
Deep Generalized Method of Moments for

Instrumental Variable Analysis

Andrew Bennett, Nathan Kallus, Tobias Schnabel
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Endogeneity

I g0(x) = max(x, x/5)

I Y = g0(X)− 2ε+ η

I X = Z + 2ε, Z, ε, η ∼ N (0, 1)
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IV Model

I Y = g0(X) + ε
I Eε = 0, Eε2 <∞
I E [ε | X] 6= 0

I Hence, g0(X) 6= E [Y | X]

I Instrument Z has
I E [ε | Z] = 0
I P (X | Z) 6= P (X)

I If had additional endogenous context L, include it in both X
and Z

I g0 ∈ G = {g( · ; θ) : θ ∈ Θ}
I θ0 ∈ Θ is such that g0(x) = g(x; θ0)
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IV is Workhorse of Empirical Research
Table 1
Examples of Studies That Use Instrumental Variables to Analyze Data From
Natural and Randomized Experiments

Outcome Variable Endogenous Variable
Source of Instrumental

Variable(s) Reference

1. Natural Experiments

Labor supply Disability insurance
replacement rates

Region and time variation in
benefit rules

Gruber (2000)

Labor supply Fertility Sibling-Sex composition Angrist and Evans (1998)
Education, Labor

supply
Out-of-wedlock

fertility
Occurrence of twin births Bronars and Grogger

(1994)
Wages Unemployment

insurance tax rate
State laws Anderson and Meyer

(2000)
Earnings Years of schooling Region and time variation in

school construction
Duflo (2001)

Earnings Years of schooling Proximity to college Card (1995)
Earnings Years of schooling Quarter of birth Angrist and Krueger

(1991)
Earnings Veteran status Cohort dummies Imbens and van der

Klaauw (1995)
Earnings Veteran status Draft lottery number Angrist (1990)
Achievement test

scores
Class size Discontinuities in class size

due to maximum class-size
rule

Angrist and Lavy (1999)

College enrollment Financial aid Discontinuities in financial
aid formula

van der Klaauw (1996)

Health Heart attack surgery Proximity to cardiac care
centers

McClellan, McNeil and
Newhouse (1994)

Crime Police Electoral cycles Levitt (1997)
Employment and

Earnings
Length of prison

sentence
Randomly assigned federal

judges
Kling (1999)

Birth weight Maternal smoking State cigarette taxes Evans and Ringel (1999)

2. Randomized Experiments

Earnings Participation in job
training program

Random assignment of
admission to training
program

Bloom et al. (1997)

Earnings Participation in Job
Corps program

Random assignment of
admission to training
program

Burghardt et al. (2001)

Achievement test
scores

Enrollment in
private school

Randomly selected offer of
school voucher

Howell et al. (2000)

Achievement test
scores

Class size Random assignment to a
small or normal-size class

Krueger (1999)

Achievement test
scores

Hours of study Random mailing of test
preparation materials

Powers and Swinton
(1984)

Birth weight Maternal smoking Random assignment of free
smoker’s counseling

Permutt and Hebel
(1989)
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Going further

I Standard methods like 2SLS and GMM and more recent
variants are significantly impeded when:
I X is structured high-dimensional (e.g., image)?
I and/or Z is structured high-dimensional (e.g., image)?
I and/or g0 is complex (e.g., neural network)?

I (As we’ll discuss)
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DeepGMM

I We develop a method termed DeepGMM
I Aims to addresses IV with such high-dimensional variables /

complex relationships
I Based on a new variational interpretation of

optimally-weighted GMM (inverse-covariance), which we use
to efficiently control very many moment conditions

I DeepGMM given by the solution to a smooth zero-sum
game, which we solve with iterative smooth-game-playing
algorithms (à la GANs)

I Numerical results will show that DeepGMM matches the
performance of best-tuned methods in standard settings and
continues to work in high-dimensional settings where even
recent methods break
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This talk

1 Introduction

2 Background

3 Methodology

4 Experiments
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Two-stage methods

I E [ε | Z] = 0 implies

E [Y | Z] = E [g0(X) | Z] =

∫
g0(x)dP (X = x | Z)

I If g(x; θ) = θTφ(x): becomes E [Y | Z] = θTE [φ(X) | Z]
I Leads to 2SLS: regress φ(X) on Z (possibly transformed) by

least-squares and then regress Y on Ê [φ(X) | Z]
I Various methods that find basis expansions

non-parametrically (e.g., Newey and Powell)

I In lieu of a basis, DeepIV instead suggests to learn
P (X = x | Z) as NN-parameterized Gaussian mixture
I Doesn’t work if X is rich
I Can suffer from “forbidden regression”

I Unlike least-squares, MLE doesn’t guarantee orthogonality
irrespective of specification
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Moment methods

I E [ε | Z] = 0 implies E [f(Z)(Y − g0(X))] = 0
I For any f1, . . . , fm implies the moment conditions

ψ(fj ; θ0) = 0 where ψ(f ; θ) = E [f(Z)(Y − g(X; θ))]
I GMM takes ψn(f ; θ) = Ên [f(Z)(Y − g(X; θ))] and sets

θ̂GMM ∈ argmin
θ∈Θ

‖(ψn(f1; θ), . . . , ψn(fm; θ))‖2

I Usually: ‖ · ‖2. Recently, AGMM: ‖ · ‖∞
I Significant inefficiencies with many moments: wasting

modeling power to make redundant moments small
I Hansen et al: (With finitely-many moments) this norm gives

the minimal asymptotic variance (efficiency) for any θ̃ →p θ0:

‖v‖2 = vTC−1

θ̃
v, [Cθ]jk = 1

n

∑n
i=1 fj(Zi)fk(Zi)(Yi − g(Xi; θ))

2.

I E.g., two-step/iterated/cts GMM. Generically OWGMM.
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Failure with Many Moment Conditions

I When g(x; θ) is a flexible model, many – possibly infinitely
many – moment conditions may be needed to identify θ0

I But both GMM and OWGMM will fail if we use too many
moments
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Variational Reformulation of OWGMM

I Let V be vector space of real-valued fns of Z
I ψn(f ; θ) is a linear operator on V
I Cθ(f, h) = 1

n

∑n
i=1 f(Zi)h(Zi)(Yi − g(Xi; θ))

2 is a bilinear
form on V

I Given any subset F ⊆ V , define

Ψn(θ;F , θ̃) = sup
f∈F

ψn(f ; θ)− 1

4
Cθ̃(f, f)

Theorem

Let F = span(f1, . . . , fm) be a subspace. For OWGMM norm:

‖(ψn(f1; θ), . . . , ψn(fm; θ))‖2 = Ψn(θ;F , θ̃).

Hence: θ̂OWGMM ∈ argminθ∈Θ Ψn(θ;F , θ̃).
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DeepGMM

I Idea: use this reformulation and replace F with a rich set
I But not with a hi-dim subspace (that’d just be GMM)
I Let F = {f(z; τ) : τ ∈ T }, G = {g(x; θ) : θ ∈ Θ} be all

networks of given architecture with varying weights τ, θ
I (Think about it as the union the spans of the penultimate

layer functions)

I DeepGMM is then given by the solution to the smooth
zero-sum game (for any data-driven θ̃)

θ̂DeepGMM ∈ argmin
θ∈Θ

sup
τ∈T

Uθ̃(θ, τ)

where Uθ̃(θ, τ) = 1
n

∑n
i=1 f(Zi; τ)(Yi − g(Xi; θ))

− 1
4n

∑n
i=1 f

2(Zi; τ)(Yi − g(Xi; θ̃))
2.
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Consistency of DeepGMM

I Assumptions:
I Identification: θ0 uniquely solves ψ(f ; θ) = 0 ∀f ∈ F
I Complexity: F ,G have vanishing Rademacher complexities

(alternatively, can use a combinatorial measure like VC)
I Absolutely star shaped: f ∈ F , |λ| ≤ 1 =⇒ (λf) ∈ F
I Continuity: g(x; θ), f(x; τ) are continuous in θ, τ for all x
I Boundedness: Y, supθ∈Θ |g(X; θ)| , supτ∈T |f(Z; τ)| bounded

Theorem

Let θ̃n by any data-dependent sequence with a limit in probability. Let
θ̂n, τ̂n be any approximate equilibrium of our game, i.e.,

sup
τ∈T

Uθ̃n(θ̂n, τ)− op(1) ≤ Uθ̃n(θ̂n, τ̂n) ≤ inf
θ
Uθ̃n(θ, τ̂n) + op(1).

Then θ̂n →p θ0.
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Consistency of DeepGMM

I Specification is much more defensible when use such a rich F
I Nonetheless, if we drop specification we instead get

inf
θ:ψ(f ;θ)=0 ∀f∈F

‖θ − θ̂n‖ →p 0
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Optimization

OPTIMISTIC MIRROR DESCENT IN SADDLE-POINT PROBLEMS:
GOING THE EXTRA (GRADIENT) MILE

PANAYOTIS MERTIKOPOULOS⇤, BRUNO LECOUAT‡, HOUSSAM ZENATI‡,
CHUAN-SHENG FOO‡, VIJAY CHANDRASEKHAR‡¶ , AND GEORGIOS PILIOURAS§

A�������. Owing to their connection with generative adversarial networks (GANs),
saddle-point problems have recently attracted considerable interest in machine learning
and beyond. By necessity, most theoretical guarantees revolve around convex-concave
(or even linear) problems; however, making theoretical inroads towards e�cient GAN
training depends crucially on moving beyond this classic framework. To make piecemeal
progress along these lines, we analyze the behavior of mirror descent (MD) in a class of
non-monotone problems whose solutions coincide with those of a naturally associated
variational inequality – a property which we call coherence. We �rst show that ordinary,
“vanilla” MD converges under a strict version of this condition, but not otherwise; in
particular, it may fail to converge even in bilinear models with a unique solution. We
then show that this de�ciency is mitigated by optimism: by taking an “extra-gradient”
step, optimistic mirror descent (OMD) converges in all coherent problems. Our analysis
generalizes and extends the results of Daskalakis et al. (����) for optimistic gradient
descent (OGD) in bilinear problems, and makes concrete headway for provable convergence
beyond convex-concave games. We also provide stochastic analogues of these results,
and we validate our analysis by numerical experiments in a wide array of GAN models
(including Gaussian mixture models, and the CelebA and CIFAR-�� datasets).

Figure �: Mirror descent (MD) in the non-monotone saddle-point problem
f (x�,x�) = (x� � �/�)(x� � �/�) + �

� exp(�(x� � �/�)� � (x� � �/�)�). Left: vanilla
MD spirals outwards; right: optimistic MD converges.

⇤ U���. G������� A����, CNRS, I����, LIG, ����� G�������, F�����.
‡ I�������� ��� I������� R�������, A*STAR, � F����������� W��, #����� C������� (S���� T����),

S��������.
¶ N������ T������������ U���������, �� N������ A��, S��������.
§ S�������� U��������� �� T��������� ��� D�����, � S������ R���, S��������.
E-mail addresses: panayotis.mertikopoulos@imag.fr, bruno_lecouat@i2r.a-star.edu.sg,

houssam_zenati@i2r.a-star.edu.sg, foocs@i2r.a-star.edu.sg, vijay@i2r.a-star.edu.sg,
georgios@sutd.edu.sg.

P. Mertikopoulos was partially supported by the French National Research Agency (ANR) grant ORACLESS
(ANR–��–CE��–����–��). G. Piliouras would like to acknowledge SUTD grant SRG ESD ���� ���, MOE AcRF
Tier � Grant ����-T�-�-��� and NRF fellowship NRF-NRFF����-��. This work was partly funded by the deep
learning �.� program at A*STAR. .

�

I Thanks to surge of interest in GANs, lots of good algorithms
for playing smooth games

I We use OAdam by Daskalakis et al.
I Main idea: use updates with negative momentum
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Choosing θ̃

I Ideally θ̃ ≈ θ0

I Can let it be θ̂DeepGMM using another θ̃
I Can repeat this

I To simulate this, at every step of the learning algorithm, we
update it to be the last θ iterate
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Overview

I Low-dimensional scenarios: 2-dim Z, 1-dim Z

I High-dimensional scenarios: Z, X, or both are images

I Benchmarks:
I DirectNN: regress Y on X with NN
I Vanilla2SLS: all linear
I Poly2SLS: select degree and ridge penalty by CV
I GMM+NN*: OWGMM with NN g(x; θ); solve using Adam

I When Z is low-dim expand with 10 RBFs around EM
clustering centroids. When Z is high-dim use raw instrument.

I AGMM: github.com/vsyrgkanis/adversarial gmm
I One-step GMM with ‖ · ‖∞ + jitter update to moments
I Same moment conditions as above

I DeepIV: github.com/microsoft/EconML
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Low-dimensional scenarios

Y = g0(X) + e+ δ X = 0.5 Z1 + 0.5 e+ γ
Z ∼ Uniform([−3, 3]2) e ∼ N (0, 1), γ, δ ∼ N (0, 0.1)

I abs: g0(x) = |x|
I linear: g0(x) = x

I sin: g0(x) = sin(x)

I step: g0(x) = I{x≥0}
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Figure 2: Low-dimensional scenarios (Section 5.1). Estimated ĝ in blue; true response g0 in orange.

Scenario DirectNN Vanilla2SLS Poly2SLS GMM+NN AGMM DeepIV Our Method

abs .20 ± .01 .23 ± .01 .04 ± .00 .02 ± .00 .29 ± .01 .12 ± .00 .01 ± .00
linear .08 ± .00 .00 ± .00 .00 ± .00 .03 ± .00 .02 ± .00 .04 ± .00 .00 ± .00
sin .25 ± .01 .09 ± .00 .04 ± .00 .06 ± .00 .12 ± .00 .06 ± .00 .02 ± .00
step .21 ± .01 .03 ± .00 .03 ± .00 .04 ± .00 .03 ± .00 .02 ± .00 .01 ± .00

Table 1: Low-dimensional scenarios: Test MSE averaged across ten runs, followed by the standard
error of the mean.

Scenario DirectNN Vanilla2SLS Ridge2SLS GMM+NN AGMM DeepIV Our Method

MNISTz .25 ± .02 .23 ± .00 .23 ± .00 .27 ± .01 – .11 ± .00 .07 ± .02
MNISTx .28 ± .03 > 1000 .19 ± .00 .19 ± .00 – – .15 ± .02
MNISTx,z .24 ± .01 > 1000 .39 ± .00 .25 ± .01 – – .14 ± .02

Table 2: High-dimensional scenarios: Test MSE averaged across ten runs, followed by the standard
error of the mean.

the results in Fig. 2. The left column shows the sampled Y plotted against X , with the true g0 in227

orange. The other columns show in blue the estimated ĝ using various methods. Table 1 shows the228

corresponding MSE over the test set.229

First we note that in each case there is sufficient confounding that the DirectNN regression fails badly230

and a method that can use the IV information to remove confounding is necessary.231

Our next substantive observation is that our method performs competitively across scenarios, attaining232

the lowest MSE in each. At the same time, the identity of the best performing benchmark changes in233

each scenario: GMM+NN for abs, 2SLS for linear, Poly2SLS for sin, and DeepIV for step. Therefore234

we conclude that in the low dimensional setting, our method is able to adapt to the scenario and235

compete with best tuned methods for the scenario.236

Overall, we also found that GMM+NN performed well (but not as well as our method). In some237

sense GMM+NN is a novel method; we are not aware of previous work using (OW)GMM to train238

a neural network. Whereas GMM+NN needs to be provided moment conditions, our method can239

be understood as improving further on this by learning the best moment condition over a large class240

using optimal weighting. Moreover, we found that GMM+NN outperformed AGMM, which uses the241

same moment conditions. Aside from the jitter step implemented in the AGMM code, it is equivalent242

to one-step GMM, Eq. (5), with k · k1 vector norm in place of the standard k · k2 norm. Its worse243

performance can perhaps be explained by this change and by its lack of optimal weighting.244

In the experiments, the other NN-based method, DeepIV, was consistently outperformed by Poly2SLS245

across scenarios. This can potentially be attributed to the infamous “forbidden regression” issue.246

7
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abs linear sin step

DirectNN .21± .00 .09± .00 .26± .00 .21± .00
Vanilla2SLS .23± .00 .00± .00 .09± .00 .03± .00
Poly2SLS .04± .00 .00± .00 .04± .00 .03± .00
GMM+NN .14± .02 .06± .01 .08± .00 .06± .00
AGMM .17± .03 .03± .00 .11± .01 .06± .01
DeepIV .10± .00 .04± .00 .06± .00 .03± .00
Our Method .03± .01 .01± .00 .02± .00 .01± .00
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High-dimensional scenarios

I Use MNIST images: 28× 28 = 784

I Let RandImg(d) return random image of digit d

I Let π(x) = round(min(max(1.5x+ 5, 0), 9))

I Scenarios:
I MNISTZ: X as before, Z ← RandImg(π(Z1)).
I MNISTX: X ← RandImg(π(X)), Z as before.
I MNISTX, Z: X ← RandImg(π(X)), Z ← RandImg(π(Z1)).
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MNISTz MNISTx MNISTx,z

DirectNN .25± .02 .28± .03 .24± .01
Vanilla2SLS .23± .00 > 1000 > 1000
Ridge2SLS .23± .00 .19± .00 .39± .00
GMM+NN .27± .01 .19± .00 .25± .01

AGMM – – –
DeepIV .11± .00 – –

Our Method .07± .02 .15± .02 .14± .02
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DeepGMM

I We develop a method termed DeepGMM
I Aims to addresses IV with such high-dimensional variables /

complex relationships
I Based on a new variational interpretation of

optimally-weighted GMM (inverse-covariance), which we use
to efficiently control very many moment conditions

I DeepGMM given by the solution to a smooth zero-sum
game, which we solve with iterative smooth-game-playing
algorithms (à la GANs)

I Numerical results will show that DeepGMM matches the
performance of best-tuned methods in standard settings and
continues to work in high-dimensional settings where even
recent methods break
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