from micropython import const import ustruct import utime from machine import Timer import time _IO_TIMEOUT = 1000 _SYSRANGE_START = const(0x00) _EXTSUP_HV = const(0x89) _MSRC_CONFIG = const(0x60) _FINAL_RATE_RTN_LIMIT = const(0x44) _SYSTEM_SEQUENCE = const(0x01) _SPAD_REF_START = const(0x4f) _SPAD_ENABLES = const(0xb0) _REF_EN_START_SELECT = const(0xb6) _SPAD_NUM_REQUESTED = const(0x4e) _INTERRUPT_GPIO = const(0x0a) _INTERRUPT_CLEAR = const(0x0b) _GPIO_MUX_ACTIVE_HIGH = const(0x84) _RESULT_INTERRUPT_STATUS = const(0x13) _RESULT_RANGE_STATUS = const(0x14) _OSC_CALIBRATE = const(0xf8) _MEASURE_PERIOD = const(0x04) SYSRANGE_START = 0x00 SYSTEM_THRESH_HIGH = 0x0C SYSTEM_THRESH_LOW = 0x0E SYSTEM_SEQUENCE_CONFIG = 0x01 SYSTEM_RANGE_CONFIG = 0x09 SYSTEM_INTERMEASUREMENT_PERIOD = 0x04 SYSTEM_INTERRUPT_CONFIG_GPIO = 0x0A GPIO_HV_MUX_ACTIVE_HIGH = 0x84 SYSTEM_INTERRUPT_CLEAR = 0x0B RESULT_INTERRUPT_STATUS = 0x13 RESULT_RANGE_STATUS = 0x14 RESULT_CORE_AMBIENT_WINDOW_EVENTS_RTN = 0xBC RESULT_CORE_RANGING_TOTAL_EVENTS_RTN = 0xC0 RESULT_CORE_AMBIENT_WINDOW_EVENTS_REF = 0xD0 RESULT_CORE_RANGING_TOTAL_EVENTS_REF = 0xD4 RESULT_PEAK_SIGNAL_RATE_REF = 0xB6 ALGO_PART_TO_PART_RANGE_OFFSET_MM = 0x28 I2C_SLAVE_DEVICE_ADDRESS = 0x8A MSRC_CONFIG_CONTROL = 0x60 PRE_RANGE_CONFIG_MIN_SNR = 0x27 PRE_RANGE_CONFIG_VALID_PHASE_LOW = 0x56 PRE_RANGE_CONFIG_VALID_PHASE_HIGH = 0x57 PRE_RANGE_MIN_COUNT_RATE_RTN_LIMIT = 0x64 FINAL_RANGE_CONFIG_MIN_SNR = 0x67 FINAL_RANGE_CONFIG_VALID_PHASE_LOW = 0x47 FINAL_RANGE_CONFIG_VALID_PHASE_HIGH = 0x48 FINAL_RANGE_CONFIG_MIN_COUNT_RATE_RTN_LIMIT = 0x44 PRE_RANGE_CONFIG_SIGMA_THRESH_HI = 0x61 PRE_RANGE_CONFIG_SIGMA_THRESH_LO = 0x62 PRE_RANGE_CONFIG_VCSEL_PERIOD = 0x50 PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x51 PRE_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x52 SYSTEM_HISTOGRAM_BIN = 0x81 HISTOGRAM_CONFIG_INITIAL_PHASE_SELECT = 0x33 HISTOGRAM_CONFIG_READOUT_CTRL = 0x55 FINAL_RANGE_CONFIG_VCSEL_PERIOD = 0x70 FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI = 0x71 FINAL_RANGE_CONFIG_TIMEOUT_MACROP_LO = 0x72 CROSSTALK_COMPENSATION_PEAK_RATE_MCPS = 0x20 MSRC_CONFIG_TIMEOUT_MACROP = 0x46 SOFT_RESET_GO2_SOFT_RESET_N = 0xBF IDENTIFICATION_MODEL_ID = 0xC0 IDENTIFICATION_REVISION_ID = 0xC2 OSC_CALIBRATE_VAL = 0xF8 GLOBAL_CONFIG_VCSEL_WIDTH = 0x32 GLOBAL_CONFIG_SPAD_ENABLES_REF_0 = 0xB0 GLOBAL_CONFIG_SPAD_ENABLES_REF_1 = 0xB1 GLOBAL_CONFIG_SPAD_ENABLES_REF_2 = 0xB2 GLOBAL_CONFIG_SPAD_ENABLES_REF_3 = 0xB3 GLOBAL_CONFIG_SPAD_ENABLES_REF_4 = 0xB4 GLOBAL_CONFIG_SPAD_ENABLES_REF_5 = 0xB5 GLOBAL_CONFIG_REF_EN_START_SELECT = 0xB6 DYNAMIC_SPAD_NUM_REQUESTED_REF_SPAD = 0x4E DYNAMIC_SPAD_REF_EN_START_OFFSET = 0x4F POWER_MANAGEMENT_GO1_POWER_FORCE = 0x80 VHV_CONFIG_PAD_SCL_SDA__EXTSUP_HV = 0x89 ALGO_PHASECAL_LIM = 0x30 ALGO_PHASECAL_CONFIG_TIMEOUT = 0x30 class TimeoutError(RuntimeError): pass class VL53L0X: def __init__(self, i2c, address=0x29): self.i2c = i2c self.address = address self.init() self._started = False self.measurement_timing_budget_us = 0 self.set_measurement_timing_budget(self.measurement_timing_budget_us) self.enables = {"tcc": 0, "dss": 0, "msrc": 0, "pre_range": 0, "final_range": 0} self.timeouts = {"pre_range_vcsel_period_pclks": 0, "msrc_dss_tcc_mclks": 0, "msrc_dss_tcc_us": 0, "pre_range_mclks": 0, "pre_range_us": 0, "final_range_vcsel_period_pclks": 0, "final_range_mclks": 0, "final_range_us": 0 } self.vcsel_period_type = ["VcselPeriodPreRange", "VcselPeriodFinalRange"] def _registers(self, register, values=None, struct='B'): if values is None: size = ustruct.calcsize(struct) data = self.i2c.readfrom_mem(self.address, register, size) values = ustruct.unpack(struct, data) return values data = ustruct.pack(struct, *values) self.i2c.writeto_mem(self.address, register, data) def _register(self, register, value=None, struct='B'): if value is None: return self._registers(register, struct=struct)[0] self._registers(register, (value,), struct=struct) def _flag(self, register=0x00, bit=0, value=None): data = self._register(register) mask = 1 << bit if value is None: return bool(data & mask) elif value: data |= mask else: data &= ~mask self._register(register, data) def _config(self, *config): for register, value in config: self._register(register, value) def init(self, power2v8=True): self._flag(_EXTSUP_HV, 0, power2v8) # I2C standard mode self._config( (0x88, 0x00), (0x80, 0x01), (0xff, 0x01), (0x00, 0x00), ) self._stop_variable = self._register(0x91) self._config( (0x00, 0x01), (0xff, 0x00), (0x80, 0x00), ) # disable signal_rate_msrc and signal_rate_pre_range limit checks self._flag(_MSRC_CONFIG, 1, True) self._flag(_MSRC_CONFIG, 4, True) # rate_limit = 0.25 self._register(_FINAL_RATE_RTN_LIMIT, int(0.1 * (1 << 7)), struct='>H') self._register(_SYSTEM_SEQUENCE, 0xff) spad_count, is_aperture = self._spad_info() spad_map = bytearray(self._registers(_SPAD_ENABLES, struct='6B')) # set reference spads self._config( (0xff, 0x01), (_SPAD_REF_START, 0x00), (_SPAD_NUM_REQUESTED, 0x2c), (0xff, 0x00), (_REF_EN_START_SELECT, 0xb4), ) spads_enabled = 0 for i in range(48): if i < 12 and is_aperture or spads_enabled >= spad_count: spad_map[i // 8] &= ~(1 << (i >> 2)) elif spad_map[i // 8] & (1 << (i >> 2)): spads_enabled += 1 self._registers(_SPAD_ENABLES, spad_map, struct='6B') self._config( (0xff, 0x01), (0x00, 0x00), (0xff, 0x00), (0x09, 0x00), (0x10, 0x00), (0x11, 0x00), (0x24, 0x01), (0x25, 0xFF), (0x75, 0x00), (0xFF, 0x01), (0x4E, 0x2C), (0x48, 0x00), (0x30, 0x20), (0xFF, 0x00), (0x30, 0x09), (0x54, 0x00), (0x31, 0x04), (0x32, 0x03), (0x40, 0x83), (0x46, 0x25), (0x60, 0x00), (0x27, 0x00), (0x50, 0x06), (0x51, 0x00), (0x52, 0x96), (0x56, 0x08), (0x57, 0x30), (0x61, 0x00), (0x62, 0x00), (0x64, 0x00), (0x65, 0x00), (0x66, 0xA0), (0xFF, 0x01), (0x22, 0x32), (0x47, 0x14), (0x49, 0xFF), (0x4A, 0x00), (0xFF, 0x00), (0x7A, 0x0A), (0x7B, 0x00), (0x78, 0x21), (0xFF, 0x01), (0x23, 0x34), (0x42, 0x00), (0x44, 0xFF), (0x45, 0x26), (0x46, 0x05), (0x40, 0x40), (0x0E, 0x06), (0x20, 0x1A), (0x43, 0x40), (0xFF, 0x00), (0x34, 0x03), (0x35, 0x44), (0xFF, 0x01), (0x31, 0x04), (0x4B, 0x09), (0x4C, 0x05), (0x4D, 0x04), (0xFF, 0x00), (0x44, 0x00), (0x45, 0x20), (0x47, 0x08), (0x48, 0x28), (0x67, 0x00), (0x70, 0x04), (0x71, 0x01), (0x72, 0xFE), (0x76, 0x00), (0x77, 0x00), (0xFF, 0x01), (0x0D, 0x01), (0xFF, 0x00), (0x80, 0x01), (0x01, 0xF8), (0xFF, 0x01), (0x8E, 0x01), (0x00, 0x01), (0xFF, 0x00), (0x80, 0x00), ) self._register(_INTERRUPT_GPIO, 0x04) self._flag(_GPIO_MUX_ACTIVE_HIGH, 4, False) self._register(_INTERRUPT_CLEAR, 0x01) # XXX Need to implement this. # budget = self._timing_budget() # self._register(_SYSTEM_SEQUENCE, 0xe8) # self._timing_budget(budget) self._register(_SYSTEM_SEQUENCE, 0x01) self._calibrate(0x40) self._register(_SYSTEM_SEQUENCE, 0x02) self._calibrate(0x00) self._register(_SYSTEM_SEQUENCE, 0xe8) def _spad_info(self): self._config( (0x80, 0x01), (0xff, 0x01), (0x00, 0x00), (0xff, 0x06), ) self._flag(0x83, 3, True) self._config( (0xff, 0x07), (0x81, 0x01), (0x80, 0x01), (0x94, 0x6b), (0x83, 0x00), ) for timeout in range(_IO_TIMEOUT): if self._register(0x83): break utime.sleep_ms(1) else: raise TimeoutError() self._config( (0x83, 0x01), ) value = self._register(0x92) self._config( (0x81, 0x00), (0xff, 0x06), ) self._flag(0x83, 3, False) self._config( (0xff, 0x01), (0x00, 0x01), (0xff, 0x00), (0x80, 0x00), ) count = value & 0x7f is_aperture = bool(value & 0b10000000) return count, is_aperture def _calibrate(self, vhv_init_byte): self._register(_SYSRANGE_START, 0x01 | vhv_init_byte) for timeout in range(_IO_TIMEOUT): if self._register(_RESULT_INTERRUPT_STATUS) & 0x07: break utime.sleep_ms(1) else: raise TimeoutError() self._register(_INTERRUPT_CLEAR, 0x01) self._register(_SYSRANGE_START, 0x00) def start(self, period=0): self._config( (0x80, 0x01), (0xFF, 0x01), (0x00, 0x00), (0x91, self._stop_variable), (0x00, 0x01), (0xFF, 0x00), (0x80, 0x00), ) if period: oscilator = self._register(_OSC_CALIBRATE, struct='>H') if oscilator: period *= oscilator self._register(_MEASURE_PERIOD, period, struct='>H') self._register(_SYSRANGE_START, 0x04) else: self._register(_SYSRANGE_START, 0x02) self._started = True def stop(self): self._register(_SYSRANGE_START, 0x01) self._config( (0xFF, 0x01), (0x00, 0x00), (0x91, self._stop_variable), (0x00, 0x01), (0xFF, 0x00), ) self._started = False def read(self): if not self._started: self._config( (0x80, 0x01), (0xFF, 0x01), (0x00, 0x00), (0x91, self._stop_variable), (0x00, 0x01), (0xFF, 0x00), (0x80, 0x00), (_SYSRANGE_START, 0x01), ) for timeout in range(_IO_TIMEOUT): if not self._register(_SYSRANGE_START) & 0x01: break utime.sleep_ms(1) else: raise TimeoutError() for timeout in range(_IO_TIMEOUT): if self._register(_RESULT_INTERRUPT_STATUS) & 0x07: break utime.sleep_ms(1) else: raise TimeoutError() value = self._register(_RESULT_RANGE_STATUS + 10, struct='>H') self._register(_INTERRUPT_CLEAR, 0x01) return value def set_signal_rate_limit(self, limit_Mcps): if limit_Mcps < 0 or limit_Mcps > 511.99: return False self._register(0x44, limit_Mcps * (1 << 7)) return True def decode_Vcsel_period(self, reg_val): return (((reg_val) + 1) << 1) def encode_Vcsel_period(self, period_pclks): return (((period_pclks) >> 1) - 1) def set_Vcsel_pulse_period(self, type, period_pclks): vcsel_period_reg = self.encode_Vcsel_period(period_pclks) self.get_sequence_step_enables() self.get_sequence_step_timeouts() if type == self.vcsel_period_type[0]: if period_pclks == 12: self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x18) elif period_pclks == 14: self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x30) elif period_pclks == 16: self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x40) elif period_pclks == 18: self._register(PRE_RANGE_CONFIG_VALID_PHASE_HIGH, 0x50) else: return False self._register(PRE_RANGE_CONFIG_VALID_PHASE_LOW, 0x08) self._register(PRE_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg) new_pre_range_timeout_mclks = self.timeout_microseconds_to_Mclks(self.timeouts["pre_range_us"], period_pclks) self._register(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(new_pre_range_timeout_mclks)) new_msrc_timeout_mclks = self.timeout_microseconds_to_Mclks(self.timeouts["msrc_dss_tcc_us"], period_pclks) self._register(MSRC_CONFIG_TIMEOUT_MACROP, 255 if new_msrc_timeout_mclks > 256 else (new_msrc_timeout_mclks - 1)) elif type == self.vcsel_period_type[1]: if period_pclks == 8: self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x10) self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08) self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x02) self._(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x0C) self._register(0xFF, 0x01) self._register(ALGO_PHASECAL_LIM, 0x30) self._register(0xFF, 0x00) elif period_pclks == 10: self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x28) self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08) self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03) self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x09) self._register(0xFF, 0x01) self._register(ALGO_PHASECAL_LIM, 0x20) self._register(0xFF, 0x00) elif period_pclks == 12: self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x38) self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08) self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03) self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x08) self._register(0xFF, 0x01) self._register(ALGO_PHASECAL_LIM, 0x20) self._register(0xFF, 0x00) elif period_pclks == 14: self._register(FINAL_RANGE_CONFIG_VALID_PHASE_HIGH, 0x48) self._register(FINAL_RANGE_CONFIG_VALID_PHASE_LOW, 0x08) self._register(GLOBAL_CONFIG_VCSEL_WIDTH, 0x03) self._register(ALGO_PHASECAL_CONFIG_TIMEOUT, 0x07) self._register(0xFF, 0x01) self._register(ALGO_PHASECAL_LIM, 0x20) self._register(0xFF, 0x00) else: return False self._register(FINAL_RANGE_CONFIG_VCSEL_PERIOD, vcsel_period_reg) new_final_range_timeout_mclks = self.timeout_microseconds_to_Mclks(self.timeouts["final_range_us"], period_pclks) if self.enables["pre_range"]: new_final_range_timeout_mclks += 1 self._register(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(new_final_range_timeout_mclks)) else: return False self.set_measurement_timing_budget(self.measurement_timing_budget_us) sequence_config = self._register(SYSTEM_SEQUENCE_CONFIG) self._register(SYSTEM_SEQUENCE_CONFIG, 0x02) self.perform_single_ref_calibration(0x0) self._register(SYSTEM_SEQUENCE_CONFIG, sequence_config) return True def get_sequence_step_enables(self): sequence_config = self._register(0x01) self.enables["tcc"] = (sequence_config >> 4) & 0x1 self.enables["dss"] = (sequence_config >> 3) & 0x1 self.enables["msrc"] = (sequence_config >> 2) & 0x1 self.enables["pre_range"] = (sequence_config >> 6) & 0x1 self.enables["final_range"] = (sequence_config >> 7) & 0x1 def get_vcsel_pulse_period(self, type): if type == self.vcsel_period_type[0]: return self.decode_Vcsel_period(0x50) elif type == self.vcsel_period_type[1]: return self.decode_Vcsel_period(0x70) else: return 255 def get_sequence_step_timeouts(self): self.timeouts["pre_range_vcsel_period_pclks"] = self.get_vcsel_pulse_period(self.vcsel_period_type[0]) self.timeouts["msrc_dss_tcc_mclks"] = int(self._register(MSRC_CONFIG_TIMEOUT_MACROP)) + 1 self.timeouts["msrc_dss_tcc_us"] = self.timeout_Mclks_to_microseconds(self.timeouts["msrc_dss_tcc_mclks"], self.timeouts[ "pre_range_vcsel_period_pclks"]) self.timeouts["pre_range_mclks"] = self.decode_timeout(PRE_RANGE_CONFIG_TIMEOUT_MACROP_HI) self.timeouts["pre_range_us"] = self.timeout_Mclks_to_microseconds(self.timeouts["pre_range_mclks"], self.timeouts[ "pre_range_vcsel_period_pclks"]) self.timeouts["final_range_vcsel_period_pclks"] = self.get_vcsel_pulse_period(self.vcsel_period_type[1]) self.timeouts["final_range_mclks"] = self.decode_timeout(self._register(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI)) if self.enables["pre_range"]: self.timeouts["final_range_mclks"] -= self.timeouts["pre_range_mclks"] self.timeouts["final_range_us"] = self.timeout_Mclks_to_microseconds(self.timeouts["final_range_mclks"], self.timeouts[ "final_range_vcsel_period_pclks"]) def timeout_Mclks_to_microseconds(self, timeout_period_mclks, vcsel_period_pclks): macro_period_ns = self.calc_macro_period(vcsel_period_pclks) return ((timeout_period_mclks * macro_period_ns) + (macro_period_ns / 2)) / 1000 def timeout_microseconds_to_Mclks(self, timeout_period_us, vcsel_period_pclks): macro_period_ns = self.calc_macro_period(vcsel_period_pclks) return (((timeout_period_us * 1000) + (macro_period_ns / 2)) / macro_period_ns) def calc_macro_period(self, vcsel_period_pclks): return (((2304 * (vcsel_period_pclks) * 1655) + 500) / 1000) def decode_timeout(self, reg_val): return ((reg_val & 0x00FF) << ((reg_val & 0xFF00) >> 8)) + 1 def encode_timeout(self, timeout_mclks): timeout_mclks = int(timeout_mclks) ls_byte = 0 ms_byte = 0 if timeout_mclks > 0: ls_byte = timeout_mclks - 1 while (ls_byte & 0xFFFFFF00) > 0: ls_byte >>= 1 ms_byte += 1 return (ms_byte << 8) or (ls_byte & 0xFF) else: return 0 def set_measurement_timing_budget(self, budget_us): start_overhead = 1320 end_overhead = 960 msrc_overhead = 660 tcc_overhead = 590 dss_overhead = 690 pre_range_overhead = 660 final_range_overhead = 550 min_timing_budget = 20000 if budget_us < min_timing_budget: return False used_budget_us = start_overhead + end_overhead self.get_sequence_step_enables() self.get_sequence_step_timeouts() if self.enables["tcc"]: used_budget_us += self.timeouts["msrc_dss_tcc_us"] + tcc_overhead if self.enables["dss"]: used_budget_us += 2* self.timeouts["msrc_dss_tcc_us"] + dss_overhead if self.enables["msrc"]: used_budget_us += self.timeouts["msrc_dss_tcc_us"] + msrc_overhead if self.enables["pre_range"]: used_budget_us += self.timeouts["pre_range_us"] + pre_range_overhead if self.enables["final_range"]: used_budget_us += final_range_overhead if used_budget_us > budget_us: return False final_range_timeout_us = budget_us - used_budget_us final_range_timeout_mclks = self.timeout_microseconds_to_Mclks(final_range_timeout_us, self.timeouts["final_range_vcsel_period_pclks"]) if self.enables["pre_range"]: final_range_timeout_mclks += self.timeouts["pre_range_mclks"] self._register(FINAL_RANGE_CONFIG_TIMEOUT_MACROP_HI, self.encode_timeout(final_range_timeout_mclks)) self.measurement_timing_budget_us = budget_us return True def perform_single_ref_calibration(self, vhv_init_byte): chrono = Timer.Chrono() self._register(SYSRANGE_START, 0x01|vhv_init_byte) chrono.start() while self._register((RESULT_INTERRUPT_STATUS & 0x07) == 0): time_elapsed = chrono.read_ms() if time_elapsed > _IO_TIMEOUT: return False self._register(SYSTEM_INTERRUPT_CLEAR, 0x01) self._register(SYSRANGE_START, 0x00) return True