
1

ROBOCART: A self-navigating shopping cart for
the supermarket

Cesar Alan Contreras, Runlong YANG, Yang LIU, Yongle HUANG, Zongyuan ZHANG
School of Computer Science
University of Birmingham

Abstract—The ROBOCART (tracker) is a fully-automatic su-
permarket cart designed to free customers hand while shopping.
Our system has the function of human-tracking, trajectory
prediction, automatic path-planning, automatic charging. In this
article, we compare our planned path from A* algorithm with
the most optimal path and explain our design choice. We also
illustrate how we made our customer-following task smarter
by introducing Kalman-Filter into our system. And we prove
that it successfully saves up to 13% of the time while following
a customer in certain scenarios with Kalman-Filter trajectory
predictions.

I. INTRODUCTION

Nowadays AI has become more and more popular and
normal in most domains. Shopping is a necessity in daily life,
and AI technology will make it easier and more convenient.
According to the Amazon AWS official blog [1], Back in
2017, Amazon developed its first self-serve supermarket called
Amazon GO. The goal of the developers is to achieve the ‘no
lines, no check out’, which means there is no queue required
for the customers any more. The service is provided via the
mobile app that will be applied to scan the barcode of products
and then check out by itself. On the one hand, supermarkets
like Amazon GO bring great convenience to the customers, but
also there are some obvious limitations that it is not friendly
to the special groups such as the seniors and people with
disabilities. Not only that, this emerging technology will bring
a big impact to traditional supermarkets.

Because of this, our team intends to develop a supermarket
intelligent shopping robot, which is able to follow the user and
show the optimal path to them and to their predicted positions.
At the end of the shopping, the robot can be able to find its
way into a particular area alone, paying for the items that the
user chose, or going back to the energy station to recharge its
battery in time.

Compared with the traditional or general shopping method,
shopping under the service of a supermarket robot is high-
efficiency as the robot can guide the user to the location of
items the user wants, whats more, the customers do not need
to wait in a queue since the payment will be implemented
by the robot directly. In case some customers include seniors
and disabilities, the robot can help them to approach the
items they want easily, which can provide them with a better
shopping experience. On the other hand, the supermarket robot
is different from the Amazon GO. The advantages of the
former one is that it has a better integration with the traditional

shopping methods and provides the users more convenience
with less impact.

II. RELATED WORK

A. Path Planning

In general, three categories of algorithms are applied to
robot path-planning problems by Cais research [2]. The first
category is search-based algorithms, such as the Dijkstra and
A* algorithms [3]. The second category is sampling-based
algorithms, such as the PRM and RRT algorithms [4]. The
third category is intelligence-based algorithms, such as genetic
algorithms [5] and ant colony algorithms [6]. Of these three
categories, intelligence-based algorithms are more commonly
used in an unknown or partially known environment mobile
robot problems, and less commonly used in given environment
mobile robot problems due to their high time complexity [7].
The remaining two categories of algorithms are very different
in principle, the most obvious difference is that they can handle
different kinds of maps. The search-based algorithm requires
a grid map or landmark map, whereas the sampling-based
algorithm can be applied to arbitrary, irregular maps due to
its nature of randomly sampling points on a map.

The Dijkstra algorithm and the A* algorithms are the most
commonly used in search-based path planning. Compared to
the Dijkstra algorithm, the A* algorithm adds a heuristic
function based on a priori information about the start and
end points to the breadth-first search strategy. This allows the
A* algorithm to reduce the number of nodes in the search
extension and increase the efficiency of the path search. For
the known conditions of our problem, the robot position and
the target point are known, which means the prior information
of the A* algorithm is known. There for, the A* algorithm is
a more efficient path-planning algorithm for this task.

Another task is to avoid crowds in the supermarket during
path planning. In the A* algorithm, crowds can be set as part
of a grid of obstacles and the map can be updated in real-
time to achieve dynamic path planning. The problem is that
crowds are smaller obstacles than shelves, and if they occupy
the same size grid as the shelves, the robot’s path will be
blocked. However, if the grid size is reduced to the same size
as a person, the number of grids increases, the computational
speed decreases and the real-time performance is reduced. A
solution would be to have smaller grids at crowds and larger
grids at the rest of the open space and where there are large
obstacles.



2

B. Real-time tracking with cameras

In the field of robot object tracking research, the following
types of tasks can be classified: Single-Object Tracking, Multi-
Object Tracking, Person re-identification (Re-ID), Multi-target
Multi-camera Tracking (MTMCT), etc. For the supermarket
robot, we want to implement the basic tracking is real-time
single-object tracking. We, therefore, focus in this section on
reviewing the existing approaches for real-time single-object
tracking with cameras.

Single object tracking has undergone rapid development
in the field of scientific research and can be divided into
generative and discriminatory methods. The generative method
starts by building an object model or extracting objective
features, and then searches for similar features in subsequent
frames, iterating step by step to achieve object localization,
e.g., Kalman filtering and mean-shift [8]. As for the dis-
criminatory method, it considers both the object model and
the background information and extracts the object model by
comparing the difference between the object model and the
background information to obtain the position of the object in
the current frame, e.g., Struck [9] and TLD [10].

In recent years, with the rapid development of technology
in the field of object tracking, many motion models have been
introduced into the object tracking framework with relatively
good results, and the Kalman filter algorithm, as one of
the best, is commonly used in linear Gaussian distribution
scenarios [11]. To solve the object-tracking tasks in different
complex scenarios, researchers have designed many object-
tracking algorithms based on the idea of multi-feature fusion to
enhance the effectiveness of traditional particle filter tracking
models. Brasnett et al. propose a multi-featured object tracking
method that incorporates colour, texture and edges, and this
model provides improved and more stable performance than
tracking with a single feature [12]. Spengler et al. exploit
an adaptive multi-feature fusion tracking method that uses
online adaptive methods to adjust the weighting of different
features to obtain better tracking performance [13]. Ma et
al. proposed a feature fusion method, using colour contrast
similarity and directional consistency as features for object
edge detection in colour images for object tracking [14]. Liu
et al. adopt a method for adaptively combining object image
colour and shape information based on the idea of fuzzy logic
to describe the observation model to achieve object tracking
to improve the reliability of the model [15]. Sun et al. explore
a particle filtering object tracking model based on the fusion
of image corner features and colour features, which improves
the sampling efficiency of the particles and enhances the
robustness of the algorithm [16].

C. Kalman Filter

With the development of technologies such as robotics and
autonomous driving, the requirements for the accuracy and
stability of prediction effects are becoming increasingly. The
Kalman filter, as the optimal method for state estimation,
has become more and more popular and has been widely
used in various fields. Nowadays, many relevant studies have
been published. Iwao et al. have studied the applications

of the Kalman to predict traffic volume in a short period.
The experiments provided by them show that the Kalman
filter prediction system is better than the original detection
system with a minimum 9% to no more than 30% error.
[17]What is more, Ashraf et al. who represented a framework
to estimate the next time pose of moving objectives applied
the Kalman filter. In conclusion from that is the Kalman filter
has advantages in predicting the pose without waiting for it,
great contributions are provided by the algorithm in terms of
predicting the future pose of the robot in a dynamic system.
[18]Apart from that, Fang investigates a new RACKF which
improves the accuracy of the noise statistic estimation by
retaining as many noise statistic estimation terms as possible.
[19] The applications of the Kalman filter are various, Pei-Hwa
et al. have discovered research on the detection and prediction
of the tide level in a short-term. The result presents there is
a satisfying predictive level obtained via applying the Kalman
filter, the algorithm works well both online and on PC. [20]

III. DESCRIPTION

For the elaboration of the project a grid map is created.
The grid map is the surface the robot is supposed to navigate
through. The project tries to emulate a supermarket with
multiple sections in which a human is supposed to be doing
his shopping in. The robotic car is then required to follow the
human around the map while doing his shopping unless for
some reason it requires to recharge its battery. If the situation
arises the robot plans a path to battery stations, and then finds
its way back to the human.

The implementation requires always knowing the position
of the robot, and the energy levels it has during the given
time. Other decisions require user input to be able to know
what the current mode of operation is. The robot can then
either continue following the human, guide the human to a
store location, or move to the checkout counter.



3

IV. ALGORITHMS AND FRAMEWORK

Fig. 1. Flowchart of the project

The figure 1 represents a clear logical process of the whole
project. What is notable is that the position of the human is
detected by the visual characteristics, the human is simulated
as a red rectangular, and the position of it is detected by the
camera via OpenCV program. Then the local coordinate of the
human will be converted to the world coordinate that is easily

applied by the Kalman filter prediction and path planning.
Since the map of supermarket can be dynamic sometimes it
is necessary to refresh the data of the map in time so that the
correct data could be used in A* algorithm to plan the right
path for the robot. Then the desired movements are transferred
to the robot and it moves to the goal as required.

A. ALGORITHMS

Fig. 2. A* Pseudocode

1) A* algorithm: The implementation of A* search algo-
rithm to be able to find the optimal path between two points
(current location and objective) while avoiding obstacles,
based on grid sizes using data from the bitmap. For the path
planning, the robot needs to do two tasks, which are finding
the path to the checkout counter and finding the path to the
charging station. The known condition is that the general
topography of the supermarket, including the position of the
shelves, the checkout counters and the charging stations is
static and the placement of these things in the supermarket
is more regular. The robot simultaneously needs to avoid the
crowd, which can be considered as part of the obstacles on
the map. Therefore, these tasks could be concluded as finding
a path from a known robot position to a known target point
on a known, regular map.

Generally, it is necessary to define the grids of the map to
applied the A* algorithm. The core cost function about the A*
is :

F = G+H (1)

Where the G is the cost of movement from the start point
to the current grid and the H stands for the cost from this
specific point to the final state, therefore, the F is the total cost
of the grid where it is located. Then the lists called opened
and closed will be defined relatively, then the map is seen as
grids and some of them have been defined as the obstacles
or walls already. In our project, the start point is the location
where the robot is , and the final state depends on the mode
user chosen. Under the selection mode, the end point of path
planning is the customer or human we defined in the map,
under the charging mode the goal is the battery station point,
if the battery volume is under 30%, the robot will find a path
to the battery station, and under the checkout mode the goal
should be the payment area.



4

Fig. 3. Failing cases of Path Planning

After these arrangements have already been done well, we
can start to find the shortest path between the start point and
the goal the user chose. First of all, initialise the defined lists
including opened and closed, the grids around the start point
and the grid of itself will be added into the opened list and set
the start grid S as their parent, what is notable that in our path
planning, the around grids are no more than four (top, bottom,
left and right), since the robot is defined to move as these four
directions; And then, move this start grid into the closed list,
which means the grids in closed list will not be checked any
more. Thirdly, compute the F of each grid in the opened list
and sort it to find the one with minimum F called A, then
move A into the closed list. Also add the accessible grids
around A into the opened list (ignore the walls and obstacles)
then compute the F of these grids and set A as the parent;
name the near grid as C, if C is already in the opened list,
compute the path from start grid S to C (the path will pass
the A), the value of G will be the standard to judge if the
parent needs to be updated, if the new value of G is lower
than previous one, then the parent grid is A and the value
of F should be updated; otherwise nothing will be changed.
Finally, keep finding the grid with minimum value of F and
move it into the closed list and repeat the previous procedures
again until the convergence criteria is met, one is that the goal
grid is in the opened list and anther is that there is no grid in
the opened list and it means there is no suitable path for the
project.

In the majority of cases, the A* algorithm is able to achieve
Robot’s Path Planning Problems. However, there are still some
failing cases where the robot is unable to find the path to the
human. As shown in image 3, when the human is tightly close
to the obstacles, the robot is unable to reach the human due
to the size of the robot itself.

2) Object Tracking: For the tracking a camera tracking al-
gorithm, that uses a discriminatory method comparing current
data with background information, extracting the human and
other objects positions in the current frame. For the simulation,
at the start we consider the data obtained directly from the map
and ROS topics.

For tracking targeted humans, in the actual situation, the
camera is usually used to scan the detection area to obtain the
image. Then according to the relevant characteristics of the
human determine whether the human is in it. Once the human
is found, its position will be recorded and updated in real-
time on each frame to complete the tracking. In our simulation,
screen capture is to simulate the camera in the actual situation.

Apart from that, the detection area in the simulation is the grid
map which is a black-and-white map. In this simulation, the
human in the grid map is shown as a red point to represent the
humans features, and a set of x and y coordinates is obtained
and then transformed into world coordinates. In some cases
the map is scanned and if there are changes to it the grid map
is updated.

3) Human trajectory prediction with Kalman filter: The
process model of the Kalman system is described by a Linear
Stochastic Difference Equation:

xk = F · xk−1 +B · uk + εk (2)

And the measurement model is:

zk = H · xk + δk (3)

Xk is the system state at time k, and uk is the control of the
system at time k. F is the state-transition matrix that stands
for the linear transformation from last state to the next state.
B is the Input-control Matrix. In terms of object movement, F
and B indicates the underlying motion model of the system.
εk is the process noise that usually assumed to be drawn from
a zero mean multivariate normal distribution with covariance
matrix Qk.

H is the observation (measurement) matrix, and vk is the
observation (measurement) noise which also follows a normal
distribution with covariance matrix Rk.

Kalman Filter contains prediction and correction step. In the
prediction stage, the filter uses the estimation of the previous
state to make the estimation of the current state. To start with,
we calculate the best estimate of next state by the algorithm:

x̂k = F · xk−1 +B · uk (4)

In our project, our state is the position and moving velocity
of the human as shown below:

xk = {xk, yk, vxk
, vyk

} (5)

we mainly focus on the position information of the state, and
the velocity vxk and vykis calculated using equation below:

v =
(xk−1 + xk)

∆t
(6)

∆t is the time interval between last state and current state.
And if we inserted more than one position and make more
than one prediction, the velocity will be the mean value of all
previous velocity.

And our state-transition matrix is defined as:

F =


1 0 1 0
0 1 0 1
0 0 1 0
0 0 0 1

 (7)

with this F matrix, we assume the humans movement is
uniform motion in a straight line. Since we are predicting a
human movement with no control signal, so there are no B
matrix and control vector in our case.

And we update the covariance of our prediction by the
following equation:



5

P̂k = F · Pk−1 · FT +Qk (8)

In the correction (updating) step, the filter optimizes the
predicted value obtained in the prediction step by using the
observed value of the current state to obtain a more accurate
new estimated value.

The corrected state estimation is calculated by:

xk = x̂k +Kk · (zk −H · x̂k) (9)

The covariance is also updated by:

Pk = (I −Kk ·H) · P̂k (10)

Kk is the Kalman Gain, it can be computed by:

Kk = P̂k ·HT · S−1
k

= P̂k ·HT ·
(
H · P̂k ·HT +Rk

)−1 (11)

In our simulated case, the measurement matrix is set as:

H =

[
1 0 0 0
0 1 0 0

]
(12)

When we input more points into our predict() function, we
take the new point as a measurement and use it to reduce our
noise covariance. So when we insert more points (more human
position) into the function, the next prediction will be more
accurate. (as shown below)

Fig. 4. X2 prediction based on two inserted state (X0 and X1).

The yellow human above is our predicted position when we
inserted previous human trajectory points into our algorithm.
In this graph above, X0 and X1 are the trajectory points we
inserted and the X2 is the predicted future position.

Fig. 5. X5andX6 prediction based on more inserted states

From the graph above, we can see that the predicted human
position X5 and X6 is more accurate than the previous X3

and X4 prediction. The accuracy of prediction increased when
more states were inserted into our Kalman filter algorithm.

However, when we make further prediction based on pre-
vious future prediction(for example, predicting next position
based on the yellow X6 above), the uncertainty will accu-
mulate because the covariance of the estimation error will
increase.

V. EXPERIMENTAL RESULTS

In terms of the A* we applied in the project, in order to
reduce the computational power, we decided to compute the
cost value F step by step. The reason for it is to decrease the
source requirement to acquire a great computational speed, on
the contrast, the system will lose the shortest path the figure
below represents the difference between the shortest path and
the real path from our A* algorithm:

Fig. 6. Path comparison

The left part of figure 6 presenting the path that A*
algorithm in our project from three groups start point and
the goal, it is easy to find that the robot tends to follow the
path where it is near the obstacles (walls). This is because
every step the algorithm we applied only computes the cost
of grids around the current state grid, until there are obstacles
in the surrounding grids. The advantage for the method we
applied is it could save much computational resources in the
simulation, in the other words, the path will be generated
fastly. However, during the real world A* algorithm path
planning, the computational requirements could be satisfied
all the time, and there is no need to desire the run time, on



6

the contrary, the goal is to acquire the optimal path between
the start point and the end. Since the implementation of the
project relies on the simulation, it cannot be ignored that the
computational speed is an important parameter in the work.

A. Kalman filter-based trajectory prediction in path planning
Due to the complexity of the supermarket environment

and the performance limitations of the robot itself, special
situations can easily arise when the robot is following a
human customer. Some examples are: the distance between the
customer and the robot becomes too far due to the customer
moving faster than the robot, an obstacle in the robot’s path
makes it impossible to follow the customer, the robot’s power
level is too low and a new robot needs to be re-dispatched
from another location, etc. In these cases, the robot needs to
carry out optimized path planning so that it can reapproach the
customer’s location in the shortest possible time. Obviously, as
the customer is always moving, this is a path-planning problem
with a moving object as the target. A possible solution to this
problem is to use the Kalman filter to perform a prediction of
the customer’s trajectory and use the prediction results in the
A* path planning algorithm to derive an optimized path for
the robot to follow.

Fig. 7. Trajectory prediction diagram

Consider a simple example, assuming the following figure
7, where the robot’s initial position is at point A and the human
customer’s initial position is at point B. The human customer
will walk from point B to point C, and the robot will move at
a similar speed to that of the human customer. Firstly, if the
robot adopts the strategy of directly following the customer’s
walking route, the robot will move from point A to point B
and then from point B to point C. The distance travelled by
the robot is the sum of AB and BC. Secondly, without the
use of trajectory prediction, the path planning algorithm plans
the path from the robot’s current position to the customer’s
current position in real-time, and the robot’s trajectory will be
similar to the arc from point A to point C in the diagram, and
the robot’s moving distance will be the arc length from point
A to point C. If the Kalman filter-based trajectory prediction
is used, the path planning algorithm can directly plan a path
from point A to point C. The travel length AC is obviously
shorter than the sum of AB and BC or the arc length between
points A and C, allowing the robot to get closer to the human
customer faster. This shows the clear advantage of using the
Kalman filter-based conjunction prediction in path-planning
algorithm in certain situations.

B. Experiments in trajectory prediction application
1) Brief description of the experiment: During the simu-

lation, the following examples demonstrate the superiority of

using the Kalman filter-based conjunction prediction with the
A* algorithm in the supermarket path planning robot problem.
This example is representative of a class of problems where
the robot has a closer route to the predicted future position of
the customer than the length of the route if he was to follow
the customer’s route, a type of problem that often arises in
supermarket path planning problems. In the map which is used
in this example, as shown in figure 8, the three horizontal lines
on the left represent supermarket shelves and the circles on
the right represent the column in the supermarket. The human
customer and the robot moves at a fixed speed, with the robot
moving slightly slower than the customer. The Kalman filter
used in this example has a prediction step of one step and
predicts the customer’s position after two seconds.

Fig. 8. Planned route for customers

This example is a scene reenactment of a human customer
going to walk around the columns, as shown in figure 8,
where the red arrows represent the customer’s planned walking
route, coming out from between the second and third shelf
and preparing to walk around the column from above towards
the bottom of the map. Figure 9 shows the state of the
robot as it walks to the shelf exit (represented by the blue
square on the left of figure 9. The smaller blue circle at
the top right is the customer’s true position at this moment,
and the larger circle below is the customer’s next moment
position predicted based on the Kalman filter. Figure 10 shows
the robot’s path plan at this moment without the trajectory
prediction, which would make the robot follow the customer
around the column from above. Figure 11 shows the robot
path plan at this moment with the trajectory prediction, which
would make the robot take a shorter route directly going under
the column to the customer’s next moment predicted location.
Obviously, as the customer will continue walking down as
planned, path planning using trajectory prediction will result
in shorter distances and greater efficiency.

Fig. 9. Position of robot and customer at a certain moment



7

Fig. 10. Robot path plan without trajectory prediction

Fig. 11. Robot path plan with trajectory prediction

2) Comparative trial with trajectory prediction: In the
supermarket path planning problem, the expected result is that
the robot can reach the customer’s location in the shortest time.
A comparative trial of whether the robot can reduce the time
cost with the use of Kalman filter-based trajectory prediction
in this walk around the columns example can demonstrate
the performance of using the trajectory prediction in the
supermarket path planning problem.

TABLE I
TIME COST OF TWO GROUPS

The control group for the comparison trail was path plan-
ning performed when trajectory prediction was not taken,
and the experimental group was path planning performed
when trajectory prediction was taken. The final time cost
for the robot to reach the customer’s location in these two
experimental groups is shown in table I.

As can be seen in table I, the arithmetic mean of the time
cost of the control group is 60.16 seconds, and the arithmetic
mean of the time cost of the experimental group is 52.15
seconds. This represents a 13% reduction in time cost with

trajectory prediction compared to without it. Figure 12 shows
the overall trends in time cost for two groups, indicating that
the use of trajectory prediction can reduce time cost obviously.
In summary, the comparative trial proves that trajectory predic-
tion has a good performance in the supermarket path planning
problem.

Fig. 12. Comparative trail of trajectory prediction graph

VI. CONCLUSIONS
This project designs the software part of a shopping cart

robot for supermarkets that automatically follows customers
and returns to a charging station for recharging when the
battery is too low. The program updates the map and locates
the customer using computer vision. The program plans the
path from the robot to the customer using the A* algorithm
and Kalman filter-based trajectory prediction on the customer
to let the robot follow the customer.

The project is validated using simulations and can achieve
its objectives in a variety of situations. The advantage of the
project is that it uses less computational power to plan shorter
path during path planning, attribute to the use of the predicted
location of the customer as the planning target and the use of
the locally optimal A* algorithm for path planning, proving
that for various cases path planning into the future might save
movement time and create better paths. The disadvantage of
the project is that the robot’s motion is limited to only two
orthogonal directions, resulting in limited flexibility. This is
because the robot’s next position when using grids for path
planning only considers the four immediately adjacent grids,
which can be solved by increasing the search for the next
position to eight surrounding grids.

VII. REFERENCES

REFERENCES

[1] AWS team, Amazon Go Unmanned Retail Store Revealed, April 2021,
https://aws.amazon.com/cn/blogs/china/amazon-go-unveils-unmanned-
retail-store/

[2] C. W. J. C. S. S. Kuanqi Cai, ”Mobile Robot Path Planning in Dynamic
Environments: A Survey,” arXiv preprint, p. 2006.14195, 25 6 2020.

[3] N. J. N. A. B. R. PETER E. HART, ”A Formal Basis for the Heuristic
Determination of Minimum Cost Paths,” IEEE TRANSACTIONS OF
SYSTEMS SCIENCE AND CYBERNETICS, pp. 100-107, 1968.

[4] S. M. LaValle, ” Rapidly-exploring random trees: A new tool for path
planning,” Report No. TR 98-11, 1998.

[5] J. T. a. S. X. Yang, ”Genetic Algorithm Based Path Planning for a Mobile
Robot,” lEEE lnternational Conference on Robotics & Automation, pp.
1221-1226, 2003.



8

[6] C. L. C. a. C.-C. C. Ying-Tung Hsiao, ”Ant Colony Optimization for
Best Path Planning,” lntematbnalSymposium on Communications and
Information Technobgies, pp. 109-113, 2004.

[7] P. V., Path Planning for Vehicles Operating in Uncertain 2D Environ-
ments, Butterworth-Heinemann, 2017.

[8] Comaniciu, D., Ramesh, V. and Meer, P. (2000) Real-time tracking
of non-rigid objects using mean shift. In Conf. Comput. Vis. Pattern
Recognit. (CVPR). 2000. IEEE. pp. 142149 vol.2.

[9] Hare, S., Golodetz, S., Saffari, A., et al. (2016) Struck:
Structured Output Tracking with Kernels. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 38 (10): 20962109.
doi:10.1109/TPAMI.2015.2509974.

[10] Kalal, Z. (2012) Tracking-learning-detection. IEEE Transactions on
Pattern Analysis & Machine Intelligence, 34 (7): 14091409.

[11] Fu, J. and Xu, C. (2019) A survey of single object tracking methods.
Nanjing Xinxi Gongcheng Daxue Xuebao, 11 (6): 638650.

[12] Brasnett, P., Mihaylova, L., Bull, D., et al. (2007) Sequential Monte
Carlo tracking by fusing multiple cues in video sequences. Image and
vision computing, 25 (8): 12171227.

[13] Spengler, M. and Schiele, B. (2003) Towards robust multi-cue integra-
tion for visual tracking. Machine vision and applications, 14 (1): 5058.

[14] Ma, Y., Gu, X. and Wang, Y. (2009) Feature fusion method for
edge detection of color images*. Journal of Systems Engineering and
Electronics, 20 (2): 394399.

[15] Liu, Y., Wang, B., He, W., et al. (2006) Fundamental Principles and
Applications of Particle Filters.

[16] SUN, W., GUO, B., ZHU, J., et al. (2010) Robust Object Tracking
via Hierarchical Particle Filter. ACTA PHOTONICA SINICA, 39 (5):
945950. doi:10.3788/gzxb20103905.0945.

[17] Iwao Okutani and Y. J. Stephanedes, Dynamic prediction of traf-
fic volume through Kalman filtering theory, Transportation Re-
search Part B: Methodological, vol. 18, Art. no. 1, 1984, doi:
https://doi.org/10.1016/0191-2615(84)90002-X.

[18] A. Elnagar, Prediction of moving objects in dynamic environments using
Kalman filters, 2001, pp. 414419. doi: 10.1109/CIRA.2001.1013236.

[19] X. Fang, Robust adaptive cubature Kalman filter for tracking manoeu-
vring target by wireless sensor network under noisy environment., 2022,
doi: 10.1049/rsn2.12331

[20] P.-H. Yen, C.-D. Jan, Y.-P. Lee, and H.-F. Lee, Application of kalman
filter to short-term tide level prediction, Journal of Waterway, Port,
Coastal, and Ocean Engineering, vol. 122, Art. no. 5, 1996, doi:
10.1061/(ASCE)0733-950X(1996)122:5(226).

VIII. CODE

https://github.com/Cesar514/Final-Project


