
ClickHouse - Lightning Fast Analytics for Everyone

Robert Schulze
ClickHouse Inc.

robert@clickhouse.com

Tom Schreiber
ClickHouse Inc.

tom@clickhouse.com

Ilya Yatsishin
ClickHouse Inc.

iyatsishin@clickhouse.com

Ryadh Dahimene
ClickHouse Inc.

ryadh@clickhouse.com

Alexey Milovidov
ClickHouse Inc.

alexey@clickhouse.com

2

ClickHouse - Lightning Fast Analytics for Everyone

Open source column-oriented distributed OLAP database
Developed since
2009, built in C++

OSS (Apache 2.0)
since 2016

Replication
Sharding
Eventually
consistent

Business intelligence

Logs, events, traces

Real-time analytics

Best for filter and
aggregation queries

Optimized for append-
only workloads

3

ClickHouse - Lightning Fast Analytics for Everyone
Re

la
tiv

e
tim

e
(lo

g
sc

al
e)

, l
ow

er
 is

 b
et

te
r

MySQL PostgreSQL Druid Pinot ClickHouseUmbraSnowflakeRedshift

3.06 2.57
1.571.23

8.39
12.3314.90

4.825.23

16.94
35.96

762

2957

329

1011

15.44

ClickBench: a typical workload in web analytics
and logs (mostly filtering and aggregating
denormalized tables) benchmark.clickhouse.com

ClickHouse has the best query performance amongst production-grade analytics databases.

Total relative cold and hot runtimes for sequentially executing all ClickBench queries in databases frequently used for analytics.
Measurements taken on a single-node AWS EC2 c6a.4xlarge instance with 16 vCPUs, 32 GB RAM, and 5000 IOPS / 1000 MiB/s disk.
Comparable systems were used for Redshift (ra3.4xlarge, 12 vCPUs, 96 GB RAM) and Snowflake (warehouse size S: 2x8 vCPUs, 2x16 GB RAM).

Relative hot runtimeRelative cold runtime

http://benchmark.clickhouse.com

4

ClickHouse - Lightning Fast Analytics for Everyone

Query performance is a top priority and continuously improved.

Mar

2018 2019 2020 2021 2022 2023 2024
Jul Aug Apr Jul Mar Aug Mar Aug Mar Aug Mar Aug1

1.2

1.4

1.6

1.8

2

LTS version

Re
la

tiv
e

ho
t r

un
tim

e,
 lo

w
er

 is
 b

et
te

r

• VersionBench benchmark is run when
a new release is published to check
its performance and identify regressions.

Performance improvements by 1.72 × since 2018

Queries # Rows

ClickBench 42 100 million

MgBench 15 200 million

Star Schema
Benchmark

(denormalized schema)
13 600 million

NYC Taxi Rides
Benchmark 4 3.4 billion

• Combination of four benchmarks:

5

ClickHouse - Lightning Fast Analytics for Everyone

The most popular analytics
database on GitHub
(36k ⭐, 2k+ contributors).

Runs on anything from
Raspberry Pi to clusters
with hundreds of nodes,
largest known cluster is
4000 servers. github.com/ClickHouse/ClickHouse

Used by hundreds of
companies globally for
production workloads.

clickhouse.com/docs/en/faq/
general/who-is-using-clickhouse

ClickHouse is trusted by 50%+ of Fortunes Global Top 2000 companies.

http://github.com/ClickHouse/ClickHouse
http://clickhouse.com/docs/en/faq/general/who-is-using-clickhouse
http://clickhouse.com/docs/en/faq/general/who-is-using-clickhouse

6

Architecture

Execution
modes

90+ file formats

50+ integrations
with external systems

7

Table engines encapsulate the location and format of table data

Execution
modes

90+

50+

8

• Like LSM trees, INSERTs create
sorted and immutable parts.

• Parts are continuously merged by a
background job.

• Unlike LSM trees, all parts are equal
(i.e., no levels or notion of recency).

• INSERTs can be synchronous or
asynchronous.

An LSM-Tree Inspired Storage Layer

Ingestion rates are only limited by the speed of disk.

9

Column Layout and Compression

• Local (per-part) sorting defined by primary key:

• Parts are further divided into granules g0, g1, ...

• Consecutive granules in a column form blocks
which are encoded:

- Generic codecs: LZ4, ZSTD, DEFLATE, ...

- Logical codecs: Delta, GCD, ...

- Specializec Codecs: Gorilla(FP), AES,...

Compressed
block

Compressed
block

Compressed
block

•
•
•

•
•
•

•
•
•

• Codecs can be combined: CODEC(Delta, ZSTD)

High compression rates are in many use cases critical for cost efficiency and performance.

CREATE TABLE page_hits
(
 EventTime Date CODEC(Delta, ZSTD),
 RegionId String CODEC(LZ4),
 URL String CODEC(AES),

 PRIMARY KEY (EventTime)
)

10

Data Pruning

Primary key indexes

Skipping indexes

Table projections

SELECT
count() AS PageViews

FORM page_hits
WHERE

EventTime>=

Index lookup

CREATE TABLE page_hits
(
 EventTime Date,
 RegionId String,
 URL String,

 PRIMARY KEY (EventTime)
)

Primary key index

Quickly find granules containing rows that match a predicate on a prefix of the PK columns.

• Define the local part sorting
(clustered index).

• Also create a mapping from
primary key column values to
granules.

• The mapping is small enough
to remain in DRAM at all
times.

11

Primary key indexes

Skipping indexes

Table projections

2023-10-19 17:03:05.154
2023-10-19 17:03:05.462
2023-10-19 17:03:05.875
2023-10-19 17:03:06.104
2023-10-19 17:03:07.550

EMEA
APAC
AMER

APAC
AMER

https://...
https://...
https://...
https://...
https://...

2023-10-19 17:03:05.875
2023-10-19 17:03:07.550
2023-10-19 17:03:06.104
2023-10-19 17:03:05.462
2023-10-19 17:03:05.154

AMER
AMER
APAC

EMEA
APAC

https://...
https://...
https://...
https://...
https://...

ALTER TABLE page_hits ADD PROJECTION proj (
SELECT *
ORDER BY RegionID

);

ALTER TABLE page_hits MATERIALIZE PRJECTION prj;

SELECT
count() AS PageViews

FORM page_hits
WHERE

RegionID = 'AMER'

Powerful but increase space consumption and insert/merge overhead.

Data Pruning

• Alternative table versions
sorted by different
primary keys.

• Works at the granularity
of parts.

• Speed up queries on
columns different than
primary key columns.

12

Primary key indexes

Skipping indexes

Table projections

Clicks
25
8
7
25
25
18
20
22
19
17
8
6
6
13
5

min:
max:

7
25

min:
max:

17
22

min:
max:

5
13

min/max
index

• Store small amounts of metadata
at the level of granules or multiple
granules which allows to skip data
during scans.

• Skipping index types:

• Min/Max values
• Unique values
• Bloom filter
• ...

SELECT *
FROM T
WHERE

Clicks BETWEEN 15 AND 30

Some match ->

All match ->

None match ->

Skipping indexes are a light-weight alternative to projections.

Data Pruning
ALTER TABLE T
ADD INDEX idx_minmax (Clicks) TYPE minmax;

ALTER TABLE T MATERIALIZE INDEX idx_minmax;

13

Merge-time Data Transformation

TTL (time-to-live) merges
Compress, move, or, delete rows or parts.

Aggregating merges
Combine aggregation states into
new aggregation states.

Replacing merges
Retain the most recently inserted
version of the same rows in multiple
input parts.

Aggregating merge

Merges optionally perform additional data transformations or maintenance.

Data transformations don’t compromise the performance of parallel INSERTs and SELECTs.

14

State-of-the-art Vectorized Query Execution Engine

Query execution utilizes all server and cluster resources.

15

Parallelization Across SIMD ALUs

if (isArchSupported(TargetArch::AVX512))
implAVX512BW(in1, in2);

else if (isArchSupported(TargetArch::AVX2))
implAVX2(in1, in2, out);

else if (isArchSupported(TargetArch::SSE42))
implSSE42(in1, in2, out);

else
implGeneric(in1, in2, out);

SELECT col1 + col2
FROM T

MULTITARGET_FUNCTION_AVX512F_AVX2_SSE42(
MULTITARGET_FUNCTION_HEADER(),
 impl,
MULTITARGET_FUNCTION_BODY((
 const double * in1, const double * in2
 double * out, size_t num_elements)
{

for (size_t i = 0; i < (sz & ~0x7); i += 8)
{

const __m512d _in1 = _mm512_load_pd(&in1[i]);
const __m512d _in2 = _mm512_load_pd(&in2[i]);
const __m512d _out = _mm512_add_pd(_in1, _in2);
out[i] = (double*)&_out;

} /* tail handling */
}))

MULTITARGET_FUNCTION_AVX2_SSE42(
MULTITARGET_FUNCTION_HEADER(),

impl,
MULTITARGET_FUNCTION_BODY((
 const double * in1, const double * in2
 double * out, size_t num_elements)
{
 for (size_t i = 0; i < num_elements; ++i)
 *out[i] = *in1[i] + *in2[i];
}))

Remain compatible with legacy hardware while utilizing modern hardware fully.

Dispatch code based on cpuid

AVX-512 kernel, manually vectorized

AVX2 kernel, compiler auto-vectorized

• Based on compiler auto-vectorization or manually
written intrinsics.

• SQL expressions are compiled into compute kernels.

• The fastest kernel is selected at runtime based on the
system capabilities (cpuid).

16

Parallelization Across CPU Cores

• Execution plan gets unfolded into N lanes
(typically 1 lane per CPU core).

• Lanes decompose the data to be processed
into non-overlapping ranges.

• Exchange operators (Repartition, Distribute)
ensure lanes remain balanced.

Enables vertical scaling by adding more CPU cores.

SELECT RegionID, avg(Latency) AS AvgLatency
FROM hits
WHERE URL = 'https://
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation

sort

17

Parallelization Across Cluster Nodes

• For sharded tables, the initiator node pushes
as much work as possible to the other nodes.

• Results from remote nodes are integrated
into different points of the initiator query plan.

Enables horizontal scaling by adding more cluster nodes.

SELECT RegionID, avg(Latency) AS AvgLatency
FROM hits
WHERE URL = 'https://
GROUP BY RegionID
ORDER BY AvgLatency DESC
LIMIT 3

filter
aggregation
sort

18

What else is described in the paper?

• JIT query compilation based on LLVM
• Hash table framework for aggregations

and joins
• Parallel join execution

Low-level query optimizations

Additional storage layer details
• Updates and deletes, idempotent inserts
• Data replication
• ACID compliance

Integration layer
• Native support for 90+ file formats and

50+ integrations with external systems

 github.com/ClickHouse/ClickHouse

Come and join us on GitHub in our mission
to build the world's fastest analytics database 🚀

http://github.com/ClickHouse/ClickHouse

20

Backup slides

21

Benchmarks on Normalized Tables - TPC-H

Q1 Q2 Q3 Q4 Q5 Q6 Q7-Q9 Q10 Q11 Q12 Q13 Q14 Q15 Q16 Q17 Q18 Q19 Q20- Q22

1.86 4.13 7.01 0.39 3.59 0.83 1.53 1.00 1.04 0.48 2.18
2.20 2.10 1.90 0.23 4.30 1.30 0.88 0.65 0.77 1.90 3.40❄︎

The results of eleven queries are excluded:
Queries containing correlated subqueries
(not supported as of ClickHouse v24.6)

Queries requiring extended plan-level optimizations for joins
(missing as of ClickHouse v24.6)

Hot runtimes of the TPC-H queries based on the parallel hash join algorithm described in Section 4.4. The fastest of five runs was recorded.
Measurements taken on a single-node AWS EC2 c6i.16xlarge instance with 64 vCPUs, 128 GB RAM, and 5000 IOPS / 1000 MiB/s disk.
Comparable size was used for Snowflake (warehouse size L, 8x8 vCPUs, 8x16 GB RAM)

• Automatic subquery decorrelation and
better plan optimizer support for joins
are planned for 2024.
https://github.com/ClickHouse/ClickHouse/issues/58392

• Queries over normalized tables are
an emerging use case for ClickHouse

https://github.com/ClickHouse/ClickHouse/issues/58392

22

One more thing...
There’s a lot more to uncover

• Powerful SQL dialect with higher-order functions and lambda functions.

• 150+ built-in aggregate functions plus aggregate function combinators.

• 1300+ regular functions (mathematics, geo, machine learning, time series, etc.)

• Parallelized window functions and joins.

• JSON, maps and arrays plus 80+ array functions.

