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Endogeneity

> gol) = max(z, /5)
> Y =go(X) —2e+n
> X =742 Z,e,n~N(0,1)
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IV Model

> Y =go(X)+e
> Ee =0, Ee? < 00
> Ele| X]#0
> Hence, go(X) #E[Y | X]
» |nstrument Z has
> Ele]| Z]=0
> P(X | Z)#P(X)
» If had additional endogenous context L, include it in both X
and Z
> goeG={g(-;0):0 €0}
» 6y € © is such that go(x) = g(z;6))



IV is Workhorse of Empirical Research

Outcome Variable

Endogenous Variable

Source of Instrumental
Variable(s)

Reference

Labor supply

Labor supply

Education, Labor
supply

Wages

Earnings

Earnings
Earnings

Earnings

Earnings

Achievement test
scores

College enrollment

Health

Crime

Employment and

Earnings
Birth weight

1. Natural Experiments

Disability insurance
replacement rates
Fertility
Out-of-wedlock
fertility
Unemployment
insurance tax rate
Years of schooling

Years of schooling
Years of schooling

Veteran status

Veteran status
Cla e

Financial aid
Heart attack surgery

Police

Length of prison
sentence

Maternal smoking

Region and time variation in

benefit rules
Sibling-Sex composition
Occurrence of twin births

State laws

Region and time variation in

school construction
Proximity to college
Quarter of birth

Cohort dummies

Draft lottery number

size
due to maximum class
rule

Discontinuities in cla:

Discontinuities in financial
aid formula

Proximity to cardiac care
centers

Electoral cycles

Randomly assigned federal
judges

State cigarette taxes

size

Gruber (2000)

Angrist and Evans (1998)

Bronars and Grogger
(1994)

Anderson and Meyer
(2000)

Duflo (2001)

Card (1995)

Angrist and Krueger
(1991)

Imbens and van der
Klaauw (1995)

Angrist (1990)

Angrist and Lavy (1999)

van der Klaauw (1996)
McClellan, McNeil and
Newhouse (1994)
Levitt (1997)
Kling (1999)

Evans and Ringel (1999)

From Angrist & Krueger 2001
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Going further

» Standard methods like 2SLS and GMM and more recent
variants are significantly impeded when:

» X is structured high-dimensional (e.g., image)?
» and/or Z is structured high-dimensional (e.g., image)?
» and/or go is complex (e.g., neural network)?

> (As we'll discuss)
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DeepGMM

develop a method termed DeepGMM

Aims to addresses IV with such high-dimensional variables /
complex relationships

Based on a new variational interpretation of
optimally-weighted GMM (inverse-covariance), which we use
to efficiently control very many moment conditions
DeepGMM given by the solution to a smooth zero-sum
game, which we solve with iterative smooth-game-playing
algorithms (a la GANs)

Numerical results will show that DeepGMM matches the
performance of best-tuned methods in standard settings and
continues to work in high-dimensional settings where even
recent methods break
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Two-stage methods

» Ele| Z] =0 implies

EY | 2] = E[g(X) | Z] =/go<x>dP<X=x | 2)

> If g(x;0) = 0T ¢(x): becomes E[Y | Z] = 0TE [¢(X) | Z]
> Leads to 2SLS: regress ¢(X) on Z (possibly transformed) by
least-squares and then regress Y on E [¢(X) | Z]
» Various methods that find basis expansions
non-parametrically (e.g., Newey and Powell)
» In lieu of a basis, DeeplV instead suggests to learn
P(X =z | Z) as NN-parameterized Gaussian mixture
» Doesn't work if X is rich
» Can suffer from “forbidden regression”
» Unlike least-squares, MLE doesn't guarantee orthogonality
irrespective of specification
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Moment methods

> Ele| Z] = 0 implies E[f(Z)(Y — go(X))] =0
» For any fi,..., fin implies the moment conditions
B (f5:60) = 0 where (f:6) = E [f(Z)(Y — g(X:6))
» GMM takes ¥, (f;0) =E, [f(Z2)(Y — g(X;0))] and sets

0°MM < argmin || (¢n (f150), - -, Yu(fm; 0))]
0cO

» Usually: || - ||2. Recently, AGMM: || - ||

» Significant inefficiencies with many moments: wasting
modeling power to make redundant moments small

» Hansen et al: (With finitely-many moments) this norm gives
the minimal asymptotic variance (efficiency) for any 6 —, 6y:

[o]l> =" C5 o, [Coljn = 5 Y0ty £i(Z) fu(Z0)(Yi — 9(Xi3 ).

» E.g., two-step/iterated /cts GMM. Generically OWGMM.



Background
oooe

Failure with Many Moment Conditions

» When g(x;0) is a flexible model, many — possibly infinitely
many — moment conditions may be needed to identify 6,
» But both GMM and OWGMM will fail if we use too many
moments
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Variational Reformulation of OWGMM

» Let V be vector space of real-valued fns of Z

» 1, (f;0) is a linear operator on V
> Co(f.h) =230 f(Z)h(Z;)(Y; — g(X;;60))? is a bilinear
form on V

» Given any subset F C V, define

(6 7.8) = sup i (6) = 3Gyl

Let F = span(fi,..., fm) be a subspace. For OWGMM norm:

(b (f150), - -, (s O)I* = T (6; F, ).

Hence: §OWEMM < argming g ¥, (6; F, 6).



DeepGMM

» Idea: use this reformulation and replace F with a rich set

» But not with a hi-dim subspace (that'd just be GMM)
> Let F={f(z;7):7€T} G={g(z;0) : 0 € O} be all
networks of given architecture with varying weights 7,6
» (Think about it as the union the spans of the penultimate
layer functions)
> DeepGMM is then given by the solution to the smooth
zero-sum game (for any data-driven )

()PeepGMM € argmin sup U§<H’T)
0cO T€T

where  U(0,7) =150 f(Zi;7)(Y; — 9(Xi;0))
— LN (2T (Y — g(Xi0))2.



Consistency of DeepGMM

» Assumptions:
> lIdentification: 6y uniquely solves ¥(f;0) =0VYf e F
» Complexity: F,G have vanishing Rademacher complexities
(alternatively, can use a combinatorial measure like VC)
» Absolutely star shaped: f € F, |\ <1 = (\f) e F
» Continuity: g(x;8), f(z;7) are continuous in 6,7 for all x
» Boundedness: Y, supyce |9(X;0)|,sup 7 |f(Z;7)| bounded

Theorem

Let 6, by any data-dependent sequence with a limit in probability. Let
0., T be any approximate equilibrium of our game, i.e.,

sup Uz (0n,7) — 0p(1) < Uj (O, 7n) < inf Uz (0, 7) + 0p(1).
’TET n n n

Then 6, —, 6o.



Consistency of DeepGMM

» Specification is much more defensible when use such a rich F

» Nonetheless, if we drop specification we instead get

inf 16 — 6,,]| =, 0
0:4(f:0)=0VfeF



Optimization

» Thanks to surge of interest in GANs, lots of good algorithms
for playing smooth games

» We use OAdam by Daskalakis et al.
» Main idea: use updates with negative momentum



Choosing 0

> Ideally 6 ~ 6,
> Can let it be #P=PSMM ysing another 6
» Can repeat this
» To simulate this, at every step of the learning algorithm, we
update it to be the last 0 iterate
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Overview

» Low-dimensional scenarios: 2-dim Z, 1-dim Z
» High-dimensional scenarios: Z, X, or both are images
» Benchmarks:

» DirectNN: regress Y on X with NN

Vanilla2SLS: all linear

>
P> Poly2SLS: select degree and ridge penalty by CV
» GMM+NN*: OWGMM with NN g(x;0); solve using Adam

> When Z is low-dim expand with 10 RBFs around EM
clustering centroids. When Z is high-dim use raw instrument.
» AGMM: github.com/vsyrgkanis/adversarial_gmm
» One-step GMM with || - ||oc + jitter update to moments
» Same moment conditions as above

» DeeplV: github.com/microsoft/EconML
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| ow-dimensional scenarios

Y =g(X)+e+0¢ X=05Z+0be+7
Z ~ Uniform([—3, 3]?) e~N(0,1), 7,6 ~ N(0,0.1)

» abs: go(x) = |z|

» linear: go(z) ==

> sin: go(x) = sin(z)
> step: gole) = T
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DirectNN Vanilla2sLs Poly2SLS.

raw data DirectNN Vanilla2SLS Poly2SLS
hs, BB / /
R A B S R S
DirectNN Vanilla2SLS Poly2SLS
——
R S S /R R S /R R S
raw data DirectNN Vanilla2sLS Poly2SLS
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GMM-+NN AGMM DeeplV Our Method

—

-4 -2 0 2 4 -4 2 0 2 4 -4 -2 0o 2 4 -4 -2 0 2 4
GMM+NN AGMM DeeplV Our Method

-4 2 0 2 4 4 2 0 2 4 4 2 o0 2 4 -4 2 0 2 4
GMM+NN AGMM DeeplV Our Method

-4 -2 0 2 a4 -4 -2 0o 2 4 -4 2 0 2 a4 -4 2 0 2 a

GMM-+NN AGMM DeeplV Our Method
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abs linear sin step

DirectNN 21+£.00 .09£.00 .26+£.00 .21+£.00
Vanilla2SLS .23 4+.00 .00£.00 .094.00 .03=+£.00
Poly2SLS .04£.00 .00£.00 .04£.00 .03+£.00
GMM-+NN 14£.02 06+£.01 .08£.00 .06+£.00
AGMM A7£.03 .03+£.00 .11£.01 .06+ .01
DeeplV 10+£.00 .04£.00 .06+.00 .03=£.00
Our Method .03+.01 .01+£.00 .02+.00 .01+.00
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High-dimensional scenarios

» Use MNIST images: 28 x 28 = 784

060000 060@e 2
(v Yy N NY /7 /7 !
Ad223322222122%

d

» Let Randlmg(d) return random image of digit
» Let 7(z) = round(min(max(1.5x + 5,0),9))
» Scenarios:

» MNISTz: X as before, Z <— Randlmg(7(Z1)).
» MNISTx: X < Randimg(7m (X)), Z as before.
» MNISTx, z: X < Randlmg(7(X)), Z + Randimg(w(Z1)).

N



Experiments
0000000080

MNIST, MNIST, MNIST,,

DirectNN 254+.02 284 .03 244 .01
Vanilla2SLS .23 +£.00 > 1000 > 1000
Ridge2SLS  .23+£.00 .194+.00 .39+.00
GMM+NN 27+.01 19+£.00 .25+ .01
AGMM - - -
DeeplV 11 +£.00 - -
Our Method .07 4+.02 .15+.02 .14+ .02
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DeepGMM

» We develop a method termed DeepGMM

» Aims to addresses IV with such high-dimensional variables /
complex relationships

» Based on a new variational interpretation of
optimally-weighted GMM (inverse-covariance), which we use
to efficiently control very many moment conditions

» DeepGMM given by the solution to a smooth zero-sum
game, which we solve with iterative smooth-game-playing
algorithms (a la GANs)

» Numerical results will show that DeepGMM matches the
performance of best-tuned methods in standard settings and
continues to work in high-dimensional settings where even
recent methods break
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