
DAY 2: DESIGNING SPECIFICATIONS

MICHAEL GEORGE
CERTORA

Certora AAVE Training

DAY 1 RECAP
Prover overview
▶ Rules are like small programs that call contract functions
▶ May have undefined variables
▶ Prover considers every possible combination of value
▶ Reports counterexamples if there are any

Basic Prover usage
▶ require, assert, mathint, env, envfree, method, calldataarg, withrevert, and lastReverted
▶ navigating the call trace and understanding counterexamples

Unit-test style rules
▶ e.g. “transfer must increase recipient’s balance by amount”

Parametric rules
▶ e.g. “allowance(owner,spender) can only be increased by owner”

DAY 2 PLAN
Part 1: More CVL features
▶ Goal: totalSupply is sum of balances
▶ Features: definitions, invariants, ghosts, hooks

Short break

Part 2: Designing specifications
▶ Rule coverage
▶ Rule design patterns

▶ Unit tests, variable changes, variable relationships, state-transition
diagrams, risk assessment, mathematical properties

Demo

DAY 2 PLAN
Part 1: More CVL features
▶ Goal: totalSupply is sum of balances
▶ Features: definitions, invariants, ghosts, hooks

Short break

Part 2: Designing specifications
▶ Rule coverage
▶ Rule design patterns

▶ Unit tests, variable changes, variable relationships, state-transition
diagrams, risk assessment, mathematical properties

ASSESSING RULE COVERAGE: WHEN ARE YOU DONE?
Code coveragemeasures quality of unit tests
▶ number of lines executed during unit tests
▶ 100% coverage is not a guarantee of correctness

▶ …but it gives some assurance that test suite is comprehensive
What’s the right metric for quality of specifications?
▶ Not code coverage: any parametric rule instantly gives 100% code coverage

Certora’s QA process:
▶ Systematic rule design (today’s topic)
▶ Bug injection

▶ Insert bugs into contracts, check that the rules catch them
▶ Best if done by someone other than rule writer

▶ (Coming soon) randomized mutation testing
▶ Automatically inject simple bugs
▶ E.g. swap argument order, remove modifiers, drop require statements

TYPES OF RULES
▶ (Most concrete) “Unit test style” / method specification properties

▶ Encode the method documentation
▶ Consider successful cases and revert conditions

▶ Variable changes
▶ For each variable / getter, ask when and how it should change
▶ Describe quality of changes and methods that can change

▶ Variable relationships
▶ Ask what variables are related to each other and how

▶ State-transition diagrams
▶ Ask how a contract (or part of the state) can evolve

▶ Risk assessment
▶ Take perspective of different stakeholders

▶ (Most abstract) Mathematical properties
▶ Abstract away from details (e.g. monotonicity, additivity, commutativity)

UNIT-TEST STYLE RULES (SINGLE-METHOD SPECS)
Writing method spec rules:
▶ Describe expected output
▶ Describe expected state changes
▶ Describe revert conditions

Example from demo: transferSpec and transferRevertSpec

rule methodSpec {
env e; address ...; // declare arguments
require ...; // preconditions

mathint value_before = ...; // saved pre‐state

mathint result = f(args); // call method

assert ...; // check post‐state
}

Good coverage: a spec for every method
▶ Except for fiat methods like balanceOf

VARIABLE CHANGES
Writing variable change rules:
▶ Describe how a variable should evolve (e.g. only increasing, ...)
▶ Describe methods that are allowed to change a variable

Example from demo: onlyOwnerCanDecreaseBalance

rule varChanges {
mathint value_before = var(); // save old value

env e; method f; calldataarg args; // call arbitrary method
f(e, args);

mathint value_after = var(); // save new value

assert value_before != value_after => // if changed then ...
...,
"var must only change if ...";

assert value_before != value_after => // only changed by ...
f.selector == mint(uint).selector,
"only mint can change var";

}

Good coverage: changes for every variable
▶ Except unconstrained variables

VARIABLE RELATIONSHIPS (INVARIANTS)
Writing variable relationships:
▶ Identify groups of related variables

▶ Including variables of related contracts (e.g. underlying.balanceOf(currentContract))
▶ Ask “how could I tell if state is valid by looking at these variables?”
▶ Often good to write these early so you can use requireInvariant

Example from demo: totalSupplyBounded

invariant x_and_y_correlation()
... // describe desired relationship

Good coverage: groups of related variables have invariants

STATE-TRANSITION SYSTEMS
Example: Governance system

uninitialized proposed

canceled

accepted

rejected

executed

propose() finalize()

finalize()
cancel()

execute()

Definitions:
▶ uninitialized: id() == 0

▶ executed:
isClosed() && votesFor() > threshold()

▶ …

Properties:
▶ Can only vote in proposed state
▶ Once canceled always canceled
▶ …

STATE-TRANSITION RULES
Writing state-transition rules:
definition state1() returns bool = ...; // define states
definition state2() returns bool = ...;
definition state3() returns bool = ...;

invariant inSomeState() // ensure states cover possibilities
state1() || state2() || state3()

invariant inOneState() // if necessary, check state disjointness
(state1() => !state2() && !state3())
&& ...

rule state1ToState2 { // check state transitions
...
require state1_before && state2_after;
assert ...;

}

invariant varValid() // use definitions in rules and invariants
state1() => ...

rule methodSpec {
...
if (state1()) {

...
} else if (state2()) {

...
} else {

...
}

}

RISK ASSESSMENT
Using risk assessment to define rules:
▶ Identify stakeholders

▶ e.g. traders, liquidity providers, owners, voters, …
▶ Ask what would make them most unhappy

▶ e.g. fees too high, insolvency, DOS, front-running, …
▶ Rule those things out

Example:
definition assets() returns uint256 = underlyingBalance(currentContract);
definition liabilities() returns uint256 = totalSupply() * conversion_factor();

invariant solvency()
assets() >= liabilities()

Good coverage: All stakeholders are happy

MATHEMATICAL ABSTRACTIONS
Abstract properties of functions as mathematical functions can reveal bugs
▶ Monotonicity: a function is only increasing or only decreasing
▶ Correlation: if one function increases, so does another
▶ Commutativity: it doesn’t matter which order two operations happen in
▶ Additivity: the effect of two operations is the sum of their individual effects

Example:
rule depositAdditivity {

uint amountA; uint amountB; env e;

storage init = lastStorage; // save state of storage for replay

deposit(e, amountA); // deposit two smaller amounts
deposit(e, amountB);

uint separate_balance = balanceOf(e.msg.sender); // save resulting balance

deposit(e, amountA + amountB) at init; // reset storage to init and deposit sum

uint together_balance = balanceOf(e.msg.sender); // save resulting balance

assert separate_balance == together_balance, // compare

"splitting a deposit into two smaller deposits must have the same effect on user's balance";
}

TYPES OF RULES
▶ (Most concrete) “Unit test style” / method specification properties

▶ Encode the method documentation
▶ Consider successful cases and revert conditions

▶ Variable changes
▶ For each variable / getter, ask when and how it should change
▶ Describe quality of changes and methods that can change

▶ Variable relationships
▶ Ask what variables are related to each other and how

▶ State-transition diagrams
▶ Ask how a contract (or part of the state) can evolve

▶ Risk assessment
▶ Take perspective of different stakeholders

▶ (Most abstract) Mathematical properties
▶ Abstract away from details (e.g. monotonicity, additivity, commutativity)

HOMEWORK
For next time:
▶ Design rule set for SymbolicPool (checked in soon)

