Event Bubbling, Target Element & Event
Delegation

Before we know about Event Delegation, we have to know about Event Bubbling and Target Elements . We'll
understand what Event Bubbling is, with the help of the image below:

EVENT BUBBLING, TARGET ELEMENT AND EVENT DELEGATION

<main>

EVENT BUBBLING

<section>

<p>Lorem ipsum dolor sit.</p>

<p>Lorem +ipsum dolor sit amet,

nec | <button>link</button>|. </p>

</section>

</main>

In the image above, the <button> tag is the red-bordered button. It shows that, that particular button is being
clicked, that means that, right now, the particular click event related to that button is being fired/triggered.
Therefore, whenever an event is fired/triggered on a DOM element (in this case the <button> element), then that
exact same even is also fired/triggered on its immediate parent element, where the triggering of the event is
percolated through the child to its top most parent. In this case, when the <button> element is clicked, it triggers
the click event of the <button> element itself, then that click is passed to its immediate parent element, which is the
<p> element. Therefore the <p> element's click event is also triggered, then that click event at the <p> element
passes the event to its immediate parent, which is the <section> element, and now the click event is triggered at
the <section> element and so on... the event is percolated till the top most element (the root element in the DOM
Tree) which is the <html> element, and further event percolation stops at the root of the DOM Tree. Here, we can
see that the events are bubbling/percolating up inside the DOM Tree and that's why this phenomenon is known as
Event Bubbling . The process of Event Bubbling gives rise to Event Delegation. The images given below depict the
explanation above, pictorially.

EVENT BUBBLING, TARGET ELEMENT AND EVENT DELEGATION

<main>

EVENT BUBBLING

<section>

<p>Lorem ipsum dolor sit.</p>

<p>Lorem jpsum dolor sit amet,

nec | <button>Llink</button> | </p>

</section>

</main>

EVENT BUBBLING, TARGET ELEMENT AND EVENT DELEGATION

<main>

EVENT BUBBLING

<section>

<p>Lorem ipsum dolor sit.</p>

<p>Lorem ipsum dolor sit amet,

nec | <button>Llink</button> | </p>

</section>

</main>

EVENT BUBBLING, TARGET ELEMENT AND EVENT DELEGATION

<main>

EVENT BUBBLING

<section>

<p>Lorem <ipsum dolor sit.</p>

<p>Lorem ipsum dolor sit amet,

nec | <button>link</button> | </p>

</section>

</main>

EVENT BUBBLING, TARGET ELEMENT AND EVENT DELEGATION

<main>

EVENT BUBBLING

<section>

<p>Lorem ipsum dolor sit.</p>

<p>Lorem ipsum dolor sit amet,

nec | <button>link</button> | </p>

</section>

</main>

Before completely diving into Event Delegation, we have to understand one more crucial piece of the puzzle
known as Target Element. It is basically the element that caused Event Bubbling, i.e., in our case, the Target Element
that caused Event Bubbling is the <button> element. This <button> element is our Target Element. The image
below depicts what our Target Element is:

EVENT BUBBLING, TARGET ELEMENT AND EVENT DELEGATION

<main>
EVENT BUBBLING
<section>
‘ <p>Lorem ipsum dolor sit.</p>
TARGET ELEMENT | <p>Lorem ipsum dolor sit amet,
Hh
?K*(button)link(}button) .</p>
</section>
</main>

The important part is that, this Target Element is stored as a property (known as "target") in the event object.
So this means, all the parent elements, on which the event was also fired/triggered will know the Target
Element of the event (i.e., where the event was first fired), thereby, the event object at all the parent elements
also would have the "target" property that would say that the event was generated by this particular child of yours
(which is the Target Element) and so on... Now this brings us to Event Delegation, because of this, event bubbles up
in the DOM Tree and if we know where the event was fired, then we can simply attach an event handler to the
parent element and wait for the event to bubble up and we can then do whatever we intended to do, with our
Target Element and this technique is called Event Delegation. In the example image shown below, we can simply
add the event handler to the <main> element.

EVENT BUBBLING, TARGET ELEMENT AND EVENT DELEGATION

<main>
EVENT BUBBLING
<section>
& <p>Lorem ipsum dolor sit.</p>
TARGET ELEMENT \ <p>Lorem ipsum dolor sit amet,
Hh
‘ ?K*<button>link(}hutton> .</p>
</section>
EVENT DELEGATION —— | —
</main>

Therefore, Event Delegation is to NOT setup the event handler on the original element (that we're actually
interested in), but to attach it to a parent element and catch the event there, because we know that the event
bubbles up. After that, we can then act on the element that we are interested in, using the "target" element
property .

But why would we actually apply Event Delegation? There are certain strong use cases for Event Delegation, but
out of them all, we have 2 big use cases which are:

1. When we have elements with lots of child elements which we are interested in. In the case where, instead
of adding event handlers to all of the child elements, we simply add the event handler to the parent element,
and then determine on which child element the event was fired.

2. When we want an event handler attached to an element that is not yet in the DOM when our page is
loaded. This is extremely useful because we cannot add an event handler to something which is not available
in our webpage.

Images are taken from: JS Course by Jonas Schmedtmann

