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Policy Learning Problem

Given some observational data on individuals described by some
covariates (X ), interventions performed on those individuals (T ), and
resultant outcomes (Y ), wish to estimate utility of policies that
assign treatment to individuals based on covariates

Challenging problem when the relationship between T and Y in the
logged data is confounded, even controlling for X
Examples:

Drug assignment policy: X is patient information available to doctors,
T is drug assigned, Y is medical outcome, and confounding due to
factors not fully accounted for by X (e.g. socieoconomics) deciding
drug assignment in observational data
Personalized education: X contains individual student statistics, T is
an educational intervention, Y is measure of post-intervention student
outcomes, and confounding due to X poorly accounting for criteria
used by decision makers in observational data (e.g. X contains
standardized test score but decisions made based on actual student
capability)
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Setup - Latent Confounder Framework

Logged Data Model:

Latent Confounders: Z ∈ Z ⊆ Rp

Observed Proxies: X ∈ X ⊆ Rq

Treatment: T ∈ {1, . . . ,m}
Potential Outcomes: Y (t) ∈ R

Assumption (Z are true confounders)

For every t ∈ {1, . . . ,m}, the variables X ,T ,Y (t) are mutually
independent, conditioned on Z.

X Z

YT
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Setup - Logging and Behavior Policies

Evaluation Policy:

πt(x) denotes the probability of assigning treatment T = t given
observed proxies X = x by evaluation policy

Logging Policy:

et(z) denotes the probability of assigning treatment T = t given
observed proxies Z = z by logging policy

ηt(x) denotes the probability of assigning treatment T = t given
observed proxies X = x by logging policy
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Setup - Policy Evaluation Goal

Definition (Policy Value)

τπ = E[
∑m

t=1 πt(X )Y (t)].

Goal:

Our goal is to estimate the policy value τπ given iid logged data of
the form ((X1,T1,Y1), . . . , (Xn,Tn,Yn))

Want to find an estimator τ̂π that minimizes the MSE E[(τ̂π − τπ)2]
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Setup - Latent Confounder Model

X Z

YT

We denote by ϕ(z ; x , t) the conditional density of Z given
X = x ,T = t

Assumption (Latent Confounder Model)

We assume that we have an identified model for ϕ(z ; x , t), and that we
can calculate conditional densities and sample Z values using this model
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Setup - Observed Proxies

X Z

YT

We do not assume ignorability given X

This means standard approaches based on inverse propensity scores
are bound to fail

Instead the proxies X can be used (along with T ) to calculate the
posterior of the true confounders Z , which can be used for evaluation
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Setup - Additional Assumptions

Assumption (Weak Overlap)

E[e−2t (Z )] <∞

Assumption (Bounded Variance)

The conditional variance of our potential outcomes given X ,T is bounded:
V[Y (t) | X ,T ] ≤ σ2.
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Setup - Mean Value Functions

Define the following mean value functions:

µt(z) = E[Y (t) | Z = z ]

νt(x , t
′) = E[Y (t) | X = x ,T = t ′] = E[µt(Z ) | X = x ,T = t ′]

ρt(x) = E[Y (t) | X = x ] = E[µt(Z ) | X = x ]

Note that we can equivalently redefine policy value as:

τπ = E[
m∑
t=1

πt(X )Y (t)]

= E[
m∑
t=1

πt(X )µt(Z )]

= E[
m∑
t=1

πt(X )νt(X ,T )]

9 / 33



Past Work - Standard Estimator Types

Weighted, Direct, and Doubly Robust estimators:

τ̂πW =
1

n

n∑
i=1

WiYi

τ̂πρ̂ =
1

n

n∑
i=1

m∑
t=1

πt(Xi )ρ̂t(Xi )

τ̂πW ,ρ̂ =
1

n

n∑
i=1

m∑
t=1

πt(Xi )ρ̂t(Xi ) +
1

n

n∑
i=1

Wi (Yi − ρ̂Ti
(Xi ))

Note that ρ̂t is not straightforward to estimate via regression since
ρt(x) = E[Y (t) | X = x ] 6= E[Y | X = x ]

Correct IPW weights Wi = πTi
(Xi )/eTi

(Zi ) are infeasible since Zi is
not observed, and naively misspecified IPW weights
Wi = πTi

(Xi )/ηTi
(Xi ) lead to biased evaluation
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Past Work - Optimal Balancing

Optimal Balancing (Kallus 2018) seeks to come up with a set of
weights Wi that τ̂πW minimize an estimate of the worst-case MSE of
policy evaluation, given a class of functions for the unknown mean
value function

Define CMSE (W , µ) to be the conditional mean squared error given
the logged data of τ̂πW as an estimate of the sample average policy
effect (SAPE), if the mean value function were given by µ

Choose weights W ∗ for evaluation according to the rule:

W ∗ = arg min
W∈W

sup
µ∈F

CMSE (W , µ)

Permits simple QP algorithm when F is a class of RKHS functions
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Generalized IPS Weights I

Suppose we want to define weights W (X ,T ) IPS-style such that the
weighted estimator is unbiased term-by-term, this requires solving:

E[W (X ,T )δTi tY (t)] = E[πt(X )Y (t)]

Can easily verify that if we assume ignorability given X this equation
is solved by standard IPS weights W (X ,T ) = πT (X )/ηT (X )

Theorem (Generalized IPS Weights)

If W (x , t) satisfies the above equation then for each t ∈ {1, . . . ,m}

W (x , t) = πt(x)

∑m
t′=1 ηt′(x)νt(x , t

′) + Ωt(x)

ηt(x)νt(x , t)
,

for some Ωt(x) such that E[Ωt(X )] = 0∀t.
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Generalized IPS Weights II

Calculating these generalized IPS weights is not straightforward since
it involves the counterfactual estimation of νt(x , t

′) for t 6= t ′

(requires knowledge of Z )

In addition would expect high variance from error in estimating νt due
to its position in denominator

However the fact that such weights exist supports idea of using
optimal balancing style approach, and choosing weights that balance
a flexible class of possible mean outcome functions
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Adversarial Objective Motivation

Define the following, where we embed the dependence on µ inside νt
implicitly:

fit = WiδTi t − πt(Xi )

J(W , µ) =

(
1

n

n∑
i=1

m∑
t=1

fitνt(Xi ,Ti )

)2

+
2σ2

n2
‖W ‖22,

Theorem (CMSE Upper Bound)

E[(τ̂πW − τπ)2 | X1:n,T1:n] ≤ 2J(W , µ) + Op(1/n).

Lemma (CMSE Convergence implies Consistency)

If E[(τ̂πW − τπ)2 | X1:n,T1:n] = Op(1/n) then τ̂πW = τπ + Op(1/
√
n).
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Balancing Objective

Our optimal balancing objective is to choose weights W ∗ for evaluation
according to the following optimzation problem:

W ∗ = arg min
W∈W

sup
µ∈F

J(W , µ)
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Feasibility of Balancing Objective I

Minimizing J(W , µ) over some class of µ ∈ F corresponds to
balancing some class of functions ν implicitly indexed by µ, since:

J(W , µ) =

(
1

n

n∑
i=1

WiνTi
(Xi ,Ti )−

1

n

n∑
i=1

m∑
t=1

πt(Xi )νt(Xi ,Ti )

)2

+
2σ2

n2
‖W ‖22

Note that such balancing would be impossible over a generic flexible
class of functions ν ignoring Z , due to νt(x , t

′) terms for t 6= t ′
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Feasibility of Balancing Objective II

The following lemma suggests that this fundamental counterfactual
issue may not be a problem given our implicit constraint imposed by
indexing using µ and our overlap assumption:

Lemma (Mean Value Function Overlap)

Assuming ‖µt‖∞ ≤ b, under our weak overlap assumption, for all x ∈ X ,
and t, t ′, t ′′ ∈ {1, . . . ,m} we have

|νt(x , t ′′)| ≤
ηt′(x)

ηt′′(x)

√
8bE[e−2t (Z ) | X = x ,T = t ′]|νt(x , t ′)|.
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Assumptions for Consistent Evaluation I

Define Ft = {µt : ∃(µ′1, . . . , µ
′
m) ∈ F with µ′t = µt}, then we make the

following assumptions:

Assumption (Normed)

For each t ∈ {1, . . . ,m} there exists a norm ‖ · ‖t on span(Ft), and there
exists a norm ‖ · ‖ on span(F) which is defined given some Rm norm as
‖µ‖ = ‖(‖µ1‖1, . . . , ‖µm‖m)‖.

Assumption (Absolutely Star Shaped)

For every µ ∈ F and |λ| ≤ 1, we have λµ ∈ F .

Assumption (Convex Compact)

F is convex and compact
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Assumptions for Consistent Evaluation II

Assumption (Square Integrable)

For each t ∈ {1, . . . ,m} the space Ft is a subset of L2(Z), and its norm
dominates the L2 norm (i.e., infµt∈Ft ‖µt‖/‖µt‖L2 > 0).

Assumption (Nondegeneracy)

Define B(γ) = {µ ∈ span(F) : ‖µ‖ ≤ γ}. Then we have B(γ) ⊆ F for
some γ > 0.

Assumption (Boundedness)

supµ∈F ‖µ‖∞ <∞.

19 / 33



Assumptions for Consistent Evaluation III

Definition (Rademacher Complexity)

Rn(F) = E[supf ∈F
1
n

∑n
i=1 εi f (Zi )], where εi are iid Rademacher random

variables.

Assumption (Complexity)

For each t ∈ {1 . . . ,m} we have Rn(Ft) = o(1).
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Optimization Problem Convergence

Lemma (Minimax Lemma)

Let B(W , µ) = 1
n

∑n
i=1

∑m
t=1 fitνt(Xi ,Ti ). Then under our consistency

assumptions for every M > 0 we have the bound

min
W

sup
µ∈F

J(W , µ) ≤ sup
µ∈F

min
‖W ‖2≤M

B(W , µ)2 +
σ2

n2
M2.

Lemma (Optimization Problem Convergence)

Under our consistency assumptions we have
infW supµ∈F J(W , µ) = Op(1/n).
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Convergence Proof Sketch

First, Minimax Lemma tells us that it is sufficient to prove Op(1/n)
bound by picking a W in response to each possible µ such that:

1 B(W (µ), µ) = 0∀µ
2 supµ∈F ‖W (µ)‖2 = Op(

√
n)

Choose W (µ) as solution to: arg minW W 2 s.t. B(W , µ) = 0

By Lagrangian Duality can find closed form solution to this problem,
and prove Op(

√
n) bound for solution using empirical process

arguments and previous Mean Value Function Overlap lemma
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Consistent Evaluation Theorem

Theorem (Root-n Consistency)

Under our consistency assumptions and assuming that µ ∈ F we have
τ̂πW ∗ = τπ + Op(1/

√
n).

Proof idea:

Define W ∗ as solution to infW supµ∈F J(W , µ)

Then assuming µ ∈ F it must be case that J(W ∗, µ) = Op(1/n)

Given this
√
n consistency follows automatically from previous

theorems and lemmas
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RKHS Class for Policy Evaluation I

Definition (Kernel Class)

FK = {µ : ||µ|| ≤ 1}, where ||(µ1, . . . , µm)|| =
√∑m

t=1 ||µt ||2K .

Theorem (Root-n Consistent Evaluation with Kernel Class)

Assuming K is a Mercer kernel (continuous and positive definite) and is
bounded, FK satisfies our assumptions for consistency.

Note that these assumptions are easily met for instance by the commonly
used Gaussian kernel
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RKHS Class for Policy Evaluation II

Note that FK having maximum norm 1 is without loss of generality,
because if we wanted the maximum norm to instead be γ we could
replace the Σ matrix by Γ = 1

γΣ in our objective function, resulting in
an equivalent re-scaled optimization problem

Therefore we replace the Σ matrix in the objective with Γ, which is
treated as a regularization hyperparameter
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Kernel Balancing Algorithm I

Theorem

Define Qij = E[K (Zi ,Z
′
j )], Gij = 1

n2
(QijδTiTj

+ Γij), and

ai = 2
n2
∑n

j=1QijπTj
(Xi ), where for each i Zi and Z ′i are iid shadow

variables. Then for some c that is constant in W we have the identity

sup
µ∈FK

J(W , µ) = W TGW − aTW + c .

Note that this means we can calculate our weights for consistent
policy evaluation by solving a QP

We can estimate Q given our assumption that we have an identified
model for the posterior ϕ(z ; x , t)
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Kernel Balancing Algorithm II

Algorithm 1 Optimal Kernel Balancing

Input: Data (X1:n,T1:n), policy π, kernel function K , posterior density ϕ, regularization
matrix Γ, number samples B, optional weight space W (defaults to Rn if not
provided)

Output: Optimal balancing weights W1:n

1: for i ∈ {1, . . . , n} do
2: Sample Data. Draw B data points Z b

i from the posterior ϕ(· ;Xi ,Ti )
3: end for
4: Estimate Q. Calculate Qij = 1

B2

∑B
b=1

∑B
c=1 K(Z b

i ,Z
c
i )

5: Calculate QP Inputs. Calculate Gij = QijδTiTj + Γij , and ai = 2
∑n

j=1 QijπTj (Xi )

6: Solve Quadratic Program. Calculate W = arg minW∈WW TGW − aTW
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Experiment Setup - Data Generating Process and Policy

Assume the following GLM-style data generating process:

Z ∼ N (0, 1) X ∼ N (αTZ + α0, σ
2
X )

PT = βTZ + β0 T ∼ softmax(PT )
W (t) ∼ N (ζ(t)TZ + ζ0(t), σ2Y ) Y (t) = g(W (t))

We assume Z is 1-dimensional, X is 10-dimensional, and use 2
treatment levels

We experiment with the following functions for g :
step : g(w) = 31{w≥0} − 6
exp : g(w) = exp(w)
cubic : g(w) = w3

linear : g(w) = w

We experiment with evaluating the following parameterized policy:

πt(X ) =
exp(ψT

t X )

exp(ψT
1 X ) + exp(ψT

2 X )

28 / 33



Experiment Setup - Method and Baselines

We experiment with the following methods in our evaluation:

1 OptZ Our method, using Γ = γ Identity(n) for
γ ∈ {0.001, 0.2, 1.0, 5.0}

2 IPS IPS weights based on X using estimated η̂t
3 OptX The optimal weighting method of (Kallus 2018) with same

values of Γ as our method

4 DirX Direct method by fitting ρ̂t(x) incorrectly assuming ignorability
given X

5 DirZ Direct method by first fitting µ̂t using posterior samples from ϕ,
then using the estimate ρ̂t(x) = (1/D)

∑D
i=1 µ̂t(z

′
i ), where z ′i are

sampled from ϕ(·; x , t)

6 D:W Doubly robust estimation using direct estimator D and weighted
estimator W
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Experiment Results - RMSE Convergence

n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .39± .07 .24± .02 .36± .02 .81± .02
500 .19± .02 .18± .02 .23± .02 .49± .02

1000 .11± .01 .11± .01 .13± .01 .27± .01
2000 .08± .01 .08± .01 .09± .01 .17± .01

n DirX DirZ DirX:OptZ0.001 DirZ:OptZ0.001

200 .52± .02 2.6± .02 .57± .06 .41± .07
500 .48± .02 2.6± .01 .55± .03 .20± .02

1000 .39± .02 2.0± .01 .49± .02 .11± .01
2000 .40± .01 2.0± .01 .48± .01 .08± .01

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0

200 .47± .03 2.0± .03 2.1± .03 2.3± .02 2.5± .02
500 .48± .03 2.0± .02 2.1± .02 2.3± .02 2.6± .02

1000 .39± .02 2.0± .01 2.1± .01 2.3± .01 2.5± .01
2000 .40± .01 2.0± .01 2.1± .01 2.3± .01 2.5± .01
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Experiment Results - Bias Convergence

n OptZ0.001 OptZ0.2 OptZ1.0 OptZ5.0

200 .03± .39 .11± .21 .29± .21 .78± .18
500 .09± .17 .10± .15 .17± .16 .47± .15

1000 .02± .11 .05± .09 .08± .09 .25± .09
2000 .03± .07 .05± .06 .07± .07 .16± .07

n DirX DirZ DirX:OptZ0.001 DirZ:OptZ0.001

200 .49± .18 2.6± .14 .43± .38 .05± .40
500 .45± .16 2.6± .12 .51± .19 .10± .18

1000 .46± .15 2.6± .11 .47± .13 .04± .11
2000 .42± .17 2.6± .11 .47± .09 .03± .07

n IPS OptX0.001 OptX0.2 OptX1.0 OptX5.0

200 .40± .25 1.9± .21 2.1± .20 2.3± .19 2.5± .18
500 .43± .21 2.0± .16 2.1± .15 2.3± .14 2.6± .13

1000 .37± .12 2.0± .10 2.1± .09 2.3± .09 2.5± .08
2000 .39± .10 2.0± .08 2.1± .07 2.3± .07 2.5± .07
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Experimental Results - Analysis

Experimental Results seem to support our theory of consistency of
our policy value estimator

Standard baselines naively assuming ignorability given X were all
biased

Direct estimation was not consistent even when taking latent
structure into account

Doubly robust estimation did not help over simple weighted
estimation
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Possible Questions for Future Work

How to perform inference on policy value estimates using our method?

How to perform policy improvement using our method?

Is there a better, consistent way to fit ρ̂t for direct evaluation?

How to optimize adversarial objective over different function classes
(e.g. neural networks)?

Can we establish semiparametric efficiency, or extend methodology to
achieve semiparametric lower bound?

Finite sample bounds for our method?

How do we extend methodology to situation where we don’t have an
identified model for ϕ(z ; x , t)?
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