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Abstract

The numerical resolution of the 2D incompressible Euler equations is challenging due to
the nonlinear transport, sudden steepening of gradients and the missing regularization by
viscosity. Here we investigate the Characteristic Mapping Method (CMM) which is a semi-
Lagrangian method with high precision on a coarse grid. The flow map is evolved using
a gradient augmented level set method and FFT techniques allow efficient reconstruction
of the velocity field. Remapping allows error control of the incompressibility condition.
Computational efficiency and the high precision of CMM are analyzed optimizing an ex-
isting cuda code, which is implemented and adapted on recent graphic cards. Different
validation tests are performed illustrating third order accuracy. The transport of inertial
and fluid point particles is likewise implemented and the influence of inertia is studied.
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Notation

In this section, we define some notation and give a list of symbols used throughout this thesis
in two dimensions :
Vector quantities are represented by bold symbols and represent different objects :

T2 = R2/Z2 ⊂ R2 is a 2D flat-torus in the plane

x = (x, y) ∈ R2 is a position in the plane

u = (u1, u2) ∈ R2 is used for the velocity of the fluid.

v = (v1, v2) ∈ R2 represents the particle velocity

X : T2 ×R+ → T2 is the formal backward map

χ ∈ Mn(R) represents the numerical characteristic and n2 ∈N its resolution.

∇ f = grad f ( f is scalar valued)

∇ · u = div(u)

∇× u = curl(u)

∇2 = ∆ is the Laplace operator.

∇⊥ = (−∂y, ∂x) is the perpendicular gradient

ν is the kinematic viscosity

p : T2 ×R+ represents the pressure of the fluid

ρ ∈ R+ is the density of the fluid
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1 Introduction

The different systems of equations governing incompressible fluids, such as the Euler equa-
tions and the Navier-Stokes equations have fascinated generations of mathematicians, notably
due to the phenomenon called turbulence which appears in high or infinite Reynolds number
systems, or in other words, with small or even vanishing viscosity, respectively. The Reynolds
number measures the ratio of the strength of the nonlinear term and the linear term and is
inversely proportional to viscosity. This phenomenon complicates answers about the explicit
solution of these nonlinear PDEs, its stability and its well-posedness. Global existence and
uniqueness of the solution of Euler and Navier-Stokes in the 3D case is still an open problem,
whereas for the 2D case, we have global existence and uniqueness, proven 1963 by Youdovitch.
For the review on the state of the art we refer to Bardos and Titi [2013]. The numerical as-
pect which is crucial in many scientific and industrial applications, focuses on algorithms and
techniques that allow big flow simulations to be run, indeed one of the problems faced in nu-
merical flow studies is that the number of degrees of freedom or grids points increases with
Re in 2D and with Re9/4 in 3D. This shows that high Reynolds number flow require expensive
computations and it is particularly true in the case of the Euler equations which do not have
any cut-off scale.

Some of these algorithms could benefit from the progress in technology of the last decade,
i.e. GPU parallelization, which is now widely used in the domain of AI (artificial intelligence)
training and can potentially open a lot of possibilities for heavy computations when it comes to
reduction of computation time. Currently, the biggest computations using FFT based spectral
methods for Navier-Stokes have a resolution of 122883 grid points, see e.g. for a discussion and
overview on the state of the art [Yin et al., 2021b]. The purpose of this internship is to work
on the Characteristic Mapping Method (CMM) for the two-dimensional Euler equations [Yin
et al., 2021a]. The starting point is an already existing implementation of CMM, developed
by Yadav [2015]. This new numerical method for transporting arbitrary sets in a velocity
field uses a deformation mapping of the domain of definition. The implementation for the 2D
Euler equation is written in CUDA/C++ which is an API (Application programming interface)
working on top of C++ allowing us to utilize graphics cards and its thousands of cores to
parallelize the needed procedures in order to improve the overall computation time.

One goal of the master project is to upgrade and improve the existing code and make it more
readable. Moreover, it should be updated to work with the last version of the CUDA toolkit
on the new machine equipped with a NVIDIA TESLA V100S at I2M. Furthermore, there are
several numerical questions and aspects regarding the implementation, such as changing the
time integration from a linear multistep method Adams-Bashforth to a one step Runge-Kutta
method. To this end, Lagrange time interpolation is proposed to provide intermediate time
steps. Furthermore the evolution of inertial point particles based on the Maxey-Riley model is
implemented considering different values for the particle inertia, i.e. light to heavy particles.
Altogether 21 simulations with different Stokes numbers were carried out in order to further
test and validate the CM method. These particles will be used to better study turbulent flow
and its singularities. The code will also be subject of benchmarking tests covering different
aspects : CPU/GPU time, convergence properties, memory usage.

The master thesis is organised as follows : Firstly, we recall in section two the incompressible
Euler equations, the vorticity equation and the Biot-Savart law for the velocity field. In ad-
dition, we will introduce an advection/Biot-Savart coupling as well as different characteristic
flow quantities e.g. kinetic energy, enstrophy, which are conserved quantities in the 2D Euler
equations.

Afterwards in section three, we introduce the essential parts of the CM method such as the
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flow map and its properties. We will describe the numerical questions and aspects of imple-
mentation, such as the remapping process, the grids used in order to save the small/large
scale features of the flow and the spatial/time discretization used in the code.

The fourth section is reserved for point particles advected by the fluid flow. We firstly trans-
port fluid particles, i.e. particles without mass. This is an extension of the fluid simulations
since point particles just follow along the fluid flow. Following, we will focus in more detail
on inertial point particles and the numerical implementation of the Maxey-Riley model. This
has the goal to better understand flow turbulence and clustering by studying the behaviour
of the particles before loosing the ability to reverse the simulation.

The fifth section is devoted to the code validation by comparing the present results with ref-
erence simulations presented in Yin et al. [2021a] and trying to match the properties of the
MATLAB implementation [Yin et al., 2021a]. We study enstrophy spectra, the flow visualiza-
tion as well as the convergence errors of different quantities and their relations towards the
time-step and the spatial-step against the reference simulation. This fifths section ends with
results for the particles and turbulence, while also speaking about the influence of the inertia
of the particles and some benchmarking for the time spent.

Finally, in section 6 conclusions of the present work are drawn and some perspectives for
future work are given.
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2 2D incompressible Euler equations

The flow of an incompressible viscous fluid is governed by the Navier-Stokes equations
∂tu + u · ∇u = −1

ρ
∇p + ν∆u in Td ×R+

∇ · u = 0
u(x, 0) = u0(x)

(1)

where u0, u and p have appropriate periodic boundary conditions on Td = Rd/Zd which is
a d-flat Torus and can be taken as a [0, 2π]d square (homeomorphism). Here u represents the
velocity field, p is the pressure field, ν is the kinematic viscosity and ρ the density which we
assume to be constant. Here we take ρ = 1.

The two partial differential equations in eq. (1) represent the conservation of momentum and
mass. The incompressible Euler equations are then obtained from the Navier-Stokes equations
setting ν = 0. They describe the flow of an incompressible perfect fluid :


∂tu + u · ∇u = −∇p in Td ×R+

∇ · u = 0
u(x, 0) = u0(x)

(2)

Introducing the vorticity, ω = ∇× u which represents the local rotation of the fluid, we obtain
a nonlinear transport equation for ω by taking the curl of (2):


∂tω + (u · ∇)ω = (ω · ∇)u

∇ · u = 0
ω(x, 0) = ω0(x)

(3)

Considering two-dimensional flows (d = 2), i.e. flows in the plane, we only have two velocity
components and each component depends on two directions u(x, t) = (u1(x, t), u2(x, t), 0). The
3D vorticity vector then only has one non vanishing component ω(x, t) = (0, 0, ω3(x, t)) and
vorticity becomes a pseudo-scalar being reduced to ω = ω3(x, t) = ∂xu2 − ∂yu1. Furthermore,
ω being perpendicular to u, the vortex stretching term ω · ∇u in (3) vanishes, thus obtaining
a transport equation for the vorticity ω in the plane :®

∂tω + (u · ∇)ω = 0
∇ · u = 0

(4)

The incompressibility of the velocity field, ∇ · u = 0, implies from the Poincaré lemma the
existence of a stream function, ψ : T2 ×R+ with:

∇⊥ψ = u (5)

and where ∇⊥ is defined as the rotated (or perpendicular) gradient, i.e. :

∇⊥ = (−∂y, ∂x)

Expressing ω by taking the curl of (5), we obtain :

ω = ∇× (∇⊥ψ)
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By expanding the right hand side :

ω = ∇× (∇⊥ψ)
= ∇× (−∂yψ, ∂xψ)

ω = ∂2
xψ + ∂2

yψ

Hence, we obtain a Poisson equation for the stream function:

ω = ∇2ψ = ∆ψ (6)

Finally, by combining equation (5) and 6 we can deduce the velocity u using the Biot-Savart
kernel:

u = ∇⊥∆−1ω (7)

where ∆−1 is the inverse Laplacian which is well defined, indeed we can associate a bi-linear
form to the Laplacian and show through the Poincaré inequality the fact that ∆ is one to one.
We can formally define ∆−1 using Green functions.

Remark 1 : On the 2-flat Torus T2, the Fourier transform is very useful as all functions (veloc-
ity components, pressure, ...) can be expressed as Fourier series (trigonometric polynomials).
The derivatives then become simple algebraic operations in Fourier space, i.e. a multiplication
with the wave number. This allows an easy and inexpensive inversion of the Laplacian by a
simple division in Fourier space in order to solve the Poisson equation for the stream function.
Moreover, thanks to the FFT (Fast Fourier Transform) the computational complexity is almost
optimal (O(N log N)).

2.1 Properties of the Navier-Stokes and Euler equations

The Euler equations are a system of conservation laws which means that the mass and the
momentum of the fluid flow are exactly preserved. Moreover, we also have for u0, ω0 ∈ L2(T2)
a stability, i.e. u(·, t), ω(·, t) ∈ L2(T2) for all t ≥ 0. The L2 norm is related to physical quantities,
like energy and enstrophy which satisfy balance equations. In order to verify the numerical
implementation of the Characteristic Mapping method, there are several ways of computing
different quantities such as the energy, the enstrophy and also the palinstrophy, which give us
important information on the behaviour and the reliability of the numerical simulations. This
part defines these quantities and their balance equations, as well as ways to compute them
such that formally or numerically, we obtain the same results.

2.1.1 Balance equations

In order to define the energy, enstrophy and palinstrophy, we need to consider respectively
the L2 norms of the velocity, vorticity and the vorticity gradients. Formally we have:

E(t) =
1
2

ˆ
T2
|u(x, t)|2dx (8)

Z(t) =
1
2

ˆ
T2
|ω(x, t)|2dx (9)

4



P(t) =
1
2

ˆ
T2
|∇ω(x, t)|2dx (10)

The conservation of equation (8) and (9) will be a main aspect of study. Equation (10) will
also be useful since for high Reynolds number or inviscid fluids flow, the vorticity develops
strong gradients which can be quantified by the palinstrophy.

The energy and enstrophy dissipation in the case of Navier-Stokes are given by the following
formulas [Boffetta and Ecke, 2012] :

d
dt

E(t) = −2νZ(t)
d
dt

Z(t) = −2νP(t)
(11)

These balance equations can be deduced from (1) and (4) by multiplying the momentum
equation by u and ω, respectively. The L2 norm of u, ω can then be obtained by integration by
parts. Since the Euler equations are valid in the case of inviscid fluid, i.e. with the kinematic
viscosity ν being zero, we deduce that :

d
dt

E(t) =
d
dt

Z(t) = 0

Hence in the inviscid case the energy dissipation dE/dt and the enstrophy dissipation dZ/dt
are zero, this implies that the energy and the enstrophy are both conserved in two dimen-
sional flows. Solving the Euler equations numerically, we expect that these quantities are not
conserved exactly anymore, which is part of numerical tests we are going to perform later in
the report.

2.1.2 Isotropic energy spectrum

For any time t ≥ 0 the velocity u(·, t) and the vorticity ω(·, t) are periodic on L2(T2). Hence
both can be transformed into a Fourier series and Parseval’s theorem can be applied, which
yields another expression for computing energy and enstrophy.

Before proceeding further, we need to define the 2D Fourier transform F and its inverse F−1.
Since T2 is bounded, we have L1(T2)∩ L2(T2) = L2(T2), from here we can define :

∀ f ∈ L2(T2) and k ∈ Z2, we define :

F ( f )(k) = f̂ (k) =
ˆ

T2
f (x) exp(−2iπk · x)dx (12)

The inverse transform is given by:

F−1( f̂ )(x) = f (x) = ∑ ∑
k∈Z2

f̂ (k) exp(2iπk · x) (13)

For a flow which is homogeneous in space, a spectral description is appropriate and allows
us to examine the flow properties as a function of wave number. Equation (8), (9) and (10) are
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made over real space, but using the Parseval identity allows the computation to be made in
Fourier space :

E(t) =
1
2 ∑

kx∈Z

∑
ky∈Z

|û(k, t)|2

Z(t) =
1
2 ∑

kx∈Z

∑
ky∈Z

|“ω(k, t)|2

P(t) =
1
2 ∑

kx∈Z

∑
ky∈Z

|‘∇ω(k, t)|2

For x = (x, y) ∈ T2 and k = (kx, ky) ∈ Z2. We express û as follows :

û(k, t) = û(kx, ky, t) =
ˆ 2π

0

ˆ 2π

0
u(x, y, t) exp(−2iπ(xkx + yky))dxdy

One way to quantify the evolution of spatial scales is through the Fourier expansion of the
solution and the decay of the Fourier coefficients with wave number. We can define the
isotropic energy spectrum for a fixed time t > 0 :

E(k) = ∑ ∑
k−1/2≤|k|<k+1/2

|û(k)|2

with |k| = k ∈N.

The enstrophy spectrum is defined correspondingly via the vorticity, ω:

Z(k) = ∑ ∑
k−1/2≤|k|<k+1/2

|“ω(k)|2

Using the incompressiblity property, we can also express the enstrophy spectrum in terms of
the energy spectrum, E(k)k∈Z :

Z(k) = k2E(k)

The method above computes the enstrophy spectrum and the energy spectrum by integrating
over concentric circles of radius |k| =

»
k2

x + k2
y = k in the spectral space. This spectrum will

be helpful in order to look into the decay of the magnitude of high wave number coefficients
of the vorticity and is motivated by the fact that turbulence is statistically isotropic

Similarly, we can do the same for the palinstrophy, but its study is not as revelant as the two
spectra mentioned above.

Remark 2 : 2D-turbulence for low viscosity is characterized by the conservation of energy,
the finite dissipation of enstrophy and the exponential increase in palinstrophy [Lesieur,
1987]. For vanishing viscosity, we have conservation of energy and enstrophy, but exponential
growth of palinstrophy, which makes the computation of inviscid flows very challenging, as
vorticity gradients grow over time.

6



2.2 Flow map

The flow map, also called the characteristic map, is the backbone of the Characteristic Map-
ping Method which evolves the deformation map of the domain generated by the velocity
field associated to the fluid. This approach is geometric and exploits the structure of the fluid
flow by constructing a numerical characteristic map. It traces a point on a given character-
istic curve back to its initial position through a spatial transformation. This “pullback” is
made possible thanks to a suitable assumption on the smoothness of the velocity u being a
diffeomorphism in the case of the incompressible Euler equations.

Given a diffeomorphism X : T2 × R+ → T2 in the first variable, i.e. a bicontinuous and
continously differentiable application such that for any initial point X(x, t = 0) = x under the
velocity field u, we have for any characteristic curve :

X(x(t), t) = x(0)

Figure 1: Pullback of the map at time t to its initial condition1.

The smoothness of the characteristic curve and the property of reversibility thanks to the
existence of an inverse for the diffeomorphism allows the pullback.

Figure 1 shows the evolution of the initial condition through the deformation of the domain
(a), (b) and the result of the pullback to the initial condition(c).

We can decompose the flow map into several pieces, thus ∀n ∈ N, Tf > 0 and (τi)0≤i≤Tf

τ1 < τ2 < ... < τn with ∑n
i=1 τi = Tf :

X0(x, Tf ) = X1(X2(...Xn(x, τn)...), τ2), τ1)

with each sub map (Xi)1≤i≤n solving the following problem :

∂tXi + u · ∇Xi = 0 ∀t ≥ τi−1, x ∈ T2 (15)
Xi(x, τi−1) = x (16)

For any characteristic curve γ, we define the following diffeomorphism called the backward
caracteristic maps :

X : T2 ×R+ → T2

(γ(t), t)→ X(γ(t), t) = γ0

1Image taken from Yin et al. [2021a]
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The smoothness of the characteristic curve in the case of incompressible Euler flows allows X
to be a diffeomorphism, that is crucial to trace back the particles to their initial positions for
example.

As we will explain on later, the CM method being a semi-Lagrangian formulation, we need to
translate our equation from the Eulerian to the Lagrangian point of view and this change will
be more visible as we involve the backward map.

3 The Characteristic Mapping Method

The CM method is a semi-Lagragian approach which has been developed for solving the 2D
Euler equations by Yin et al. [2021a] and then extended to the 3D case by Yin et al. [2021b].
In the 2D Euler case, it consists of solving the vorticity transport equation. The vorticity is
evolved under the velocity field u, which is determined through the Biot-Savart law from the
vorticity.

3.1 Formal aspect

3.1.1 Framework

Let’s consider an advection equation with a divergence free velocity field u :®
∂tω + (u · ∇)ω = 0
ω(x, 0) = ω0(x)

(17)

Advection equations are hyperbolic, as such, the solution at each points travels along charac-
teristic curves γ : R+ → T2, on which ω is constant :

d
dt

ω(γ(t), t) = 0⇔ ω(γ(t), t) = ω0(γ(t))

The characteristic curves and the velocity field are given by the following Cauchy problem :

d
dt

γ(t) = u(x, t)

γ(0) = γ0

The global existence and uniqueness of a characteristic curve initial problem assures that the
map is bijective. In the case of the incompressible Euler equations, the characteristic curves are
smooth [Wolibner, 1933], thus the backward map X is a diffeomorphism and can be computed
by solving the following equation : ®

∂tX + (u · ∇)X = 0
X(x, 0) = x

(18)

We have seen above that the characteristic map X(·, t) takes a point x(t) at time t and returns
it to the initial position x0 of this curve, allowing us to write the solution to the advection
problem as follows:

ω(x, t) = ω0(X(x, t)) (19)

8



Equation (19) is valid for any initial condition ω0 and the solution remains ω0 ◦ X as the
backward map is independent of the transported quantity and only captures the deformation
made by the velocity field u. This is an important step of the CM method because from here
on out, we totally embrace the Lagrangian point of view which is symbolized by looking at
the map deformation.

Henceforth, we can combine the previous steps. More precisely equation (7), being the velocity
expressed through the Biot-Savart law, equation (18) representing the flow map X and finally
equation (19) which expresses in our case the vorticity ω as function of the deformation map
X. Altogether, these equations form a system called advection-vorticity coupling :


ω(x, t) = ω0(X(x, t))
u = ∆−1∇⊥ω

(∂t + u · ∇)X = 0

(20)

The incompressibility condition imposes a divergence free velocity ∇ · u = 0, it can also be
expressed into a Lagrangian point of view equivalent to the incompressibility constraint which
also involves the Jacobian of the deformation map X :

det(∇X) = 1 (21)

which implies that the Jacobian of the flow map needs to be an isometry imposing a volume
preserving property. This is the Lagrangian equivalent of the Eulerian counterpart ∇ · u = 0.

3.1.2 Semi-group structure

The interesting feature of the flow map is its semi-group structure, we recall the basic property
of a semi-group below for a formal Banach space :

Definition 1 (Semi-group operators). Let B be a Banach space. A semi-group on B is a family
(Tt)t≥0 of bounded linear operator such that :

T0 = Id

Ts ◦ Tt = Ts+t for all s, t ∈ R+

The semi-group structure of the flow map is important for the CM method, instead of evolving
the characteristic map through the system of ODEs, we define the evolution of the character-
istic map through the composition of the map. This allows us to break the map into several
pieces we call sub-map, hence allowing us to store each separately and solving each of them.

Definition 2 (Sub-map). We call characteristic sub-map of the time interval [t0, t f ] with 0 ≤ t0 ≤ t f

the characteristic transformation of the domain T2 mapping t f to t0, formally we define :

X[t f ,t0] : T2 → T2

such that :

∂tX + u · ∇X = 0 (22a)
X(x, t0) = x (22b)

X[t f ,t0](x) := X(x, t f ) (22c)
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3.2 Numerical scheme and implementation

In this section we present the numerical scheme and focus on the key features and the im-
plementation, which is illustrated in the flowchart 7.2. Further details on the method and the
CUDA code, which has been developed during the master thesis of Yadav [Yadav, 2015]. In
Yin et al. [2021a] the method is analyzed in detail numerically and validation tests are done
using a MATLAB implementation which differs from the CUDA code. From now on, We
distinguish the theoretical flow map X from the numerical characteristic map χ.

The flow map χ is evolved by the gradient augmented level set method (GALS) which ad-
vects particles starting on a Cartesian grid backwards in time using stencil of ε-points and
tracing back their respective foot points (see e.g. Kolomenskiy et al. [2016]). The numerical
implementation is detailed in algorithm (1) below. After the map advection, we proceed with
a Hermite interpolation of the vorticity and the computation of the velocity field with the
Biot-Savart kernel in Fourier space, before starting with the remapping process.

3.2.1 Remapping

The remapping process aims to adaptively resolve the increasingly complicated spatial fea-
tures that ought to appear due to the absence of a regularizing viscosity term. Since the Euler
equations develop small scale spatial features, the characteristic map computed on a fixed
coarse grid is only valid for a limited period of time. Afterwards the resolution requirements
are not sufficient anymore. We measure the quality of the characteristic map by looking at the
incompressibility condition, which can be expressed as the determinant of the Jacobian of the
characteristic map. Hence by introducing an arbitrary but reasonable threshold δ, we define
an incompressibility check :

||det(∇χ)− 1||∞ ≤ δ (23)

When equation (23) does not hold anymore, the remapping process starts as the map quality
is judged not to be accurate enough. This step can also be seen in the flowchart 7.2.

The semi-group property of the characteristic maps implies that maps can be decomposed to
form another map, i.e. for two numerical characteristic maps χ1, χ2 : T2 ×R+ → T2 :

χ = χ2 ◦ χ1

The composition of two cubic maps yields a sixth order polynomial in each variable. We
can form another cubic map for the composition by taking a projection which can then be
computed on a much finer grid allowing us to retain more sub-map features. This also means
that each time the global approximation error grows beyond a certain point, we can resample
the map on a finer grid and represent the solution on a finer grid than the one used for the
computation of χ.
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(a) Initial map with identity (b) Deformation of the map at time t = 1

Figure 2: Flow map at two different time steps.

Figure 2 shows an example of a flow map at two different time steps. We start with a Cartesian
grid which represents the identity transformation and then we can observe the deformation of
the grid by the flow. Each deformation is a reversible process which is an important property
for the remapping process.

3.2.2 Grids and Multiscale Representation

Different length scales are present and develop in the solution during the flow evolution and
the simulation is limited by the available computational resources. Thus we need to make
choices and choose an appropriate degree of spatial truncation for each evolved quantity :
The flow-map χ, the stream function ψ, the velocity u and the vorticity ω are represented on
two grids with different resolution depending on their importance in the global evolution of
the flow. Using the fact that u is smoother than the vorticity field due to the Biot-Savart law,
we can save some resources and compute it on a uniform coarse grid Xg ∈ Mn(R) where
n2 ∈ N is the resolution of the grid and 2π/n its spatial step. Furthermore, assuming that
the large scales of the velocity drive the dynamics of the flow, it is important to save the small
scale features of the vorticity by transporting it on a grid X f ∈ Mm(R) where m ∈ N, and
m > n which allows for finer spatial steps and finer scales to be saved.

In the CUDA code, grids are represented in an "Hermitian" array, i.e. grids are saved on an
array along with their derivatives ∂x, ∂y and cross derivatives ∂2

xy.

3.2.3 Lagrange interpolation of the velocity

For time integration using Runge-Kutta schemes, the velocity field is required at intermediate
time steps. To this end we implemented a 3rd order Lagrange time interpolation in the CUDA
code. This allows to evaluate the velocity field at any intermediate time instant. Thus Runge-
Kutta schemes can be used. Let’s define Lagrange coefficients on the stencil {tn, tn−1, tn−2} in
function of t > 0 :

l1, l2, l3 : R+ → R

11



with:

l0(t) =
(t− tn−1)(t− tn−2)

(tn − tn−1)(tn − tn−2)

l1(t) =
(t− tn)(t− tn−2)

(tn−1 − tn)(tn−1 − tn−2)

l2(t) =
(t− tn)(t− tn−1)

(tn−2 − tn)(tn−2 − tn−1)

Hence, we can define ũ on the grid Xg:

ũ : R2 ×R+ → R2 (24)

Thus, for x = (x, y) ∈ T2 and ti which extends the previous velocity on the grid Xg we have:

ũ|Xg (·, ti) = u|Xg (·, ti)

and this being defined as following :

ũ(x, t) =
2

∑
i=0

li(t)u(x, tn−i) (25)

One can note that for each fixed time t, ũ is a linear combination of un−i for 0 ≤ i ≤ 2. It hence
conserves the divergence free property of u i.e.:

∇ · un−i = 0 0 ≤ i ≤ 2 =⇒ ∇ · ũ = 0

12



3.2.4 Time discretization

The current implementation of the code contains three different time schemes for the back-
wards time integration:

• explicit backward Euler

• Adams-Bashforth of order 2 (backwards) + fixed point iteration(Adams-Moulton)

• Runge-Kutta 3rd order (backwards) (Main one)

Once the current velocity u is computed on the coarse grid Xg and previous velocities are
saved for interpolation, we can use a third order backwards Runge-Kutta scheme to advect
the numerical map χ :

Algorithm 1 Map advection χ(·, tn)→ χ(·, tn+1)
Data:
ε = 10−6{

ε0
x, ε1

x, ε2
x, ε3

x
}
= {ε, ε,−ε,−ε}¶

ε0
y, ε1

y, ε2
y, ε3

y

©
= {ε,−ε, ε,−ε}

for each x = (x, y) ∈ Xg do

for each k ∈ [0, 1, 2, 3] do
define xk

ε = (x + εk
x, y + εk

y)

Compute foot point : xk
f

end for

Update :

χ(x, tn+1) =
1
4

Ä
χ(x0

f , tn) + χ(x1
f , tn) + χ(x2

f , tn) + χ(x3
f , tn)
ä

∂xχ(x, tn+1) =
1
4ε

Ä
χ(x0

f , tn) + χ(x1
f , tn)− χ(x2

f , tn)− χ(x3
f , tn)
ä

∂yχ(x, tn+1) =
1
4ε

Ä
χ(x0

f , tn)− χ(x1
f , tn) + χ(x2

f , tn)− χ(x3
f , tn)
ä

∂x∂yχ(x, tn+1) =
1

4ε2

Ä
χ(x0

f , tn)− χ(x1
f , tn)− χ(x2

f , tn) + χ(x3
f , tn)
ä


(26)

end for

Instead of computing foot points for each grid point x = (x, y) ∈ Xg, we define a set of
ε−points x + (ε, ε), x + (−ε, ε), x + (ε,−ε), x + (−ε,−ε) which form an ε-cell around x

The characteristic map can be evolved using its semi-group property. For the current time
tn = n∆t, we have :

X[tn+1,t0] = X[tn,t0] ◦ X[tn+1,tn]

We extend the velocity u by using an extrapolation with a third order Lagrange polynomial
in time, described in section (3.2.3).

By defining the four epsilon points xk
ε with 0 ≤ k < 4 as an ε-cell we represent our stencil.

Characteristics that go through x0
ε, x1

ε, x2
ε, x3

ε are traced backwards in time from tn+1 to tn.
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Figure 3: Grid point with its ε-cell (blue points) and its respective foot points (red points)2

We use an third order explicit Runge-Kutta scheme of the velocity u backwards in time to
approximate the sub map X[tn+1,tn]:

X[tn+1,tn](x) = x− ∆t
3

∑
j=1

bjk j (27)

with (k j)1≤j≤3 being defined as follows :

k j = u(x− ∆t
j−1

∑
m=1

ajmkm, tn+1 − cj∆t) ∀1 ≤ j ≤ 3 (28)

where the coefficients (aj), (bj) and cj can be found in the following Butcher table :

c1 a11 a12 a13

c2 a21 a22 a23

c3 a31 a32 a33

b1 b2 b3

=

0 0 0 0
1
2

1
2 0 0

1 −1 2 0
1
6

2
3

1
6

Hence, we have for (k j) and a negative time step −∆t :

• k1 = (k1x, k1y) = ũ(x, tn+1)

• k2 = (k2x, k2y) = ũ
Ä

x− k1
∆t
2 , tn+1 − ∆t

2

ä
• k3 = (k3x, k3y) = ũ (x + k1∆t− 2k2∆t, tn)

Thus, we trace back the foot point :

x f = xε − ∆t
k1x + 4k2x + k3x

6

y f = yε − ∆t
k1y + 4k2y + k3y

6

The map advection is done through equation (26) and using an averaging for the first equation
and a second order centered scheme for computing the derivatives. Given a suitable assump-
tion on the smoothness of the characteristic map, X, we can derive the system (26), i.e. for

2Image taken from [Kolomenskiy et al., 2016].
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X ∈ C2(T2 ×R+, T2), it is possible to expand the values of X at the corner of the ε-cell into a
Taylor series and to obtain a second order method from the finite size of ∆X.

The error can be further reduced by using a stencil larger than {x0
f , x1

f , x2
f , x3

f } in order to
achieve a third/fourth order discretization and to increase the value of ε from 10−6 to 10−4.
This increase in the order of ε should improve the number of remappings and also allows
us to be further away from the machine precision which is 2.22044605× 10−16 for both the
RTX 3060 and for the TESLA V100S GPU. The machine precision was obtained by running the
standard machine epsilon code on one CUDA thread :

Algorithm 2 Machine epsilon
Data:
ε = 1
while (1.0 + 0.5 ∗ ε) 6=1.0 do

ε = 0.5 ∗ ε
end

3.2.5 Computation of derivatives through FFT

The Fast Fourier Transform (FFT) is used in the code in order to compute several quantities
such as ω and its derivatives or to invert the Laplacian and to compute ψ and subsequently
u. The FFT has the ability to be parallelized, thus being faster while also coming with the
advantage to not introduce any numerical error compared to a finite difference calculation.

By defining ω(x, tn) = ωn(x) and ψ(x, tn) = ψn(x), we use the following formula :

ψn(k) = −“ωn(k)/k2 ψn(x) = F−1(ψ̂n(k))

∂xψ̂n(k) = ikxψ̂n(k) ∂xψn(k) = F−1(∂xψ̂n(k))

∂yψ̂n(k) = ikyψ̂n(k) ∂yψn(k) = F−1(∂yψ̂n(k))

∂2
xyψ̂n(k) = −kxkyψ̂n(k) ∂2

xyψn(k) = F−1(∂2
xyψ̂n(k))

In the CUDA code, we compute the velocity from the vorticity data using a parallelized IFFT
based on these formula :

4 Fluid particles and inertial particles

In this section we will describe the implementation of the fluid and inertial point particles
using for the later the Maxey-Riley model. The particles are advected by the fluid flow and
different values of inertia can be considered.

4.1 Fluid Particles

The goal is to compute the transport of particles driven by the fluid velocity. The fluid particle
is a particle without inertia and satisfies an equation of motion from which we need the fluid
velocity u at the particle position. Thus it follows directly the fluid flow.

Given a grid, a particle position x = (x, y) ∈ [0, 2π]2 and t ≥ 0, we need to find an approxi-
mation of the velocity u(x, t) which is only known on the grid points. The first step consists of
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finding the four points of the grid such that x can be written as a convex combination of these
four points. In others words, given a grid Xg represented by a square matrix in Mn(R) with
n2 ∈N being the resolution by partitioning [0, 2π]2 into n2 blocks, we need to find the blocks
that contain the particle at coordinate x = (x, y).

Figure 4: Cardinal points on coarse grid.

Let’s denote by se, sw, ne, nw the four cardinal points, as illustrated in figure 4, of the grid
around (x, y). Then by using a cubic Hermite interpolation on the stencil (se, sw, ne, nw) given
a fixed time t ∈ R+, we can approximate ψ(x, t) and as such we can also deduce the velocity
field u = (u1, u2) = (∂yψ,−∂xψ).

The differential equation to solve for the particle transport is the following :

d
dt

x = u (29)

By using an explicit Euler scheme and by introducing tn = n∆t and un(x) := u(x, tn) =
(ψy(x, tn),−ψx(x, tn)) with x = (x, y) ∈ T2, we can define the following problem :®

xn+1 = xn + ∆t∂yψ

yn+1 = yn − ∆t∂xψ
(30)

It is possible to reduce the error in the numerical solution further by using instead of explicit
Euler a second order Runge-Kutta scheme :

kn
1 = ∆tψ(un, tn), kn

2 = ∆tψ
Å

un +
kn

1
2

, tn +
∆t
2

ã
Hence the particle advection can be written as :

xn+1 = xn +
1
2

(kn
1 + kn

2) (31)

The initial particle position x0 is following a uniform distribution on the square [0, 2π]2.
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We put fluid particles into a mixed layer initial condition which is explained further down
in section 5.1. The simulation computed 51,200 time step ∆t = 1/1024, on a coarse grid of
resolution 1282, a fine grid of resolution 5122, an incompressibility threshold δ = 10−4 and
Np = 131072 particles. Furthermore we provide through figure 5 and 6 a visual representation
of the underlying vorticity and the advection of 6554 particles at time t = 1, t = 30 and t = 50
respectively.

Figure 5: Vorticity for the single shear layer at time t = 1, 35 and 50

0 π 2π
0

π

2π

(a) t = 1

0 π 2π
0

π

2π

(b) t = 35

0 π 2π
0

π

2π

(c) t = 50

Figure 6: Fluid particle advection on a 1282 coarse grid at time t = 1, 35 and t = 50.

In figure 6, the particles are either blue or red depending on their initial position of the vertical
component, i.e. blue particles xb = (xb, yb) are such that yb < π and similarly red particles
xr such that yr > π. Using two colors we can better visualize the mixing of the two layers
around the high vorticity region which are at the interface between the layers.

Since the particles are initially uniformly random distributed on [0, 2π]2 and due to the in-
compressibility condition, we should expect from the law of large numbers a density which
follows a Poisson law with parameters Np/n2 where Np represents the number of particles in
the simulation, n2 represents the resolution of the grid where the particles are advected. The
density should follow a Poisson distribution throughout the simulation. This can be indeed
observed in Figure 7.

Figure 7 shows at time t = 1 and t f inal = 50 the PDF the particles density (left) and the PDF
the volume of Voronoi cells (right). We added in dashed lines the theoretical PDFs for both
distributions, i.e. the Poisson distribution P(λ) of parameter λ = 8 for the density and the
gamma distribution Γ(k, θ) of parameters k = 7/2 and θ = 2/7 [Ferenc and Néda, 2007] for
Voronoi volumes which represents a partition of the plane allowing us to attribute a volume
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Figure 7: PDF of the density and the Voronoi volume computed for fluid particle at time t = 1
and t = 50. The dashed lines represent the Poisson (left) and the Gamma (right) distribution.

to each particles. The density has been computed with bins of size (2π/128)2 which was the
size of the resolution of the simulation. In the case of volume of Voronoi cells, there is no
need for the resolution parameter. We can observe for both PDFs, a good agreement with the
theoretical distributions which allows us to say that the particles stay randomly distributed
and the flow is thus volume preserving.

4.2 Inertial Particle Advection

Now we consider point particles with inertia, which do not necessarily follow the fluid flow
anymore. In order to simulate the drag force of an inertial particle within the fluid, we need
to append an equation to the system to determine the particle velocity. The literature [Maxey
and Riley, 1983] gives a second equation for each particles velocity component :

d
dt

x = v (32a)

d
dt

v = −(v− u)/τp (32b)

v(·, 0) = u(·, 0) (32c)

where v := (v1, v2) is the velocity of the particle, u := (u1, u2) is the velocity of the fluid and τp
represents the relaxation time for the inertial particles As in the fluid particle case, the initial
positions are uniformly distributed within the square [0, 2π]2 ∈ R2 and then injected into the
fully developed flow to be tracked in the Lagrangian framework.

As shown by the equation (32c), in our model the initial velocity of the particles is the same
as that of the fluid. The model of Maxey-Riley is based on two assumptions : Firstly, the
model is for Stokes particles, i.e. spherically shaped particles having a small particle Reynolds
numbers. The ratio of the particle density to the fluid is larger than 1. Assuming a finite
viscosity ν > 0, the second condition appears in the definition of τp :

τp =
ρp

ρ f

2r2
p

9ν
(33)
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with ρp the particle density, ρ f being the fluid density, rp represent the radius of the particle
and ν is the kinematic viscosity. Given these notations, the second condition becomes :

ρp

ρ f
>> 1

Maxey’s point particle model [Maxey and Riley, 1983] with Stokes drag is used and the inertial
dynamics is controlled by the Stokes number, St = τp/τη where τp is the particle relaxation
time and τη the Kolmogorov time, the latter being defined as :

τn =
(ν

ε

) 1
2

where ε = −dE/dt represents the kinetic energy dissipation.

This is a one-way coupling where the fluid velocity drives the particle motion, but there is
no interaction of the particles with the fluids. Furthermore, there is no interaction between
particles such as collision.

For the second equation, we implement a Runge-Kutta approximation of second order, i.e. :

vn+1 = vn +
1
2

Ä
k(n)

1 + k(n)
2

ä
By defining f (t, v) := −(v− u)/τp = d

dt v, the Runge-Kutta method gives us for kn
1 , kn

2 at time
tn = n∆t :

kn
1 = ∆t f (tn, vn), kn

2 = ∆t f
Å

tn +
∆t
2

, vn +
kn

1
2

ã
An explicit Euler scheme is used for equation (32a)3 :

xn+1 = xn + ∆tvn (34)

The code simultaneously run 21 simulations with batch of 1/2 millions particles for different
Stokes numbers4. One of them is τp = 0 which corresponds to fluid particles, this represents
a total of 21× 0.5× 106 = 10.5 millions particles advected and it terms of memory it takes
roughly 168 MB5 on the GPU memory without any data compression.

In the same fashion as the fluid particles and using the same parameters, we can look at the
particle advection for the single shear layer condition with inertial particles, in the case below
we take τp = 1.

As seen in equation (32b), the advection of an inertial particle depends not only on the velocity
of the flow but also on by the value of τp. In this case the mass of the particle increases with
the value of τp. We saw in figure 6 the case of fluid particles which corresponds to τp = 0.
In figure 8, the advection of the system (32) is done with τp = 1. The main difference can be
seen at time t = 50 where we can nicely observe the particles avoiding high-vorticity regions
at the interface between the two layers due to centrifugal effects which eject the particles from
vortical regions.

3This can be changed to a full RK2/RK3 by saving the previous particles velocity into an Hermitian array
4the exact values used are τp ∈ {0, 0.005, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1, 0.125, 0.15, 0.25, 0.5, 0.75, 1, 2, 5, 13}
5For each τp, the particles are stored in a unidimensional array as double precision numbers

19



0 π 2π
0

π

2π

(a) t = 1

0 π 2π
0

π

2π

(b) t = 35

0 π 2π
0

π

2π

(c) t = 50

Figure 8: Shear layer inertial particle advection with τp = 1 on a 1282 coarse grid at time t = 1,
35 and t = 50.
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Figure 9: PDF of the density and the Voronoi volume computed for inertial particles(τp = 1)
on the mixing layer condition at time t = 1 and t = 50. The dashed lines represent the Poisson
(left) and the Gamma (right) distribution.

Figure 9 shows at time t = 1 and time t f inal = 50 the PDF of the density of inertial particles
computed with bins of size (2π/128)2. The dashed line represents the Poisson distribution. We
can observe that at time t = 1 the PDF is superimposed with the theoretical PDF of randomly
distributed particles, but at time t f inal = 50 the particle density no longer follows the Poisson
distribution. There are more dense and void regions as it can be observed in figure 8.
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5 Numericals Results

5.1 Studied flows

In this study, we look in more details on four initial condition for the vorticity : Mixing layer
(single shear layer), 4-mode flow, Two-dimensional turbulence starting with gaussian blobs
and Two co-rotating vortices.

- Mixing layer (single shear layer)

- 4-mode flow

- Two-dimensional turbulence starting with Gaussian blobs

- Two co-rotating vortices

This section explains these conditions, as well as a visualization and the equation used to
produce the initial vorticity. The color map used for the vorticity plots was developed in
Farge [2000].

5.1.1 Single shear layer

The single shear layer, also called the mixing layer, is a temporally developing mixing layer.
We have two horizontal velocities : on the top half from left to right and on the bottom half
from right to left (or vice-versa) which produce a shear flow and thus generate vorticity at
their interface. The flow is unstable whether it is inviscid or not, it produces an instability
called Kelvin-Helmholtz instability and the vorticity line starts to oscillate and rolls up into
vortices called Kelvin-Helmholtz vortices (see Michalke [1972]).
The equation generating the initial vorticity ω0 for the mixing layer condition is defined as
follows :

ω0(x, y) = (1 + ∆1 cos(2x)) exp(−∆2(y− π)2)

where ∆1 = 0.01 introduces a small perturbation in the shear layer and ∆2 = 50 controls the
thickness of the shear.

In figure 10, we can visualize the vorticity field of the mixing layer for a 10242 coarse grid,
40962 fine grid and an incompressibility threshold of 10−2. We observe in (top, left), the shear
seems to split the domain into equal parts, but the ∆1 quantity add an asymmetry that will
produce the instability and the formation of vortices. At time t = 50 (top, right) we observe a
fully developed Kelvin-Helmholtz instability. At t = 200 (bottom, left), the Kelvin-Helmholtz
vortex wrap around itself developing more fine scale.
Furthermore we can nicely observe a zoom (bottom, right) on the vortex at time t = 200.
This zoom is made using the property of the CM method , i.e. the ability to split the map
into a composition of sub-maps which allow us to see much finer scale, than the grid the
computation was made on. This process is also closely related to the remapping procedure
explained earlier.
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Figure 10: Vorticity of the mixing layer at t = 0, t = 50, t = 200 and a zoom on the vortex at
time t = 200 using the same principle as remapping.

5.1.2 4-mode flow

The 4-mode flow is a simple test case which can be found in Frisch [1995] for validating the
Cauchy-Lagrange method. This flow is often used to compare results obtained with different
numerical methods, as it develops high vorticity gradients in short time. The initial condition
only contains 4 Fourier coefficients. The generating equation for the initial vorticity is :

ω0(x, y) = cos(x) + cos(y) + 0.6 cos(2x) + 0.2 cos(3x)

We can visualize it :
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Figure 11: Vorticity at t = 0 for the 4-mode flow.

Figure 11 shows the initial vorticity for the 4-mode flow, we can observe one counter-clockwise
vortex (blue) at the center and four clockwise vortices in the corner (in red).

We can compute the exact initial enstrophy Z(t = 0). This will be helpful for the plot over
time of Z. By developing the square and taking into account that cos(nx)n≥0 is an orthogonal
basis, we can simplify the computation and deduce by hand :

Z(t = 0) =
60
25

π2 ≈ 23.6870505626

In a similar fashion, we can also compute the initial kinetic energy E(t = 0) of the flow. By
using (6) and an integration by part, we can deduce the initial energy from this formula :

ˆ
T2
|u0|2dx = −

ˆ
T2

ω0ψ0dx

We still need to find the expression of ψ0 which can also be simply done by integrating twice
in the x and y direction, since ω0 has both variables separated, i.e. ω0 = f (x) + g(y) for some
function f , g that can be easily deduced from the expression of ω0. Hence we have by hand:

ψ0(x, y) = −
Å

cos(x) + cos(y) +
3

20
cos(2x) +

1
45

cos(3x)
ã

From here, we deduce the initial energy :

E(t = 0) =
377
180

π2 ≈ 20.67133810672604

These computations will be useful later on when plotting the energy and enstrophy over time
for the 4-mode flow condition.
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5.1.3 Two-dimensional turbulence

The initial condition of the two-dimensional turbulence is set in a 2π-periodic domain with a
total of 98 Gaussian blobs with the same number of positive and negative vortices, equidis-
tantly distributed with a variance σ = 0.2. The symmetry is broken with a random perturba-
tion in the position of the negative blobs.
Due to the periodicity of the domain and the disposition of the Gaussian, the average vorticity
is however found to be non-zero. We modify this value by setting the first value of the power
spectrum to zero in order not to be in a domain with a global rotation. Furthermore, we add
a cut-off scale on Fourier transform of the vorticity on the coarse grid at 2/3 of frequency, i.e.
a dissipation scale, so that the turbulence does not transform into Gaussian noise.
The enstrophy spectrum is defined correspondingly via the vorticity, ω:

The numerical parameters are a coarse grid of resolution of 20482, a fine grid resolution of
163842. For time discretisation we use step size ∆t = 2.5 × 10−4 and an incompressibility
threshold δ = 3× 10−3. The value of the incompressibility threshold has been chosen so that
there is not too much remapping and to save in memory before the turbulence appears.

Figure 12: Vorticity of two-dimensional turbulence at time t = 0 (top, left), 15 (top, right), 30
(bottom, left) and a zoom at t = 30 (bottom, right) with a window of size 2π/16.

Figure 12 shows the evolution of the vorticity of two-dimensional turbulence at time t = 0, 15,
30 and a zoom at t = 30. At first the different blobs are distributed equidistantly, then due to
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the small asymmetry we introduced, the blobs move and are slightly deformed. Then we can
observe the presence of filaments and coherent vortices at small scale, as we can see on the
figure 12 (bottom, right) which is a 16 times zoom on the domain.

5.1.4 Two co-rotating vortices

In the two co-rotating case, there are two possible outcomes depending on the viscosity term
ν : In the Navier-Stokes case, we have that the two vortices merge by first rotating around
each other, going into a shear and then merging into a single larger vortex due to viscous
effect. In the Euler case, the vortices wrap around each other generating finer and finer
scales up until a point where the simulation cannot be reversed as the scales are not resolved
anymore. Formally the initial vorticity field is generated by superimposing two Gaussian
functions centered at two different positions :

f (x, y) = sin(x)2 sin(y)2

Ç
exp
Å

5(x− π)2 +
(

y− π

3

)2
ã

+ exp
Å

5(x− π)2 +

Å
y− 2π

3

ãã2å

Figure 13: Vorticity for the two co-rotating vortices on a 1282 coarse grid and a 20482 fine grid
at t = 0, t = 60 and t = 120 with the time being reversed at t = 60.

Since the Euler equations are time reversible, we can take the simulation to a certain point
and from here, we can choose a negative time step allowing us to compute the inverse simu-
lation. This process can be done up until the moment where eddies take shape after the shear
resulting from the fusion of the two vortices. At this moment small and large scale feature
intertwine and back pedaling the simulation does not give the expected result.

To test the reversibility of CMM, a simulation has been performed and time has been inverted
at a given time instant. Figure 13 shows the vorticity field of two co-rotating vortices at time
t = 0, t = 60 and the solution if we invert the time step at t = 60. We observe that we can
retrieve the initial condition almost perfectly even if a filament is developed between the two
vortices.

If we reverse the time for the inertial particles, their velocity increases exponentially. That is to
be expected since equation (32) is not time reversible with the introduction of the coefficient
τp which is the factor that introduces inertia.
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5.2 Code validation

In this section, we validate the implemented CUDA code of the CM method using the 4-mode
flow. The obtained results are compared with those obtained with the MATLAB code used
in Yin et al. [2021a] and the results obtained with a Cauchy Lagrange method (which were
confronted with the results of a high resolution spectral method) by Podvigina et al. [2016].
CPU times and GPU times together with memory requirements are reported and confronted
with those obtained with the MATLAB code. The convergence properties of the method in
space and time are assessed numerically and compared with the theoretical results provided
in Yin et al. [2021a]. In addition to that, the conservation properties of energy and enstrophy
are analyzed.

Except for the convergence test below, the simulations were made on a 1282 coarse grid and a
5122 fine grid with a time step ∆t = 1/32 and an incompressibility threshold of δ = 10−4. The
span of the simulation is 8/∆t = 256 time steps.

5.2.1 Time evolution of energy, enstrophy and palinstrophy

First we look at the time evolution of the energy, enstrophy and palinstrophy. One important
property of the numerical method to be checked is the conservation of the energy and the
enstrophy which should be satisfied in the case of the Euler equations.

Figure 14 shows the evolution of the energy, enstrophy and palinstrophy on different grids.
The computations of the three quantities are done in real space and use for quadrature a
Riemann sum in 2D, hence the coarser the grid the less accurate is the result. Since ψ is
computed on the coarse grid, the energy also needs to be computed on the 1282 grid while
the enstrophy and the palinstrophy can be computed on the fine grid of resolution 5122.
Nevertheless, we can observe that the initial energy, enstrophy are in agreement with the
previously computed theoretical values in section 5.1 and as for the conservation side, we
observe a maximum difference with the initial values of the energy and the enstrophy in the
order of 6× 10−3 and 2× 10−4, respectively.

As for the palinstrophy, we can see an exponential increase due to the increase in vorticity
gradients. This can be seen at the interface between the centered counter-clockwise vortices
and the four clockwise vortices at the corner of the domain. These small scale features can be
seen as well in the isolines shown further down.

5.2.2 Enstrophy spectrum

Similar to Yin et al. [2021a], we plot the enstrophy spectrum obtained from the simulations
carried out with a 1282 coarse grid which was then upsampled to a 10242 grid in order to
see behaviour at high wave numbers. Alongside the CMM data (orange), we plot the data
from Podvigina et al. [2016] computed on a 81922 grid using a method called the Cauchy-
Lagrangian method which is more detailed in the aforementioned paper.

.

Figure 15 shows the enstrophy spectrum at time t ≈ 3.5 and t ≈ 4 using the data from the
CUDA code (orange) and the data from Podvigina et al. [2016]. Analyzing these spectra, we
can see that all wave numbers are well preserved, except the high wave numbers, when the
enstrophy spectrum has values below 10−12. For these the CMM results show a slower decay
than the Cauchy-Lagrange method (CL8).

6Since our time step is equal to ∆t = 1/32, we tried to plot the spectra at time as close as possible to the one in
the referenced data which are t = 3.45 and t = 3.95. The exact time in our case are respectively t = 110∆t = 3.4375
and t = 126∆t = 3.9375
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(a) Energy on the coarse grid. (b) Enstrophy on the fine grid.
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(c) Palinstrophy on the fine grid.

Figure 14: Evolution of the energy, enstrophy, palinstrophy over time for the 4-mode flow
condition on a 1282 coarse grid for the energy and a 5122 fine grid for the rest.

The CM method give almost the same results as CL8, while having a resolution which is 63
times coarser. The computed enstrophy spectrum deviates sooner from the CL8 data and the
spectra obtained with the MATLAB code. The most plausible hypothesis for this problem
might come from the order of ε used in the CUDA code for the map advection. Since the
CUDA code uses a second order finite difference method for the map advection. We have to
take in our computations small values of ε = 10−6. Given that we advect in equation (26)
the cross derivatives which implies a multiplication by 1/ε2 using a finite difference scheme,
implies that in this case we have the order 10−12. Taking into account that our machine
precision is of the order 10−16, this let us with a small room of maneuver for the map cross
derivative order, i.e. :

4ε2∂2
xyχ(x, tn+1) > 10−16 =⇒ ∂2

xyχ(x, tn+1) >
1

4ε2 10−16 = 2.5× 10−5

If the above inequality does not hold, then we loose some decimal precision for the last equa-
tion of (26). The same inequality appears for the x and y derivatives of the map χ even though
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(a) t ≈ 3.5 (b) t ≈ 4

Figure 15: Enstrophy spectrum of the 4-mode flow condition at time6t = 3.5 and 4. Computa-
tions for CMM on a 1282 grid which was upsampled to 10242. CL8 denotes results obtained
with the Cauchy-Lagrange method from Podvigina et al. [2016].

it is less restrictive :

∂xχ(x, tn+1) > 10−10, ∂yχ(x, tn+1) > 10−10

Further test on the range of derivatives of the map χ in the case of the 4-mode flow needs to
be done in order confirm the affirmation above.

5.2.3 Flow visualization

The initial condition of the vorticity and its Laplacian (later used to illustrate the small scale
features of the flow) can be seen on figure 16. For the 4-mode flow condition, the vorticity
value are in the interval [−2, 3], we took nine evenly spaced contour lines with the following
values :

[−2,−1.5,−1,−0.5, 0, 0.5, 1, 1.5, 2, 2.5, 3]

(a) ω0 (b) ∆ω0

Figure 16: Contour plot for the initial vorticity and its Laplacian on the 4-mode flow.
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The vorticity isolines are in agreement with the one in Yin et al. [2021a]. In figure 16, we
observe the large vortices at the center and the corner of the periodic domain which rotate in
opposite direction. From t = 5, we can see finer features appearing in the simulation at the
interface between the large centered vortex and the four smaller vortices. Moreover, in figure
18, we can similarly observe in between the main vortices the accumulation of fine structures
that are more apparent starting from t = 3. Although the map χ which is a composition of
sub-maps evolved on a 1282 coarse grid, we can see that the vorticity develops much finer
scales that were not present in the initial condition.

(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 7 (h) t = 8

Figure 17: Contour plot of the vorticity ω for the 4-mode flow condition on a 1282 coarse grid
(upsampled on a 10242 grid).
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(a) t = 1 (b) t = 2 (c) t = 3 (d) t = 4

(e) t = 5 (f) t = 6 (g) t = 7 (h) t = 8

Figure 18: Contour plot of the Laplacian of the vorticity ∆ω for the 4-mode flow condition on
a 1282 coarse grid (upsampled on a 10242 grid).

5.2.4 CPU/GPU time comparison

The accuracy of the results between the CUDA and MATLAB code and also CL8 [Podvigina
et al., 2016] has been compared above . The implementation of the CUDA and MATLAB code
differs, nevertheless we are able to reproduce the MATLAB results published in Yin et al.
[2021a] to a sufficient degree. In the following, the execution time of the CUDA code on two
different graphics card machines will be compared to the MATLAB execution code. As we
did not have access to the MATLAB code we could not directly run it with our computational
resources and the absolute run time cannot be compared. For this reason we also consider the
number of remappings.

For each table below, we run the same 4-mode test with the same parameters. We compare
the MATLAB code to the original CUDA code provided by B. Yadav using a second order
Adams-Bashforth implementation (AB2) for the time integration. The updated CUDA code
with third order Runge-Kutta time integration (RK3) is likewise considered. Computations are
done on three different machines : a laptop computer and two supercomputers (Mésocentre
of Aix-Marseille Université and Anticythere of I2M), where the latter are more common in the
field of high performance computing.

The simulation for the following table were carried in MATLAB7 with a computer equipped
with an Intel Core i5-2320 3.00GHz 4 cores processor and 8GB of RAM :

t 1 2 3 4 5 6 7 8
Number of remaps 1 4 14 30 47 65 88 105
Total of CPU time (in sec) 20s 41s 66s 100s 145s 202s 274s 359s

The following benchmark test was made on a laptop equipped with an Intel Core i7-10750H
2.60GHz 6 cores processor, 16GB of RAM and a RTX 3060 GPU with 6GB of video mem-

7See table 1 from Yin et al. [2021a]
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ory (VRAM). For that a second order Adams-Bashforth scheme coupled with a fixed point
iteration for the time integration is used :

t 1 2 3 4 5 6 7 8
Number of remaps 16 35 62 94 126 158 190 222
Total execution time (in sec) 6.10s 13.9s 24.8s 37.9s 51.4s 65.3s 79.2s 94.3s

We can see that the original Cuda code with the multi-step Adams-Bashforth method im-
proves the speed despite the large number of remappings, which far exceeds those of the
MATLAB code at each considered time instant. Using the same laptop, we also tested the
third order Runge-Kutta time integration with Lagrange time interpolation:

t 1 2 3 4 5 6 7 8
Number of remaps 3 7 28 60 92 124 156 188
Total execution time (in sec) 1.7s 3.9s 12.4s 25.1s 38.2s 51.6s 65.5s 79.7s

We also test the RK3 time integration with a new machine at I2M (Anticythere) equipped with
an Intel Xeon Bronze 3204 1.90 GHz 6 cores processor, 196 GB of RAM and a NVIDIA Tesla
V100S GPU with 32 GB of VRAM.

t 1 2 3 4 5 6 7 8
Number of remaps 1 6 25 57 89 121 153 185
Total execution time (in sec) 0.48s 1.9s 6.1s 13.7s 20.6s 27.6s 34.8s 42.1s
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(b) Total execution time over time

Figure 19: Number of remappings over time comparing the CUDA codes with AB2 and RK3
and the Matlab code (left) and total execution time over time instant on different machines for
the 4-mode flow condition (benchmark).

Remapping is a costly process in terms of computation. From the results we can see that the
implementation of RK3 further reduces the number of remappings, as shown in figure 19a.
The amount of remappings done are an important variable and show the optimization of the
code.

On 19a (left), we can see that the slope for the AB2 and RK3 methods are the same after a
certain amount of time (t = 2). The slope of the MATLAB code is roughly 18, while the AB2
and RK3 method in the CUDA code have a slope of approximatively 32. This difference in
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scaling might be due to some implementation lacking on the CUDA code such as for exam-
ple the missing mollification and upsampling from a grid resolution of 1282 to 5122 of the
"Hermitian" array ψ which contains the values of the stream function ψ and its derivatives
∂xψ, ∂yψ, ∂x∂yψ. Thus the CUDA code uses a less smoother ψ. There is also the map advection
presented in equation (26) which in our case employs a second order centered finite difference
scheme, whereas the MATLAB code uses a fourth order method allowing an important de-
crease in the order of ε. In the meantime it also maintains a certain distance from the machine
precision. The remapping memory footprint has been a limiting factor for the CUDA code at
one point - indeed all the remappings need to be saved in a stack in order to reinitialize the
map. There is a problem for high resolution grids and low incompressibility thresholds, since
the GPUs in our hand have at best only 32 GB of VRAM and taking into account that before
the improvement, the CUDA code had to do a remapping every time step, the memory was
often saturated. Besides the decrease of remapping at the beginning of the simulation (c.f 19a),
we had to sacrifice some speed for high resolution grid/small incompressibility threshold by
putting the remapping stack into the RAM instead of solely keeping it on the VRAM. In terms
of speed, we traded the time it takes us to do a computation into a transfer from the GPU to
the RAM and central processing unit.

Figure 19b shows the total execution time over the simulation time save of the different ma-
chine and implementation used. We can see that despite the number of remappings, which is
higher than for the MATLAB code, the CUDA implementation is overall faster. The time com-
plexity for the MATLAB code seems to be in O(t2) and as for the CUDA code, a more lenghty
simulation should lead to the same complexity. The memory complexity for the remapping
process is linear since we save as many maps as needed.

5.3 Convergence tests

To make numerical convergence tests in space and time, we use the 4-mode flow condition
and the same parameters as Yin et al. [2021a]. We take for reference a simulation on a fine
grid with resolution 10242 i.e. ∆x = 1/1024 with a time step ∆t = 1/512. The vorticity is
sampled on a 10242 fine grid. In order to see the convergence errors in the time variable, we
fix ∆x = 1/1024 and go through different time-steps ∆t ∈ {1/32, 1/64, 1/128, 1/256, 1/512}.
The results are done without remapping and we compute the error of the different quantities
based on the following norms :

Map error := ||χn − X(·, tn)||∞ (35a)
Vorticity error := ||ωn −ω(·, tn)||∞ (35b)

Enstrophy conservation error := ||ωn||22 − ||ω0||22 (35c)

Energy conservation error := ||un||22 − ||u0||22 (35d)

While due to discrepancies between the MATLAB and CUDA code the magnitude of the pre-
cision differs, comparing the slopes is the key point, as it represents the order of convergence:
Figure 20 shows the errors defined in (35) as function of the time step ∆t. We observe a third
order error for the enstrophy, a slope of 2.6 for the flow map error, a slope of 2.4 for the
vorticity error and a slope of 2.0 for the energy error. These slopes are expected, except for
the energy cerror which is of order 2 and not 3, as observed in Yin et al. [2021a]. This might
come from the fact that the stream function ψ is on a coarser grid than the vorticity and also
the initialization of previous values of ψ where ψp is computed and we set ψpp = ψp, which
should reduce to an explicit Euler method for the initial step.
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(a) CUDA time convergence (b) MATLAB time convergence(Yin et al. [2021a])

Figure 20: Time convergence for the 4-mode flow: errors as a function of the time step without
remapping.

For the spatial error, we take ∆t = 1/512 fixed, while ∆x is varying through the values in the
following set : {1/32, 1/64, 1/128, 1/256, 1/512} :
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(a) CUDA spatial convergence (b) MATLAB spatial convergence(Yin et al. [2021a])
here

Figure 21: Space convergence for the 4-mode flow: errors for the spatial step without remap-
ping.

Figure 21 shows the errors defined in (35) as function of the space discretisation step ∆x. We
observe a third order convergence for the map error, the vorticity error, the enstrophy and
energy errors. This is expected from the Hermite cubic interpolation used, which is of order
O(∆x3). For detailed numerical analysis of time and space errors showing global third order
accuracy we refer to Yin et al. [2021a].

33



34



6 Conclusions and perspectives

The Characteristic Mapping method is a semi-Lagrangian formulation which allows us to
solve non-linear advection problems, in the present case the incompressible 2D Euler equa-
tions, with rather low computational cost while preserving the fine scale features of the so-
lution and high resolution using coarse grids. The flow map is evolved using a gradient
augmented level set method and FFT techniques are used for efficient reconstruction of the
velocity field. Remapping allows error control of the incompressibility condition. Computa-
tional efficiency and the high precision of CMM were analyzed optimizing an existing Cuda
code, which is implemented and adapted on recent graphic cards. Different validation tests
were performed illustrating third order accuracy.

The properties of the flow map, in particular the decomposition into sub maps and the remap-
ping are the reasons behind the possibility of the zoom capability of the method. Moreover,
the CM method has proven to be of great affinity with parallelization thanks to its interpo-
lation compactness (cubic Hermite polynomials). The CM method also proves to be robust
indeed, since it solves non linear advection equations in a Lagrangian reference frame. There
are multiple systems of equation falling under such premise, one of them being the Vlasov-
Poisson equation which from a Lagrangian point of view splits the problem into two transport
equations (for the velocity and position) and a Poisson equation for the magnetic field. Hence
it is quite straight forward to expect an application to those types of problems. During this
internship, we updated the code readability and its ability to run it on modern CUDA toolkits.
We have added a third order Lagrange interpolation for the time-scheme and modified the
time integration of the flow map from a second order Adam-Bashforth/Moulton method to a
third order Runge-Kutta scheme. We showed that this modification was partially reducing the
costly process of remapping. In order to study Lagrangian turbulence, a point particle model
for inertial particles was introduced into the code: The Maxey-Riley model can be used with
different Stokes number in the code. These fluid/inertial particles run with a second order
Runge-Kutta scheme even though a convergence plot of the error remains to be done to prove
the order of the method numerically. The CUDA code is still a work in progress but it already
produces reliable results. Moreover, there is some potential such as a simple upgrade of the
map advection from second order centered scheme to a fourth order finite difference scheme
and the particles which could use a third order Runge-Kutta scheme without implying too
many drawbacks to the computation. Finally, there is the potential for a multiple GPU imple-
mentation. The 2D implementation of the CM method along with particle advection in CUDA
is a test case to see how reliable is the method for 2D. A foreseeable CUDA implementation
would be for the incompressible 3D Euler equations, an extension of the CM method has been
proposed recently in Yin et al. [2021b].
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7 Appendix

7.1 Hermite interpolation in 2D

Let’s assume that we want to interpolate a function u : R2 → R in a square sw, se, nw, ne
(c.f. figure 4) of side length h > 0, where the values of u and its derivatives ∂xu, ∂yu, ∂2

xyu are
known at the four vertices.

By rescaling the coordinates x1, x2 we have:

x̃1 =
x1 − xsw

1
h

, x̃2 =
x2 − xsw

2
h

(36)

Then we define the basis functions for Hermite polynomials :

f (x̃) = 2x̃3 − 3x̃2 + 1, g(x̃) = x̃3 − 2x̃2 + x̃ (37)

The value of u at the point (x1, x2) in the square [xsw
1 , xse

1 ]× [xsw
2 , xse

2 ] can be interpolated by
the following formula [Kolomenskiy et al., 2016] :

ũ(x1, x2) = usw f (x̃1) f (x̃2)+ use f (1− x̃1) f (x̃2)+ unw f (x̃1) f (1− x̃2)+ une f (1− x̃1) f (1− x̃2)
+ h( usw

x1
g(x̃1) f (x̃2)− use

x1
g(1− x̃1) f (x̃2)+ unw

x1
g(x̃1) f (1− x̃2)− une

x1
g(1− x̃1) f (1− x̃2) )

+ h( usw
x2

f (x̃1)g(x̃2)+ use
x2

f (1− x̃1)g(x̃2)− unw
x2

f (x̃1)g(1− x̃2)− une
x2

f (1− x̃1)g(1− x̃2) )

+ h2( usw
x1x2

g(x̃1)g(x̃2)− use
x1x2

g(1− x̃1)g(x̃2)− unw
x1x2

g(x̃1)g(1− x̃2)+ une
x1x2

g(1− x̃1)g(1− x̃2) )

The same can be done for the derivatives and cross derivative of u. This technique is used in
the code and is explained in more details in the appendix of [Kolomenskiy et al., 2016].
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