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Abstract—We propose a new method to multiplicatively com-
bine different PoW mining algorithms into a new PoW like
mining algorithm such that hashrate improvements of all in-
dividual algorithms are relevant for the final hashrate of the
combination. This implies that for efficient mining all combined
algorithms need to be efficiently mined in a balanced way.
Hence our proposed method can serve as a new tool to carefully
craft new algorithms for specific hardware requirements and for
ASIC-resistance. For example a combination of CPU and GPU
algorithms would require miners to use both, CPU and GPU
hardware at the same time in order mine efficiently.

I. INTRODUCTION

C RYPTOCURRENCIES need a mechanism to distinguish the
consensus chain from an arbitrarily generated chain.

There are several approaches to this problem, Bitcoin’s Proof
of Work (PoW) [1], Ethereum’s Proof of Stake (PoS) [2] and
Solana’s Proof of History (PoH) [3] are just some examples.

In this work we consider PoW, the oldest and most battle-
proven approach. There is a debate on the environmental
implications and ethical aspects of PoW cryptocurrencies [4]
in which opponents claim PoW mining is burning energy
resources without actual use, thus driving global warming
while proponents on the other hand argue that the traditional
banking system, gold mining and more could be replaced
to a large extent by cryptocurrencies such that the negative
implication is marginal or even turned into a positive effect,
especially due to the facts that the replaced industries also
require a substantial amount of energy and fossil fuels, and
PoW mining is carried out in places where electricity is cheap
and often would just be lost if not used.

From a technical perspective securing a blockchain via PoW
has several benefits such as good decentralization due to the
parallel nature of PoW mining, natural and fair distribution
according to hashrate, which is particularly important at launch
phase of new projects, the simplicity of the approach which
helps to avoid bugs and unforeseen mining issues, and a
canonical way to scale the difficulty. Therefore PoW is often
considered as the gold standard method to distinguish the
consensus chain of a cryptocurrency [5], [6]. The trust it
conveys and receives from investors is one of the main
reasons why Bitcoin has been the undisputed leader of all
cryptocurrencies by market capitalization ever since.

In this paper we propose Proof of Balanced Work (PoBW),
a novel method to combine different PoW hashing algorithms
in a balanced way such that individual relative improvements
in hashrate efficiency of each component are relevant for the

mining efficiency of our proposed combination, and even when
slow and fast hashing algorithms are combined there is no
bottleneck effect in mining.

This paper is structured as follows. Section II explains
mining, difficulty and retargeting in the classical PoW context.
These concepts are then extended in Section III where we
specify our proposed PoBW mining algorithm in detail. In
Section IV we analyze and demonstrate methodology on
how to most efficiently mine PoBW. Our findings are finally
summarized in Section V. Mathematical proofs and auxiliary
results are deferred to the appendix.

II. CLASSICAL PROOF OF WORK

A. Mining

On an abstract level PoW mining is the process of iteratively
computing a hash function on different inputs until a certain
criterion to mine a block is met. A proper hash function
generates a finite-length pseudo-random byte sequence which
can be seen as a uniformly distributed finite precision binary
number u in the interval [0, 1) while the criterion Mτ (u) is
usually just a simple check whether this number u is within
a certain subinterval Sτ = [0, τ ], τ ∈ [0, 1), i.e.

Mτ (u) =

{
1 if u ∈ [0, τ ]

0 else
. (1)

For simplicity we will ignore the fact that u has finite precision
and therefore model u as a random variable U with uniform
distribution on [0, 1] when sampled as output of the hash
function, hence the probability of the criterion Mτ being met
is

P(Mτ (U)) = P(U ∈ [0, τ ]) = τ. (2)

By adjusting τ we can control the probability that a random
hash satisfies the criterion.

Usually the finite-precision representation of τ is called
target and encoded in the block header in compressed form.
For example this compressed form is called nBits and located
at bytes offsets 72-75 in Bitcoin’s block headers.

B. Difficulty

To every target τ corresponds a difficulty d which states how
many hashes are necessary on average to satisfy the criterion
Mτ . We will now elaborate the relation between τ and d.
Similarly as above we model multiple hashes on different
inputs as independent random variables U (1), U (2), . . . with
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uniform distribution on [0, 1]. The first index I of these
random variables satisfying the criterion Mτ is I = min{i ∈
N+|Mτ (U

(i) = 1} and we know that for k ∈ N+

P
(
min{i ∈ N+|Mτ (U

(i)) = 1} = k
)
= (1− τ)k−1τ

by equation (2) and independence such that I is geometrically
distributed. Since the difficulty is the expected required num-
ber of tries to satisfy the criterion Mτ for the first time, it is
equal to I’s expectation

d = E[I] = 1/τ. (3)

For historical reasons Bitcoin scales the reported difficulty by a
factor of 2−32 but in this work we stick to the above definition
of d being the expected number of hashes necessary to mine
a block.

C. Retargeting

An important ingredient of PoW blockchain technology is
the retargeting which describes the adjustment of the difficulty
according to the total hashrate of miners in order to ensure
blocks are mined at constant time rate. If blocks are mined
too slowly, the blockchain might become unusable. If they are
mined too fast blockchain size could outgrow the hardware ca-
pabilities of nodes and network infrastructure. Furthermore an
approximately constant mining rate is important for investors
and miners alike because it provides confidence about future
issue rate of new coins.

If the total hashrate doubles, the difficulty also has to
double, if it halves the difficulty also has to halve in order
to keep block generation rate at a constant level. However the
current total hash rate is not directly measurable and needs to
be estimated from past block timestamps1.

Cryptocurrencies usually implement rules which makes
faking block times by a large offset almost impossible. For
example in Bitcoin there is a hard-coded rule that enforces
that a block time must be larger than the median of the past
11 block times and another rule making peers ignore mined
blocks with times later than 2 hours in the future such that
by game theory no one will risk mining a block with a future
time stamp and wait until it is time that it can be published
without being ignored. This implies that block timestamps can
be considered to some extent as a proxy of the real block
creation time and can therefore be used for estimating the
total hashrate.

In Bitcoin retargeting happens every 2016 blocks and the
predefined rate is one block every 10 minutes, i.e. every 600
seconds. At this rate the 2016 blocks correspond to 2 weeks,
for an increased/decreased hashrate this timespan will be
shorter/longer respectively. Bitcoin retargeting works roughly
as follows.

1) After a batch of 2016 blocks the timestamps of the first
block and the last block2 within that batch are used to
compute an approximation of the time it took to mine
these 2016 blocks.

1Usually, block chains contain a Unix timestamp in each block header
specifying block creation time

2off-by-one error

2) This time is divided by 2016 to obtain an approximation
of the average time t in seconds required to mine one
block.

3) The difficulty is scaled by factor3 600/t which corre-
sponds to scaling the target by the inverse t/600.

After retargeting the expected time required to mine future
blocks is 600 seconds as desired, given that the future hashrate
is equal to the average hashrate of the past 2016 blocks.

In general retargeting works by dividing the difficulty by
the quotient q of theoretical time it should take for a specific
amount of blocks to be mined by the estimated time the
network actually needed. From equation (3) we know that the
target t must be multiplied by the quotient q to achieve this
desired effect on the difficulty.

III. PROOF OF BALANCED WORK

A. Motivation

It is an interesting question whether and how PoW min-
ing algorithms can be combined to form new PoW mining
algorithms and what new properties could be realized by such
hybrids. The most basic way to form a new PoW algorithm as a
combination is to apply classical PoW for a new hash function
which is formed as a concatenation other hash functions. In
such a setup the component hash function which is slowest to
compute will always be the bottleneck for the computation of
the concatenation. When these component hash functions are
computed on different devices the faster devices’ hash rates
cannot be efficiently used.

For example when a very fast GPU specific hash function
and a CPU specific hash function are concatenated and mined
on a rig, most likely the CPU will be the bottleneck. If the
CPU is reasonably capable to also compute the GPU hash
function the concatenation of the two hash algorithms will be
CPU-mineable and GPUs would just be waiting for the CPU
bottleneck.

Therefore such simple concatenations are of limited use.
In contrast we have developed a PoW mining methodology
combining hash functions multiplicatively which

• will not suffer from such bottlenecks,
• requires each component hash function to be efficiently

computed and
• can therefore be used for example to create new mining

algorithms that require both a capable CPU and GPU for
efficient mining.

This means our contribution opens the door to a completely
new class of PoW mining algorithms which can be freely
composed from established hash functions.

B. Definition

While a classical Proof of Work requires the one hashed
value to satisfy some criterion, we define a Proof of Balanced
Work to require a hash product of m ∈ N hash functions
h1, . . . , hm evaluated on the same argument to satisfy a
criterion.

3t will never be 0 due to the timestamp monotonicity rule involving the
running median of the latest 11 timestamps enforced for every block.
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Figure 1. Cumulative distribution function Fm of the product of m indepen-
dent uniform random variables on [0, 1] for m = 1, 2, 3, 4.

A hash product can be canonically defined when each hash
is considered as a binary number in the interval [0, 1) as
we already did in Section II-A. For m ∈ N such hashed
values u1, . . . , um ∈ [0, 1) obtained as the outputs of the
hash functions h1, . . . , hm evaluated at the same argument,
the PoBW criterion Mτ to mine a block is

Mτ (u1, . . . , um) =

{
1 if

∏m
i=1 ui ∈ [0, τ ]

0 else
for τ ∈ (0, 1].

Classical PoW is a special case of PoBW for m = 1.
If the hashed values are modeled as independent uniformly

distributed random variables U1, . . . , Um the probability that
the criterion Mτ is satisfied is

P (Mτ (U1, . . . , Um)) = P (
∏m

i=1 Ui ≤ τ) = Fm(τ) (4)

for a given target τ and Fm being the cumulative distribution
function of the product of m iid uniform random variables on
[0, 1]. Lemma A.2 provides an explicit formula and Figure 1
depicts Fm for different values of m.

C. Difficulty

Similarly to Section II-B we define the difficulty d for
PoBW to be the expected number of random hash products
that are necessary to compute in order to satisfy the criterion
Mτ . Let (U (i)

1 , . . . , U
(i)
m ), i ∈ N+ be independent groups of m

independent uniform random variables. Then the hash products
X

(i)
m :=

∏m
j=1 U

(i)
j , i ∈ N, are independent, each with cumula-

tive distribution function Fm. The first index I of these random
variables satisfying Mτ is I = min{i ∈ N+|Mτ (X

(i)) = 1}
and it holds for k ∈ N+ that

P (I = k) = (1− Fm(τ))k−1Fm(τ)

by equation (4), that is, I is geometrically distributed with
expectation equal to the difficulty

d = E[I] = 1/Fm(τ) (5)

for any target τ ∈ (0, 1]. Here again we observe that classical
PoW is a special case of PoBW for the case m = 1 since
F1(τ) = τ .

D. Retargeting

The inverse relation of the difficulty d on the target τ from
classical PoW is no longer true in PoBW as can be seen in
equation (5). Instead the difficulty involves the cumulative
distribution function Fm which leads to a skewed inverse
relation of d on τ .

Therefore the retargeting strategy from Section II-C cannot
be used in general for PoBW. To illustrate the problem we
compare the effect of halving the target τ on Fm(τ) for τ =
0.4 and a small value τ = 4.0× 10−22 in Tables I and II.

Table I
HALVING THE TARGET τ = 0.4 FOR m = 1, . . . , 4.

m Fm(τ) Fm(τ/2)
Fm(τ/2)
Fm(τ)

1 0.4 0.2 0.5
2 0.77 0.52 0.68
3 0.93 0.78 0.84
4 0.99 0.92 0.93

Table II
HALVING THE TARGET τ = 4.0× 10−22 FOR m = 1, . . . , 4.

m Fm(τ) Fm(τ/2)
Fm(τ/2)
Fm(τ)

1 4.0× 10−22 2.0× 10−22 0.5
2 2.0× 10−20 1.0× 10−20 0.51
3 5.1× 10−19 2.6× 10−19 0.51
4 8.5× 10−18 4.4× 10−18 0.52

We observe that halving the target τ does not halve the
probability to mine a block for m ≥ 2, which is a manifes-
tation of the skew effect mentioned above. However we have
proven that this effect becomes irrelevant for small τ :

Lemma III.1. For a number m ∈ N of independent uniform
random variables U1, . . . , Um on the interval [0, 1] consider
their product X :=

∏m
i=1 Ui. The conditional distribution

of the scaled random variable X/ε given X ≤ ε converges
weakly to a uniform distribution on [0, 1] as ε → 0.

The lemma implies that

∀c ∈ (0, 1), c > 1 lim
τ→0

sup
a∈[c,c]

∣∣∣Fm(aτ)
Fm(τ) − a

∣∣∣ = 0,

i.e. for a capped factor4 a, scaling small targets τ by a will
also approximately scale the probability to mine a block by
that factor, similarly to classical PoW. In Table II, we observe
this in action for a = 0.5.

For block chain applications using Proof of Balanced Work,
this means that despite the relation between τ and the difficulty
d in equation (5) is not an exact inverse relation, in practice we
can ignore this fact and still assume an inverse relation because
the target is usually sufficiently small to rely on Lemma III.1.
In particular we can use the retargeting logic from classical
PoW.

4In Bitcoin the retarget scale factor is capped to values in [0.25, 4].
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IV. FILTERED MINING FOR POBW

A. Optimal Mining Approach

Since Proof of Balanced Work involves a hash product of
the same argument, mining such an argument requires the
evaluation of all m hash functions on candidate argument until
an argument is found whose hash values satisfy the criterion
Mτ for a given target τ .

The m hash operations are not required to by synced per
argument, instead whenever the involved hash functions are
evaluated at different hash rates, the faster hash functions
outputs can be used to filter out promising arguments to be
evaluated in the other hash functions.

More formally assume our compute resources allow us to
compute of ni ∈ N+ evaluations of hi, i ∈ {1, . . . ,m} in one
batch without loss of generality let n1 ≥ . . . ≥ nm. Obviously,
to achieve the highest probability of mining a block the best
computational strategy is to first compute n1 evaluations of h1

on different arguments, then evaluate h2 on the arguments cor-
responding to the smallest n2 outputs seen as binary numbers
in [0, 1), then evaluate h3 on the arguments corresponding
to the n3 smallest hash products of outputs of h1 and h2

etc. until we arrive at nm different arguments for which we
have computed the evaluation of all m hash functions to form
the hash product and check the criterion Mτ . This optimal
strategy is an m-stage iterative procedure of evaluating hi

on ni candidates, sorting by
∏i

j=1 hj and filtering the lowest
ni+1 candidates at each stage i = 1, . . . ,m − 1 with a final
evaluation of hm on the remaining nm candidates to form the
full hash product

∏m
j=1 hj .

This approach involves sorting at the first m−1 stages which
may not be feasible in efficient implementations. Therefore we
do not consider this optimal approach in detail but introduce
a slight modification to obtain a more practical approach.
However we want to note that a mathematical analysis of
this optimal approach would involve conditional integrals over
Beta-distributions which are the distributions of order statistics
of independent uniform random variables, see Lemma A.1.

B. Practical Mining Approach

In the above setting, at each stage i = 1, . . . ,m−1, instead
of sorting

∏i
j=1 hj and filtering the lowest ni+1 candidates

we filter arguments where
∏i

j=1 hj is below a hard-coded
threshold ci which we will specify below. Note that for a
uniform random variable U on [0, 1] and a filter threshold c ∈
(0, 1], conditionally on U < c, U is uniformly distributed on
[0, c]. In particular each complete hash product of all m hashed
values computed in this hard-coded filter approach satisfies the
criterion Mτ with probability

P
(
Um

∏m−1
i=1 ciUi ≤ τ

)
= Fm (Cτ) (6)

for independent uniform random variables U1, . . . , Um on
[0, 1], target τ and C :=

∏m−1
i=1 c−1

i

At each stage i ∈ {1, . . . ,m− 1} the number of candidates
passing the threshold condition is random but we can define
ci :=

∏i
j=1 F

−1
j (nj+1/nj) such that on average ni+1 candi-

dates pass stage i, which can be checked by induction. By the

Figure 2. Logarithmic plot comparing sampled the empirical distribution of
sampled hash products from the filtered and unfiltered approaches.

law of large numbers, the variance in these candidate numbers
at each stage can be smoothed if many such batches are
computed with work jobs queued between compute batches. In
particular we can assume that in every batch this iterative hard-
coded filtering approach produces nm complete hash products
of all m hashed values, mining a block with probability

1− (1− Fm (Cτ))
nm . (7)

C. Examples

We will now provide three examples that illustrate filtered
mining and demonstrate how to balance available hash rate
between different component hash functions in PoBW. For
simplicity we consider the case of m = 2 combined hash
functions.

1) Simulation of Filtering: To demonstrate the positive
effect of filtered mining we consider 10 million hashes. As
already explained they can be regarded as binary numbers in
the interval [0, 1]. We partition these hashes into two groups g1,
g2 and consider them as output values of h1, h2 respectively.
To empirically compare the naive unfiltered with the optimal
filtered approach we use the following Julia code:
unfiltered = rand(5000000) .* rand(5000000)
filtered = sort(rand(8000000))[1:2000000] .* rand(2000000)

The unfiltered hash product samples are generated by two
equally sized groups g1, g2 with 5 000 000 hashes each
whereas the filtered hash product samples are generated by
first sampling 8 000 000 hashes in group g1, then filtering
out the lowest 2 000 000 hashes, and finally sampling another
2 000 000 corresponding hashes for the group g2 to form the
pair-wise product. We plot the empirical distribution of both
approaches in logarithmic scale in Figure 2 and observe that
for lower sampled values of x the blue line is above the red
line, which indicates that the filtered approach generates lower
hash products than the unfiltered approach.

In particular the filtered approach generates more small hash
products, and is therefore better than the unfiltered approach,
which is remarkable considering the fact that in the unfiltered
approach we generate 5 000 000 hash products in total but only
2 000 000 in the filtered approach. This means that to generate
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low hash products, the positive effect of filtering out high-
quality h1 candidate arguments to apply h2 on is stronger
than the negative effect of having fewer total number of hash
products in the filtered setting.

2) Balancing computations on the same device: Assume
that we have a device which can compute a hash function h1

at rate 500kh/s and another hash function h2 at rate 125kh/s.
We want to balance the computations of h1 and h2 on the
device such that the probability to mine a block using PoBW is
maximal in a batch computation during a time slot of duration
t to be specified below. We denote the fraction of the available
computational resources spent on hashing h1 by α.

This optimization problem is is depicted in Figure 3. On the

Figure 3. Different partitions of computational resources among two hash
functions with different efficiencies 5kh/s/% (yellow) and 1.25kh/s/% (or-
ange).

left hand side the balance of computational resources between
h1 and h2 is 20/80 percent (α = 0.2) and the overall hash rate
of complete hash products is 100kh/s while the right hand side
with allocation of 40/60 percent (α = 0.4) yields a hashrate
of only 75k complete hash products per second. However if
we filter only the arguments of the best 75kh/s of the 200kh/s
to be subsequently fed into the slower hash function, it is not
clear per se which configuration is more efficient for PoBW
mining.

We set the batch duration to t = 0.1 seconds, such that
the number of hashes computed during this time is equal
to n1(α) = αN1, n2(α) = (1 − α)N2 with N1 = 50 000
and N2 = 12 500. Now by equation (7) the probability of
mining a block within these 0.1 seconds for resource allocation
parameter α is

P (α) :=

1−
(
1− F2

(
τ (1−α)N2

αN1

))(1−α)N2

for α ≥ N2
N1+N2

1−
(
1− F2

(
τ αN1

(1−α)N2

))αN1

else

since C = c−1
1 with c1 = F−1

1 (n2/n1) = n2/n1. The case
distinction comes from the fact that we assumed that n1 ≥ n2,
otherwise we need to swap the roles of n1 and n2. For the
target τ = 10−8 this block mining probability function P is
shown in Figure 4. The optimizer α̂ that and maximize P is
α̂ ≈ 0.9349 in this case. Figure 5 shows the optimal balance
parameter α̂ in other settings. It depends on the target τ , N1

and N2.
The probability to mine a block within one second

1− (1− P (α))
1
t

does not depend on the batch duration t because N1 and N2

are proportional to t.

Figure 4. Cumulative distribution function Fm of the product of m indepen-
dent uniform random variables on [0, 1] for m = 1, 2, 3, 4.

Figure 5. Optimal balance parameter α̂ that maximize P for different targets
τ and N1 ∈ [N2, 103N2], N2 = 12 500.

3) Balancing configurations of specialized hardware: We
will now illustrate how PoBW allows the creation of PoW
algorithms which can only be mined efficiently if, CPU and
GPU capabilities are available and balanced. We assume that
we have m = 2 hash functions hCPU and hGPU combined in
our PoBW setting. For simplicity we will further assume that
hCPU can only be mined on CPU and hGPU can only be mined
on GPU.

In order to demonstrate that optimal mining requires CPU
and GPU capabilities to be balanced we will compare hypo-
thetical systems with different CPU and GPU configurations.
Table III shows wattage and hashrate of 5 different hypothet-
ical CPU and GPU configurations.

Similarly to the previous example for batch duration t, in a
batch we compute n1 = r1t GPU hashes and n2 = r2t CPU
hashes for GPU and CPU hash rates r1 < r2. Plugging this
into equation (7) yields

P (τ, t) = 1−
(
1− F2

(
τ r1
r2

))tr2
for the probability to mine a block in that batch. Following
the same argumentation as in to the derivation of the difficulty
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Table III
HYPOTHETICAL CPU AND GPU CONFIGURATIONS FOR MINING hCPU AND

hGPU RESPECTIVELY.

CPU Hashrate Power GPU Hashrate Power
CPU1 0.2kh/s 10W GPU1 1mh/s 0.2kW
CPU2 1kh/s 50W GPU2 2mh/s 0.4kW
CPU3 2kh/s 100W GPU3 4mh/s 0.8kW
CPU4 3kh/s 150W GPU4 10mh/s 2kW
CPU5 6kh/s 300W GPU5 25mh/s 5kW

in equation (3) the expected number of batches to mine a
block is the inverse of this quantity. Scaling this inverse
by t yields the expected mining time tP (τ, t)−1 per block
which can be multiplied by the total wattage of the CPU and
GPU configuration to obtain the expected amount of energy
consumption. Note that expected time to mine a block is
tP (τ, t)−1 ≈ r−1

2 F2(τ
r1
r2
)−1 for t, τ small enough which

holds true for practical settings such that there is only a minor
dependence on the batch duration t.

In Table IV we have computed this expected energy con-
sumption to mine a block for all 25 combinations of CPU and
GPU configurations.

Table IV
EXPECTED ENERGY CONSUMPTION IN KWH PER MINED BLOCK USING

POBW FOR DIFFERENT CPU/GPU CONFIGURATIONS.

CPU1 CPU2 CPU3 CPU4 CPU5
GPU1 4.41 4.55 4.76 5.12 5.57
GPU2 4.69 4.43 4.40 4.55 4.84
GPU3 5.37 4.69 4.43 4.42 4.62
GPU4 6.11 5.02 4.54 4.39 4.51
GPU5 8.36 6.11 5.02 4.47 4.41

We can observe that a weak GPU configuration like GPU1
paired with a strong CPU configuration like CPU5 requires a
suboptimal amount of energy (5.57 kWh), the same holds true
for the opposite configuration of strong GPU5 paired with the
weak CPU1 (8.36 kWh). Efficient mining requires CPU and
GPU capabilities to be balanced. Upgrading only CPU or GPU
will still improve hashrate but at the same time increase the
energy consumption disproportionately.

At this point the question arises whether it is better to
find a balance of weaker hardware components or should one
consider an even stronger balanced CPU and GPU combi-
nation to mine more efficiently. If available CPU and GPU
hashrates both scale linearly with their power drain like in this
example, only the relation between CPU and GPU hashrate is
relevant, the synchronous scaling of both can be accounted
for by adapting the batch duration t and is therefore almost
irrelevant. One can even do an continuous analysis at some
fixed energy budget in this case, completely similarly to the
previous example, to find the perfect balance α̂ of CPU and
GPU power allocation for given hash per watt ratios.

V. SUMMARY

In this work we have presented Proof of Balanced Work
which is a novel Proof of Work variant that combines multiple
component hash functions in a multiplicative way instead
of just one hash function in classical Proof of Work. Our

presented method does not suffer from bottlenecks like a plain
concatenation of hashes would and allows the creation of
completely new mining algorithms to fit specific needs. For
example it can be used to form a mining algorithm which
can only be mined efficiently if balanced CPU and GPU
capiabilities are available, while current mining algorithms are
mined either on CPU or GPU but do not require both at the
same time for efficiency.

We have formally explained the concepts of mining, diffi-
culty and retargeting in the classical setting and then analyzed
how these concepts can be transferred to PoBW.

In addition we presented an optimal and a practical approach
for mining PoBW in batches. The key to avoid bottlenecks
in mining different hash functions at different hash rates
is to iteratively filter promising argument candidates based
on the faster hash functions outputs in multiple stages. For
the practical approach we provided explicit formulas for the
probability to mine a block in a batch. We finally demonstrated
filtered mining and showed how to balance mining setups for
best efficiency.

We believe that the novel methodology, theory and examples
presented in this work open the door to a new era of Proof Of
Balanced Work mining algorithms due to the very favorable
properties of forming hash products to combine established
hash functions: simplicity, avoidance of mining bottlenecks
and the possibility to target specific balanced hardware setups
which can be particularly useful for the design of ASIC-
resistant mining algorithms.

APPENDIX

Below we list two well-known lemmas, see for example [7]
and [8] for reference.

Lemma A.1. Consider iid uniform random variables
U1, . . . , Un on the interval [0, 1]. The k-th smallest element
U (k) has distribution

U (k) ∼ Beta(k, n+ 1− k).

Lemma A.2. The density fX : R → R of the product X :=∏m
i=1 Um of m ∈ N independent uniformly distributed random

variables U1, . . . , Um on [0, 1] is

fX(x) =

{
(− log(x))m−1

(m−1)! if x ∈ [0, 1]

0 else
, (8)

and its cumulative distribution function Fm is therefore

Fm(x) = x

m−1∑
k=0

(−1)k
log(x)k

k!
for x ∈ [0, 1]

by the formula
∫ x

0
log(x)ndx = x

∑n
k=0(−1)n−k n!

k! log(x)
k,

n ∈ N.
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Proof of Lemma III.1. From Lemma A.2 we know the density
function of X . The density of X/ε is fX/ε(x) = fX(εx) for
all x. Note that for all τ ∈ (0, 1] we have

lim
ε→0

sup
y∈[τ,1]

fX/ε(y)

fX/ε(1)
= lim

ε→0
sup

y∈[τε,ε]

fX(y)
fX(ε)

= lim
ε→0

(
sup

y∈[τε,ε]

log(y)
log(ε)

)m−1

= lim
ε→0

(
log(τε)
log(ε)

)m−1

=
(
lim
ε→0

log(τ)+log(ε)
log(ε)

)m−1

= 1. (9)

It follows that for all τ ∈ (0, 1]

lim
ε→0

sup
x∈[0,1]

∣∣∣∣∫ x

0

fX/ε(y)

fX/ε(1)
dy − x

∣∣∣∣
≤ lim

ε→0
sup

x∈[0,1]

∫ x

0

∣∣∣ fX/ε(y)

fX/ε(1)
− 1
∣∣∣dy

≤ lim
ε→0

∫ 1

0

∣∣∣ fX/ε(y)

fX/ε(1)
− 1
∣∣∣dy

≤ lim
ε→0

∫ τ

0

∣∣∣ fX/ε(y)

fX/ε(1)
− 1
∣∣∣dy + ∫ 1

τ

∣∣∣ fX/ε(y)

fX/ε(1)
− 1
∣∣∣dy.

The dominated convergence theorem guarantees that the first
term can be bounded by

lim
ε→0

∫ τ

0

∣∣∣ fX/ε(y)

fX/ε(1)
− 1

∣∣∣ dy ≤ lim
ε→0

∫ τ

0

(
log(εy)
log(ε)

)m−1

dy + τ ≤ 2τ

and that the second term converges to 0

lim
ε→0

∫ 1

τ

∣∣∣ fX/ε(y)

fX/ε(1)
− 1
∣∣∣dy = 0

by equation (9). We therefore have shown that the function
x 7→

∫ x

0

fX/ε(y)

fX/ε(1)
dy converges uniformly to the identity func-

tion on [0, 1]. This implies that the cumulative distribution
function of X/ε given X/ε ≤ 1 converges pointwise to the
cumulative distribution function of a uniform distribution. The
statement of the lemma now follows from the Portmanteau
theorem.
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