$\begin{split} \hat{\theta}^{\mathsf{DeepGMM}} &\in \operatorname*{argmin}_{\theta \in \Theta} \sup_{\tau \in \mathcal{T}} U_{\tilde{\theta}}(\theta, \tau) \\ \mathsf{where} \quad U_{\tilde{\theta}}(\theta, \tau) &= \frac{1}{n} \sum_{i=1}^n f(Z_i; \tau) (Y_i - g(X_i; \theta)) \\ &\quad - \frac{1}{4n} \sum_{i=1}^n f^2(Z_i; \tau) (Y_i - g(X_i; \tilde{\theta}))^2. \end{split}$$

Consistency of DeepGMM

- Assumptions:
 - ▶ Identification: θ_0 uniquely solves $\psi(f;\theta) = 0 \ \forall f \in \mathcal{F}$
 - \triangleright Complexity: \mathcal{F}, \mathcal{G} have vanishing Rademacher complexities (alternatively, can use a combinatorial measure like VC)
 - ▶ Absolutely star shaped: $f \in \mathcal{F}, |\lambda| \leq 1 \implies (\lambda f) \in \mathcal{F}$
 - ightharpoonup Continuity: $g(x;\theta), f(x;\tau)$ are continuous in θ, τ for all x
 - ▶ Boundedness: $Y, \sup_{\theta \in \Theta} |g(X; \theta)|, \sup_{\tau \in \mathcal{T}} |f(Z; \tau)|$ bounded

Theorem

Let $\tilde{\theta}_n$ by any data-dependent sequence with a limit in probability. Let $\hat{\theta}_n, \hat{\tau}_n$ be any approximate equilibrium of our game, i.e.,

$$\sup_{\tau \in \mathcal{T}} U_{\tilde{\theta}_n}(\hat{\theta}_n, \tau) - o_p(1) \le U_{\tilde{\theta}_n}(\hat{\theta}_n, \hat{\tau}_n) \le \inf_{\theta} U_{\tilde{\theta}_n}(\theta, \hat{\tau}_n) + o_p(1).$$

Then $\hat{\theta}_n \to_p \theta_0$.

Consistency of DeepGMM

- lacktriangle Specification is much more defensible when use such a rich ${\mathcal F}$
- ▶ Nonetheless, if we drop specification we instead get

$$\inf_{\theta:\psi(f:\theta)=0} \|\theta - \hat{\theta}_n\| \to_p 0$$

Optimization

- ► Thanks to surge of interest in GANs, lots of good algorithms for playing smooth games
- ► We use OAdam by Daskalakis et al.
 - ▶ Main idea: use updates with *negative* momentum

$\overline{\mathsf{Choosing}\; ilde{ heta}}$

- Ideally $\tilde{\theta} \approx \theta_0$
- lackbox Can let it be $\hat{\theta}^{\mathsf{DeepGMM}}$ using another $\tilde{\theta}$
 - ► Can repeat this
- ▶ To simulate this, at every step of the learning algorithm, we update it to be the last θ iterate

This talk

- 1 Introduction
- 2 Background
- 3 Methodology
- **4** Experiments

Overview

- \blacktriangleright Low-dimensional scenarios: 2-dim Z, 1-dim Z
- ightharpoonup High-dimensional scenarios: Z, X, or both are images
- Benchmarks:
 - ▶ DirectNN: regress *Y* on *X* with NN
 - ► Vanilla2SLS: all linear
 - ► Poly2SLS: select degree and ridge penalty by CV
 - ► GMM+NN*: OWGMM with NN $g(x;\theta)$; solve using Adam
 - ▶ When Z is low-dim expand with 10 RBFs around EM clustering centroids. When Z is high-dim use raw instrument.
 - ► AGMM: github.com/vsyrgkanis/adversarial_gmm
 - ▶ One-step GMM with $\|\cdot\|_{\infty}$ + jitter update to moments
 - Same moment conditions as above
 - ► DeepIV: github.com/microsoft/EconML

Low-dimensional scenarios

$$Y = g_0(X) + e + \delta$$

$$Z \sim \text{Uniform}([-3, 3]^2)$$

$$X = 0.5 Z_1 + 0.5 e + \gamma$$

 $e \sim \mathcal{N}(0, 1), \quad \gamma, \delta \sim \mathcal{N}(0, 0.1)$

- ▶ **abs**: $g_0(x) = |x|$
- ▶ linear: $g_0(x) = x$
- ▶ **step**: $g_0(x) = \mathbb{I}_{\{x \ge 0\}}$

-2

0 2

-4 -2 0

-4 -2 0

-4 -2 0

	abs	linear	sin	step
DirectNN	$.21 \pm .00$	$.09 \pm .00$	$.26 \pm .00$	$.21 \pm .00$
Vanilla2SLS	$.23 \pm .00$	$00. \pm 00$.	$.09 \pm .00$	$.03 \pm .00$
Poly2SLS	$.04 \pm .00$	$00. \pm 00$.	$.04 \pm .00$	$.03 \pm .00$
GMM + NN	$.14 \pm .02$	$.06 \pm .01$	$.08 \pm .00$	$.06 \pm .00$
AGMM	$.17 \pm .03$	$.03 \pm .00$	$.11 \pm .01$	$.06 \pm .01$
DeepIV	$.10 \pm .00$	$.04 \pm .00$	$.06 \pm .00$	$.03 \pm .00$
Our Method	$.03\pm.01$	$.01\pm.00$	$.02\pm.00$	$.01\pm.00$

High-dimensional scenarios

▶ Use MNIST images: $28 \times 28 = 784$

- Let RandImg(d) return random image of digit d
- Let $\pi(x) = \text{round}(\min(\max(1.5x + 5, 0), 9))$
- Scenarios:
 - ▶ MNIST_Z: X as before, $Z \leftarrow \mathsf{RandImg}(\pi(Z_1))$.
 - ▶ MNIST_X: $X \leftarrow \mathsf{RandImg}(\pi(X))$, Z as before.
 - ▶ $MNIST_{X, Z}$: $X \leftarrow RandImg(\pi(X))$, $Z \leftarrow RandImg(\pi(Z_1))$.

	$MNIST_z$	$MNIST_{x}$	$MNIST_{x,z}$
DirectNN	$.25 \pm .02$	$.28 \pm .03$	$.24 \pm .01$
Vanilla2SLS	$.23 \pm .00$	> 1000	> 1000
Ridge2SLS	$.23 \pm .00$	$.19 \pm .00$	$.39 \pm .00$
GMM + NN	$.27 \pm .01$	$.19 \pm .00$	$.25 \pm .01$
AGMM	_	_	_
DeepIV	$.11 \pm .00$	_	_
Our Method	$.07\pm.02$	$.15\pm.02$	$.14\pm.02$

DeepGMM

- We develop a method termed DeepGMM
 - Aims to addresses IV with such high-dimensional variables / complex relationships
 - Based on a new variational interpretation of optimally-weighted GMM (inverse-covariance), which we use to efficiently control very many moment conditions
 - ▶ DeepGMM given by the solution to a smooth zero-sum game, which we solve with iterative smooth-game-playing algorithms (à la GANs)
 - Numerical results will show that DeepGMM matches the performance of best-tuned methods in standard settings and continues to work in high-dimensional settings where even recent methods break