

Yandex

String optimization in
ClickHouse

Nikolai Kochetov
ClickHouse developer

String storage In
ClickHouse

String datatypes

String

> Default case

> Overhead — 9 bytes per string (in RAM)
> Useittillit's fast enough

FixedString

> |If size in bytes is fixed and never changes (IP, MD5)

> Arbitrary binary data

String datatypes

Queries from tables with the same data.

SELECT sum(itgnore(val)) FROM table_1
Processed 1.00 btllion rows, 4.00 GB (1.86 btllion rows/s., 7.46 GB/s.)
SELECT sum(tgnore(val)) FROM table_2

Processed 1.00 btillion rows, 17.89 GB (683.57 million rows/s., 12.23 GB/s.)

Tables store first billion numbers into UInt64 and String types

String datatypes

Compressed data size

SELECT
table,
formatReadableStize(sum(data_compressed_bytes)) AS compressed_size
FROM system.parts
WHERE active AND (table LIKE)
GROUP BY table

—table compressed_size—
table_1 3.90 G1B
table 2 3.74 G1B

The second query deals with string decompression

Low granularity strings

Enuma, Enum16
> Set of strings is known beforehand
> Set of strings (almost) never changes
Advantages
> Storage and processing numeric data

> Cheap GROUP BY, IN, DISTINCT, ORDER BY

> optimized for individual cases (e.g. comparison with constant string)
Disadvantages

> Altering the datatype

ALTER Enum

Why can it be slow?
> Enum structure is stored into a table scheme
> Wait for selects to be able to change structure
Can we do better?
> Store Enum structure somewhere else (ZooKeeper)
> Do not wait for selects just in this case
Possible problems
> Synchronization

> Fetching a part with new data from another replica

External dictionaries

Store strings in a dictionary, indices in a table
Advantages
> Dynamically changeable set of strings
> No alterations (no problems)
> Avariety of dictionary sources
Disadvantages
> Bulky (explicit) syntax
> Difficult to optimize

> Delayed updates from external source

Local dictionaries

Getting rid of global dictionaries

No synchronization — no problem
Store dictionaries locally

> Per block (in memory)

> Per part (on file system)

> In caches (during query processing)

Dictionary encoded
strings

StringWithDictionary

Datatype for dictionary encoded

strings
> Serialization
)

> Data processing
Content:

> Dictionary

> Column with positions
> Reversedindex

Representation in memory

Dictionary Encoded Column

Dictionary

iPhone

Galaxy A3

Redmi Note 3

Lenovo A2010-a

Reverse Index

Galaxy A3 2
iPhone 1
Lenovo A2010-a | 4
Redmi Note 3 3

Positions
> .

N W= N DW= A D

Original Column

Galaxy A3

Lenovo A2010-a

iPhone

iPhone

Redmi Note 3

Lenovo A2010-a

Galaxy A3

iPhone

Redmi Note 3

Galaxy A3

LowCardinality(Type)

|s a general datatype with dictionary encoding
> Isimplemented for strings, numbers, Date, DateTime, Nullable.
> StringWithDictionary is an alias for LowCardinality(String).

> Remains for some functions

SELECT
toLowCardinality(' ') AS s,
toTypeName(s),
toTypeName(Length(s))

S toTypeName(toLowCardinality(' '))—T—toTypeName(Llength(toLowCardinality(' ')))—
LowCardinality(String) LowCardinality(UInt64)

Queries optimizations

Implemented

> Functions executed on dictionaries
if it's possible

> Calculations are cached for same
dictionaries

> GROUP BY optimization
To bedone

> Specializations for aggregate
functions

Positions Positions
2 2
Dictionary 4 Dictionary | 4
iIPhone l 6 1
Galaxy A3 1 Iength0> 9 1
Redmi Note 3 3 12 3
Lenovo A2010-a| | 4 14 4
2 2
1 1

High cardinality strings

What if we insert a lot of different
strings?

)

Serialization limit:
low_cardinality_max_dictionary_size

Store excessive keys locally

Fal
(in

back to ordinary column

nlans)

iPhone

Galaxy A3

Lenovo A2010-a

Galaxy A3

Redmi Note 3

iPhone

= I NN W INN |~ =~ NW| =] =N

Storage volume

Can we decrease it?

Column COUNT DISTINCT String Dictionary Enum
CodePage 62 /2.18 MiB 26.9/ MiB 26.20 MiB
PhoneModel | 48044 439.20MiB | 440.61MiB | -

URL 137103569 13.15 GiB 11.28 GiB -

1z4, zstd use dictionary encoding

Performance estimation

TLC trip record dataset

Dataset with NYC taxi and Uber trip data

More than 1.1 billion trips from January 2009 to July 2015
> Startand end time of the trip
> Location names
> Payment type
> The number of passengers

> Taxitype (yellow taxi, green taxi, Uber)

https://github.com/toddwschneider/nyc-taxi-data

TLC trip record dataset

What is the most popular pickup place?

SELECT pickup_ntaname FROM trips
GROUP BY ptickup_ntaname
ORDER BY count() DESC

—plckup_ntaname
Midtown-Midtown South

Hudson Yards-Chelsea-Flatiron-Union Square
West Village

Upper East Side-Carnegie Htill

Turtle Bay-East Midtown

SoHo-TriBeCa-Civic Center-Little Italy
Upper West Stide

Murray Hill-Kips Bay

Clinton

Lenox Hill-Roosevelt Island

count()

TLC trip record dataset

Store pickup locations into 3 different types:

> String
> StringWithDictionary

> Enum16
Query String Dictionary Enum16
Most popular location 4.890 sec. 0.548 sec. 0./83 sec.

TLC trip record dataset

Where is the most popular park?

SELECT pickup_ntaname FROM trips
WHERE Llower(ptckup_ntaname) Llike
GROUP BY ptickup_ntaname

ORDER BY count() DESC

plckup_ntaname
Battery Park City-Lower Manhattan
park-cemetery-etc-Manhattan

Park Slope-Gowanus
park-cemetery-etc-Queens

Rego Park

Sunset Park West
park-cemetery-etc-Brooklyn
Balsley Park

Bedford Park-Fordham North

TLC trip record dataset

Query String Dictionary Enum16
Most popular location 4.890 sec. 0.548 sec. 0./83 sec.
Most popular park 3.934 sec. 0.440 sec. 4.776 sec.

Why is query with Enum is slow?
> LIKE is not optimized for Enum
> Enumis converted to string

Enum needs manual optimization in code

TLC trip record dataset

The number of different locations.

SELECT unigq(pickup_ntaname) FROM trips

—unig(ptickup_ntaname)—
196

The number of different locations in Manhattan

SELECT uniqg(pickup_ntaname) FROM trips where pickup_boroname=

—uniq(pickup_ntaname)—
29

TLC trip record dataset

Query String Dictionary Enum16

Most popular location 4.890 sec. 0.548 sec. 0./83 sec.
Most popular park 3.934 sec. 0.440 sec. 4.776 sec.
Unique locations 4.136 sec. 3.432 sec. 1.050 sec.
Unigque locations in Manhattan 5.425 sec. 3.497/ sec. 1.328 sec.

Why is the last query is two times faster for StringWithDictionary?
StringWithDictionary filtration works only for indices

TLC trip record dataset

Slow function example

SELECT
hex(SHA256(pickup_ntaname)) AS hash,
count()

ROM trips_dict

ROUP BY hash

RDER BY count() DESC

O G T

—hash

924AAA8D24075B327/D16A53E39EES6FFA33ADBA3FEB22F647A7E3765CD754DCA
B1E4ADOE42D25F1341D9AA327CD59838B29F31D09CC34C9A25287679DD19359B2
EBA433E6A9487/BD2030D4623D86330B8C89C60319E410FBE035450D63CD92652
E4AEEEEA4D8167/73D94FO09BES59144ECI1EE/B65052B04068960623/D3F8EE18344
9E749063DCB63099B44C/AD5B132F9144D80C0A4E1/7/7/6B2DFBOB502A1CB5E853D
FB19C1C65FE9F2490C4D9AE4A5FD40679375CB26F289075420C33C8C4A318C046

count()—
207582585
114945944
88277252
86192276
83692525
62524265

TLC trip record dataset

Query String Dictionary Enum16
Most popular location 4.890 sec. 0.548 sec. 0./83 sec.
Most popular park 3.934 sec. 0.440 sec. 4.776 sec.
Unique locations 4.136 sec. 3.432 sec. 1.050 sec.
Unigque locations in Manhattan 5.425 sec. 3.49/ sec. 1.328 sec.
Slow function 31.566 sec. 2.440 sec. 32.6038 sec.

Summary

LowCardinality type is available in last release

> Experimental (set allow_experimental low_cardinality_type = 1 toenable)
> Test performance on your dataset

> Justreplace string with StringWithDictionary

Goals

> Make datatype with dictionary better than String in all cases

> Implicitly replace String with StringWithDictionary

