{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 134,
   "metadata": {},
   "outputs": [],
   "source": [
    "#全部行都能输出\n",
    "from IPython.core.interactiveshell import InteractiveShell\n",
    "InteractiveShell.ast_node_interactivity = \"all\""
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 135,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy as np"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# numpy矩阵模块matlib"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "NumPy 包包含一个 Matrix 库 numpy.matlib 。此模块的函数返回矩阵而不是返回 ndarray对象。  \n",
    "矩阵是一个二维数组"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 64,
   "metadata": {},
   "outputs": [],
   "source": [
    "import numpy.matlib"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## np.matlib.empty(shape)  \n",
    "函数返回一个新的矩阵,且不初始化元素。里面的初始化数据无意义"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 65,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[1., 1., 1., 1., 1.]])"
      ]
     },
     "execution_count": 65,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "m = np.matlib.empty(5)\n",
    "m"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 66,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "numpy.matrix"
      ]
     },
     "execution_count": 66,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "matrix([[1., 2.],\n",
       "        [3., 4.]])"
      ]
     },
     "execution_count": 66,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "m = np.matlib.empty((2,2))\n",
    "type(m)\n",
    "m"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 67,
   "metadata": {},
   "outputs": [
    {
     "ename": "ValueError",
     "evalue": "shape too large to be a matrix.",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-67-35e333e4fda2>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mm\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmatlib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mempty\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m2\u001b[0m\u001b[1;33m,\u001b[0m\u001b[1;36m4\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m   \u001b[1;31m# 三维的数组不会是矩阵\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m      2\u001b[0m \u001b[0mtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mm\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m      3\u001b[0m \u001b[0mm\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mD:\\Anaconda3\\lib\\site-packages\\numpy\\matlib.py\u001b[0m in \u001b[0;36mempty\u001b[1;34m(shape, dtype, order)\u001b[0m\n\u001b[0;32m     47\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     48\u001b[0m     \"\"\"\n\u001b[1;32m---> 49\u001b[1;33m     \u001b[1;32mreturn\u001b[0m \u001b[0mndarray\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0m__new__\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mmatrix\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0morder\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     50\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     51\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mones\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mNone\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0morder\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;34m'C'\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mD:\\Anaconda3\\lib\\site-packages\\numpy\\matrixlib\\defmatrix.py\u001b[0m in \u001b[0;36m__array_finalize__\u001b[1;34m(self, obj)\u001b[0m\n\u001b[0;32m    180\u001b[0m                 \u001b[1;32mreturn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    181\u001b[0m             \u001b[1;32melif\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mndim\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 182\u001b[1;33m                 \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"shape too large to be a matrix.\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    183\u001b[0m         \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    184\u001b[0m             \u001b[0mnewshape\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mValueError\u001b[0m: shape too large to be a matrix."
     ]
    }
   ],
   "source": [
    "m = np.matlib.empty((2,2,4))   # 三维的数组不会是矩阵\n",
    "type(m)\n",
    "m"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## np.matlib.zeros(shape)  \n",
    "返回一个全0的矩阵"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 68,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[0., 0., 0., 0., 0.]])"
      ]
     },
     "execution_count": 68,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.zeros(5)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 69,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[0., 0., 0., 0.],\n",
       "        [0., 0., 0., 0.],\n",
       "        [0., 0., 0., 0.]])"
      ]
     },
     "execution_count": 69,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.zeros((3, 4))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## np.matlib.ones(shape)  \n",
    "返回一个全1的矩阵"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 70,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[1., 1., 1., 1., 1.],\n",
       "        [1., 1., 1., 1., 1.],\n",
       "        [1., 1., 1., 1., 1.]])"
      ]
     },
     "execution_count": 70,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.ones((3, 5))"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## np.matlib.eye(行, 列=行, k偏移)  \n",
    "这个函数返回一个矩阵,对角线元素为 1,其他位置为零。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 71,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[1., 0., 0.],\n",
       "        [0., 1., 0.],\n",
       "        [0., 0., 1.]])"
      ]
     },
     "execution_count": 71,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.eye(3)  # 列数默认等于行数"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 72,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[1., 0., 0., 0.],\n",
       "        [0., 1., 0., 0.],\n",
       "        [0., 0., 1., 0.]])"
      ]
     },
     "execution_count": 72,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.eye(3, 4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 73,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[0., 1., 0., 0.],\n",
       "        [0., 0., 1., 0.],\n",
       "        [0., 0., 0., 1.]])"
      ]
     },
     "execution_count": 73,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.eye(3, 4, 1)  # k=1向上偏移1"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 74,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[0., 0., 0., 0.],\n",
       "        [1., 0., 0., 0.],\n",
       "        [0., 1., 0., 0.]])"
      ]
     },
     "execution_count": 74,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.eye(3, 4, -1)  # k=1向下偏移1"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## np.matlib.identity(阶数)   \n",
    "函数返回给定大小的单位矩阵。单位矩阵是主对角线元素都为 1 的**方阵**。"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 75,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[1., 0., 0.],\n",
       "        [0., 1., 0.],\n",
       "        [0., 0., 1.]])"
      ]
     },
     "execution_count": 75,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.identity(3)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 76,
   "metadata": {
    "scrolled": true
   },
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[1., 0., 0., 0., 0.],\n",
       "        [0., 1., 0., 0., 0.],\n",
       "        [0., 0., 1., 0., 0.],\n",
       "        [0., 0., 0., 1., 0.],\n",
       "        [0., 0., 0., 0., 1.]])"
      ]
     },
     "execution_count": 76,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.identity(5)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## np.matlib.rand(shape)  \n",
    "这个函数以[0, 1)的数组成的二维数组"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 77,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[0.70354477, 0.10355941, 0.10140223, 0.91209582]])"
      ]
     },
     "execution_count": 77,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.rand(4)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 78,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "matrix([[0.71320341, 0.17103505, 0.81294741, 0.00272406, 0.14810309],\n",
       "        [0.57606954, 0.61993777, 0.98707075, 0.56956267, 0.99584741],\n",
       "        [0.83406569, 0.88845715, 0.50835887, 0.59140323, 0.20945002]])"
      ]
     },
     "execution_count": 78,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matlib.rand((3, 5))"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 79,
   "metadata": {},
   "outputs": [
    {
     "ename": "ValueError",
     "evalue": "shape too large to be a matrix.",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mValueError\u001b[0m                                Traceback (most recent call last)",
      "\u001b[1;32m<ipython-input-79-78c430c99182>\u001b[0m in \u001b[0;36m<module>\u001b[1;34m\u001b[0m\n\u001b[1;32m----> 1\u001b[1;33m \u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mmatlib\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrand\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;36m3\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m4\u001b[0m\u001b[1;33m,\u001b[0m \u001b[1;36m5\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m   \u001b[1;31m# 不能超出二维\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m",
      "\u001b[1;32mD:\\Anaconda3\\lib\\site-packages\\numpy\\matlib.py\u001b[0m in \u001b[0;36mrand\u001b[1;34m(*args)\u001b[0m\n\u001b[0;32m    261\u001b[0m     \u001b[1;32mif\u001b[0m \u001b[0misinstance\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mtuple\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    262\u001b[0m         \u001b[0margs\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0margs\u001b[0m\u001b[1;33m[\u001b[0m\u001b[1;36m0\u001b[0m\u001b[1;33m]\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 263\u001b[1;33m     \u001b[1;32mreturn\u001b[0m \u001b[0masmatrix\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mnp\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrandom\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mrand\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    264\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    265\u001b[0m \u001b[1;32mdef\u001b[0m \u001b[0mrandn\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;33m*\u001b[0m\u001b[0margs\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mD:\\Anaconda3\\lib\\site-packages\\numpy\\matrixlib\\defmatrix.py\u001b[0m in \u001b[0;36masmatrix\u001b[1;34m(data, dtype)\u001b[0m\n\u001b[0;32m     69\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     70\u001b[0m     \"\"\"\n\u001b[1;32m---> 71\u001b[1;33m     \u001b[1;32mreturn\u001b[0m \u001b[0mmatrix\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdata\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mdtype\u001b[0m\u001b[1;33m=\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m,\u001b[0m \u001b[0mcopy\u001b[0m\u001b[1;33m=\u001b[0m\u001b[1;32mFalse\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m     72\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m     73\u001b[0m \u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mD:\\Anaconda3\\lib\\site-packages\\numpy\\matrixlib\\defmatrix.py\u001b[0m in \u001b[0;36m__new__\u001b[1;34m(subtype, data, dtype, copy)\u001b[0m\n\u001b[0;32m    135\u001b[0m             \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    136\u001b[0m                 \u001b[0mintype\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mN\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 137\u001b[1;33m             \u001b[0mnew\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mview\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0msubtype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    138\u001b[0m             \u001b[1;32mif\u001b[0m \u001b[0mintype\u001b[0m \u001b[1;33m!=\u001b[0m \u001b[0mdata\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mdtype\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    139\u001b[0m                 \u001b[1;32mreturn\u001b[0m \u001b[0mnew\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mastype\u001b[0m\u001b[1;33m(\u001b[0m\u001b[0mintype\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;32mD:\\Anaconda3\\lib\\site-packages\\numpy\\matrixlib\\defmatrix.py\u001b[0m in \u001b[0;36m__array_finalize__\u001b[1;34m(self, obj)\u001b[0m\n\u001b[0;32m    180\u001b[0m                 \u001b[1;32mreturn\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    181\u001b[0m             \u001b[1;32melif\u001b[0m \u001b[1;33m(\u001b[0m\u001b[0mndim\u001b[0m \u001b[1;33m>\u001b[0m \u001b[1;36m2\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[1;32m--> 182\u001b[1;33m                 \u001b[1;32mraise\u001b[0m \u001b[0mValueError\u001b[0m\u001b[1;33m(\u001b[0m\u001b[1;34m\"shape too large to be a matrix.\"\u001b[0m\u001b[1;33m)\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0m\u001b[0;32m    183\u001b[0m         \u001b[1;32melse\u001b[0m\u001b[1;33m:\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n\u001b[0;32m    184\u001b[0m             \u001b[0mnewshape\u001b[0m \u001b[1;33m=\u001b[0m \u001b[0mself\u001b[0m\u001b[1;33m.\u001b[0m\u001b[0mshape\u001b[0m\u001b[1;33m\u001b[0m\u001b[1;33m\u001b[0m\u001b[0m\n",
      "\u001b[1;31mValueError\u001b[0m: shape too large to be a matrix."
     ]
    }
   ],
   "source": [
    "np.matlib.rand((3, 4, 5))   # 不能超出二维"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# numpy线性代数模块linalg"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "NumPy 包包含 numpy.linalg 模块,提供线性代数所需的所有功能。\n",
    "- numpy.linalg.det() 计算输入矩阵的行列式\n",
    "- numpy.linalg.solve() 求解矩阵形式的线性方程的解\n",
    "- numpy.linalg.inv() 计算矩阵的逆"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## np.matmul(a, b)\n",
    "函数返回两个数组的矩阵乘积"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 181,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[1, 2],\n",
       "       [3, 4]])"
      ]
     },
     "execution_count": 181,
     "metadata": {},
     "output_type": "execute_result"
    },
    {
     "data": {
      "text/plain": [
       "array([[11, 12],\n",
       "       [13, 14]])"
      ]
     },
     "execution_count": 181,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "a = np.array([[1,2],[3,4]])\n",
    "b = np.array([[11,12],[13,14]])\n",
    "a\n",
    "b"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 182,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[37, 40],\n",
       "       [85, 92]])"
      ]
     },
     "execution_count": 182,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matmul(a, b)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## np.linalg.det(a)\n",
    "求矩阵的行列式  \n",
    "只有方阵才有对应的行列式"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 183,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[1, 2],\n",
       "       [3, 4]])"
      ]
     },
     "execution_count": 183,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "a = np.array([[1, 2], [3, 4]])\n",
    "a"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 184,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "-2.0000000000000004"
      ]
     },
     "execution_count": 184,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.linalg.det(a)  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 185,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "-2"
      ]
     },
     "execution_count": 185,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "1*4-2*3"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 186,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[1, 2, 3],\n",
       "       [1, 3, 3],\n",
       "       [1, 0, 3]])"
      ]
     },
     "execution_count": 186,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "a = np.array([[1, 2, 3], [1, 3, 3], [1, 0, 3]])\n",
    "a"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 187,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "0.0"
      ]
     },
     "execution_count": 187,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.linalg.det(a)  "
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "**行列式等于0,说明存在完全的线性相关性**"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## np.linalg.solve()\n",
    "该函数给出了矩阵形式的线性方程的解。   \n",
    "例如,考虑以下线性方程:   \n",
    "`x + y + z = 6`   \n",
    "`2y + 5z = -4`    \n",
    "`2x + 5y - z = 27`    \n",
    "\n",
    "可以使用矩阵表示为:\n",
    "\n",
    "$\n",
    "\\left[\n",
    " \\begin{matrix}\n",
    "   1 & 1 & 1 \\\\\n",
    "   0 & 2 & 5 \\\\\n",
    "   2 & 5 & -1\n",
    "  \\end{matrix}\n",
    "  \\right]\n",
    "  $\n",
    ".\n",
    "$\n",
    "\\left[\n",
    " \\begin{matrix}\n",
    "   x \\\\\n",
    "   y \\\\\n",
    "   z \n",
    "  \\end{matrix}\n",
    "  \\right]\n",
    "$\n",
    "=\n",
    "$\n",
    "\\left[\n",
    " \\begin{matrix}\n",
    "   6 \\\\\n",
    "  -4 \\\\\n",
    "   27 \n",
    "  \\end{matrix}\n",
    "  \\right]\n",
    "  $  \n",
    "方程变为:AX = B  \n",
    "A是一个矩阵, 即一个二维数组  \n",
    "B是一个一维的数组\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 188,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[ 1,  1,  1],\n",
       "       [ 0,  2,  5],\n",
       "       [ 2,  5, -1]])"
      ]
     },
     "execution_count": 188,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "A = np.array([[1, 1, 1], [0, 2, 5], [2, 5, -1]])\n",
    "A"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 189,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 6, -4, 27])"
      ]
     },
     "execution_count": 189,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "B = np.array([6, -4, 27])\n",
    "B"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 190,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 5.,  3., -2.])"
      ]
     },
     "execution_count": 190,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.linalg.solve(A, B)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "则解出: x=5, y=3, z=-2"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "可以利用矩阵乘法验证下"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 191,
   "metadata": {},
   "outputs": [],
   "source": [
    "a = np.linalg.solve(A, B)  "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 192,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([ 6., -4., 27.])"
      ]
     },
     "execution_count": 192,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.matmul(A, a)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## np.linalg.inv(a)  \n",
    "返回矩阵的逆矩阵"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 193,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[1, 2],\n",
       "       [3, 4]])"
      ]
     },
     "execution_count": 193,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "a = np.array([[1,2],[3,4]])\n",
    "a"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 194,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "array([[-2. ,  1. ],\n",
       "       [ 1.5, -0.5]])"
      ]
     },
     "execution_count": 194,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "np.linalg.inv(a)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": []
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.7.4"
  },
  "toc": {
   "base_numbering": 1,
   "nav_menu": {},
   "number_sections": true,
   "sideBar": true,
   "skip_h1_title": false,
   "title_cell": "Table of Contents",
   "title_sidebar": "Contents",
   "toc_cell": false,
   "toc_position": {
    "height": "calc(100% - 180px)",
    "left": "10px",
    "top": "150px",
    "width": "225.658px"
   },
   "toc_section_display": true,
   "toc_window_display": true
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}