
Characteristic Mapping Method for

Incompressible Euler Equations

Badal Yadav

M.Eng. Non-Thesis

Department of Mechanical Engineering

McGill University

Supervisor: Prof. Jean-Christophe Nave



Contents

1 Introduction 1

2 Characteristic Mapping Method 3

2.1 Linear Advection Equation . . . . . . . . . . . . . . . . . . . . 3

2.1.1 Method of Characteristics . . . . . . . . . . . . . . . . 4

2.2 Gradient-Augmented Level-Set Method . . . . . . . . . . . . . 5

2.2.1 Numerical Scheme . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Accuracy & Stability . . . . . . . . . . . . . . . . . . . 10

2.3 Characteristic Mapping Method . . . . . . . . . . . . . . . . . 10

2.3.1 Remapping . . . . . . . . . . . . . . . . . . . . . . . . 12

3 NonLinear Problems 14

3.1 Nonlinear Advection Equation . . . . . . . . . . . . . . . . . . 14

3.2 Burgers’ Equation . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.3 Characteristic Mapping Method for Nonlinear Problems . . . . 18

3.3.1 Overshooting . . . . . . . . . . . . . . . . . . . . . . . 19

3.3.2 Solution to Overshooting : Map-Stacking . . . . . . . . 23

4 2D Euler Equation 27

4.1 2D Incompressible Euler Equation . . . . . . . . . . . . . . . . 27

4.2 Characteristic Mapping Method for Euler Equation . . . . . . 28

1



4.3 Results & Discussion . . . . . . . . . . . . . . . . . . . . . . . 32

4.3.1 Vortex Merging . . . . . . . . . . . . . . . . . . . . . . 32

4.3.2 Homogeneous Isotropic flow . . . . . . . . . . . . . . . 41

5 Conclusions 45

2



Abstract

The characteristic mapping method [12] is a method for solving linear

advection problems with arbitrary initial conditions. Its unique property

is the decoupling of the computational and solution representation grids,

thus allowing small length scales to be accurately represented in the solu-

tion with overall low computational cost. In this work, the idea is extended

to non-linear problems thus requiring a more involved approach. Starting

with applying the characteristic mapping method to model one-dimensional

non-linear problems, we study the key properties of the method. Thus we ex-

tend this to solve the incompressible Euler equations in two-dimensions. We

present several simulations of two-dimensional Euler equations for the cases

of Kelvin-Helmholtz instability and vortex-merging. Finally, we investigate

the multi-scale property of our approach.



Chapter 1

Introduction

The governing equations in fluid dynamics are a set of conservation laws -

the continuity, momentum and energy equations. Most crucial of all is the

momentum equation, which in its full form is known as the Navier-Stokes

equation. Different regimes of fluid dynamics involve the study of these

equations under different assumptions. In the scope of this report, we concern

ourselves with incompressible, adiabatic and inviscid flows. The governing

equation in this case simplifies to the incompressible Euler equations. We

use this system as a problem to be solved by extending the characteristic

mapping method [12] to solve non-linear advection problems.

The generalized advection equation is a hyperbolic conservation law,

which models the transport phenomena of conserved quantities. The char-

acteristic mapping method [12] has shown itself to be an excellent method

for solving linear advection equations. It provides a better representation of

solution with the help of the gradient information. It inherits most of its

properties from its predecessor - the Gradient-Augmented Level Set method

(GALS [13]).

The GALS was the first to use gradient information in the representation
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of the solution to attain better accuracy in the solution. A similar attempt

was made earlier by van Leer ( [19], [20], [21] [22], [23] ), but differently, as

the gradients were stored and evolved as independent quantities. This was

developed in the CIP method ([16], [17]). GALS provides a simpler scheme

for allowing gradients to represent the sub-grid features, while keeping the

stencils compact.

The characteristic mapping method [12] improves the sub-grid represen-

tation of the solution and removes the smoothness condition from the initial

conditions. In this work we extend the characteristic mapping method to

solve non-linear problems. We test the method on several test cases of 2D

incompressible Euler equations and analyze results.

In Chapter 2, we introduce the linear advection problem and preceding

work. A detailed description of the gradient-augmented level set method and

characteristic mapping method is given in section 2.2 and 2.3 respectively.

In Chapter 3 we discuss the key issues in extending the method to non-linear

problems, and propose solutions to those issues. We include an analysis of

a one-dimensional example test case. In Chapter 4 we apply the method for

solving the 2D incompressible Euler equation for fluid flows and discuss the

results obtained.
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Chapter 2

Characteristic Mapping

Method

2.1 Linear Advection Equation

Advection is the process of transport of quantities in a velocity field (fig. 2.1)

[11]. The quantities could be properties of fluids such as mass or momentum

or a general macroscopic quantity like traffic density. The velocity field could

be a constant (fig. 2.1a), or a function of space and time (fig. 2.1b).

The following partial differential equation describes the phenomenon:

φt(~x, t) + (~u(~x, t).∇) φ(~x, t) = 0 (2.1)

for ~x ∈ Rn and t ∈ R+, where φ : Rn × R+ → R is the scalar field

representing a quantity and ~u : Rn ×R+ → Rn is the advection velocity. In

one dimension with constant velocity the equation simplifies to the following.

φt + u φx = 0 (2.2)

The equation is called non-linear when the velocity field also depends on

the scalar field φ, which makes the theory more involved as discussed later
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(a) Advection in constant velocity field (b) Advection in variable velocity field

Figure 2.1: Advection of scalar quantity φ

in section 3.1. The equation can also be non-homogeneous, in which case it

will no longer be the transportation of a conserved quantity.

The scope of this work spans the Cauchy problem of advection equation,

later developing to fluid flow problems:

φt + (~u.∇)φ = 0

φ(~x, 0) = g(~x)

 (2.3)

where ~u : Rn × R+ → Rn and g : Rn → R are given functions representing

the velocity field and initial conditions respectively. We are also given that

g is continuously differentiable.

This problem is of central importance in the area of computational fluid

dynamics, for it provides a minimal model for analysis of numerical methods

aiming to solve complex fluid flow problems.

2.1.1 Method of Characteristics

The advection equation is hyperbolic in nature and has a finite propagation

speed. The solution at each point travels along globally well defined curves
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called characteristic curves. The methods of characteristics proposes, for the

Cauchy problem for the non-homogenous advection problems of form :

φt + (~u.∇)φ = f

φ(~x, 0) = g(~x)

 (2.4)

the following solution:

φ(~γ(s), t) = g(~γ(0)) +

∫ t

0
f(~γ(s), s) ds (2.5)

~γ(s) = ~γ(0) +

∫ s

0
~u(~γ) ds (2.6)

where f : Rn × R+ → R is known as the source term.

The solution simplifies for the homogeneous case (f(~x, t) = 0).

φ(~γ(s), t) = g(~γ(0)) (2.7)

~γ(s) = ~γ(0) +

∫ s

0
~u(~γ) ds (2.8)

The solution at any point in space and time depends only on the point.

More precisely, it remains constant in time along the locus ~γ(s) dictated by

the following initial value problem.

d~γ

ds
= ~u

~γ(0) = ~x0

 (2.9)

Fig. 2.2 shows the characteristic curves γ(s), the solution to the initial

value problem (equation. 2.9) for advection of scalar quantity φ with a

velocity u(x).

2.2 Gradient-Augmented Level-Set Method

The gradient-augmented level set method (GALS) [13] is a semi-Lagrangian

approach for solving the Cauchy problem of advection equation using meth-

ods of characteristics.
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Figure 2.2: Representation of characteristic curves for one-dimensional

advection problem

Given the Cauchy problem (equation (2.3)) on a discretized periodic do-

main with initial data and velocity function ~u(~x, t), the solution is represented

by the values of φ on the grid points. GALS proposes to augment the func-

tion φ by its gradient ~ψ = ∇φ. Knowledge of the values of the gradient

along with the function provides a better representation of the solution using

piece-wise Hermite interpolation, for it is a more accurate and continuously

differentiable representation. Fig. (2.3) shows a comparison between the rep-

resentation of curves using Hermite interpolation and linear interpolation. It

can be noted that the former one is more accurate, smoother and contains

features that the latter fails to capture.

The equation for the gradient ~ψ can be obtained from the advection

6



Figure 2.3: Comparison of piece-wise Hermite & linear interpolation

equation (3.1).

∇φt + ∇(~u.∇φ) = 0

~ψt + ~u.∇~ψ = −∇~u ~ψ (2.10)

Note that ∇~u is a gradient of velocity: a second-order tensor quantity.

We will see later that we can solve the equation (2.10) without having to

compute this quantity. The solution of the system now is the following :

dφ

dt
= 0

dψ

dt
= −∇~u ~ψ

 along
d~x

dt
= ~u (2.11)

2.2.1 Numerical Scheme

The problem is specified with a given initial condition g(~x) and a velocity field

~u(~x, t), both in analytic form, and a set of points Xg forming a uniform grid
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Figure 2.4: Representation of characteristic curves joining grid point xg

and foot point xf

structure with grid interval h. Periodic boundary conditions are assumed.

The initial time t0 = 0 and a time step dt are asserted such that:

dt ≤ 0.5h

max (‖~u‖)
(2.12)

For each iteration φ(:, t)→ φ(:, t+ dt), the following steps are performed.

GALS Iteration

1. Referring to fig. (2.4) for each grid point ~xg ∈ Xg, characteristic curves

d~x
dt = ~u are numerically integrated backwards to obtain foot points xf

2. φ(~xf , t) is evaluated using Hermite interpolation from values φ(~xg, t)

3. φ(~xg, t+ dt) = φ(~xf , t)

4. ψ(~xg, t+dt) is computed from the numerical integration of the following
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equation along the characteristic curve:

dψ

dt
= −∇~u.~ψ (2.13)

Hermite Interpolation

A piece-wise Hermite interpolation is used to interpolate φ(~xf , t). Such an

interpolation needs extra derivatives of φ, depending on the number of spatial

dimensions of the problem. For problems in higher dimensions, the compu-

tational efficiency is improved using epsilon derivatives [3].

Epsilon Derivatives

Instead of calculating foot points for each grid point, a set of epsilon points

(ε-points) ~xε ∈ {~xg + ε, ~xg − ε}n for each grid point is taken, and their re-

spective foot points are calculated, as shown in fig (2.5). Then the function

values φ(~xg, t + dt) and various derivatives can be approximated by a val-

ues of φ(~xε). The following equation shows once such approximation for the

one-dimensional case.

φ(xg, t+ dt) =
1

2

(
φ(x+

f , t) + φ(x−f , t)
)

ψ(xg, t+ dt) =
1

2ε

(
φ(x+

f , t) − φ(x−f , t)
)

Temporal Integration

The numerical integration of the characteristic ODE is performed using the

Shu-Osher temporal integration scheme [6], which is a strongly stability-

preserving, globally third-order accurate scheme.
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(a) ε-points in 1-dimension (b) ε-points in 2-dimensions

Figure 2.5: Illustration of ε-points and characteristic curves passing through

them

2.2.2 Accuracy & Stability

The spatial accuracy of the method is dictated by the interpolation scheme

and the temporal accuracy is dictated naturally by the characteristic ODE

integration scheme. With the choice of hermite interpolation and Shu-Osher

numerical integration, the global accuracy of the method is third-order. This

method is unconditionally stable. Also the method shows super-consistency

under the approximations introduced due to the epsilon derivatives [13].

2.3 Characteristic Mapping Method

Since the solution of the Cauchy problem (equation (2.3)), the solution (equa-

tion (3.3)) can be written in the form of φ( ~xg, t) = g(~xf ) having a unique

point ~xf for each ~xg, the characteristic mapping method proposes to compute
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Figure 2.6: 2-D Advection using gradient augmented level set method

a map ~χ : Rn × R+ → Rn such that :

φ(~x, t) = g(~χ(~x, t)) (2.14)

From the global existence and uniqueness of a characteristic curve initial-

value problem given in equation (2.9), ~χ is guaranteed to be a bijective map

~χ.

11



The characteristic maps can be computed solving the equation:

~χt + (~u.∇)~χ = 0

~χ(~x, 0) = ~x

 (2.15)

The above Cauchy problem is solved using GALS. Transforming the prob-

lem into this form removes the smoothness condition from the initial condi-

tion g. This allows us to solve the advection problem with arbitrary initial

conditions. Moreover, the analysis of the error of approximation shows a

reduction for general case.

Fig. 2.7 shows the evolution of the characteristic map in the two-dimensional

velocity field prescribed in equation 2.16.

u = cos (πt) sin2 (πx) sin (2πy)

v = − cos (πt) sin2 (πy) sin (2πx)

 (2.16)

2.3.1 Remapping

According to the definition of characteristic maps, they can be composed to

form another map.

~χ = ~χ1 ◦ ~χ2 (2.17)

The composition of two cubic maps gives a sixth order polynomial in each

variable. Forming another cubic map from it is a projection, which can be

computed on a finer grid, thus retaining more sub-grid features. This makes

the method more robust because every time the global error of approximation

grows, the map can be resampled on a finer map, and the problem can be

reinitiated [12]. This allows us to represent the solution on a finer grid than

the grid on which the computation of ~χ is performed.
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(a) t = 0 (b) t = 0.1 (c) t = 0.2

(d) t = 0.3 (e) t = 0.4 (f) t = 0.5

Figure 2.7: Advection of 2D map in velocity field in equation (2.16)

(a) g(~x) (b) ~χ(~x, t) (c) φ(~x, t) = g(~χ(~x, t))

Figure 2.8: Applying map
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Chapter 3

NonLinear Problems

3.1 Nonlinear Advection Equation

In non-linear advection equations the velocity field also depends on the ad-

vected scalar quantity φ. This can be thought of with the example of traffic

density flow, where the speed of cars is governed by their density. The gov-

erning equation remains the same as the equation (3.1)

φt(~x, t) + (~u(φ(~x, t), ~x, t).∇) φ(~x, t) = 0 (3.1)

with the velocity ~u(~x, t, φ(~x, t)) now being a function in higher dimensions.

~u : (R× Rn × R+)→ Rn

This change in the governing equation can lead to several physical phenomena

like formation of compressive shock waves (like traffic jams in traffic flow

models [7]) or expansive rarefaction waves, where the continuum assumptions

are violated requiring intricate mathematical handling of the problem. But

we limit our study to incompressible flows, a constraint which can be applied

to higher than one dimensional flows, by imposing the following condition

∇.~u = 0 (3.2)
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The characteristic form of the solution of the equation has the same form

as the linear case except that it is hard to solve and analyze and has no

guarantee of global existence or uniqueness of characteristic curves.

φ(~γ(s), t) = g(~γ(0)) (3.3)

~γ(s) = ~γ(0) +

∫ s

0
~u(φ(~γ(s), s), ~γ(s), s) ds (3.4)

3.2 Burgers’ Equation

Burgers’ equation is a one dimensional scalar conservation equation, which

provides a canonical case for understanding the fundamental complications

arising in the CM method

The one-dimensional scalar conservation law has the following form :

φt + fx(φ) = 0 (3.5)

where f is the flow flux of the flowing quantity φ. Applying the chain-rule

we get a non-linear advection problem :

φt + fφφx = 0

with advection velocity being u = fφ.

Choosing the flux as the energy estimate of the quantity f = 1
2φ

2, we get

the burgers’ equation:

φt + φφx = 0 (3.6)

The method of characteristics applies directly to the computation of the

solutions until a feature such as shocks is formed. Fig. (3.1) shows the exam-

ple of a shock formation in the solution of the Burgers’ equation with given
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Figure 3.1: Solution of Burgers’ equation with initial data

g(x) = sin(x) ∀ x ∈ [0, 2π] and periodic boundary conditions forming a

shock

initial data g(x) = sin(x) ∀ x ∈ [0, 2π] and periodic boundary conditions.

Once the shock is formed, a more involved theory comes and allows us to

numerically regularize the problem.

To avoid shock formation, we take the following variation of the nonlinear

advection equation.

φt + (α.φ. cos(t))φx = 0 (3.7)

with a parameter α governing the shock formation. A value of α can be

chosen such that a shock-like feature producing an artefact of discontinuity

will be formed and retraced back, as shown in fig. (3.2). The motivation
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Figure 3.2: Solution of equation (3.7) with α = 0.16, initial data

g(x) = sin(x) ∀ x ∈ [0, 2π] and periodic boundary conditions

for choosing the example is to have a case without discontinuities in which

the method of characteristics can be applied, while still having stiff regions,

which are likely to form in real fluid flow problems in higher dimensions, even

with the incompressibility constraint.
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It is important to note that a shock differs from a stiff structure in that

the former has characteristic curves colliding with each other, while the latter

has characteristic curves coming closer to each other.

3.3 Characteristic Mapping Method for Non-

linear Problems

The foremost issue in solving the nonlinear advection problems using the

characteristic mapping method is that the velocity function is not know ev-

erywhere to solve for characteristic ODE from equation (2.9).

As described in section 2.2.1, for advecting the map numerically χ(~x, tn)→

χ(~x, tn+1) the backwards temporal integration for calculating the foot point

for each grid point requires a known velocity field for all ~x and t ∈ {tn, tn+1}.

But in the nonlinear advection case, since the velocity is a function of the

advecting field, it is known only from the data values at grid point of previous

times.

This requires introducing another approach of temporal integration listed

in algorithms 1 and 2.

Algorithm 1 One-Stage Fixed Point Iteration Backward Integration

1: ~xf = ~xg

2: while |~xf + dt.~u(~xf , t)− ~xg| ≥ ε do

3: ~xf = ~xg − dt.~u(~xf , t)

4: end while

Here, the velocity ~u(~x, t) is shorthand for ~u(φ(~x, t), ~x, t) and it can be

computed from the interpolation of φ(~xg, t) from φ(~xg, t−dt) which is known.
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Algorithm 2 Two-Stage Fixed Point Iteration Backward Integration

1: ~xf = ~xg

2: ~xff = ~xg

3: while |~xf + dt
(

3
2~u(~xf , t)− 1

2~u(~xff , t− dt)
)
− ~xg| ≥ ε do

4: ~xff = ~xf − dt.~u(~xff , t− dt)

5: ~xf = ~xg − dt
(

3
2~u(~xf , t)− 1

2~u(~xff , t− dt)
)

6: end while

3.3.1 Overshooting

Hermite interpolation doesn’t preserve monotonicity ([4], [8] [9] [2]). Thus,

it can lead to overshooting for stiff data (fig. 3.3). This becomes a serious

while solving nonlinear problems using the characteristic mapping method.

Figure 3.3: Overshooting in hermite interpolation

The problem can also arise in linear problems but need more reflection

for non-linear problem for the following reasons.
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Figure 3.4: Numerical Solution of equation (3.7) with α = 0.2, initial data

g(x) = sin(x) ∀ x ∈ [0, 2π] and periodic boundary conditions

• In non-linear problems, the velocity is the function of the solution φ

itself. An overshoot in the solution adds oscillations to the velocity

field causing more overshooting in φ as shown in fig. (3.4)

• A stiffness of solution for linear problems can be estimated beforehand
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Figure 3.5: Numerical Solution χ of equation (3.7) with α = 0.2

most of the time, thus allowing a finer grid to represent the solution.

• Stiffness of solution comes naturally for non-linear problems. Incom-

pressibility conditions avoid shocks, but the stiffness is likely to arise

depending on initial data. For example, in Burgers’ equation any neg-

ative gradient in the initial data would form a shock later in time.
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Figure 3.6: Overshooting in map ~χ in 2-dimensions

The example in equation (3.7) demonstrates a minimal case with a control

on the stiffness of the problem with the parameter α. When the solution

becomes stiff in a region, if the grid is not fine enough, the solution shows an

overshoot. Figure (3.4) shows a case with α = 0.2, grid size N = 32, initial

data g(x) = sin(x) ∀ x ∈ [0, 2π] and periodic boundary conditions.

The propagation of oscillations in the map ~χ is shown in fig. (3.5). It is

important to note here that a characteristic map by definition needs to be a

one-to-one map, which in this case is violated, suggesting that the solution

is unreliable.

In two-dimensions, a map at any given time ~χ could have even more

complicated overshooting features. Fig. (3.6) shows a map evolved in velocity
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field :

~u =

− sin(x1) cos(x2)

cos(x1) sin(x2)

 (3.8)

for ~x = {x1, x2} ∈ [0, 2π] × [0, 2π]. This problem is linear but motivated

from the non-linear problem of Taylor-Green vortex flow.

3.3.2 Solution to Overshooting : Map-Stacking

Preserving the incompressibilty of the flow is equivalent to imposing the

following constraint on the map:

det |∇~χ| = 1 (3.9)

where ∇~χ, gradient of the map, is a second-order tensor quantity, and also

in this case the Jacobian matrix
∂χi
∂xj

.

The definition of map ~χ : Rn → Rn is a column of n cubic hermite

interpolants independent to each other. Such a definition is not capable of

applying to the map itself. The incompressibility of the flow comes from

the incompressibility constraint in the velocity field (equation (3.2)), But

incompressibility in the solution ~χ is the accumulation of numerical error,

eventually violating equation (3.9) significantly. The problem becomes even

more serious when det |∇~χ| → 0, and the map is no longer one-to-one.

To avoid this, a stronger form of remapping is suggested. Whenever the

error e =
∣∣∣(det

∣∣∣ ~∇χ∣∣∣ − 1
)∣∣∣ is more than a certain threshold τ , the map

is pushed to a stack of maps that is stored and the problem is re-initiated

with the identity map ~χ(~x, t) = ~x. The solution can be represented by a

composition of all the maps in the stack. The steps are shown in algorithm

(3).
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Algorithm 3 Map Stacking Scheme

1: n, N, λ

2: j = 0

3: while n < N do

4: advect ~χ(:, tn)→ ~χ(:, tn+1)

5: if
∣∣∣(∣∣∣ ~∇χ∣∣∣ − 1

)∣∣∣ > λ then

6: ~χj = ~χ(:, tn+1)

7: j = j + 1

8: ~χ(:, tn+1) = ~I

9: end if

10: end while

11: φ = ~χ ◦ ~χj−1 ◦ ~χj−2 ◦ ... ◦ ~χ0 ◦ g

This differs conceptually from the fine grid remapping because a remap-

ping step: ~χf = ~χf ◦ ~χj projects the composition of two cubic maps forming

a ninth-order representation to a cubic map, thus loosing some precision.

While, the map-stacking builds the order-of-representation by a degree of

three with each new map in the stack without loosing anything in the pro-

jection. An example of representation of stiff features using map-stacking

method is shown in fig. 3.7. This solves the problem at the cost of comput-

ing composition of map whenever the solution is required. Figure 3.7 shown

an the solution of equation (3.7) using map-stacking.

The method can be generalized to higher dimensions as well. An example

in 2-dimensions of a map advection in velocity field given in equation (3.8)

is shown in fig. 3.8 which is a improvement in the solution shown in fig. 3.6.
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Figure 3.7: Numerical Solution χ of equation (3.7) using map-stacking

technique with α = 0.2, initial data g(x) = sin(x) ∀ x ∈ [0, 2π] and

periodic boundary conditions
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Figure 3.8: Map-stacking in two-dimensions
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Chapter 4

2D Euler Equation

4.1 2D Incompressible Euler Equation

Euler equations are a set of non-linear hyperbolic conservation laws govern-

ing the flow of adiabatic and inviscid flow. Along with the incompressibility

constraint (equation (3.2)), it is a very reasonable model for low Mach num-

ber flows. Euler equation provides an excellent case for testing characteristic

mapping method on nonlinear fluid flow problems Applying the incompress-

ibility constraints, the equation simplifies to the following:

~ut + (~u.∇) ~u = −1

ρ
∇p

∇.~u = 0

 (4.1)

where ~u is the velocity field, ρ is the density, and p is pressure. The

incompressibility condition implies that the volume spanned by a certain

fluid element remains constant in time.

Introducing vorticity ~ω = ∇ × ~u, the equation can be written in form

of a non-homogenous nonlinear transport equation called vorticity transport
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equation obtained by taking the curl of the equation (4.3).

~ωt + (~u.∇) ~ω = (~ω.∇)~u − ~ω(∇.~u) +
1

ρ2
∇p×∇ρ (4.2)

Further assuming the flow to be 2-dimensional and barotropic (∇p×∇ρ =

0), the equation simplifies to homogeneous transport equation.

~ωt + (~u.∇) ~ω = 0

∇.~u = 0

 (4.3)

The equation is solved together with the incompressibility constraint

along with initial data of ~u given and in periodic boundary conditions.

4.2 Characteristic Mapping Method for Eu-

ler Equation

While solving the equation (??), we need a relation to compute advecting

velocity field such that the incompressibility constraint is satisfied. The fol-

lowing construction allows that.

ϕ = ∆−1~ω

~u = ∇⊥ϕ

 (4.4)

where ϕ is an intermediate stream function and ∇⊥ stands for perpendicular

gradient ( ∂∂y ,−
∂
∂x).

Algorithm (4) shows the basic overview of the steps of the characteristic

mapping method. The problem is initialized with an initial Cauchy data ω0

defined on a set of points Xg = {~xg} forming a uniform grid with grid spacing

h and periodic boundary conditions. A characteristic map ~χ : T2 → T2, set

to identity ~χ(~x, 0) = ~x is taken as the initial condition for the map. A
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time step dt is chosen such that constraint in equation (2.12) is followed

throughout the desired running time of the simulation and time tn is defined

to be n.dt

Algorithm 4 Characteristic mapping method for solving incompressible Eu-

ler equation

1: ~χ(~x, 0) = ~x

2: ω0

3: n = 0, t0 = 0

4: N, dt

5: while n < N do

6: ωn(~x) = ω0( ~χn(~x, tn))

7: advect ~χ(:, tn)→ ~χ(:, tn+1) using ωn

8: n = n+ 1

9: end while

10: ωN (~x) = ω0(~χ(~x, tN ))

The advection of ~χ(:, tn) → ~χ(:, tn+1) is the detailed step of the al-

gorithm and requires a mix of few steps discussed so far. Most impor-

tantly, advection of the map needs a velocity field defined on the grid Xg.

This is attained by forming a Hermite interpolant on the grid using the

construction shown in equation (4.4). Firstly, the vorticity at any time

step ωn(~x) defined on the grid is transformed to a Fourier representation

ω̂n(~ζ) in the frequency space using a fast Fourier transform. This is for the

faster and more accurate calculation of the stream function and its deriva-

tives. The set of values of stream function and its derivatives on the grid

S = {(ϕ(~x), ∂xϕ(~x), ∂yϕ(~x), ∂x∂yϕ(~x)) ∀~x ∈ Xg} forms a Hermite inter-

polant HS from which the velocity can be optained. The steps in the process

are detailed in the algorithm (5) given below.
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Algorithm 5 Computation of velocity from vorticity data

1: ω̂n(~ζ) = F(ωn(~x))

2: ϕ̂n(~ζ) = (i~ζ)−2ω̂n(~ζ) = −(~ζ.~ζ)ω̂n(~ζ)

3: ∂xϕ̂n(~ζ) = (iζx)ω̂n(~ζ)

4: ∂yϕ̂n(~ζ) = (iζy)ω̂n(~ζ)

5: ∂x∂yϕ̂n(~ζ) = −(ζxζy)ω̂n(~ζ)

6: ϕn(~x) = F−1(ϕ̂n(~ζ))

7: ∂xϕn(~x) = F−1(∂xϕ̂n(~ζ))

8: ∂yϕn(~x) = F−1(∂yϕ̂n(~ζ))

9: ∂x∂yϕn(~x) = F−1(∂x∂xϕ̂n(~ζ))

10: u(~x) = ∂yHS
11: v(~x) = −∂xHS

Here, F and F−1 represents the Fourier and the inverse Fourier transform

respectively, and i stands for the imaginary root. Steps (2) to (5) shows the

fourier differentiation operations assuming the function ωn(~x) is defined on

the domain [0, 2π]2. These operations will need a scaling factor in case of

other rectangular domains. The algorithm shows that the velocity can be

computed by differentiating the Hermite interpolant. This process allows to

compute velocity ~u(~x) = [u(~x), v(~x)] at any point in the spanned domain

while appling the incompressibility constraint to third order accuracy.

Once the velocity field is computed, algorithm (1) or (2) can be imple-

mented to advect the map. Note that the map itself is a Hermite representa-

tion and defined by by the set of values: {(~χ(~x), ∂x~χ(~x), ∂y~χ(~x), ∂x∂y~χ(~x))}

on the grid points. Each advection step updates the values following the steps

shown int the algorithm (6).

A small value of ε guarantees the order of the error of approximations
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Algorithm 6 Advection Map ~χ(:, tn)→ ~χ(:, tn+1)

1: ε = 10−6

2: {ε0x, ε1x, ε2x, ε3x} = {ε, ε, −ε, −ε}

3: {ε0y, ε1y, ε2y, ε3y} = {ε, −ε, ε, −ε}

4: for each ~xg = (x, y) ∈ Xg do

5: for each k ∈ [0, 1, 2, 3] do

6: ~xkε = (x+ εkx, y + εky)

7: Calculate foot point : ~xkf

8: end for

9: Update :

~χ(~xg, tn+1) =
1

4

(
~χ(~x0

f , tn) + ~χ(~x1
f , tn) + ~χ(~x2

f , tn) + ~χ(~x3
f , tn)

)
∂x~χ(~xg, tn+1) =

1

4ε

(
~χ(~x0

f , tn) + ~χ(~x1
f , tn)− ~χ(~x2

f , tn)− ~χ(~x3
f , tn)

)
∂y~χ(~xg, tn+1) =

1

4ε

(
~χ(~x0

f , tn)− ~χ(~x1
f , tn) + ~χ(~x2

f , tn)− ~χ(~x3
f , tn)

)
∂x∂y~χ(~xg, tn+1) =

1

4ε2

(
~χ(~x0

f , tn)− ~χ(~x1
f , tn)− ~χ(~x2

f , tn) + ~χ(~x3
f , tn)

)


(4.5)

10: end for
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in equation (4.5) to be smaller than the overall spacial order of the method

itself [13].

These unit operations are performed for each iteration, along with map-

stacking technique. As the stack of map grows larger, it becomes computa-

tionally costly to recompute ωn at each time step. To avoid this, the initial

condition is stored on a very fine grid and updated every time a map is

added to the stack. This allows velocity field to be computed at each time

step without having to compose the maps in the stack. Although, the final

solution whenever needed to be computed make use of the analytical form of

initial data. Note that this algorithm achieves exponential resolution (each

remapping is a composition with a cubic) in linear time.

4.3 Results & Discussion

In this section we discuss the implementation of characteristic mapping method

for solving 2-dimensional incompressible Euler equations for two cases: vor-

tex merging and shear layer. We also present the analysis of properties of the

method using results from the vortex merging phenomenon and homogeneous-

isotropic flow.

The implementation of the method is done in C++ language with CUDA

platform. All the following simulations are run on a Dell-Inspiron 7000 lap-

top with the Intel i7-4510U CPU and the Nvidia 750M GPU.

4.3.1 Vortex Merging

We initialize the simulation with the analytic vorticity field generated by su-

perimposing two Gaussian functions centered at two different points (eq. 4.6)

as shown in the figure (4.1). We maintain the periodicity at the boundaries
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by using the padding technique described in algorithm (7).

Figure 4.1: Initial condition for vortex merging

f(x, y) = sin2(x) sin2(y)
(

exp
(

5
(

(x− π)2 + (y − π

3
)2
))

+ exp

(
5

(
(x− π)2 + (y − 2π

3
)2
)))

∀ (x, y) ∈ [0, 2π]× [0, 2π] (4.6)

Algorithm 7 Padding of Initial Conditions for Periodicity at boundaries

1: ω0(x, t) = 0

2: for i = {−1, 0, 1} do

3: for i = {−1, 0, 1} do

4: ω0(x, t) = ω0(x, t) + f(x+ i2π, y + j2π)

5: end for

6: end for

We run the simulation on a computational grid of size 128 × 128 with a

time step dt = 0.01 seconds. The two vortex rotates, shear and merge to
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Figure 4.2: Vortex merging (each image is produced after 2500 iterations of

0.01 seconds each)
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form a larger rotating vortex. This is shown in the figure (4.2).

In the next sections, we make a few remarks about the properties of the

method.

Smallest Length Scales

The unique property of the characteristic mapping method is its ability to

represent small length scales in the solution, which are smaller than the

resolution of the computational grid. This comes from the fact the solution

is represented by a stack of characteristic maps which are to be composed

with the analytical initial condition. Using this, the final solution can be

obtained by sampling on arbitrarily fine grid.

In this section we sample a small region in the domain for different length

scales. This allows for zooming in the solution as shown in figure (4.4). We

notice that the smallest available feature in the solution is seen at a length

scale of order 10−12. as shown in the figure (4.3).

Figure 4.3: Solution sampled at length scales of order 10−12
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(a) 2× zoom (b) 8× zoom (c) 32× zoom

(d) 128× zoom (e) 512× zoom (f) 2048× zoom

(g) 8K× zoom (h) 32K× zoom (i) 128K× zoom

Figure 4.4: Zooming in the solution at t = 500 seconds

For the solution to be physically admissible, we expect the energy of these

features to decay exponentially with the length scales. We validate this by

producing the energy spectrum plots calculated from a solution sampled on

very fine grids. We vary the size of the sampling grid to check the consistency
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of spectrum produced. On the log-log plot as shown in fig. 4.5 we observe

that energy associated to high frequencies decays exponentially.

(a) Ns = 1024 (b) Ns = 2048

(c) Ns = 4096

Figure 4.5: Energy Spectrum computed on different Sampling grid size Ns

Enstrophy Preservation

Enstrophy is defined as the L2 norm of the vorticity over the entire domain.

Z =

∫
Ω
ω2(x, t) dΩ (4.7)

The solution of the incompressible Euler equations has the property to pre-

serve its Enstrophy. The numerical solutions may obey this property with
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some error. In this section we observe the evolution of enstrophy of the nu-

merical solution along with time and its dependence on various parameters

of the simulation.

Figure 4.6 shows the normalized enstrophy versus time plot of a simula-

tion ran on a 128× 128 grid.

Ẑ(t) =
Z(t)

Z(0)
, (4.8)

We observe a 1.6% increase of Enstrophy by the end of the simulation.

Figure 4.6: Normalized Enstrophy Ẑ(t) on grid size 128× 128

Upon varying the time step of the simulation we observe that this growth

of enstrophy is effected only in the case where the temporal integration

scheme in algorithm 1 is used. For the scheme in algorithm 2 time step

plays no role in the observed increase of the enstrophy. This is shown in fig.

4.7.

Varying the grid size has clear influence on the enstrophy as shown in the

figure 4.8 Plotting the overall increase of the normalized enstrophy shows a

third order dependence on the grid size as shown in the figure 4.9.
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(a) 1-Stage temporal scheme (1) (b) 2-Stage temporal scheme (2)

Figure 4.7: Enstrophy for different time-step

(a) Comparison of Enstrophy evolution for

different grid-size
(b) Enstrophy evolution for grid-size 256

Figure 4.8: Enstrophy for different grid-sizes

Time Reversibility

The system of incompressible Euler equations is time-reversible, meaning

that the simulation can be ran backward by taking a negative time step. We

validate the reversibility of the numerical scheme by running the simulation

to a small time T , and then backwards. Figure 4.10 shows the solution for a

simulation turned backwards at T = 50.

Taking the difference between the map at final and initial times ~χ(:, 2T )−
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Figure 4.9: Enstrophy versus grid size h at t = 200

(a) t = 0 (b) t = T (c) t = 2T

Figure 4.10: Time Reversed simulation: T = 50 seconds

~χ(:, 0) gives us the numerical error of the computed solution. We compute

this numerical error for different grid sizes and time steps, and observe a

global third order accuracy of the method (fig. 4.11).
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Figure 4.11: Log-log plot of error versus grid size (dt ∝ dx)

4.3.2 Homogeneous Isotropic flow

A fully developed homogeneous isotropic turbulence [14] exhibits a property

of forming an energy cascade (transfer of energy from large to small length

scales). Specific cases of the flow conditions achieves specific structure of the

cascade mainly in terms of the slope ([10], [15]). The transfer of energy from

larger to smaller length scales happens due to inertia and the mechanism

is essentially inviscid. Therefore, the formation of energy cascade is also

common in 2D incompressible Euler’s equation [5].

We compare our results of homogeneous isotropic 2d-incompressible in-

viscid flow with the results established by Bachelor in 1960 [1] under the

assumptions of vanishing enstrophy dissipation [18]. The numerical solu-

tion of vorticity transport equation has no enstrophy dissipation except the

numerical diffusion caused by the scheme. Ideally, we expect an enstrophy

spectrum of form k−1.
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We initialize the simulation with a homogeneous isotropic incompressible

flow field with energy spectrum peaking at a certain chosen length scale. We

maintain the initial condition periodic and analytic by storing it in Fourier

space as a superimposition of Fourier basis functions with complex ampli-

tudes. Initial vorticity field comprises of numerous small vortices with max-

imum energy at the chosen length scale.

We run the simulation on a computational grid of size 128 × 128 with

a time step dt = 1
128 seconds. As time proceeds (fig. 4.12), the energy is

transferred between the length scales forming a cascade as shown in fig. 4.13

and 4.14.

We observe a region in the enstrophy spectrum with the slope of −1.

Some disturbances are seen at the smaller length scales which are expected

to be caused due to the numerical diffusion caused by the scheme. This

implies a promising initial validation of the scheme. Although, future work

would involve a detailed analysis of the problem starting with a rigorous

prediction of the expected spectrum.
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(a) t = 0s (b) t = 500s (c) t = 1000s

(d) t = 1500s (e) t = 2000s (f) t = 2500s

(g) t = 3000s

Figure 4.12: Homogenous Isotropic Flow
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Figure 4.13: Time averaged energy spectrum at t = 3000s

Figure 4.14: Time averaged enstrophy spectrum at t = 3000s
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Chapter 5

Conclusions

The characteristic mapping method along with the map-stacking technique,

can be used to solve non-linear advection problems rather advantageously.

The solution could represent very fine sub-grid features having a very low

contribution in the energy.

The method is compact, and thus the parallel implementation is robust

with minimal inter-thread communication as opposed to in traditional higher-

order methods which have larger stencils. The numerical method can be

broken down to fast-Fourier-operations, Hermite interpolation and backward

integration. All three of them could be very well optimized for parallel ar-

chitecture.

Future work would involve a detailed analysis of the numerical scheme

in regard of its accuracy and physical admissibility of the sub-grid features.

Finally, the method as it is can be used in various computer-graphics applica-

tions, where fast computation of realistic fine features makes the applications

very fast and robust.
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