{ "cells": [ { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "# Basics of Dynamics Systems and Bifurcation Theory\n", "# Workshop \\#3, 31 Jan. 2020\n", "\n", "#### Navid C. Constantinou, RSES, ANU, 2020" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Exercise 1\n", "\n", "Plot the phase portraits for the following systems as parameter $\\alpha$ varies:\n", "\n", "*(i)* $\\dot{x} = \\alpha x - x^2$, $\\dot{y} = - y$.\n", "\n", "*(ii)* $\\dot{x} = \\alpha x + x^3$, $\\dot{y} = - y$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Exercise 2\n", "\n", "Use numerical integration to plot phase portraits for the system:\n", "\n", "\\begin{align}\n", " \\dot{x} &= -y + \\mu x + x y^2,\\\\\n", " \\dot{y} &= x + \\mu y - x^2.\n", "\\end{align}\n", "\n", "Show that as parameter $\\mu$ varies, the system undergoes a Hopf bifurcations at $\\mu_c=0$. Classify the type of Hopf bifurcation that occurs." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Exercise 3\n", "\n", "Take the system: $\\dot{x}=y-2x$, $\\dot{y} = \\mu + x^2 - y$.\n", "\n", "*(i)* Scetch the nullclines.\n", "\n", "*(ii)* Find the birfurcations that occur as $\\mu$ varies and classify them.\n", "\n", "*(iii)* Sketch the phase portrait as a function of $\\mu$.\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Exercise 4\n", "\n", "Take the biased Van der Poll oscillator: $\\ddot{x} + \\mu (x^2-1)\\dot{x} + x = \\alpha$.\n", "\n", "*(i)* Find the curves in $(\\mu, \\alpha)$-space at which Hopf bifurcations occur.\n", "\n", "*(ii)* Take values for $\\mu$ and $\\alpha$ slightly above and below the Hopf-bifurcation curves and integrate the system numerically. Do you see the structurally different behaviour on either side of the $(\\mu, \\alpha)$ curves?" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Exercise 5\n", "\n", "Consider the dynamical system\n", "$$\n", "\\dot{x} = -\\frac{\\mathrm{d}V}{\\mathrm{d}x},\n", "$$\n", "where $V(x) = \\tfrac1{6}x^6 + \\tfrac1{4}\\gamma x^4 - \\tfrac1{2}\\varepsilon x^2 + h x$. This system describes a phase change.\n", "\n", "*(i)* Take $h=\\varepsilon=0$ and compute the bifurcation diagram as a function of parameter $\\gamma$.\n", "\n", "*(ii)* Now take $h=0$ but $\\varepsilon=\\varepsilon_f$. Again, draw the bifurcation diagrams as functions of $\\gamma$. Consider separately the case $\\varepsilon_f>0$ and $\\varepsilon_f<0$.\n", "\n", "*(iii)* Repeat question *(ii)*. with $h\\ne 0$." ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "#### Exercise 5 (continued)\n", "\n", "*(iv)* In experiments, parameter $\\varepsilon$ was switched from a negative value at $t=0$ to some positive value $\\varepsilon_f>0$. The figure shows various trajectories $x(t)$ for different final values of $\\varepsilon_f$. Explain intuitively why the curves have this strange shape. Why for large values of $\\varepsilon_f$ we observe that the trajectories go almost straight up to their steady state, whereas for small $\\varepsilon_f$ the trajectories plateau first before increasing sharply to their final level?\n", "\n", "
\n", "\n", "\n", "
\n", "\n", "[and, finally, some food for thought]\n", "\n", "*(v)* Ponder on how would you go along repeating this exercise *without* using phase-space and bifurcation diagrams but rather from getting a closed-form solution of the dynamical system. \n", "\n" ] }, { "cell_type": "markdown", "metadata": { "slideshow": { "slide_type": "slide" } }, "source": [ "### References\n", "\n", "- Strogatz, S. H. Nonlinear dynamics and chaos: with applications to physics, biology, chemistry, and engineering. CRC Press, 2018." ] } ], "metadata": { "celltoolbar": "Slideshow", "kernelspec": { "display_name": "Python 3", "language": "python", "name": "python3" }, "language_info": { "codemirror_mode": { "name": "ipython", "version": 3 }, "file_extension": ".py", "mimetype": "text/x-python", "name": "python", "nbconvert_exporter": "python", "pygments_lexer": "ipython3", "version": "3.7.6" } }, "nbformat": 4, "nbformat_minor": 4 }