###################################################################### cat("### read in tabloid data from web\n") trainDf = read.csv( "https://raw.githubusercontent.com/ChicagoBoothML/DATA__Tabloid/master/Tabloid_train.csv") testDf = read.csv( "https://raw.githubusercontent.com/ChicagoBoothML/DATA__Tabloid/master/Tabloid_test.csv") trainDf$purchase = as.factor(trainDf$purchase) testDf$purchase = as.factor(testDf$purchase) names(trainDf)[1]="y" names(testDf)[1]="y" pnm="tabloid" ###################################################################### cat("### load librairies and make loss and lift functions\n") library(tree) library(randomForest) library(gbm) #-------------------------------------------------- #deviance loss function lossf = function(y,phat,wht=0.0000001) { #y should be 0/1 #wht shrinks probs in phat towards .5, don't log 0! if(is.factor(y)) y = as.numeric(y)-1 phat = (1-wht)*phat + wht*.5 py = ifelse(y==1,phat,1-phat) return(-2*sum(log(py))) } #-------------------------------------------------- #lift function liftf = function(yl,phatl,dopl=TRUE) { if(is.factor(yl)) yl = as.numeric(yl)-1 oo = order(-phatl) sy = cumsum(yl[oo])/sum(yl==1) if(dopl) { ii = (1:length(sy))/length(sy) plot(ii,sy,type='l',lwd=2,col='blue',xlab='% tried',ylab='% of successes',cex.lab=2) abline(0,1,lty=2) } return(sy) } ###################################################################### cat("### setup storage for results\n") phatL = list() #store the test phat for the different methods here ###################################################################### cat("### fit logit\n") ###settings for logit (just one of course) phatL$logit = matrix(0.0,nrow(testDf),1) #only one logit fit ###fit logit lgfit = glm(y~.,trainDf,family=binomial) print(summary(lgfit)) ###predict using logit phat = predict(lgfit,testDf,type="response") phatL$logit = matrix(phat,ncol=1) #logit phat ##do lift liftf(testDf$y,phatL$logit[,1]) ###################################################################### cat("### fit random Forests\n") set.seed(99) ##settings for randomForest p=ncol(trainDf)-1 mtryv = c(p,sqrt(p)) ntreev = c(500,1000) setrf = expand.grid(mtryv,ntreev) colnames(setrf)=c("mtry","ntree") phatL$rf = matrix(0.0,nrow(testDf),nrow(setrf)) ###fit rf for(i in 1:nrow(setrf)) { cat("on randomForest fit ",i,"\n") print(setrf[i,]) #fit and predict frf = randomForest(y~.,data=trainDf,mtry=setrf[i,1],ntree=setrf[i,2]) phat = predict(frf,newdata=testDf,type="prob")[,2] phatL$rf[,i]=phat } ###################################################################### cat("### fit boosting\n") ##settings for boosting idv = c(2,4) ntv = c(1000,5000) shv = c(.1,.01) setboost = expand.grid(idv,ntv,shv) colnames(setboost) = c("tdepth","ntree","shrink") phatL$boost = matrix(0.0,nrow(testDf),nrow(setboost)) trainDfB = trainDf; trainDfB$y = as.numeric(trainDfB$y)-1 testDfB = testDf; testDfB$y = as.numeric(testDfB$y)-1 ##fit boosting for(i in 1:nrow(setboost)) { cat("on boosting fit ",i,"\n") print(setboost[i,]) ##fit and predict fboost = gbm(y~.,data=trainDfB,distribution="bernoulli", n.trees=setboost[i,2],interaction.depth=setboost[i,1],shrinkage=setboost[i,3]) phat = predict(fboost,newdata=testDfB,n.trees=setboost[i,2],type="response") phatL$boost[,i] = phat } ###################################################################### cat("### plot loss\n") lossL = list() nmethod = length(phatL) for(i in 1:nmethod) { nrun = ncol(phatL[[i]]) lvec = rep(0,nrun) print(nrun) for(j in 1:nrun) lvec[j] = lossf(testDf$y,phatL[[i]][,j]) lossL[[i]]=lvec; names(lossL)[i] = names(phatL)[i] } lossv = unlist(lossL) plot(lossv,ylab="loss on Test",type="n") nloss=0 for(i in 1:nmethod) { ii = nloss + 1:ncol(phatL[[i]]) points(ii,lossv[ii],col=i,pch=17) nloss = nloss + ncol(phatL[[i]]) } legend("topright",legend=names(phatL),col=1:nmethod,pch=rep(17,nmethod)) ###################################################################### cat("### lift\n") nmethod = length(phatL) phatBest = matrix(0.0,nrow(testDf),nmethod) #pick off best from each method colnames(phatBest) = names(phatL) for(i in 1:nmethod) { nrun = ncol(phatL[[i]]) lvec = rep(0,nrun) print(nrun) for(j in 1:nrun) lvec[j] = lossf(testDf$y,phatL[[i]][,j]) print(lvec) imin = which.min(lvec) cat("imin: ",imin,"\n") phatBest[,i] = phatL[[i]][,imin] phatBest[,i] = phatL[[i]][,1] } pairs(phatBest) dfrac = (1:nrow(testDf))/nrow(testDf) plot(c(0,1),c(0,1),xlab='% tried',ylab='% of successes',cex.lab=2,type="n") for(i in 1:ncol(phatBest)) { temp = liftf(testDf$y,phatBest[,i],dopl=FALSE) lines(dfrac,temp,type="l",col=i) } abline(0,1,lty=2) legend("topleft",legend=names(phatL),col=1:nmethod,lty=rep(1,nmethod))