
Distributed Tracing in ClickHouse
Frank Chen 16/03/2024

2

1 Background

2 Basic understanding of distributed tracing

3 Distributed tracing in/upon ClickHouse

4 Case Study

The ClickHouse in Shopee

Anti Fraud Detecting

Application
Observability

Realtime Data
warehouse

User Behaviour
Analytics

Application/Server
Logs

MySQL/ES
Replacement

Video Quality
Analytics AB Test

Business Intelligence

Fully Managed ClickHouse Services
ClickHouse Clusters

Holistic view of Shopee ClickHouse

User Applications

ClickHouse Manager ClickHouse MPP SSD
on K8S

ClickHouse Gateway

ClickHouse Monitoring

ClickHouse MPP HDD
on K8S

ClickHouse
Computing and Storage Separation

on K8S

ClickHouse
Cold & Hot Separation Storage

ClickHouse Console

control plane

data plane

monitor plane

Challenges

Why does my query return different responses?

Why does my query fail occasionally?

Why does my INSERT query fail saying that table does not exist while the table does exist?

Why does ClickHouse take so long to process a query even the query is the very simple?

…

User questions break down

When a query comes at the gateway side and
when it comes at the ClickHouse side

Where a query fails, gateway side or
ClickHouse side
On Which node a query fails for a
distributed query
For INSERT query, which shards does
that query write data to

What’s the incoming query and the sub-queries for
each ClickHouse nodes

How a query is executed
through the whole cluster,
are there MVs executed for
that query?

WHY

When

Where

What

How

7

1 Background

2 Basic understanding of distributed tracing

3 Distributed tracing in/upon ClickHouse

4 Case Study

Rationale of distributed tracing(1)

ClickHouse
Shard 1

HTTP GET
/?query=select * from dis

Gateway ClickHouse
Shard 2

HTTP GET
/?query=select * from dis

TCP
select * from local

GET /?query=select * from dis
startTime = 17:25:00.020
duration = 200ms

Rationale of distributed tracing(1)

ClickHouse
Shard 1

HTTP GET
/?query=select * from dis

Gateway ClickHouse
Shard 2

HTTP GET
/?query=select * from dis

TCP
select * from local

GET /?query=select * from dis
startTime = 17:25:00.020
duration = 200ms

TCP
query=select * from local
startTime = 17:25:00.120
duration = 100ms

Rationale of distributed tracing(1)

ClickHouse
Shard 1

HTTP GET
/?query=select * from dis

Gateway ClickHouse
Shard 2

HTTP GET
/?query=select * from dis

TCP
select * from local

GET /?query=select * from dis
startTime = 17:25:00.020
duration = 200ms

TCP
query=select * from local
startTime = 17:25:00.120
duration = 100ms

startTime 17:25:00.130
duration = 90ms

Rationale of distributed tracing(1)

ClickHouse
Shard 1

HTTP GET
/?query=select * from dis

Gateway ClickHouse
Shard 2

GET /?query=select * from dis
startTime = 17:25:00.020
duration = 200ms

HTTP GET
/?query=select * from dis

TCP
select * from local

TCP
query=select * from local
startTime = 17:25:00.120
duration = 100ms

startTime 17:25:00.130
duration = 90ms

Span
1

Span
2

Span
3

Summary
At the start of HTTP request, application starts a unique context for current request
During the execution of such request inside one application, application can start a span to reflect execution of a method or a piece of code
When an application sends requests to external applications, they’re responsible to propagate the tracing context to other applications
Spans are related to each to simulate call stack

Tracing Context
traceId=123
parentSpanId=0
spanId=1

Tracing Context
traceId=123
parentSpanId=1

Tracing Context
traceId=123
parentSpanId=2

Rationale of distributed tracing(2)

Span Relationship
o Spans can be seen as a simulation of call stack, which is tree-like structure
o Spans use parent-child relationship to simulate the call stack structure
It would be much easier to understand the relationship of spans from the storage perspective
o Each span has a unique id inside one tracing context
o Each span has a parent span Id, indicating the caller of current span

application instance traceId parentSpanId spanId name url startTime duration

Gateway 10.1.1.1 12345678 0 1 http-server /?query=xxx 17:25:00.020 200

Shard 1 192.168.0.1 12345678 1 2 http-server /?query=xxx 17:25:00.030 190

Shard 2 192.168.0.1 12345678 2 3 query 17:25:00.120 100

Shard 2 192.168.0.2 12345678 3 4 tcp-server 17:25:00.130 90

By looking at the tracing logs, we know which component accounts for most of the time

Distributed tracing protocols

traceparent: 00-0af7651916cd43dd8448eb211c80319c-b7ad6b7169203331-01

Pinpoint-TraceID: 0af7651916cd43dd8448eb211c80319c
Pinpoint-pSpanID: b7ad6b7169203331
Pinpoint-SpanID: 169206cd43dd8473

The key in the protocol is propagation of trace id and parent span id
Anyone can define its own protocol
For HTTP, HTTP headers are used to carry these information

X-B3-TraceId: 0af7651916cd43dd8448eb211c80319c
X-B3-ParentSpanId: b7ad6b7169203331
X-B3-SpanId: 169206cd43dd8473

zipkin

pinpoint

OpenTelementry

Trace Id Span Id FlagsVersion

1
4

1 Background

2 Basic understanding of distributed tracing

3 Distributed tracing in/upon ClickHouse

4 Case Study

ClickHouse Services Plane

Monitoring Plane

High level view of distributed tracing in ClickHouse

ClickHouse
Cluster #1

ClickHouse Gateway
User

Queries
User Queries

With Open Telemetry
tracing request

Java Agent

Collector

Processing

ClickHouse

metrics/trace
over TCP

trace
over HTTP

span logs Distributed
table metrics MV metrics

Web Portal

ClickHouse
Cluster #N

User Applications

Java Agent

User
Queries

with
tracing
request

Challenges of implementing tracing in ClickHouse

Tracing Context Propagation
across threads

ASYNC Insert on distributed
table

ON CLUSTER DDL

Huge data processing and
storage and query

A problem must to be solved to adapt multiple threads applications

ClickHouse specific problem
Private tracing context propagation

ClickHouse specific problem
Private tracing context propagation

HBase ?
ES ?

The distributed tracing feature in ClickHouse
We started the work 3 years ago, on ClickHouse 21.3
The distributed tracing feature in ClickHouse was then just a prototype, and full of bugs
The core of distributed tracing feature was re-worked
95% of work has been contributed back to the community(23.3)

Category Community Version Status @ 21.3

Queries Buggy

Async INSERT on distributed table Not Fully Supported

DDL Buggy

ON CLUSTER DDL Not Supported

Materialized View Not Supported

Asynchronous tasks for query execution Buggy

Log Export via URL Engine Buggy

ClickHouse internally uses multiple threads to execute a query
How can we maintain the tracing context across threads?

Addressing challenges of the async tasks

Addressing the challenges of ASYNC INSERT on distributed tables

Example

Addressing the challenges of ON CLUSTER DDLs

Example

Distributed tracing log collection

log processing pipeline

Log processing out of ClickHouse

data normalization data sanitization

metric extraction <<clickhouse>>
metrics storage

<<clickhouse>>
Trace storage

mapping

tracing logs

index

store

Allow searching tracing logs based on
query id(initial query id or sub query id)

Allow using business
info to filter tracing logs

raw logs/
mapping/

index

Store distributed tracing logs in ClickHouse

ClickHouse in return is used to store distributed tracing logs
Higher compression ratio

o Default LZ compress archives 20% compression ratio while zstd can achieve about 13%
compression ratio

o 1:8 compression ratio in general
Higher throughput for INSERT

o Data can be inserted in very large batch, typically 300K rows per INSERT, greatly improved
the performance of data processing middleware

o 3 million rows inserted per second
Hybrid disks support

o SSD for short term storage
o HDD for longer term storage

Better analytics support

Open the black box for users(1)

To find tracing logs for specific query, a query id or trace id is needed, but
trace id is automatically generated at server side, is not visible for clients
query id is also sometimes automatically generated by libraries(like JDBC), it’s invisible for clients

ClickHouseClickHouse Gateway
User Query

Code: 47. DB::Exception: Missing columns: 'ext' …

Users

Code: 47. DB::Exception: Missing columns: 'ext' …

QueryId = 47188e1e-b79e-42e7-a712-da8e147902b3, Check
logs for this query at: http://monitor.olap.data-
infra.shopee.io/web/trace/detail?id=28478df653114e7497eca
0c20444c494&type=trace

http://monitor.olap.data-infra.shopee.io/web/trace/detail?id=28478df653114e7497eca0c20444c494&type=trace
http://monitor.olap.data-infra.shopee.io/web/trace/detail?id=28478df653114e7497eca0c20444c494&type=trace
http://monitor.olap.data-infra.shopee.io/web/trace/detail?id=28478df653114e7497eca0c20444c494&type=trace

Open the black box for users(2) - Search tracing logs through metrics dashboard

2
8

1 Background

2 Basic understanding of distributed tracing

3 Distributed tracing in/upon ClickHouse

4 Case Study

Case 1 - Identify the bottleneck

155s

Case 2 - Identify network problems

select order.*, region_desc

from CK_DEV.order_distributed AS order

JOIN CK_DEV.region_distributed AS region

ON order.region_id = region.region_id

SETTINGS distributed_product_mode = 'allow'

Case 3 - Understanding the distributed JOIN in ClickHouse

Case 3 - Understanding the distributed JOIN in ClickHouse

select order.*, region_desc

from CK_DEV.order_distributed AS order

JOIN CK_DEV.region_distributed AS region

ON order.region_id = region.region_id

SETTINGS distributed_product_mode =

'global'

Case 4 - Identify problematic node

Case 5 - Identify errors from materialized view

Thanks

