""' ClickHouse - Lightning Fast Analytics for Everyone

Robert Schulze Tom Schreiber llya Yatsishin
ClickHouse Inc. ClickHouse Inc. ClickHouse Inc.
robert@clickhnouse.com tom@clickhouse.com lyatsishin@clickhouse.com

Ryadh Dahimene Alexey Milovidov
ClickHouse Inc. ClickHouse Inc.
r'yadh@clickhouse.com alexey@clickhouse.com

im0

WVWVWW

\/LD B 2024

GUANGZHOU

""' ClickHouse - Lightning Fast Analytics for Everyone

Open source column-oriented distributed OLAP database

Developed since
2009, built in C++

0SS (Apache 2.0)
since 2016

Best for filter and
aggregation queries

Optimized for append-

only work

0ads

Replication Business intelligence
SUEIElpe L0gs, events, traces
Eventually

consistent Real-time analytics

""- ClickHouse - Lightning Fast Analytics for Everyone

2957

. Relative cold runtime . Relative hot runtime

1011

ClickBench: a typical workload in web analytics
and logs (mostly filtering and aggregating
denormalized tables) benchmark.clickhouse.com

35.96

16.94 14.90 12 33

3.39

2.57

1.23 1.57

Relative time (log scale), lower is better

MySQL PostgreSQL Druid Redshift Pinot Snowflake Umbra ClickHouse

Total relative cold and hot runtimes for sequentially executing all ClickBench queries in databases frequently used for analytics.
Measurements taken on a single-node AWS EC2 cba.4xlarge instance with 16 vCPUs, 32 GB RAM, and 5000 IOPS / 1000 MiB/s disk.
Comparable systems were used for Redshift (ra3.4xlarge, 12 vCPUs, 96 GB RAM) and Snowflake (warehouse size S: 2x8 vCPUs, 2x16 GB RAM).

ClickHouse has the best query performance amongst production-grade analytics databases.

http://benchmark.clickhouse.com

""- ClickHouse - Lightning Fast Analytics for Everyone

Performance improvements by 1.72 x since 2018
e \VersionBench benchmark is run when

5
| | a new release Is published to check
: LTS version . : : :
its performance and identify regressions.
5 1.8
S . Combination of four benchmarks:
3 1.6 # Queries # ROWS
=
= ClickBench 42 100 million
= 1.4
E MgBench 15 200 million
€ 1z Star schema
Benchmark 13 600 million
i _ . . . - ([denormalized schema)
1 JiJl AlEJg Aepr JEuI Miar AlEJg Mgar AtEJg Miar AlEJg Miar ALEJg Miar NYC Taxi R|deS N
2018 2019 2020 2021 2022 2023 2024 senchmark 4 3.4 billion

Query performance is a top priority and continuously improved.

""- ClickHouse - Lightning Fast Analytics for Everyone

2009 2012 2016 2017 2018 2019 2020 2021 2022 2023 2024
Q ? Q ? Q ? Q q ? ? Q
Start of Open Mutations Improved i ClickHouse Cloud :
development source i introspection tools |
Production launch First intégration New execution Async i-nserts, Column statistics
engine (Kafka) framework Projections CPU and 10 scheduling
The most popular analytics Runs on anything from Used by hundreds of
database on GitHub Raspberry Pito clusters companies globally for
(36k ¥, 2k+ contributors). with hundreds of nodes, production workloads.
largest kKnown cluster Is clicknouse com/docs/en/faa/

github.com/ClickHouse/ClickHouse 4000 servers. general/who-is-using-clickhouse

ClickHouse is trusted by 50%+ of Fortunes Global Top 2000 companies.

http://github.com/ClickHouse/ClickHouse
http://clickhouse.com/docs/en/faq/general/who-is-using-clickhouse
http://clickhouse.com/docs/en/faq/general/who-is-using-clickhouse

Architecture

Server

lll- Node
lll DB Engine

Cloud

ll DB Engine

Standalone

L-] Command-line
lll DB Engine

In-process

e Python process
lll DB Engine

QUERY PROCESSING LAYER (SEC. 4)

SQL Query—»

Parser —AST— Planner - Logical Plan & Physical Plan Builder

— Physical Plan

MERGETREE* FAMILY
TABLE ENGINES

Inserts — Parts >*» Merges

 —

Plan Executor £} <«

M

| A T 4

SPECIAL-PURPOSE
TABLE ENGINES

VIRTUAL

TABLE ENGINES
INTEGRATION LAYER

Data replication

il Node 1

Replicated
MergeTree

Shard-1 replica

il Node 2

Replicated
MergeTree

Shard-1 replica

Dictionary Fast lookups
/’) Memory RAM storage _
"~ = Thread pools
Distributed | Data sharding =
DISTRIBUTED © Caches
DATA PROCESSING —
Q| RBAC

Inserts Queries

llF Node 3

Replicated
Distributed MergeTree

Shard-2 replica
Keeper

- Node 4
Replication :
coordination Replicated

MergeTree

Shard-2 replica

-\

| Backups

A\, Monitoring

ORTHOGONAL
COMPONENTS

C'—) User sessions

,&0’ Wire protocols

Native, gRPC, HTTP,
MySQL, PostgreSQL

ACCESS LAYER

50+ integrations
with external systems

90+ file formats

S

External
DBMS

Data Lakes/
Object stores

Pub/sub
systems

KV stores

,C‘QQ

Users

Apps

Drivers
JDBC / ODBC /
Python / Go /...

Table engines encapsulate the location and format of table data

MERGETREE* FAMILY SPECIAL-PURPOSE VIRTUAL
TABLE ENGINES TABLE ENGINES TABLE ENGINES
Inserts — Parts >» Merges Dictionary Fast lookups
Gl Memory RAM storage
k)

Distributed Data sharding

An LSM-Tree Inspired Storage Layer

Inactive part Active part ----» Part merge
NSERT [part e . Iif§ » Like LSM trees, INSERTs create
sorted and immutable parts.
INSERT > Part - > Part
""" g - Parts are continuously merged by a
INSERT > Part oo g packground job.
ASYNC . Part
INSERT - Unlike LSM trees, all parts are equal
Buffer —> Part oo " (i.e., no levels or notion of recency).
ASYNC .
INSERT
- « INSERTS can be synchronous or
INBIEEY | Part asynchronous.

Ingestion rates are only limited by the speed of disk.

Column Layout and Compression

Row EventTime RegionID URL « Local (per-part) sorting defined by primary key:
0 2023-10-19 17:03:05.154 EMEA https://... .
. : : : 5 CREATE TABLE page_hits
g@ , (
e R ') § EventTime Date (CODEC(Delta, ZSTD)),
8,191 [[2023°10719 7117:03:07.4961| | B APACT] | NEERS://Lw | RegionId String [(CODEC(LZA)).
8,192 APAC https://... | URE String [CQDECEAESX'
. . . . g PRIMARY KEY (EventTime)
.)
16,383 | 2023-10-19 17:03:09.838 AMER https://
- Parts are further divided into granules ge, g1, ...
- Consecutive granules in a column form blocks
which are encoded:
- (Generic codecs: LZ4, ZSTD, DEFLATE, ...
Compressed Compressed Compressed
block block block ,
- Logical codecs: Delta, GCD, ...
- Specializec Codecs: Gorilla(FP), AES,...
: X X » Codecs can be combined: CODEC(Delta, ZSTD)

High compression rates are in many use cases critical for cost efficiency and performance.

Data Pruning

Primary key indexes

Table projections

Skipping indexes

CREATE TABLE page_hits

(

EventTime Date,
RegionId String,
URL String,

(PRIMARY KEY (EventTime)

- Define the local part sorting
(clustered index).

- Also create a mapping from
primary key column values to
granules.

- [he mapping is small enough
to remain in DRAM at all
times.

Row EventTime RegionID
. 5 2023-10-19 17:03:05.154 ==
gei
58,191 2023-10-19 17:03:07.4960 APAC
8,192 APAC
516,383 2023-10-19 17:03:09.838 AMER
Granule
selection Primary key index
e p
geo 2023-10-19 17:03:05.154
- ' ~ SELECT

count() AS PageViews
Index lookup —'FORM page_hits

WHERE

EventTime = '2023-12-09"

Quickly find granules containing rows that match a predicate on a prefix of the PK columns.

10

Data Pruning

Primary key indexes

Table projections

Skipping indexes

EventTime [RegionID\ URL
2023-10-19 17:03:05.154 EMEA nttps:// ...
2023-10-19 17:03:05.462 APAC nttps:// ...
2023-10-19 17:03:05.875 AMER nttps:// ...
2023-10-19 17:03:06.104 AMER nttps:// ...

 2023-10-19 17:03:07.550 APAC nttps:// ...

EventTime /RegionID\ URL
2023-10-19 17:03:05.875 AMER nttps:// ...
2023-10-19 17:03:07.550 AMER nttps:// ...
2023-10-19 17:03:06.104 APAC nttps:// ...
2023-10-19 17:03:05.462 APAC nttps:// ...

- 2023-10-19 17:03:05.154 EMEA nttps:// ...

 Alternative table versions
sorted by different
orimary keys.

- Works at the granularity
of parts.

- Speed up queries on
columns different than
primary key columns.

Powerful but increase space consumption and insert/merge overhead.

11

Data Pruning

Primary key indexes

Table projections

Skipping indexes

- Store small amounts of metadata
at the level of granules or multiple
granules which allows to skip data
during scans.

- SKipping index types:

e Min/Max values
e Unique values
e Bloom filter

min/max
iIndex

Some match - Load and
Scan block

All match = SKIP load

None match - SKIP load

Skipping indexes are a light-weight alternative to projections.

12

Merge-time Data Transformation

Merges optionally perform additional data transformations or maintenance.

Replacing merges et et
Retain the most recently insertec pa ool foccod I Rl bl Fobiice
version of the same rows in multiple cven | 200 || 300 2
iINnput parts. APAC 80 80, 1
Aggregating merges (Aggregating merge|
Combine aggregation states into
new aggregation states. Merged part

Region Max Average
TTL (time-to-live) merges 2 Eveny | ratency
Compress, move, or, delete rows or parts. FMEA Q| 200§ 899, 2

APAC 80 260, 4

Data transformations don’t compromise the performance of parallel INSERTs and SELECTs.

13

State-of-the-art Vectorized Query Execution Engine

Il Node 1 It Node 2 Il Node m
mares rrm B rrarsa rm } rrarra rm }
i Cl C2 Cn ' Cl C2 Cn i i Cl C2 Cn i
'				
i SRR) s) i st)
‘\\\ k\ 4
/ \ \\\\x\ \\\ i
ll- Node 1 e N
C1 C2 Cn Table shards are processed
- ——— . ------R in parallel by multiple nodes
| |
| %
B e e e e B e . o - — — — — J i
O B A B e Data chunks are processed
P : + T in parallel by a node’s
Ot b POl N multiple CPU cores
————————————————————————— "I”
. . CSo€ - _____| Data elements are
i EEEI'EIIIIZZZ:::: processed in parallel by a
N SOy e TS y CPU core's SIMD units

Query execution utilizes all server and cluster resources.

14

Parallelization Across SIMD ALUs

MULTITARGET_FUNCTION_AVX512F_AVX2_SSE42(
MULTITARGET_FUNCTION_HEADER(),

Based on compiler auto-vectorization or manually impt,

: : - : MULTITARGET _FUNCTION_BODY((
written Intrinsics. const double * inl, const double * in2

double * out, size_t num_elements)

SQL expressions are compiled into compute kernels. {
| | for (size_t i = 0; i < (sz & ~0x7); i += 8)
The fastest kernel is selected at runtime based on the {
S . const __m512d _inl1 = _mm512_load_pd(&inl[i]);
System CapablhtleS (CDUld). const _ m512d _in2 = _mm512_load_pd(&in2[i]);
const __m512d _out = _mm512_add_pd(_inl, _in2);
out[i] = (doublex*)&_out;
SELECT coll + col2 } /% tail handling /
FROM T 1))
i AVX-512 kernel, manually vectorized
. . MULTITARGET_FUNCTION_AVX2_SSE42(
if (isArchSupported(TargetArch:: AVX512)) MULTITARGET _FUNCTION_HEADER(),
implAVX512BW(inl1, in2); impl, -
else if (isArchSupported(TargetArch::AVX2)) MULTITARGéT_FUNCTION_BODY((

implAVX2(inl1, in2, out);
else if (isArchSupported(TargetArch::SSE42))
implSSE42(inl, in2, out); {

const double * inl, const double * 1n2
double * out, size_t num_elements)

else for (size_t i = 0; i < num_elements; ++1i)

implGeneric(inl, in2, out); xout[i] = *inil[i] + *in2[i]:

Dispatch code based on cpuid H))

AV X2 kernel, compiler auto-vectorized

Remain compatible with legacy hardware while utilizing modern hardware fully.

15

Parallelization Across CPU Cores

filter WHERE URL = 'https://clickhouse.com’
aggregation \GROUP BY RegionID

SELECT RegionID, avg(Latency) AS AvglLatency

FROM hits

SOrt ORDER BY AvglLatency DESC

e EXecut

(typica

- Lanes decompose the data to be processed
INto non-overlapping ranges.

- Exchange operators (Repartition, Distribute)

LIMIT 3

on plan gets u
ly T lane per CPU core).

v

ensure lanes remain balanced.

Nfolded into N lanes =——

Il Node

FILTER STAGE AGGREGATION STAGE SORTING STAGE

SINK OPERATOR

PrettyTableFormat
A
Limit
A
MergeSort

~ : ¢

StreamSort

+
ChunkSort

[Aggregate J:

[MergeTreeSca nj/
SOURCE} OPERATOR

LANE 1 l

L\

StreamSort

A
ChunkSort

4 >
Distribute

A
[GroupStateM ergelK
A
[Aggregate]
A
Repartition

N,

i ;)

[MergeTreeScan J

\
\

StreamSort

+
ChunkSort

/

;[Aggregate j

\(MergeTreeScan]
A
SOURCE| OPERATOR

SOURCETOPERATOR

2

LANE 2 ‘

LANE 3

RegionID

HITS TABLE

URL

Latency

Enables vertical scaling by adding more CPU cores.

16

Parallelization Across Cluster Nodes

- For sharded tables, the initiator node pushes

as much work as possible to the other nodes.

» Results from remote nodes are integratec

lll Node 2

N N I s s

A : t Aggrégate A : t
(ggregate l\[: j/v[ggregate]

Repartition

A
[MergeTreeScan/(MergeTreeScan j\[MergeTreeScanj

SOURCE| OPERATOR SOURCE | OPERATOR SOURCE]OPERATOR
LANE 1 LANE 2 LANE 3
HITS TABLE
RegionlID URL Latency

into different points of the initiator query plan.

DB Grou pStateMergel\
A
J/[

SELECT RegionID, avg(Latency) AS AvglLatency
FROM hits

WHERE URL = 'https://clickhouse.com'

GROUP BY RegionID

ORDER BY AvglLatency DESC

LIMIT 3
v

lll Node 1 SINK OPERATOR

PrettyTableFormat
A
Limit
A
MergeSort

e i SN

filter

aggregation

SOrt

StreamSort StreamSort StreamSort

4

A A
ChunkSort ChunkSort ChunkSort

A
Distribute
A

[Aggregate Aggregate

Aggregate]

4

Repartition

*
[MergeTreeScanJ/[MergeTreeScan]\[MergeTreeScanj

A
SOURCE| OPERATOR SOURCE | OPERATOR SOURCE| OPERATOR
LANE 1 LANE 2 LANE 3
HITS TABLE —
RegionlID URL Latency

FILTER STAGE AGGREGATION STAGE SORTING STAGE

Enables horizontal scaling by adding more cluster nodes.

17

What else is described in the paper?

—> Add Entry — Fetch Entry

- Node 1 lll Node 2 lll Node 3
Additional storage layer details INSERT |~ Part A n Part A
. . merge | Part C
. Updates and deletes, idempotent inserts nserr S part B part 5
. Data replication @ ﬁj} & ® @
. 4 l . 4 \ 4
o AClD Comp“aﬂce Keeper Replication Log Insert Insert Merge
Low-level query optimizations
- JI'T query compilation based on LLVM 3 | w JOINED DATA
= |0 SRR E—
. HashTableBuild — — =i e «— — JoinLookup
» Hash table framework for aggregations vergeniaesean |IICC | | ersetressaan
and joins B 4
P | | : : HashTableBuild >%* Hashble< JoinLookup
’ aralic JOln exeCUtlon MergeTreeScan ©) MergeTreeScan
Integration layer HashTableBuild = £§+ Hashble == JoinLookup
: : - MergeTreeScan MergeTreeScan
. Native support for 90+ file formats anad : N :
50+ integrations with external systems i Vesrib jRsterery URL
BUILD PHASE PROBE PHASE

18

Come and join us on GitHub in our mission ﬂ
to build the world's fastest analytics database <7

7)

github.com/ClickHouse/ClickHouse

http://github.com/ClickHouse/ClickHouse

Backup slides

Benchmarks on Normalized Tables - TPC-H

Q5 Q6

7.01 039
1.90 023

Q14 Q15 Q16

1.00 1.04 0.48
0.65 0.77 1.90

Q10 Q11 Q12

3.59 0.83 153
4.30 1.30 0.88

413
2.10

Il | 1-86 218

S 1 2.20

The results of eleven gueries are excluded:

. Queries containing correlated subqueries
(not supported as of ClickHouse v24.6) (missing as of ClickHouse v24.6)

Hot runtimes of the TPC-H queries based on the parallel hash join algorithm described in Section 4.4. The fastest of five runs was recorded.
Measurements taken on a single-node AWS EC2 c6i.16xlarge instance with 64 vCPUs, 128 GB RAM, and 5000 IOPS / 1000 MiB/s disk.
Comparable size was used for Snowflake (warehouse size L, 8x8 vCPUs, 8x16 GB RAM)

» Queries over normalized tables are - Automatic subqguery decorre

an emerging use case for ClickHouse better plan optimizer support

are planned for 2024.

. Queries requiring extended plan-level optimizations for joins

ation and
for joins

https://github.com/ClickHouse/ClickHouse/issues/58397

21

https://github.com/ClickHouse/ClickHouse/issues/58392

One more thing...
There’s a lot more to uncover

- Powerful SQL dialect with higher-order functions and lambda functions.

- 150+ built-in aggregate functions plus aggregate function combinators.

- 1300+ reqgular functions (mathematics, geo, machine learning, time series, etc.)
- Parallelized window functions and joins.

- JSON, maps and arrays plus 80+ array functions.

22

