
ClickHouse - the What, the Why, the How

Robert Schulze
ClickHouse Inc.

robert@clickhouse.com

Tom Schreiber
ClickHouse Inc.

tom@clickhouse.com

2

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse

3

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse

4

DB Engine

45+ commercial and
research databases

42 queries analyzing 100 million rows of event data

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse

5

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse

6

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse

7

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse

8

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse
9

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse
10

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse
11

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse
12

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse
13

DB Engine

Alexey Milovidov
Creator of ClickHouse

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse
14

DB Engine

Lightning fast
analytics for everyone.
Fastest analytics database

Advanced vectorized query execution engine

What else to expect from the paper
• Storage layer:

updates and deletes, idempotent inserts, data replication, ACID compliance

• Query execution:
JIT query compilation, hash tables, parallel joins

• Integration layer:
native support for 90+ file formats and 50+ integrations with external systems

• Query execution
fully utilizes all server
and cluster resources.

• Enables vertical and
horizontal scaling by
adding more CPU cores
and more cluster nodes.

ClickHouse has the best
query performance
amongst production-grade
analytics databases.
Performance is a top priority
and continuously improved.

benchmark.clickhouse.comMySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Relative cold runtime Relative hot runtime

Re
la

tiv
e

tim
e

(lo
g

sc
al

e)

For everyone

Start of
development

Production
launch

Open
source

First
integration

engine (Kafka)
(sec. 5)

Mutations
(sec. 3)

New execution
framework

(sec. 4)

Improved introspection
tools (sec. 6)

Async inserts,
Projections

(sec. 3)

ClickHouse
Cloud

(sec. 3)

Column
statistics (sec. 3)

CPU & IO scheduling
(sec. 4)

...
(sec. 8)

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024

• The most popular OSS analytics
database (Apache 2.0 license)

• 36k and 2k+ contributors

• Runs on anything

Trusted by 50%+ of Fortunes
Global Top 2000 companies.

• Ingestion rates
only limited by disk speed.
Data transformations
decoupled from INSERTs.

• Three effective data
pruning techniques
for quickly finding rows
matching a predicate.

An LSM-tree based storage layer
CREATE TABLE hits
(
 EventTime Date,
 RegionId String,
 URL String,
 PRIMARY KEY (EventTime)
)

SELECT
 RegionID,
 avg(Latency) AS AvgLatency
FROM hits
WHERE
 URL = ‘https://clickhouse.com’
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

Alexey Milovidov
alexey@clickhouse.com

Robert Schulze
robert@clickhouse.com

Tom Schreiber
tom@clickhouse.com

Ilya Yatsishin
iyatsishin@clickhouse.com

Ryadh Dahimene
ryadh@clickhouse.com

www.clickhouse.com

github.com/ClickHouse/ClickHouse
15

DB Engine

DB Engine

16

Node

DB Engine

17

Node

DB Engine

18

Node

DB Engine

19

DB Engine

20

>_ Command-line

DB Engine

21

>_ Command-line

DB Engine

22

• ClickHouse DB engine isolated as standalone command-line utility

• Serverless: No need to install/configure/start ClickHouse

ClickHouse Local

• Fast!

date price town street postcode

./clickhouse local -q "
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM file('uk_price_paid.csv')
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3"

23

>_ Command-line

DB Engine uk_price
_paid
.csv

90+ file formats

50+ integrations
with external systems

What are the top 3 districts in London
with the most sold properties?

🤪

😎
>_

sort>_ uniq cut sedcat !!...

date price town street postcode

24

>_ Command-line

DB Engine uk_price
_paid
.csv

./clickhouse local -q "
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM file('uk_price_paid.csv')
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3"

┌─district─┬─properties─┐
│ E14 │ 55765 │
│ SW11 │ 49389 │
│ SW19 │ 47222 │
└──────────┴────────────┘

What are the top 3 districts in London
with the most sold properties?

date price town street postcode

25

>_ Command-line

DB Engine uk_price
_paid
.csv

./clickhouse local -q "
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM file('uk_price_paid.csv')
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3
 INTO OUTFILE 'top_3_districts.csv'
"

┌─district─┬─properties─┐
│ E14 │ 55765 │
│ SW11 │ 49389 │
│ SW19 │ 47222 │
└──────────┴────────────┘

What are the top 3 districts in London
with the most sold properties?

90+ file formats

50+ integrations
with external systems

date price town street postcode

26

>_ Command-line

DB Engine uk_price
_paid
.csv

./clickhouse local -q "
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM file('uk_price_paid.csv')
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3"

┌─district─┬─properties─┐
│ E14 │ 55765 │
│ SW11 │ 49389 │
│ SW19 │ 47222 │
└──────────┴────────────┘

What are the top 3 districts in London
with the most sold properties?

PC_DISTRICT NAME date price town street postcode

27

>_ Command-line

DB Engine

./clickhouse local -q "
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM file('uk_price_paid.csv')
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3"

┌─district─┬─properties─┐
│ E14 │ 55765 │
│ SW11 │ 49389 │
│ SW19 │ 47222 │
└──────────┴────────────┘

uk_price
_paid
.csv

joinstations
.csv

How many public transport stations
are in the top 3 districts in London

with the most sold properties?

What are the top 3 districts in London
with the most sold properties?

PC_DISTRICT NAME date price town street postcode

28

>_ Command-line

DB Engine uk_price
_paid
.csv

joinstations
.csv

┌─district─┬─properties─┐
│ E14 │ 55765 │
│ SW11 │ 49389 │
│ SW19 │ 47222 │
└──────────┴────────────┘

./clickhouse local -q "
SELECT !!...
FROM file('stations.csv') AS stations
JOIN (
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM file('uk_price_paid.csv')
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3) AS properties
ON !!..."

How many public transport stations
are in the top 3 districts in London

with the most sold properties?

PC_DISTRICT NAME date price town street postcode

29

>_ Command-line

DB Engine uk_price
_paid
.csv

joinstations
.csv

./clickhouse local -q "
SELECT
 district,
 any(properties) as properties,
 count() as stations
FROM file('stations.csv') AS stations
JOIN (
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM file('uk_price_paid.csv')
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3) AS properties
ON stations.PC_DISTRICT = properties.district
GROUP BY district"

How many public transport stations
are in the top 3 districts in London

with the most sold properties?

┌─district─┬─properties─┐
│ E14 │ 55765 │
│ SW11 │ 49389 │
│ SW19 │ 47222 │
└──────────┴────────────┘

PC_DISTRICT NAME date price town street postcode

30

>_ Command-line

DB Engine uk_price
_paid
.csv

joinstations
.csv

./clickhouse local -q "
SELECT
 district,
 any(properties) as properties,
 count() as stations
FROM file('stations.csv') AS stations
JOIN (
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM file('uk_price_paid.csv')
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3) AS properties
ON stations.PC_DISTRICT = properties.district
GROUP BY district"

┌─district─┬─properties─┬─stations─┐
│ E14 │ 55765 │ 16 │
│ SW11 │ 49389 │ 1 │
│ SW19 │ 47222 │ 10 │
└──────────┴────────────┴──────────┘

How many public transport stations
are in the top 3 districts in London

with the most sold properties?

PC_DISTRICT NAME

31

>_ Command-line

DB Engine

./clickhouse local -q "
SELECT
 district,
 any(properties) as properties,
 count() as stations
FROM file('stations.csv') AS stations
JOIN (
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM file('uk_price_paid.csv')
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3) AS properties
ON stations.PC_DISTRICT = properties.district
GROUP BY district"

┌─district─┬─properties─┬─stations─┐
│ E14 │ 55765 │ 16 │
│ SW11 │ 49389 │ 1 │
│ SW19 │ 47222 │ 10 │
└──────────┴────────────┴──────────┘

stations
.csv

uk_price
_paid
table

join

How many public transport stations
are in the top 3 districts in London

with the most sold properties?

./clickhouse local -q "
SELECT
 district,
 any(properties) as properties,
 count() as stations
FROM file('stations.csv') AS stations
JOIN (
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM file('uk_price_paid.csv')
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3) AS properties
ON stations.PC_DISTRICT = properties.district
GROUP BY district"

PC_DISTRICT NAME

32

>_ Command-line

DB Engine
stations

.csv
uk_price

_paid
table

join

┌─district─┬─properties─┬─stations─┐
│ E14 │ 55765 │ 16 │
│ SW11 │ 49389 │ 1 │
│ SW19 │ 47222 │ 10 │
└──────────┴────────────┴──────────┘

How many public transport stations
are in the top 3 districts in London

with the most sold properties?

./clickhouse local -q "
SELECT
 district,
 any(properties) as properties,
 count() as stations
FROM file('stations.csv') AS stations
JOIN (
 SELECT
 splitByChar(' ', postcode)[1] AS district,
 count() as properties
 FROM remoteSecure('HOST', !!...,'uk_price_paid',!!...)
 WHERE town = 'LONDON'
 GROUP BY district
 ORDER BY properties DESC
 LIMIT 3) AS properties
ON stations.PC_DISTRICT = properties.district
GROUP BY district"

PC_DISTRICT NAME

33

>_ Command-line

DB Engine
stations

.csv
uk_price

_paid
table

join

┌─district─┬─properties─┬─stations─┐
│ E14 │ 55765 │ 16 │
│ SW11 │ 49389 │ 1 │
│ SW19 │ 47222 │ 10 │
└──────────┴────────────┴──────────┘

How many public transport stations
are in the top 3 districts in London

with the most sold properties?

>_ Command-line

DB Engine

34

Python process

DB Engine

35

Python process

DB Engine

36

• Embedded in-process ClickHouse DB Engine

chDB

DB::WriteBuffer

Vector

LocalServer.cpp

ClickHouse local

LocalChdb.cpp

Pybind11

Zero data copy py::memoryview

_chdb.cpython-3xx-xxx-xxx.so

• Serverless: No need to install/configure/start ClickHouse

• Bindings for Python, Go, Rust, NodeJS, Bun, .NET

• Zero data copy from db engine to language library binding

Python process

DB Engine

37

Fast!

The fastest
SQL on DataFrame
engine in the world

Python process

DB Engine

38

stations
.csv

uk_price
_paid
table

join

DB Engine

Architecture
39

90+ file formats

50+ integrations
with external systemsDB Engine

40

DB Engine

41

DB Engine

42

An LSM-tree inspired storage layer
43

NodePartINSERT

PartINSERT

PartINSERT

Part

Part

Part

Part

PartBuffer

ASYNC
INSERT

ASYNC
INSERT

Part

Part

Part

PartINSERT

• INSERTs create sorted
and immutable parts.

• Parts are continuously
merged by a background job.

• INSERTs can be synchronous
or asynchronous.

• All parts are equal
(i.e., no levels or notion
of recency)

TTL (time-to-live) merges
Compress, move, or, delete rows
or parts.

Aggregating merges
Combine aggregation states
into new aggregation states.

Replacing merges
Retain the most recently
inserted version of the
same rows in multiple
input parts.

Merges optionally perform additional data transformations or maintenance.

Aggregating merge

Merge modes
44

Node

Part

Part

Part

Part

Part

Part

CREATE TABLE page_hits
(
 EventTime Date CODEC(Delta, ZSTD),
 RegionId String CODEC(LZ4),
 URL String CODEC(AES),

 PRIMARY KEY (EventTime)
)

• Parts are further divided into
granules g0, g1, ...

• Consecutive granules in a column
form blocks

• Blocks are encoded,
codecs can be combined.

45
Column layout and compression

Part

Compressed
block

•
•
•

Compressed
block

•
•
•

Compressed
block

•
•
•

CREATE TABLE page_hits
(
 EventTime Date CODEC(Delta, ZSTD),
 RegionId String CODEC(LZ4),
 URL String CODEC(AES),

 PRIMARY KEY (EventTime)
)

46
Column layout and compression

Part

Compressed
block

•
•
•

Compressed
block

•
•
•

Compressed
block

•
•
•

• Parts are further divided into
granules g0, g1, ...

• Consecutive granules in a column
form blocks

• Blocks are encoded,
codecs can be combined.

CREATE TABLE page_hits
(
 EventTime Date CODEC(Delta, ZSTD),
 RegionId String CODEC(LZ4),
 URL String CODEC(AES),

 PRIMARY KEY (EventTime)
)

47
Data pruning - Primary key indexes

Part

• Define the local part sorting (clustered index).

• Also create a mapping from primary key
column values to granules.

• The mapping is small enough to remain in
DRAM at all times.

Index lookup

SELECT
count() AS PageViews

FORM page_hits
WHERE

EventTime!>='2023-12-09'

48

Part

CREATE TABLE page_hits
(
 EventTime Date CODEC(Delta, ZSTD),
 RegionId String CODEC(LZ4),
 URL String CODEC(AES),

 PRIMARY KEY (EventTime)
)

SELECT
count() AS PageViews

FORM page_hits
WHERE

EventTime!>='2023-12-09'

Index lookup

• Define the local part sorting (clustered index).

• Also create a mapping from primary key
column values to granules.

• The mapping is small enough to remain in
DRAM at all times.

Data pruning - Primary key indexes

49

2023-10-19 17:03:05.154
2023-10-19 17:03:05.462
2023-10-19 17:03:05.875
2023-10-19 17:03:06.104
2023-10-19 17:03:07.550

EMEA
APAC
AMER

APAC
AMER

https:"//""...
https:"//""...
https:"//""...
https:"//""...
https:"//""...

2023-10-19 17:03:05.875
2023-10-19 17:03:07.550
2023-10-19 17:03:06.104
2023-10-19 17:03:05.462
2023-10-19 17:03:05.154

AMER
AMER
APAC

EMEA
APAC

https:"//""...
https:"//""...
https:"//""...
https:"//""...
https:"//""...

SELECT
count() AS PageViews

FORM page_hits
WHERE

RegionID = 'AMER'

ALTER TABLE page_hits ADD PROJECTION proj (
SELECT *
ORDER BY RegionID

);

ALTER TABLE page_hits MATERIALIZE PRJECTION prj;

• Alternative table versions sorted
by different primary keys.

• Works at the granularity of parts.

• Speed up queries on columns different
than the primary key columns.

Part

Data pruning - Table projections

50

2023-10-19 17:03:05.154
2023-10-19 17:03:05.462
2023-10-19 17:03:05.875
2023-10-19 17:03:06.104
2023-10-19 17:03:07.550

EMEA
APAC
AMER

APAC
AMER

https:"//""...
https:"//""...
https:"//""...
https:"//""...
https:"//""...

2023-10-19 17:03:05.875
2023-10-19 17:03:07.550
2023-10-19 17:03:06.104
2023-10-19 17:03:05.462
2023-10-19 17:03:05.154

AMER
AMER
APAC

EMEA
APAC

https:"//""...
https:"//""...
https:"//""...
https:"//""...
https:"//""...

SELECT
count() AS PageViews

FORM page_hits
WHERE

RegionID = 'AMER'

ALTER TABLE page_hits ADD PROJECTION proj (
SELECT *
ORDER BY RegionID

);

ALTER TABLE page_hits MATERIALIZE PRJECTION prj;

• Alternative table versions sorted
by different primary keys.

• Works at the granularity of parts.

• Speed up queries on columns different
than the primary key columns.

Part

Data pruning - Table projections

51

Part

Clicks
25
8
7
25
25
18
20
22
19
17
8
6
6
13
5

min:
max:

7
25

min:
max:

17
22

min:
max:

5
13

min/max
index

ALTER TABLE T
ADD INDEX idx_minmax (Clicks) TYPE minmax;

ALTER TABLE T MATERIALIZE INDEX idx_minmax;

SELECT *
FROM T
WHERE

Clicks BETWEEN 15 AND 30

Some match → Load and Scan block

All match → SKIP load

None match → SKIP load

• Light-weight alternative to projections.

• Store small amounts of metadata
at the level of granules or multiple
granules which allows to skip data
during scans.

• Skipping index types:

• Min/Max values
• Unique values
• Bloom filter
• ...

Data pruning - Skipping indexes

52
Data pruning - Skipping indexes

Part

Clicks
25
8
7
25
25
18
20
22
19
17
8
6
6
13
5

min:
max:

7
25

min:
max:

17
22

min:
max:

5
13

min/max
index

ALTER TABLE T
ADD INDEX idx_minmax (Clicks) TYPE minmax;

ALTER TABLE T MATERIALIZE INDEX idx_minmax;

SELECT *
FROM T
WHERE

Clicks BETWEEN 15 AND 30

Some match → Load and Scan block

All match → SKIP load

None match → SKIP load

• Light-weight alternative to projections.

• Store small amounts of metadata
at the level of granules or multiple
granules which allows to skip data
during scans.

• Skipping index types:

• Min/Max values
• Unique values
• Bloom filter
• ...

DB Engine

53

DB Engine

54

55

• • •

Node 1

c1

•
•
•
•
•
•

• • •c2

•
•
•
•
•
•

cN

•
•
•
•
•
•

Node 2

c1

•
•
•
•
•
•

• • •c2

•
•
•
•
•
•

cN

•
•
•
•
•
•

Node m

c1

•
•
•
•
•
•

• • •c2

•
•
•
•
•
•

cN

•
•
•
•
•
•

Table shards are processed
in parallel by multiple nodes

Node 1

• • •c1

•
•
•
•
•
•

•
•
•

c2

•
•
•
•
•
•

•
•
•

cN

•
•
•
•
•
•

•
•
•

Data chunks are processed
in parallel by a node's
multiple CPU cores

Data elements are
processed in parallel by a
CPU core's SIMD units

State-of-the-art Vectorized Query Execution Engine

56

Table shards are processed
in parallel by multiple nodes

Data chunks are processed
in parallel by a node's
multiple CPU cores

Data elements are
processed in parallel by a
CPU core's SIMD units

• • •

Node 1

c1

•
•
•
•
•
•

• • •c2

•
•
•
•
•
•

cN

•
•
•
•
•
•

Node 2

c1

•
•
•
•
•
•

• • •c2

•
•
•
•
•
•

cN

•
•
•
•
•
•

Node m

c1

•
•
•
•
•
•

• • •c2

•
•
•
•
•
•

cN

•
•
•
•
•
•

Node 1

• • •c1

•
•
•
•
•
•

•
•
•

c2

•
•
•
•
•
•

•
•
•

cN

•
•
•
•
•
•

•
•
•

State-of-the-art Vectorized Query Execution Engine

57

Data elements are
processed in parallel by a
CPU core's SIMD units

Data chunks are processed
in parallel by a node's
multiple CPU cores

Table shards are processed
in parallel by multiple nodes

58

Data elements are
processed in parallel by a
CPU core's SIMD units

Data chunks are processed
in parallel by a node's
multiple CPU cores

Table shards are processed
in parallel by multiple nodes

Parallelization Across SIMD ALUs

MULTITARGET_FUNCTION_AVX512F_AVX2_SSE42(
MULTITARGET_FUNCTION_HEADER(),
 impl,
MULTITARGET_FUNCTION_BODY((
 const double * in1, const double * in2
 double * out, size_t num_elements)
{

for (size_t i = 0; i < (sz & ~0x7); i += 8)
{

const !__m512d _in1 = _mm512_load_pd(&in1[i]);
const !__m512d _in2 = _mm512_load_pd(&in2[i]);
const !__m512d _out = _mm512_add_pd(_in1, _in2);
out[i] = (double*)&_out;

} !/* tail handling !*/
}))

AVX-512 kernel, manually vectorized

MULTITARGET_FUNCTION_AVX2_SSE42(
MULTITARGET_FUNCTION_HEADER(),

impl,
MULTITARGET_FUNCTION_BODY((
 const double * in1, const double * in2
 double * out, size_t num_elements)
{
 for (size_t i = 0; i < num_elements; !++i)
 *out[i] = *in1[i] + *in2[i];
}))

AVX2 kernel, compiler auto-vectorized

• Based on compiler auto-vectorization or
manually written intrinsics.

• SQL expressions are compiled
into compute kernels.

• The fastest kernel is selected at runtime
based on the system capabilities (cpuid).

SELECT col1 + col2
FROM T

if (isArchSupported(TargetArch!::AVX512))
implAVX512BW(in1, in2);

else if (isArchSupported(TargetArch!::AVX2))
implAVX2(in1, in2, out);

else if (isArchSupported(TargetArch!::SSE42))
implSSE42(in1, in2, out);

else
implGeneric(in1, in2, out);

Dispatch code based on cpuid

59

MergeTreeScan

Sort

Limit

Aggregate

!!...RegionID
•
•
•

URL
•
•
•

Latency
•
•
•

HITS TABLE

Node

SELECT RegionID, avg(Latency) AS AvgLatency
FROM hits
WHERE URL = 'https:!//clickhouse.com'
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

FILTER

AGGREGATE

SORT

FILTER
STAGE

AGGREGATION
STAGE

SORTING
STAGE

Data elements are
processed in parallel by a
CPU core's SIMD units

Data chunks are processed
in parallel by a node's
multiple CPU cores

Table shards are processed
in parallel by multiple nodes

Parallelization Across CPU Cores

LANE 1 LANE 2 LANE 3

60

MergeTreeScan

Sort

Limit

Aggregate

!!...RegionID
•
•
•

URL
•
•
•

Latency
•
•
•

HITS TABLE

Node

FILTER
STAGE

AGGREGATION
STAGE

SORTING
STAGE

SELECT RegionID, avg(Latency) AS AvgLatency
FROM hits
WHERE URL = 'https:!//clickhouse.com'
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

FILTER

AGGREGATE

SORT

Data elements are
processed in parallel by a
CPU core's SIMD units

Data chunks are processed
in parallel by a node's
multiple CPU cores

Table shards are processed
in parallel by multiple nodes

Parallelization Across CPU Cores

MergeTreeScan

Sort

Aggregate

MergeTreeScan

Aggregate

Sort

• Execution plan gets unfolded into N lanes
(typically 1 lane per CPU core).

• Lanes decompose the data to be processed
into non-overlapping ranges.

61

MergeTreeScan

Aggregate

Sort

GroupStateMerge

Repartition

Distribute

MergeSort

Limit

MergeTreeScan

Aggregate

Sort

MergeTreeScan

Aggregate

Sort

LANE 1 LANE 2 LANE 3

!!...RegionID
•
•
•

URL
•
•
•

Latency
•
•
•

HITS TABLE

Node

FILTER
STAGE

AGGREGATION
STAGE

SORTING
STAGE

SELECT RegionID, avg(Latency) AS AvgLatency
FROM hits
WHERE URL = 'https:!//clickhouse.com'
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

FILTER

AGGREGATE

SORT

Data elements are
processed in parallel by a
CPU core's SIMD units

Data chunks are processed
in parallel by a node's
multiple CPU cores

Table shards are processed
in parallel by multiple nodes

Parallelization Across CPU Cores

• Exchange operators
(Repartition, Distribute)
ensure lanes remain balanced.

Node N

. . .

62

MergeTreeScan

Aggregate

Sort

GroupStateMerge

Repartition

Distribute

MergeSort

Limit

MergeTreeScan

Aggregate

Sort

MergeTreeScan

Aggregate

Sort

LANE 1 LANE 2 LANE 3

!!...RegionID
•
•
•

URL
•
•
•

Latency
•
•
•

HITS TABLE

Node 1

FILTER
STAGE

AGGREGATION
STAGE

SORTING
STAGE

Data elements are
processed in parallel by a
CPU core's SIMD units

Data chunks are processed
in parallel by a node's
multiple CPU cores

Table shards are processed
in parallel by multiple nodes

Parallelization Across Cluster Nodes

MergeTreeScan

Aggregate

Repartition

MergeTreeScan

Aggregate

MergeTreeScan

Aggregate

LANE 1 LANE 2 LANE 3

!!...RegionID
•
•
•

URL
•
•
•

Latency
•
•
•

HITS TABLE

Node 2

• For sharded tables, the initiator node pushes
as much work as possible to the other nodes.

• Results from remote nodes are integrated
into different points of the initiator query plan.

63

Node N

. . .

MergeTreeScan

Aggregate

Sort

GroupStateMerge

Repartition

Distribute

MergeSort

Limit

MergeTreeScan

Aggregate

Sort

MergeTreeScan

Aggregate

Sort

LANE 1 LANE 2 LANE 3

!!...RegionID
•
•
•

URL
•
•
•

Latency
•
•
•

HITS TABLE

Node 1

FILTER
STAGE

AGGREGATION
STAGE

SORTING
STAGE

Data elements are
processed in parallel by a
CPU core's SIMD units

Data chunks are processed
in parallel by a node's
multiple CPU cores

Table shards are processed
in parallel by multiple nodes

Parallelization Across Cluster Nodes

MergeTreeScan

Aggregate

Repartition

MergeTreeScan

Aggregate

MergeTreeScan

Aggregate

LANE 1 LANE 2 LANE 3

!!...RegionID
•
•
•

URL
•
•
•

Latency
•
•
•

HITS TABLE

Node 2

• For sharded tables, the initiator node pushes
as much work as possible to the other nodes.

• Results from remote nodes are integrated
into different points of the initiator query plan.

DB Engine

64

DB Engine

65

