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Question

How to predict motions and phase portraits of Hamiltonian systems based on discrete trajectory
observations?

Message of this poster

Do not learn the flow map directly. Do not learn the exact Hamiltonian and integrate the learned
system. Instead, learn a modified structure adapted to your favourite geometric integrator.

Background
Hamiltonian system. A Hamiltonian system on the phase space M = R*" is a differential equation
of the form
:=J "VH(z), J= , (1)
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where H: M — R and I, is an n-dimensional identity matrix. Hamiltonian systems arise in clas-
sical mechanics, plasma physics, electrodynamics, sampling problems (Hamiltonian Monte Carlo
methods) and many other applications. Trajectories of Hamiltonian systems conserve [ (energy)
and the dynamical system has no attractors.

Symplectic transformations. The flow map ¢;: M — M to a Hamiltonian system is symplectic, i.e.
it fulfils

i(2) Ti(z) =T Ve M, (2)
where ¢;(z) denotes the Jacobian matrix of ¢; at z. Symplecticticity of the flow is related to further

qualitative properties of the system such as volume preservation and a favourable interaction with
symmetries (Noether’s theorem).

Geometric Integrator / Symplectic Integrator. A discretisation scheme for Hamilton’s equations
such that the numerical flow is a symplectic transformation is called Geometric Integrator or Symplec-
tic Integrator. Example: Symplectic Euler scheme:
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Here h is the timestep. The numerical flow vy, (qn—1, Pn—1) = (qn, prn) is a symplectic transformation.

(Inverse) modified Hamiltonian. The numerical flow map 1}, of a symplectic integrator preserves a
modified Hamiltonian H (up to exponentially small errors in h). The inverse modified Hamiltonian H is
a Hamiltonian such that an application of a symplectic integrator to 7 = J 'V H(z) yields the exact
flow map ¢, (in the sense of formal power series [6]).
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What is Symplectic Shadow Integration?

Problem

Predict the motion of a dynamical system of the form (1). The Hamiltonian A and the Hamilto-
nian vector field J~!V H are not explicitly known and the prediction must be made based on data
consisting of discrete trajectory observations.

Procedure of Symplectic Shadow Integration.

1. Preparation. Chose a symplectic integrator and a step size h compatible with the trajectory data.
2. Inverse system identification. Learn the inverse modified Hamiltonian H from trajectory data.

3. Integration. Apply the symplectic integrator to the inverse modified Hamiltonian system z =
J~1VH|(z) to obtain a flow map.

4. System identification (Bonus). Compute H from H.

Advantages of Symplectic Shadow Integration

Strategy 1: Learn the flow map directly.

One could use established learning techniques, such as artificial neural networks or Gaussian pro-
cesses, to learn the flow map of the system directly. However, Symplectic Shadow Integration has
the following advantages over this approach.

e The Hamiltonian structure can be incorporated into the learned system. This guarantees impor-
tant qualitative aspects of the prediction such as energy conservation, preservation of phase space
volume and topological properties of the phase portrait.

e Further conservation laws, such as (angular) momentum conservation, can be incorporated via a
combination with symmetric learning, for instance using symmetric kernels in case of Gaussian
processes [5]. The conservation laws are then guaranteed by a discrete Noether theorem (future
work).

* Only a real valued map H needs to be learned rather than the flow map, reducing the dimension
of the learning problem and data requirements.

e Hamiltonian structure is identified during the process. It provides physical insight into the dy-
namics and can be used for verification.

Strategy 2: Learn the exact Hamiltonian and then use a symplectic integrator.

Techniques have been developed to learn Hamiltonians from data [1]. Symplectic Shadow Integra-
tion has the following advantages over learning the exact Hamiltonian A and applying a symplectic
integrator to (1).

* The numerical integrator introduces a discretisation error. The discretisation error is in addition
to uncertainty in the Hamiltonian due to limited training data and is not inevitable.

e Step-size selection is decoupled from accuracy requirements. This is beneficial if the learned
Hamiltonian and its gradient are expansive to evaluate.

e Symplectic Shadow Integration uses the trajectory data directly. There is no need to approximate
data of the underlying vector field.

lin the sense of formal power series — optimal truncation results are available in the setting of regular backward error analysis [2]

Example
The Henon-Heils system is a Hamiltonian system on L0 7
M = R? x R? with 05
L9 L2 ) G s 0017
H(g,p) =5lpl"+Vig), Vig) =slladl"+r|de—= |- \
2 2 3 o5l C
The system has bounded as well as unbounded mo- 10555 o0 o5 1o
tions. Preserving the energy level of a trajectory under N

discretisation of (1) makes sure that numerical trajec-
tories cannot escape if its initialisation point lies on a
bounded energy level set. We set © = 0.8. We obtain
training data by integrating (1) to high accuracy. Now
we follow the steps outlined in Procedure of Symplec-
tic Shadow Integration.

Figure 1: The level sets of the exact po-
tential V' and the level sets of the poten-
tial recovered from the learned data using
Symplectic Shadow Integration are not vi-
sually distinguishable.

1. Preparation. We chose the Symplectic Euler method (3) with step size i = 0.1.

2. Inverse system identification. We use Gaussian Process regression with radial basis functions to
model . We use the Symplectic Euler scheme

(q”) = (q“) + hJ 'V H((qn, pp—1)) (4)
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to obtain data on the gradient V H. (There is no approximation involved in this step. Equation (4)
is exactly fulfilled! by the inverse modified Hamiltonian.)

3. Integration. We apply the Symplectic Euler method to ¢ = J 'V H with step size h = 0.1. This is
compared to predictions from strategy 1, to learn the flow map directly, and strategy 2, to learn
the exact system and apply a symplectic integrator? in Figure 2 and 3.

4. System identification. We apply the (classical) backward error analysis formula for the Symplectic
Euler Scheme [2] to H

= h—T— R (=T T T
H=H+5H, Hy+ 35 (Hy HypHq+ By HogHy + 4(H, HypHy)) + .. (5)

and use a truncation of H after second order terms as an approximation to H. Figure 1 shows that
level sets of the recovered potential and the exact potential are indistinguishable.
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Figure 2: Left: The long term behaviour of a motion is correctly captured by the Symplectic Shadow Integrator. Motions
computed using strategy 1 (centre) and 2 (right) incorrectly leave the energy level leading to desastrous errors.
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Figure 3: Energy is preserved to high accuracy by the symplectic shadow integration (blue) in comparition with strategy
1 (green) and strategy 2 (orange).

Further remarks

The procedure of Symplectic Shadow Integration is a framework which can be used in combination
with several learning techniques and with different symplectic integrators. More details, experi-
ments, and verifications can be found in the corresponding preprint [3]. See [4] for source code.

Conclusion

Symplectic Shadow Integration provides a way to learn the flow map of a Hamiltonian system from
trajectory observations. Prior knowledge of the presence of Hamiltonian structure is incorporated,
which greatly improves the learned flow map compared with learning the flow map directly. The
flow map is symplectic and has excellent energy conservation properties. The technique relies on
learning an inverse modified Hamiltonian, which is then integrated using a geometric integrator.
Compared with integrating a learned approximation to the exact Hamiltonian system, discretisa-
tion errors are eliminated.
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’In the experiment we compare Symplectic Shadow Integration to an application of the Symplectic Euler method to the exact system with the same step size h as the Symplectic Shadow Integrator. This corresponds to strategy 2 in the infinite data limit.
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