
Providing APIs (Application programming

interface)

Warning This file is maintained at Conduction’s Google Drive Please make any suggestions of

alterations there.

The gateway provides an API for other applications to use and consume APIs from sources in a way

that gateway acts both as a provider and consumer of APIs. How to consume APIs from the gateway is

further detailed under the Sources chapters. This chapter deals with providing APIs from the gateway

to other applications

Endpoints

Each api consists of an collection of endpoints. These provide the basis location that a call can be

made to e.g. /api/pets .

Contex

The gateway always views each call to an endpoint in its own context determined by three main

aspects.

(User) Who is making the call? e.g. User John

([Application]Applications.md) How is he making the call? e.g. from the front desk applications

(Process) For which process is he making the call? e.g. client registration

The call is then handled by the request service.

Generic API Functionality

A normal filter: {propertyName}={searchValue} e.g. firstname=john

A property is IN array filter: {propertyName}[]={searchValue1} e.g. ‘firstname[]=john’

{propertyName}[]={searchValue2} e.g. ‘firstname[]=harry’

or

A normal filter with method: {propertyNema}[method]={searchValue} e.g.

‘firstname[case_insensitive]=john’

A property is IN array filter with method: {propertyNema}[method][]={searchValue1} e.g.

‘number[int_compare][]=2’ {propertyNema}[method][]={searchValue2} e.g. ‘number[int_compare]

[]=5’ Note that not every method can be used like this

All functional query parameters always start with an _ to prevent collisions with property names e.g.

_order

Methods

method less queries (e.g. firstname=john) are treated as exact methods firstname[exact]=john

[exact] (default) exact match Only usable on properties of the type text , integer or

datetime . Seea

https://docs.google.com/document/d/1LMm7OCoJrghHLWv9mRztXiWkzIQZuACq6uOFI8XV2ys/edit
http://localhost:34775/
http://localhost:34775/Endpoints.md
http://localhost:34775/Authentication.md
http://localhost:34775/

[case_insensitive] (default) case insensitive searching Only usable on properties of the

type text , uses the regex function under the hood in a case insensitive way.

[case_sensitive] case sensitive searching Only usable on properties of the type text ,

uses the regex function under the hood in a case sensitive way.

[like] wildcard search Only usable on properties of the following types: text , integer

datetime These types work the same as a regex search, but wraps the value in .* creating

.*$value.* and sets the matching pattern to case insensitive and multi-line.This means you

can search for single words in sentences or text. Keep in mind that like will search for

complete occurrences zo $name[like] =John Doe will only return hits on “John Doe” and not

records containing either John OR Doe.

[>=] equal or greater than Only usable on properties of the type integer , will

automatically cast the searched value to integer to make the comparison

[>] greater than Only usable on properties of the type integer , will automatically cast the

searched value to an integer to make the comparison

[<=] equal or smaller than Only usable on properties of the type integer , will

automatically cast the searched value to an integer to make the comparison

[<] smaller than Only usable on properties of the type integer , will automatically cast the

searched value to an integer to make the comparison

[after] equal or greater than Only usable on properties of the type date or datetime

[strictly_after] greater than Only usable on properties of the type date or datetime

[before] equal or smaller than Only usable on properties of the type date or datetime

[strictly_before] smaller than Only usable on properties of the type date or datetime

[regex] compare the values based on regex Only usable on properties of the type

string

[int_compare] will cast the value of your filter to an integer before we filter with it.

Useful when the stored value in the gateway cache is an integer, but by default you are

searching in your query with a string “1012”. Works with the property IN array filter like this:

{propertyNema}[int_compare][]={searchValue1}

[bool_compare] will cast the value of your filter to a boolean before filtering. Useful

when the stored value in the gateway cache is a boolean, but by default you are searching in

your query with a string “true”. Works with the property IN array filter like this:

{propertyNema}[bool_compare][]={searchValue1}

Note When comparing dates we use the PHP dateTime($value) function to cast the strings to

dates. That means that you can also input strings like now . yesterday see the full list of relative

formats.

Ordering the results

_order[propertyName] = desc/asc

Note The _search order property currently also supports order for backwards compatibility

https://www.php.net/manual/en/class.datetime.php
https://www.php.net/manual/en/datetime.formats.relative.php

Working with pagination

Requests to collections (e.g. more then one object) are encapsulated in an response object, the

gateway automatically paginates results on 30. You can set the amount of items per page through the

_limit query parameter. There is no upper limit to this parameter, so if desired, you could request

10000 objects in one go. This does however come with a performance drain because of the size of the

returned response in bytes where the main throttle is the internet connection speed of the transfer

combined with the size of individual objects. We therefore suggest not to user limits greater than 100

in frontend applications.

{

 "total":100,

 "limit":30,

 "pages":4,

 "page":1,

 "results":[]

}

_limit

_page

_start

Note The pagination properties currently also support backwards compatibility by removing the _

part. Meaning that they may also be used as limit , page and start

The search index

The Common Gateway automatically creates a search index of all objects based on the text value of

their properties (non-text values are ignored). This search index can be used when approaching API

endpoints through the special _search query parameter. Search functions as a wildcard.

e.g. _search=keyword

By default the search query searches in all fields. If you want to search specific properties you can do

so by defining them as methods. You can search properties fields (in an OR configuration) by

separating them through a comma, and supplying them in the method.You can also search in sub

properties e.g. _search[property1,property2.subProperty]=keyword .

Note The _search property currently also supports search for backwards compatibility

Limiting the return data

In some cases you either don’t need or want a complete object. In those cases it's good practice for

the consuming application to limit the field in its return call. This makes the return messages smaller

(and therefore faster), but it is also more secure, because it prevents the sending and retention of

unnecessary data.

The returned data can be limited using the _fields query parameter. This parameter is expected to be

an array containing the name of the requested properties. It’s possible to include nested properties

using dot notation. Let’s take a look at the following example. We have a person object containing the

following data:

{

 "firstname":"John",

 "lastname":"Doe",

 "born":{

 "city":"Amsterdam",

 "country":"Netherlands",

 "date":"1985-07-27"

 }

}

Of we then query using _fields[]=firstname&_fields[]=born.date we would expect the following

object to be returned:

{

 "firstname":"John",

 "born":{

 "date":"1985-07-27"

 }

}

Note The _fields property may be aliased as _properties

_remove is specific unset

Specifying the data format

The gateway can deliver data from its data layer in several formats. Those formats are independent

from their original source, e.g. A source where the gateway consumes information from might be XML

based, but the gateway could then provide that information in JSON format to a different application.

The data format is defined by the application requesting the data through the Accept header.

Mapping the data (transformation)

It is also possible to transform incoming data by providing a mapping object, more information about

creating mapping objects can be found under mappings.

Mappings can be passed through the gateway by url encoding the desired mapping and passing it

trough the _mappings query parameter.

Note It is discouraged to use mappings in this context since it makes the API restFull.

Warning This file is maintained at Conduction’s Google Drive Please make any suggestions of

alterations there.

Action Handlers

...

http://localhost:34775/Mappings.md
https://docs.google.com/document/d/1qNErKlzI5LfjoK68COdKNcElydBz2PbSpz6J-hHL2ms/edit

Architecture

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions of

alterations there.

Main Process

The Common Gateway is designed to handle a multitude of request types. Upon receiving a request,

the Gateway commences a series of steps to handle the request and provide an appropriate response.

The main process is as follows:

1. Receipt of Request: The Gateway can receive a wide range of request types. These include:

HTTP GET, PUT, POST, etc., containing a JSON, XML, or SOAP object A browser GET request

(HTML) A user posting a form A user downloading a file

2. Endpoint Identification: Once the Gateway receives a request, the first task is to identify

the endpoint. The endpoint is a primary determinant of how the request will be processed.

Endpoints are mapped to specific functions or services in the Gateway, and the identified

endpoint dictates the necessary operations to be performed.

3. Response Generation: After the request has been processed according to the rules of the

identified endpoint, the Gateway generates an appropriate response. This could be a JSON or

XML response for API requests, an HTML page for browser requests, or the requested file for

download requests.

This main process forms the backbone of the Common Gateway's operation. It ensures that any

incoming request can be accurately interpreted and handled, and that an appropriate response can be

generated and returned to the user.

The use of endpoints allows the Gateway to be highly flexible and adaptable, capable of handling a

wide variety of requests and responses, making it an ideal solution for various use cases.

https://docs.google.com/document/d/1RkIn8-mVD2I2v0HDMiPuHvoeitpWvcp0EVZyeFZHAG8/edit

Handling incoming requests

Requester

Requester

Endpoint

Endpoint

Authent icat ion

Authent icat ion

Source

Source

RequestService

RequestService

Events

Events

1 Request

2 Require authentication

3 Is authenticated

a l t [p r o x y]

4 Pass Request

5 Pass Response

[schema('s)]

6 Pass Request

7 Get Request

[no proxy or schema('s)]

Do nothing..........

8 Create Responce

9 Throw events

1 0 Update responce

1 1 Serialize Responce

1 2 Response

Requests

Common Gateway | Endpoints

Main request components

1. Endpoint

2. Source

3. Datalayer

4. Request Service

5. Events

Two codebases to rule them all

As part of our ongoing efforts to improve and streamline our development process, we're transitioning

from a single codebase setup to a library-based one. This shift involves migrating code from the

existing repository at ConductionNL/commonground-gateway to a new repository at

CommonGateway/CoreBundle.

http://localhost:34775/Endpoints.md
http://localhost:34775/Sources.md
http://localhost:34775/Datalayer.md
http://localhost:34775/classes/Service/RequestService.md
http://localhost:34775/Events.md
https://github.com/ConductionNL/commonground-gateway
https://github.com/CommonGateway/CoreBundle

This transition is not just about moving code; it's about enhancing the quality of our codebase. We're

taking this opportunity to clean up both our code and documentation and to increase the coverage of

our unit tests. However, this is a significant undertaking, and we're not finished yet. As of now,

Entities, Controllers, and some workflows, including unit testing, are still located in the old repository.

We expect the migration to be completed by summer 2023.

An integral part of this transition is the decoupling of client-specific code from the core codebase. This

code will now reside in separate plugin repositories. This separation of concerns ensures a cleaner,

more maintainable codebase, and allows for more customizable client implementations.

Please bear with us during this period of transition. We're confident that these changes will result in a

more robust and efficient gateway, and we appreciate your understanding and patience during this

time.

Design Decisions

API First

An API-first approach means that for any given development project, your APIs are treated as "first-

class citizens." An API-first approach involves developing APIs that are consistent and reusable, which

can be accomplished by using an API description language to establish a contract for how the API is

supposed to behave. The specification we use is the OpenAPI Specification. You can view the latest

version of this specification (3.0.1) on GitHub.

Documentation

We host technical documentation on Read the Doc's and general user information on GitHub pages, to

make the documentation compatible with GitHub we document in markdown (instead of

reStructuredText). Documentation is part of the project and contained within the /docs folder.

Common Ground

All applications are developed following the Common Ground standards on how a data exchange

system should be: modular and open-source. More information on Common Ground can be found here

Kubernetes set up

https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
https://commonground.nl/

C o m p o n e n t s

Components

Kubernetes

Layer 5 (in teract ion)

React Conta iner 1 React Conta iner 2

Layer 4 (Logic)

NGINX Container

Gateway Conta iner

RedisContainer MongoDB Container

Layer 1 (da ta)

Database Service

ingress

User Interface Admin Interface
Nginx

Plugins

Gateway

ORM Redis MongoDB

Postgress/MsSQL/MySql/Oracle

Exposes Exposes Exposes

Runs

Implements IndexCacheStore

Persist

Common Gateway | Componen ts

Objects

Objec ts

Objects

Deprecteced Core

Events

API

EAV

In te r ra c t ion

D a t a

Def in i t ion

Audit t ra i l Cont ract Document

File Proper ty Purpose

Soap Translation

User Organization Appl icat ion

Authent icat ion DashboardCard Source

Log SecurityGroup

Act ion ActionHandler

Cronjob Handler

Collect ionEndpointMapping Synchronization

Temp la te Unread

Ob jec t

name: str ing
self: string
externalId: string
uri: string
appl icat ion: Appl icat ion
organization: Organization
owner: str ing
ent i ty : Ent i ty
objectValues: Collection<Value>
hasErrors: bool
errors: array
hasPromises: bool
promises: array
externalResult: array
subresourceOf: Collection<Value>
subresourceIndex: string
synchronizations: Collection<Synchronization>
usedIn: Col lect ion<Attr ibute>
hydrated: bool
lock: str ing
sourceOfSynchronizations: Collection<Synchronization>
-- Metadata
id: UuidInterface «generated»
dateCreated: DateTime «generated»
dateModif ied: DateTime «generated»

Value

uri: string
stringValue: string
integerValue: int
numberValue: f loat
booleanValue: bool
arrayValue: array
simpleArrayValue: array
dateTimeValue: DateTime
fi les: Collection<File>
a t t r i bu te : A t t r i bu te
objectEnt i ty : ObjectEnt i ty
objects: Col lect ion<ObjectEnt i ty>
-- Metadata
id: UuidInterface «generated»
dateCreated: DateTime «generated»
dateModif ied: DateTime «generated»

Schema

gateway: Source
endpoint : s tr ing
toSoap: Soap
fromSoap: Col lect ion<Soap>
name: str ing
descript ion: str ing
funct ion: str ing
extend: bool
inher i ted: bool
at t r ibu tes: Col lec t ion<At t r ibute>
searchPart ial : Col lect ion<Attr ibute>
objectEnt i t ies: Col lect ion<ObjectEnt i ty>
usedIn: Col lect ion<Attr ibute>
transformations: array
route: str ing
availableProperties: array
usedProperties: array
translationConfig: array
collectionConfig: array
itemConfig: array
externMappingIn: array
externMappingOut: array
handlers: Collection<Handler>
col lect ions: Col lect ion<Col lect ionEnti ty>
schema: string
dateCreated: DateTime
dateModif ied: DateTime
nameProperties: array
maxDepth: in t
reference: str ing
version: string
endpoints: Col lect ion<Endpoint>
exclude: bool
persist : bool
createAuditTrai ls: bool
defaultSource: Source
-- Metadata
id: UuidInterface «generated»

A t t r i b u t e

name: str ing
type: s t r ing
format : st r ing
mul t ip le: bool
ent i ty : Ent i ty
funct ion: str ing
searchPartial: Entity
attr ibuteValues: Col lect ion
object : Ent i ty
extend: bool
include: bool
ref : str ing
mult ipleOf: str ing
maximum: str ing
exclusiveMaximum: string
minimum: str ing
exclusiveMinimum: string
maxLength: str ing
minLength: in t
maxI tems: int
minI tems: in t
uniqueItems: bool
maxPropert ies: str ing
minPropert ies: int
inversedBy: Attr ibute
required: bool
requiredIf: array
forbiddenIf: array
enum: array
allOf: array
anyOf: array
oneOf: array
descript ion: str ing
defaultValue: string
nullable: bool
mustBeUnique: bool
caseSensitive: bool
readOnly: bool
writeOnly: bool
example: str ing
pat tern: s t r ing
deprecated: bool
minDate: str ing
maxDate: str ing
maxFileSize: string
minFileSize: string
fileTypes: array
validations: array
persistToGateway: bool
searchable: bool
sortable: bool
tr iggerParentEvents: bool
cascadeDelete: bool
cascade: bool
objectConfig: array
immutable: bool
unsetable: bool
mayBeOrphaned: bool
schema: string
inversedByPropertyName: string
-- Metadata
id: UuidInterface «generated»
dateCreated: Datetime «generated»
dateModif ied: Datetime «generated»

Entities have attributes

One

Entities have values

One

Values are defined by an Attribute

One

Objects are defined by an Entity

One

Common Gateway | Objec ts

Authentication

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions of

alterations there.

Authentication is an essential part of securing the gateway. It involves validating the identity of a

client—whether that's a user, a device, or another application—before allowing it to access the

system's resources. There are several ways for applications to authenticate themselves to the

gateway, each with its own use cases and security considerations.

https://docs.google.com/document/d/165-ggXkjTwWt17Zyb3mJNuJEPPMlNRXN25kMXoYB49U/edit

Uses Classes

AuthenticationService

Applications

Application Key

Application keys provide a simple and straightforward method for authenticating an application. They

are unique identifiers that an application presents when making a request, acting as a sort of

password. However, application keys should be safeguarded as they can potentially provide access to

sensitive data and services if compromised.

JWT Token (preferred)

JWT (JSON Web Token) is a compact and URL-safe means of representing claims to be transferred

between two parties 1 . The claims in a JWT are encoded as a JSON object that is used as the payload of

a JSON Web Signature (JWS) structure or as the plaintext of a JSON Web Encryption (JWE) structure,

enabling the claims to be digitally signed or integrity-protected with a Message Authentication Code

(MAC) and/or encrypted.

JWT tokens should be included calls using the “Authorization” header en prefixed with bearer.

ZGW JWT Token

ZGW (Zaakgericht Werken) JWT Tokens are a specific type of JWT token, commonly used in the

Netherlands for government-related APIs. They follow a specific standard and carry additional

information that is pertinent to the ZGW context.

Two-Way SSL

Two-way SSL, also known as mutual SSL, is a process in which both the client and the server

authenticate each other through the verification of each other's digital certificates. This method

ensures that both parties are who they claim to be and can trust each other, thereby providing an

additional layer of security.

IP Whitelisting

IP whitelisting is a security feature that restricts access to a network or a system only to trusted users.

If you are using the gateway in an API Gateway setup, you can set up IP whitelisting to only accept

calls from an application if they originate from either a specific IP address or an IP address range.

Warning

IP Whitelisting should never be used alone as IP addresses can be easily spoofed. Instead, it

should be used as an additional authentication requirement in a machine-to-machine context. In a

Web gateway context, IP Whitelisting can lead to undesired results due to the dynamic nature of

client IP addresses in such contexts.

Domain Whitelisting

Domain whitelisting is a security feature that allows access to a system only from specific domain

names. If you are using the gateway in a Web Gateway setup, you probably want to ensure that it only

http://localhost:34775/classes/Service/AuthenticationService.md

serves your own site. This helps prevent cross-site scripting attacks and ensures that other sites don't

misuse your services.

Warning

Domain whitelisting cannot be used in a machine-to-machine context because in most cases, the

requesting machine won't have a domain. Use IP whitelisting in those contexts instead.

Users

Integrated Identity Provider

An Integrated Identity Provider (IdP) is a system entity that creates, maintains, and manages identity

information for principals and provides principal authentication to other service providers within a

federation. This authentication process involves validating user credentials and providing identity data

to applications for authorization decisions.

External Identity Provider

An External Identity Provider is an authentication service that is built, hosted, and managed by a third-

party service provider. It allows users to authenticate using a single set of credentials stored

externally, without the need for additional passwords or usernames.

One common protocol used for this purpose is OAuth 2.0. OAuth 2.0 is an authorization protocol that

enables applications to obtain limited access to user accounts on an HTTP service, such as Facebook,

GitHub, and DigitalOcean. It works by delegating user authentication to the service that hosts

authentication data.

Authorization

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions of

alterations there.

This document explains how authorization is managed in the Common Gateway project, following the

principles of Role-Based Access Control (RBAC).

Uses Classes

RequestService

Role-Based Access Control (RBAC)

In the Common Gateway, both users and applications are granted permissions based on RBAC. For

information on how users and applications are authenticated, please refer to the Authentication page.

In our system, a user or an application can be assigned one or more roles. We refer to these roles as

"groups" in our applications. Each group is associated with a set of permissions, which we call

"scopes".

A key feature of our RBAC implementation is that groups can inherit scopes from other groups. This

allows us to create a hierarchy of groups with progressively broader scopes.

Example

https://docs.google.com/document/d/10Puo6zlEq_Ja9ps7MBYcyvtbbQrroaWvWJhVUMhdlY0/edit
http://localhost:34775/classes/Service/RequestService.md
http://localhost:34775/Authentication.md

Here is an example to illustrate the inheritance of scopes in our RBAC system:

Anonymous: This group has the most basic set of scopes. It represents users or applications

that have not been authenticated.

User: This group inherits all scopes from the Anonymous group. In addition, it has additional

scopes that are specific to authenticated users.

Manager: This group inherits all scopes from the User group. It has additional scopes that

enable management functions.

Administrator: This group inherits all scopes from the Manager group. As the group with the

highest level of access, it has all available scopes.

This hierarchy allows for a clear and manageable organization of scopes. It ensures that each user or

application has only the permissions it needs to perform its tasks, in line with the principle of least

privilege.

Scope Inheritance

In the Common Gateway project, we establish a hierarchy of groups, each inheriting scopes from the

group that lies below it. This "bottom-up" inheritance mechanism allows for efficient scope

management, as each group inherits all the scopes of its subordinates, with any additional scopes

assigned manually. For example, if there exists a 'Manager' group that sits above a 'User' group, the

'Manager' will inherit all scopes from the 'User'. The 'User' group may, in turn, inherit scopes from an

'Anonymous' group, leading to a situation where a 'Manager' possesses the scopes of both 'User' and

'Anonymous' groups.

Scopes Definition

Scopes within the Common Gateway are defined based on the CRUD (Create, Read, Update, Delete)

operations. A scope can be applied to an entire system aspect (e.g., 'cronjobs.READ') or to a specific

object (e.g., '[uuid].read').

Below is a breakdown of system aspects and their possible scopes:

System Aspect CREATE READ UPDATE DELETE SPECIAL

Actions Yes Yes Yes Yes RUN

Sources Yes Yes Yes Yes -

Cronjobs Yes Yes Yes Yes RUN

Endpoints Yes Yes Yes Yes -

Objects Yes Yes Yes Yes REVERT

Schemas Yes Yes Yes Yes -

Logs Yes Yes Yes Yes -

Plugins Yes Yes - Yes UPDATE

Collections Yes Yes Yes Yes -

Mappings Yes Yes Yes Yes -

Templates Yes Yes Yes Yes -

Users Yes Yes Yes Yes -

Groups Yes Yes Yes Yes -

Applications Yes Yes Yes Yes -

Organizations Yes Yes Yes Yes -

Note: In the table above, a '-' indicates that the scope is not applicable for that aspect. For example,

the 'CREATE' operation is not applicable to 'Objects', and the 'UPDATE' operation is not applicable to

'Plugins' but they have a special 'UPDATE' scope.

This scope inheritance and definition mechanism provides a flexible and robust system for managing

access and operations within the Common Gateway project.

There are also some special scopes Cronjobs/Actions:RUN The ability to manually run an action or

cronjob **Objects :REVERT ** The ability to manually revert an object to an earlier version **Plugins

:UPDATE ** The ability to manually update a plugin to a newer version

Common Gateway: Ownership and Creation

In the context of the Common Gateway project, it's crucial to understand the difference between the

roles of an 'Owner' and a 'Creator'. These two roles possess different levels of control over objects

within the system, and each has specific rights and limitations.

Owner vs. Creator

Owner

The 'Owner' of an object in the system has full control over it. This means that they can perform all

CRUD (Create, Read, Update, Delete) operations on the object, including changing its properties,

modifying its functionality, and even deleting it. Essentially, the owner has all rights to any object they

own.

In addition to these rights, the owner also has the unique authority to transfer ownership to another

user, application, or organization. This allows for flexibility in management and control, as the

ownership can be shifted according to the needs of the project or team.

Creator

The 'Creator' of an object, on the other hand, has no rights. It is merely a transactional log of the user

or application that created an object in the first place. In most cases the creator becomes the owner

when creating an object.

Multitenancy in the Common Gateway

Multitenancy is a key concept in the Common Gateway project. It allows multiple independent

instances of users and applications to operate within the same environment, while maintaining

distinct, secure access to their respective objects. In this project, multitenancy is implemented at the

organization level, meaning that all objects are tied to an organization, and users and applications can

only interact with objects that belong to the same organization.

Object Ownership and CRUD Rights

Within an organization, users and applications have CRUD (Create, Read, Update, Delete) rights to

objects. However, these rights are restricted to the scope of their respective organization. This means

that a user or application from one organization cannot access or manipulate the objects of another

organization.

For instance, if a user belongs to Organization A, they cannot read or modify the data of Organization

B unless they have been granted specific access to Organization B.

Switching Between Organizations

If a user is a part of multiple organizations, they must manually switch between these organizations to

exercise their rights within each. When a user switches organizations, their context changes, and they

can now interact with the objects of the newly selected organization.

For example, if a user belongs to both Organization A and Organization B, they would initially have

access to the objects of Organization A. If they want to access the objects of Organization B, they

would need to switch their active organization to Organization B. This ensures that data is securely

partitioned between organizations, preserving the integrity and security of each organization's data.

Maintaining Multitenancy

Multitenancy is maintained through one of two methods:

Single Database Setup: In a single database setup, the organization is always added as a

query parameter in the database operations. This ensures that only the data corresponding to

the active organization is fetched, maintaining data separation between different

organizations.

Multiple Database Setup: In a multiple database setup, each organization has its own

separate database. Traffic is routed to the specific database that corresponds to the active

organization. This is the preferred setup because it provides a higher level of data isolation

and can better handle the scale of large organizations.

In both cases, the principle of multi tenancy is preserved. Users and applications only have access to

their own organization's data, ensuring data security and privacy across all organizations in the

Common Gateway environment.

Code Quality

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions of

alterations there.

Code quality is a central pillar of our development philosophy. For us, it signifies easy-to-interpret,

well-documented, and maintainable code. This means that we aim to reduce cyclomatic complexity

and cognitive strain, while clearly defining units of code for specific tasks and nothing more. High-

quality code is essential for rapid development, especially when code needs to be revisited months

later.

https://docs.google.com/document/d/1KYnCd4O-wvdV7Z0fgWhXyi4hjTsy-8VBnNnLsZpNMTQ/edit

Writing good code

Writing good, maintainable code is a crucial part of any software development process. It ensures that

the codebase is easy to understand, modify, and extend, thereby increasing the efficiency of the

developers and the overall quality of the software.

No Dead Code: Dead code is code that is no longer in use or never used, including unused

variables, functions, or even modules. It should be removed as it creates unnecessary

complexity and can cause confusion and mistakes.

No Code Duplication: Code duplication is a known code smell and should be avoided. It

makes the codebase harder to maintain and increases the likelihood of bugs. Use principles of

DRY (Don't Repeat Yourself) to avoid duplication.

Keep Units of Code Short and Simple: Long methods or functions can be difficult to

understand, test, and debug. It is advisable to break them down into smaller, simpler units

that do one thing well.

Separation of Concerns: Each module or component of the software should have a single

responsibility. This design principle, known as the Single Responsibility Principle (SRP), makes

the software easier to maintain and understand.

Loosely Coupled Architecture: Coupling refers to the degree to which one module depends

on other modules. High coupling leads to a fragile system that is hard to change and

understand. It's better to have a loosely coupled architecture where modules interact through

well-defined interfaces.

Keep the Codebase as Small as Possible: A smaller codebase is easier to understand,

test, and maintain. It also reduces the risk of bugs. Remove unused code, avoid unnecessary

complexity, and strive for simplicity.

Tested Software: Tests are crucial to ensure that the software works as expected and to

prevent the introduction of bugs. Automated tests are particularly useful as they can be run

frequently and catch regressions early.

Refactoring: Code smells are indicators of potential problems in the code. They might not be

causing a problem now, but they increase the risk of bugs in the future. Regular refactoring

helps keep the codebase clean and maintainable.

One of the good resources for writing maintainable software is "Building Maintainable Software" by

Joost Visser from the Software Improvement Group. This book provides practical guidelines for writing

clean, maintainable software and should be a part of every developer's toolkit.

CI/CD Pipeline

Our continuous integration/continuous delivery (CI/CD) pipeline is a crucial part of our software

development process.

CI/CD is a method to frequently deliver apps to customers by introducing automation into the stages

of app development. The main concepts attributed to CI/CD are continuous integration, continuous

delivery, and continuous deployment.

CI/CD bridges the gaps between development and operation activities and teams by enforcing

automation in building, testing, and deployment.

Codacy

Codacy is an automated code review tool that helps developers to save time in code reviews and to

tackle technical debt. It uses static code analysis to identify new static analysis issues, code coverage,

code duplication, and code complexity in every commit and pull request, directly from your Git

workflow.

PHPCBF and PHPCS

PHPCBF (PHP Code Beautifier and Fixer) and PHPCS (PHP Code Sniffer) are tools that we use to ensure

that our code adheres to our chosen coding standards.

PHPCS is a tool that checks your PHP code to see if it adheres to the specified coding standards. It can

even check your CSS and JavaScript.

PHPCBF is the companion tool to PHPCS and can be used to automatically correct coding standard

violations. PHPCBF works by taking the PHP Code Sniffer tokenized version of a file and making

modifications directly to that, then writing out the changes.

PHPUnit

PHPUnit is a framework that we use for unit testing our PHP code. Unit testing is a method where

individual units of source code are tested to determine if they are suitable for use. It helps us to verify

if the logic of individual units of our source code is working correctly.

Postman

Postman is a collaboration platform for API development. It's used for building, testing, and modifying

APIs. Postman helps us ensure that any APIs we create are functioning as intended, and allows us to

create mock servers, document our APIs, and more.

Deployment Process

Despite having a CI/CD pipeline, we do not deploy from it. Instead, we use Kubernetes and Harbor for

defining deployments on the client side.

Kubernetes is an open-source platform designed to automate deploying, scaling, and operating

application containers. Harbor, on the other hand, is an open-source cloud native registry that stores,

signs, and scans content.

By leveraging the combination of Kubernetes and Harbor, we ensure our deployment process is

robust, scalable, and secure. This setup gives us the flexibility to manage our deployments effectively

according to each client's specific requirements and infrastructure.

Code Formatting

PHP Standards Recommendations (PSR) We adhere to the PSR-1 (Basic Coding Standard) and PSR-12

(Extended Coding Standard), which have been established by the PHP Framework Interop Group (PHP-

FIG). These standards provide rules about how PHP code should be formatted and are generally

accepted across the PHP community.

Symfony Coding Standards

In addition to the PSR-1 and PSR-12 standards, we follow the Symfony Coding Standards, which

include several additional conventions such as using Yoda conditions and prefixing abstract classes

with Abstract.

Doc blocks and inline comments

In the journey towards maintaining high-quality code, documentation plays a crucial role. It provides a

clearer understanding of the functionality and purpose of different parts of the codebase, enhancing

readability and maintainability.

Rich DocBlocks and inline comments are two powerful tools in this regard.

Code Reviews

Four-Eye Principle

For all normal pull requests, we follow the Four-Eye Principle, meaning that at least two team

members must review and approve the changes before they can be merged into the main or

development branch. This ensures that at least four eyes have seen the code, minimizing the chances

of bugs or issues going unnoticed.

Six-Eye Principle

For pull requests that contain core changes—significant modifications that affect the fundamental

operation of our application—we follow the Six-Eye Principle. This means that at least three team

members must review and approve the changes. Increasing the number of reviewers for these critical

changes reduces the risk of introducing bugs or instability into our application.

Branching Strategy

Main Branch

The main branch contains the code of the current production version. Only fully tested, stable code

should be merged into this branch.

Development Branch

The development branch serves as an integration branch for features and fixes. It contains the code

for the next release. Once the code in the development branch is stable and thoroughly tested, it can

be merged into the main branch.

Feature Branches

Feature branches are created for new features or bug fixes. They branch off from the development

branch and should be merged back into it once the feature is completed or the bug is fixed. Each

feature branch should have a clear scope and contain changes related to only one specific feature or

bug fix.

Remember, each commit should make clear, concise changes, and the commit message should

accurately describe those changes.

Following these standards, we can maintain a high level of code quality, ensure the stability of our

application, and foster effective collaboration amongst our team.

Semantic Versioning

Semantic Versioning ((SemVer) is a versioning scheme for software that aims to convey meaning

about the underlying changes in a release. It is a widely used standard that helps developers and

users understand what kind of changes they can expect when moving from one version of a software

package to another.

A semantic version number consists of three parts: MAJOR.MINOR.PATCH, each separated by a dot.

MAJOR version increment indicates that there are incompatible changes in the API, and users

may need to change their code to ensure compatibility with the new version.

MINOR version increment indicates that new features have been added in a backwards-

compatible manner. Users can benefit from the new features without making any changes to

their existing code.

PATCH version increment indicates that backwards-compatible bug fixes have been

introduced. These changes are meant to improve the performance, stability, or accuracy of

the software without adding any new features.

For example, in version 2.3.4:

'2' is the Major version '3' is the Minor version '4' is the Patch version

By adopting Semantic Versioning, developers can make their upgrade paths clearer and package

users can have better expectations about compatibility between different versions of the software.

Commands

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions of

alterations there.

In the Common Gateway, which is a critical component of the architecture, Symfony command-line

commands play an integral role. These commands, which are executed in a container and require

command access, are powerful tools that can be used for various tasks such as manipulating the

database, handling migrations, managing plugins, and many other critical tasks.

However, it's important to note that in normal operations, installations, and implementations of the

Common Gateway, direct usage of these commands should be avoided. These commands are

generally utilized internally by the gateway's functionalities and are designed to assist in extreme

situations where manual intervention is required to troubleshoot or resolve a complex issue.

These commands are primarily designed to interact with the underlying Symfony framework, which

powers the Common Gateway. They are a part of Symfony's console component which provides a

simple API for creating command-line commands.

Please be aware that these commands, while powerful, should be used with caution. They have the

ability to directly manipulate the state of your application and should only be used when necessary

and by individuals who have a deep understanding of the Common Gateway and its architecture.

Remember, while these commands exist as a helpful tool in extreme circumstances, in most

situations, the Common Gateway is designed to operate and manage its tasks without needing direct

command-line intervention. Please always refer to the official documentation and guidelines before

running these commands.

comongateway:composer:update

options –bundle {required bundle name} only run the updater for a specific bundle –data {optional

bundle name} force the loading of test data –skip-schema {optional bundle name} –skip-script

{optional bundle name} –unsafe

https://docs.google.com/document/d/1YdklehnXuBec330zJ4xH1IXcUjrFIQJpE4vTHEX0hOs/edit

Cronjobs

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions of

alterations there.

Cronjobs are a central part of the Common Gateway’s event system, enabling scheduling of tasks and

automating a myriad of routine procedures. By utilizing the crontab (cron table) file, you can schedule

scripts or commands to run at a fixed time, date, or interval. This makes cron jobs a powerful tool for

system administration, task automation, data manipulation, and more.

These cron jobs throw events, which may carry an optional data set. The data set can comprise any

information relevant to the task - from simple identifiers to complex data structures, depending on the

event’s nature and the task at hand. This allows for great flexibility, facilitating tasks such as data

backup, sending emails, or system maintenance.

The real power of this system comes into play when other components subscribe to these events.

Action handlers, or functions that determine how an application responds to a certain event, can

subscribe to cron job-generated events. When an event occurs, these action handlers are notified and

can then process or interact with the associated data.

For instance, a handler might subscribe to a "BackupComplete" event. When a cron job finishes

backing up a database, it throws this event with data about the backup's result. The handler, having

subscribed to this event, will then receive this data, enabling it to perform subsequent actions -

perhaps logging the backup's success, notifying a system administrator, or initiating another

dependent task.

In conclusion, cron jobs in the Common Gateway are a versatile tool, enabling task scheduling and

data transmission through events. The true potential is unlocked when other elements, such as action

handlers, subscribe to these events, providing a reliable way to automate complex tasks and

procedures.

To further explore and experiment with cron jobs, you can use an online crontab editor.

Datalayer

Warning This file is maintained at Conduction’s Google Drive Please make any suggestions of

alterations there.

The data layer in the Common Gateway project is an innovative feature designed to act as a cross

between an index (akin to Elasticsearch) and a data lake. It normalizes data from diverse sources and

enables sophisticated searching through various query languages. Its purpose is to simplify cross-

source questioning across databases, APIs, and files such as Excel spreadsheets.

Data Normalization

Our data layer accomplishes this functionality by using schemas as Entity-Attribute-Value (EAV)

objects, and normalizing data from different sources within these structures. The advantage of this

method is that it provides a uniform view of data regardless of its original source or format, making it

easier to search and analyze.

https://docs.google.com/document/d/1nXxbY7Rwk0gBYiUv6o-SoK5v6ToXUCGaAQ6J8KBGEzc/edit
http://localhost:34775/Events.md
http://localhost:34775/Action_handlers.md
https://crontab.guru/
https://docs.google.com/document/d/1sLB6vOTIknrc0yEwtzLXZPQ8sope9GeXgMwRLVtwI8M/edit
http://localhost:34775/Schemas.md

Source of Truth

Despite its powerful capabilities, it's essential to understand that the data layer is not a source of

truth. Instead, it serves as a facilitator, helping us search through the underlying sources. It

accomplishes this through a mechanism called "smart caching."

Smart Caching

Smart caching works by taking a subscription notification from the source (thereby instantly updating

the cache if the source changes) or regularly checking the source. This design ensures that the data

layer always provides the most current data available, optimizing accuracy and performance.

There is also the option to bypass the cache entirely and query the source directly in an asynchronous

manner. However, this approach can result in a performance penalty due to the lack of caching.

Extending Data Models

The data layer is not just about data normalization and searching. It also allows us to attach extra

properties to objects that don't originally have them, effectively extending data models. This feature

enables greater flexibility and versatility in how we use and analyze our data.

Overall, the Common Gateway data layer is a crucial component of our architecture, enabling

seamless integration and querying across various data sources, while ensuring up-to-date information

and the flexibility to extend data models as needed.

Design Decisions

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions of

alterations there.

API First

An API-first approach means that for any given development project, your APIs are treated as "first-

class citizens." An API-first approach involves developing APIs that are consistent and reusable, which

can be accomplished by using an API description language to establish a contract for how the API is

supposed to behave. The specification we use is the OpenAPI Specification. You can view the latest

version of this specification (3.0.1) on GitHub.

Documentation

We host technical documentation on Read the Doc's and general user information on GitHub pages, to

make the documentation compatible with GitHub we document in markdown (instead of

reStructuredText). Documentation is part of the project and contained within the /docs folder.

Common Ground

All applications are developed following the Common Ground standards on how a data exchange

system should be: modular and open-source. More information on Common Ground can be found here

https://docs.google.com/document/d/1ao7dPybYOMOchJfg4qFuTgN4z-T2vYXySvZO5OhjL4o/edit
https://github.com/OAI/OpenAPI-Specification
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.1.md
https://commonground.nl/

Endpoints

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions or

alterations there.

Endpoints are locations (with addresses) where applications can send and receive messages. The

generally consist of a domain and path part together forming an URL. For example in case of the

demo.commongateway.nl/api/pets url, the /api/pets would be the path and and

demo.commongateway.nl/ the domain.

The common gateway uses endpoint to allow applications to access it, it splits al endpoints into two

categories wich are separated by their first path part.

/admin for endpoints that are part of the gateways internal workings /api for user created endpoints

Index

1. Defining an endpoint

Defining an endpoint

The Common Gateway stores,imports and exports endpoints as JSON mapping objects. Bellow you can

find an example endpoint object

Endpoint objects MUST follow the bellow specifications

Property Required Usage Allowed Value

title Yes

User friendly

single

sentence

describing of

the endpoint

used for

identification

string, max 255 characters

description No

User friendly

multi line

description

of the

endpoint

used for

explaining

purpose and

workings of

the mapping

string, max 2555 characters

$id No Used during

the import of

endpoint to

string, max 255 characters

https://docs.google.com/document/d/1b0yGB1Q_IR27ik8XUurdFq9VUFqTWC62P-ZhZZF62EI/edit

see if a

endpoint is

already

present

$schema Yes

Tells the

common

gatway that

this object is

a endpoint

Always:

'https://docs.commongateway.nl/schemas/Endpoint.sc

version no

Used during

the import of

endpoint to

see if

endpoint

should be

overwritten

(updated)

A valid semantic version number

pathRegex no

The regex

used by the

Gateway to

find the

endpoint. For

the above

example,

that would

be ^pets, but

the regex

could also

allow for

variable

parts like

^pets/?([a-

z0-9-]+)?$.

The

pathRegex

MUST be

unique

within a

Gateway

installation

path no An array of

the items in

the path that

are

separated by

/ in the

endpoint. For

the above

https://docs.commongateway.nl/schemas/Endpoint.schema.json
https://semver.org/lang/nl/

example

that would

be

[‘pets’,’id’].

Path parts

MUST exist

of letters

and

numbers.

pathParts no

An array

containing

the parts of

the path for

setting

variables for

later

processes to

use later on.

Based on

their index in

the path

array and

the

variable’s

name that

should be

created. For

the above

example,

that would

be

[‘1’=>’id’]

methods no

Determins

the HTTP

methods

suported by

this endpoint

An array of the methods that are allowed on this path

example [‘GET’,’PUT’,’POST’,’PATCH’,’DELETE’]. An en

must have at least one method

source no

Turns the

endpoint

into a proxy

for a

differend API

ONE external source that is proxied by the endpoint (s

schemas no Any

schemas

provided by

the endpoint

Array of schema's

(see

schema’s)

throws no

Any events

thrown by

the endpoint

(see event-

driven)

Array of events thrown when the endpoint is called

Handling incoming traffic

Once an endpoint is called by an external application calls an endpoint(or user, a browser is also an

application), the endpoint will handle the following actions in the following order.

Handling incoming requests

Requester

Requester

Endpoint

Endpoint

Authent icat ion

Authent icat ion

Source

Source

RequestService

RequestService

Events

Events

1 Request

2 Require authentication

3 Is authenticated

a l t [p r o x y]

4 Pass Request

5 Pass Response

[schema('s)]

6 Pass Request

7 Get Request

[no proxy or schema('s)]

Do nothing..........

8 Create Responce

9 Throw events

1 0 Update responce

1 1 Serialize Responce

1 2 Response

Requests

Common Gateway | Endpoints

As you can see can see there are three basic alternatives

1. An endpoint is linked to a source (becoming a proxy for that source)

2. An endpoint is linked to one or more schema's

3. An endpoint is not linked to sources or schema's

Note

When a proxy (source) is set on an endpoint the schema fase wil be skipped

Events are always thrown (in all three cases)

If an endpoint is not linked to a source, schema's AND dosn't contain event it wil always

return an error

Proxy

An endpoint MAY be a proxy for another (external) source. In this case, the endpoint will forward all

traffic to the external source (and attach authorization if required by that source). It will also pass

along: any headers , query parameters , body , and methods (e.g., GET) sent to the endpoint. Keep in

mind that it will only do so if the method used is activeated on the endpoint (in practice, it is quite

common not to expose delete through an endpoint)

Suppose the endpoint path contains an endpoint parameter in the path regex e.g. example . In that

case, it will also forward that message to that specific endpoint on the external source. So

gateway.com/api/petstore/pets would be forwarded to petstore.com/pets .

Handling Proxy

Endpoint

Endpoint

RequestService

RequestService

Authorizat ion

Authorizat ion

Source

Source

1 Request

2 Authorization

3 Authorization

4 Set authorization for source

5 Pass Request

6 Pass Response

7 Response

Proxy

Common Gateway | Endpoints

Keep in mind that a proxy does not transform or translate data, it simply forwards the received

request to a source and then returns the response of that source. If you require more functionality

(e.g. data transformation or translations) you should setup a schema.

Schema's

If an endpoint connects is connected to one or more schemas, it will try to handle the traffic based on

the requested service.

Note

If an endpoint is hooked to schema(‘s) it will automatically create an API and appropriate

Redoc based on its settings. See API for more information on the API.

It is possible to hook an endpoint to multiple schemas. When hooked to multiple schemas,

the endpoint can still handle POST requests, BUT a POST request must include a valid

_self.scheme.id or _self. scheme.ref that refers to the appropriate schema so that the

endpoint understands what schema you are trying to create.

If an endpoint is hooked to more than one entity, it will render search results from all

linked entities based on supplied queries.

GET

Handling GET requests

Endpoint

Endpoint

RequestService

RequestService

Authorizat ion

Authorizat ion

Datalayer

Datalayer

1 Request

2 Authorization

3 Authorization

4 Search object('s)

5 Object('s)

6 Response

GET Request

Common Gateway | Endpoints

POST

Handling POST requests

Endpoint

Endpoint

RequestService

RequestService

Authorizat ion

Authorizat ion

Validation

Validation

Datalayer

Datalayer

1 Request

2 Authorization

3 Authorization

4 Validate Request

5 Validation Result

6 Create object('s)

7 Object('s)

8 Response

POST Request

Common Gateway | Endpoints

PUT

Put request are handled roughly the same as an POST request, with one exception.

1. On a PUT request an exisiting object wil be entirely replaced by the new object. Values that

where present in the original object but are not present in the new object wil be DELETED.

Handling PUT requests

Endpoint

Endpoint

RequestService

RequestService

Authorizat ion

Authorizat ion

Validation

Validation

Datalayer

Datalayer

1 Request

2 Authorization

3 Authorization

4 Validate Request

5 Validation Result

6 Update object('s)

7 Object('s)

8 Response

PUT Request

Common Gateway | Endpoints

PATCH

Put request are handled roughly the same as an PUT request, with two exception.

1. On a PATCH request an exisiting object wil be updated by the new object. Values that where

present in the original object but are not present in the new object wil be KEPT.

2. Validity will of the request will be determend afther merging the original and new object. e.g. a

required value dosn't need to be pressent in an patch request if it was already present in the

original object. Assuming that the orignal object already had al required values (or else it

could note have been created) a patch requests only required value should be it's id

(excpetion being that the object definition could have been changed afther the original object

was created)

Handling PATCH requests

Endpoint

Endpoint

RequestService

RequestService

Authorizat ion

Authorizat ion

Validation

Validation

Datalayer

Datalayer

1 Request

2 Authorization

3 Authorization

4 Search object('s)

5 Object('s)

6 Validate Request

7 Validation Result

8 Update object('s)

9 Object('s)

1 0 Response

PATCH Request

Common Gateway | Endpoints

DELETE

Handling DELETE requests

Endpoint

Endpoint

RequestService

RequestService

Authorizat ion

Authorizat ion

Datalayer

Datalayer

1 Request

2 Authorization

3 Authorization

4 Delete object('s)

5 Object('s)

6 Response

DELETE Request

Common Gateway | Endpoints

Throwing Events

As a final step the endpoint will ALWAYS fire any events that are defined under throws. You can read

more about events under events.

http://localhost:34775/events.md

Throw events

Endpoint

Endpoint

Events

Events

Act ions

Act ions

1 Create Responce

l o o p [f o r e a c h t t h r o w f i r e a n e v e n t]

2 Event + Reponce

a l t [synchronous even ts]

3 Fire action handelers

4 Alter reponce

5 Update Responce

Ready to return the responce to the requester

Events

Common Gateway | Endpoints

When the endpoint throws events, it generates a response in the call cache. After handling all the

throws ,are handled it will return the response to the user. The response starts as a 200 OK “your

request has been processed”, but may be altered by any action that subscribed to a thrown event

may alter it.

Note

Any action can subscribe to an event thrown by an endpoint, but common examples are

proxy en request actions. These fulfill the same functionality as the direct proxy or event

link but allow additional configuration, such as mapping.

It recomended to ALWAYS fire event asynchronysly

Serialization

Return an error

The endpoint will return an error if no proxy, entities, or throws are defined.

Security

Endpoints MAY be secured by assigning them to user groups. This is done on the basis of methods.

Events

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions or

alterations there.

The Common Gateway is based on event driven architecture, meaning that all code and functionality

is loosely coupled (see booth architecture and code quality). That means that at no point during

execution of business logic a functionality should directly call a different functionality. This might seem

complicated (and at time it is) but it provides two important benefits:

It allows us to divide the work of executing code among several “worker” containers (read

more). Providing an extreme performance boost on production environments on heavy load

business logic.

It allows all interested parties to develop plugins for the Common Gateway that directly hook

into and extend the core functionality.

Triggers

Event-driven architecture uses events to trigger and communicate between services (some

functionality from the codebase). A good example if this is an endpoint. The gateway detects if a user

or application approaches an endpoint (e.g., api/pets) and sets an event on the stack. Events

always consist of an unique trigger of the type string In this case commongateway.endpoint and

an array of data (in this case the request information like method en body). We call this throwing an

event. Other good examples of triggers are : cronjobs, Object changes(e.g., CRUD actions)changes in

objects (e.g. CRUD actions).

Actions

Actions are preconfigured sets of business logic that “listen” for one or more events to be thrown and

then execute code.The ActionHandler contains the executable code.

Actions primarily consists of three things: The events it listens to The action handler that should be

used to handle the action Configuration for that action handler

Storing the configuration for the action handler in the actual action means that actionHandlers can be

reused. An example would be the mail actionHandler provided by the core bundle. It can be used by

actions hooking into the new user event to send an welcome email to new users AND by actions

hooking into the logger event to send an email to the gateway admin whenever errors occur.

Chaining actions

Additionally, Actions can throw events themselves. You can build simple flows using this typical

pattern (called chaining).. Currently, the gateway isn’t a full-blown BPMN engine and should not be

used that way. It is however possible to integrate the BPMN engine into gateway flows using custom

plugins (we are still looking for a sponsor for a Camunda or Flowable plugin).

Event list

Events can't be pre-defined as they come into existence once a service throws them. You can define

your own events through either: the gateway UI admin API. Events should logically be namespaces

and use dot notation. The namespace commongateway is reserved for core functionality

https://docs.google.com/document/d/1aeNZ9I8H4iq2XigByu96lJSe3Cw-lMcWx8bcuJBHxcE/edit
http://localhost:34775/Action_handlers.md

The gateway subscribes to the following events by default.

Name When Data

commongateway.object.pre.create

Before an object is

created in the

database

["object"=>{array

representation of

object},"entity"=>{uuid of

the objects entity}]

commongateway.object.post.create

After an object is

created in the

database

["object"=>{array

representation of

object},"entity"=>{uuid of

the objects entity}]

commongateway.object.post.read

After an object is

read from the

database

["object"=>{array

representation of

object},"entity"=>{uuid of

the objects entity}]

commongateway.object.pre.update

Before an object is

updated in the

database

["object"=>{array

representation of

object},"entity"=>{uuid of

the objects entity}]

commongateway.object.post.update

After an object is

updated in the

database

["object"=>{array

representation of

object},"entity"=>{uuid of

the objects entity}]

commongateway.object.pre.delete

Before an object is

deleted in the

database

["object"=>{array

representation of

object},"entity"=>{uuid of

the objects entity}]

commongateway.object.post.delete

After an object is

deleted in the

database

[]

commongateway.object.pre.flush

Before the work of

the entity manager

is transferred to the

database

[]

commongateway.object.post.flush

After the work of the

entity manager is

transferred to the

database

[]

commongateway.installer.pre.upgrade
Before the installer

upgrades
[]

commongateway.installer.post.upgrade
After the installer

upgrades
[]

commongateway.initilizer.pre.upgrade
Before the initializer

upgrades
[]

commongateway.initilizer.post.upgrade
After the initializer

upgrades
[]

commongateway.plugin.pre.install
Before the plugin is

installed
[]

commongateway.plugin.post.install
After the plugin is

installed
[]

commongateway.plugin.pre.upgrade
Before the plugin is

upgraded
[]

commongateway.plugin.post.upgrade
After the plugin is

upgraded
[]

commongateway.plugin.pre.remove
Before the plugin is

removed
[]

commongateway.plugin.post.remove
After the plugin is

removed
[]

Design your own triggers, events, actions and action

handlers

When adding your customizations to the Common Gateway, you should always follow the separation

of concerns:

keep flows small (don’t try to do too much in one flow) keep functionality (actionHandlers) minimal

For complex scenarios, consider using several chained actionHandlers. When adding your own flavor

to the common gateway you should always follow separation of concerns.

In other words keep flows small, don’t try to do too much from a single flow and keep your

actionHandles minimal. If things get more complex consider using several chained action handlers.

*ALWAYS use the [vendor].[plugin].[action].[sub action] naming pattern for your events to prevent

conflicts them conflicting with other events. When adding events on an installation or app basis use:

either the app (e.g app..[action].[sub action]) or cron (e.g. cron.[action].[sub action])

namespace patterns to keep your events recognisable.

Features

Welcome to the feature page for the Common Gateway, a multi-faceted platform designed with

flexibility and interoperability in mind. The Common Gateway caters to four main use cases, each

enhancing the other to provide a comprehensive, unified solution for diverse data management

needs. Here's a brief overview:

Usse cages

http://localhost:34775/Action_handlers.md

1. API Gateway

The Common Gateway can function as an API Gateway, acting as a single entry point for multiple

APIs. This streamlines the management of APIs, providing consistent routing, security, and other

necessary features. This simplifies client-side interactions and consolidates all your API requirements

under one roof.

2. Web Gateway

Beyond forwarding APIs, the Common Gateway can serve as a robust Web Gateway. It provides API

support for applications while also handling user onboarding, management, and authentication. This

dual functionality ensures seamless user experience and secure data access, enhancing application

reliability and performance.

3. Integration Platform

The Common Gateway shines as an Integration Platform, harmonizing multiple data sources and

transforming non-API sources, such as Excel files, into APIs. This capability enables easy data

integration, simplifying the creation of a unified view of data from various sources. It paves the way

for more efficient data processing and analysis, fostering data-driven decision-making.

4. Federated Network Provider

Finally, the Common Gateway facilitates a federated network, enabling cross-organizational querying

of data sources. This feature allows different organizations to share access to specific data while

maintaining control over their own systems. It boosts collaboration, data sharing, and multi-

organizational integration without compromising system autonomy.

By combining these use cases, the Common Gateway provides a versatile solution for managing,

integrating, and utilizing data across various sources and platforms. It's the perfect tool to elevate

your data strategy and drive your business towards a more connected, data-informed future. Stay

tuned to explore each of these features in depth.

Functionality

1. Authentication

Authentication is a crucial aspect of securing the gateway, validating the identity of clients such as

users, devices, or other applications before granting access to system resources. There are numerous

methods for applications to authenticate themselves, including application keys, JWT tokens, ZGW JWT

tokens, two-way SSL, IP and domain whitelisting. However, each method carries its own use cases and

security considerations. For user authentication, the system can either utilize an Integrated Identity

Provider (IdP), which manages identity information within a federation, or an External Identity

Provider, a third-party service that allows users to authenticate with a single set of externally stored

credentials. The choice of method depends on the specific requirements and contexts of use.

2. Authorization

Authorization in the Common Gateway project is managed based on Role-Based Access Control

(RBAC). Users and applications are assigned roles, or "groups", each associated with a set of

permissions, or "scopes". These groups can inherit scopes from other groups, creating a hierarchical

organization of scopes. Scopes are defined based on the CRUD (Create, Read, Update, Delete)

operations and can be applied to entire system aspects or specific objects. The system also

distinguishes between the roles of an 'Owner' and a 'Creator', each having specific rights and

limitations. Multitenancy is a key concept in the Common Gateway project, allowing multiple

independent instances of users and applications to operate within the same environment while

maintaining secure access to their respective objects. This is implemented at the organization level,

and users and applications can only interact with objects that belong to the same organization.

Multitenancy is maintained through either a single database setup or a multiple database setup.

3. Datalayer

The data layer in the Common Gateway project acts as a hybrid of an index and a data lake,

normalizing data from various sources and facilitating sophisticated searches across databases, APIs,

and files. It uses schemas as Entity-Attribute-Value (EAV) objects to provide a uniform view of data,

regardless of its original source or format. However, it is not a source of truth but serves as a

facilitator through a mechanism called "smart caching," which ensures the most current data is

provided. The data layer also allows for the extension of data models by attaching additional

properties to objects, enabling greater flexibility and versatility in data use and analysis.

4. Logging

The Common Gateway project uses Symfony's Monolog bundle for logging, offering several channels

for logs and multiple error levels following the RFC 54240 standard. Channels categorize logs, and

plugins can add their own channels. Logs can also contain additional data like session ID, user,

application, and more, provided through a dataprocessor. Plugins are required to add their identifier to

logs for traceability. Logs are stored in the gateway's log directory, printed to standard output, and

saved in a MongoDB database for easy searchability. Log retrieval is possible through the admin/logs

endpoint. Plugins can create additional logs, and they're advised to use existing channels or the plugin

channel, or, if necessary, create their own channel. Logs should be made from services following

separation of concern, and should include the plugin package name for findability and accessibility.

5. Mappings

The Mappings feature in the CommonGateway/CoreBundle project supports the process of

transforming the structure of an object when the source data doesn't match the desired data model.

This transformation is accomplished by a series of mapping rules in a "To <- From" style. In simple

terms, mapping changes the position of a value within an object 1 .

6. Notifications

7. Plugins

The Common Gateway's plugin system provides a method of keeping client-specific code separated

from the core functionality. This structure is based on the Symfony bundle system, making the

Common Gateway easily extensible. Essentially, all Common Gateway plugins are Symfony bundles,

and vice versa, allowing for a configuration set that can extend a base Gateway's functionality 1 .

8. Schema's

Schemas are central to the Common Gateway's data layer. They define and model objects, setting the

conditions for these objects. Each object in the gateway is associated with a single schema. These

schemas follow the JSON schema standard, making them interchangeable with OAS3 schemas.

Schemas are akin to "tables" in traditional databases as they store data in a structured manner.

However, unlike tables, data is stored as objects, each akin to a dataset or row in a traditional table,

but capable of multidimensional storage, such as containing arrays or other objects. This object-

oriented approach provides a much more flexible way of serving data. Furthermore, schemas define

the properties of objects and also set conditional validations for the value of each property 1 .

9. Security

The Common Gateway integrates security into the core of its development process. As part of its

Continuous Integration and Continuous Deployment (CI/CD) pipeline, the platform employs automated

penetration testing and scanning. This approach allows potential security vulnerabilities to be

identified and addressed during the early stages of development, rather than later in the production

phase 1 .

10. Sources

The "Sources" feature in Common Gateway represents the locations where the Gateway obtains its

data. These sources are typically other APIs, but the gateway can also connect to file servers through

(S)FTP, directly connect to databases (like MongoDB, PostgreSQL, MySQL, Oracle, and MSSQL),

blockchain solutions, or networks of trust such as NLX/FCS. The source object provides information

about the source, including its status, transaction logs, and the current connection settings. Sources

can be found through the sources menu item on the left side of the Admin UI or the admin/sources

endpoint on the gateway API 1 .

11. Synchronization

The data synchronization process in Common Gateway is an essential component of its data layer,

ensuring data consistency between the data layer and an external source. The process starts with

determining the current state of data where three main scenarios exist: the object exists on the

Gateway but not on the source, the object exists on the source but not on the Gateway, and the object

exists on both the source and Gateway. Appropriate actions are taken depending on the scenario, such

as deleting, adding, or updating the object. In situations where it's unclear which version is newer, a

source of truth is determined, typically the source, but it can be configured to be the Gateway. The

next step is to create a synchronization object that describes the relationship between the two objects

(Data Layer and Source), containing details like the IDs on both ends, the dates of changes, and a

hash of the source object. This object is essential for detecting changes in the source object and

ensuring data consistency across the Gateway and the source, enhancing the reliability and integrity

of the system 1 .

12. Twig

12. Federialization

Federalization

Warning This file is maintained at Conduction’s Google Drive Please make any suggestions of

alterations there.

#Logging

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions or

alterations there.

The gateway uses symfony’s monolog bundle for logging, and provides several channels for logs.

https://docs.google.com/document/d/1dLDq708meU-9CFtSxU1NEQ6NDzZTZkGX_g3en4LpgwU/edit
https://docs.google.com/document/d/1niVyNcIiOiAbq_lgbczPlfbNj-9yTdCpdkMDEXEGgnc/edit
https://symfony.com/doc/current/logging.html

Channels

By default, the following channels are provided by the gateway, but plugins might add their own

channels by including a monolog.yaml in their configuration. Channels represent the part of the

gateway that has created the log and are used to separate logs by category. endpoint request schema

cronjob action object synchronization plugin composer installation mapping call

Error levels

The gateway uses the following error levels conform [RFC 54240](https://www.rfc-

editor.org/rfc/rfc54240 DEBUG: Detailed debugging information. INFO: Handles normal events.

Example: SQL logs NOTICE: Handles normal events, but with more important events WARNING:

Warning status, where you should take an action before it will become an error. ERROR: Error status,

where something is wrong and needs your immediate action CRITICAL: Critical status. Example:

System component is not available ALERT: Immediate action should be exercised. This should trigger

some alerts and wake you up during night time. EMERGENCY: It is used when the system is unusable.

Data

The gateway uses a dataprocessor to add additional data to a log. The following data is automatically

added (if available through the session object). session: The session id user: The user that made the

request application: The application that made the request organization: The organization of that

application source: The source that was accessed by the process endpoint: The id of the endpoint

where the call landed schema: The schema that was used during the session action: The currently

running action object event: synchronization cronjob: The cronjob that triggered the call command:

The command options and input that triggered the call, based on

The plugin identifier is not automatically added to logs, but plugins are required to add that value

themself so that logs are easily traced back to an specific plugin

Normally speaking a call should be started by either a cronjob,command or endpoint,

Storage

By default, the gateway stores logs to {channel name}.log files in the log directory of the gateway,

prints logs out to STD out and saves them to the Mongo database. When storing the logs to mongoDB

all logs are stored to a single collection to make them easily searchable.

Retrieving logs

Logs can be retrieved through the admin/logs endpoint that provides them from the mongo

database.

Creating logs from your plugin

You might feel the need to create additional logging for your plugin because it does some extremely

important stuff that just might go wrong and then needs to be fixed. There are basically 3 ways of

going about this

1 - There is an appropriate channel (for example actions for an action handler that you have built).

Use that! Conforming yourself to existing logging means that your logs will be automatically available

https://www.rfc-editor.org/rfc/rfc54240
https://symfony.com/doc/current/logging/processors.html
https://github.com/symfony/symfony/blob/6.2/src/Symfony/Bridge/Monolog/Processor/ConsoleCommandProcessor.php

through the gateways tool like the admin ui and grafana. 2 - Use the plugin channel, that is what it is

for, anny undefined logs can be stored there. 3 - Create your own channel by expanding

monolog.yaml from your plugin, this is almost never the preferred option. It gives you great flexibility

in how to use the logs, but it leaves the context of the gateway making your logs unpredictable for

those who need them the most, your users.

You SHOULD always log from services, not just because it is easter, but because following separation

of concern your business logic(and therefore the stuff you want to log) should be contained there

anyway. It does however also make it very easy to add logging to your service trough autowiring.

When adding a logger to your action handlers you can for example include the action channel like:

…

use Psr\Log\LoggerInterface

…

public function __construct(LoggerInterface $ActionLogger)

{

 $this->logger = $ActionLogger;

}

Or when using the generic plugin channel

…

use Psr\Log\LoggerInterface

…

public function __construct(LoggerInterface $PluginLogger)

{

 $this->logger = $PluginLogger;

}

After this creating a log is rather easy, just use `$this->logger->{level}({message}) e.g.

$this->logger->info('I just got the logger');

$this->logger->error('An error occurred');

Keep in mind that if you want your logs to be findable and accessible through the admin ui you should

also include your plugin package name as an extra value e.g.

$this->logger->info('I just got the logger',[“plugin”=>”common-gateway/pet-store-

bundle”]);

note: It is actually possible to register your logs under the wrong plugin, don’t. First of all it will

confuse your users and be traceable through the process id. Secondly it will be flagged as a code

injection attract and reported.

Mappings

https://symfony.com/doc/current/logging/channels_handlers.html#monolog-autowire-channels

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions or

alterations there.

The mapping service supports the process of changing the structure of an object. It's used to

transform data when the source doesn't match the desired data model. Mapping is done by a series of

mapping rules in a To <- From style. In simple mapping, the position of a value within an object is

changed.

Index

1. Defining a mapping

2. Usage

3. Advanced (Twig) mapping and/or adding key's

4. Pass Through and/or dropping key's

5. Working with conditional data

6. Sub mappings

7. Casting (Forcing) the type/format of values

8. Translating values

9. Renaming Keys

10. Order of mapping

11. What if I can't map?

Defining a mapping

The Common Gateway stores,imports and exports mappings as JSON mapping objects. Bellow you can

find an example mapping object

{

 "title": "MyMapping",

 "description": "MyMapping",

 "$id":

"https://development.zaaksysteem.nl/mapping/xxllnc.XxllncCaseToZGWZaak.mapping.json",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "version": "0.0.1",

 "passTrough": false,

 "mapping": {

 "{{to_key}}": "{{from_key}}"

 },

 "unset": ["{{from_key}}"],

 "cast": {

 "{{to_key}}":"{{type}}"

 }

}

Mapping objects MUST follow the bellow specifications

Property Required Usage Allowed Value

title Yes User friendly

single

sentence

describing of

string, max 255 characters

https://docs.google.com/document/d/1BCrL4u2Ov_815QyH4tQH_roQGM0_Ia4QUyqMtXjlV1g/edit

the

mappings

used for

identification

description No

User friendly

multi line

description

of the

mapping

used for

explaining

purpose and

workings of

the mapping

string, max 2555 characters

$id No

Used during

the import

of mappings

to see if a

mapping is

already

present

string, max 255 characters

$schema Yes

Tells the

common

gateway

that this

object is a

mapping

Always:

'https://docs.commongateway.nl/schemas/Mapping.sc

version no

Used during

the import

of mappings

to see if

mapping

should be

overwritten

(updated)

A valid semantic version number

passTrough no

Determines

whether to

copy the old

object to the

new object

A boolean, default to false

mapping no

Moves

property

positions in

an object

An array where the key is the new property location(in

notation) and the value the current property location (

notation)

unset no Unset

unused

A valid json object, read more about using unset

https://docs.commongateway.nl/schemas/Mapping.schema.json
https://semver.org/lang/nl/
https://grasshopper.app/glossary/data-types/object-dot-notation/#:~:text=Dot%20notation%20is%20one%20way,%3A%205%2C%20%7D%3B%20console
https://grasshopper.app/glossary/data-types/object-dot-notation/#:~:text=Dot%20notation%20is%20one%20way,%3A%205%2C%20%7D%3B%20console
http://localhost:34775/

properties

cast no

Casts

properties to

a specific

type

A valid json object, read more about using cast

Usage

Okay, let's take a look at the most commonly used example api (petstore) and a basic original object.

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "status": "available"

}

Now let's say we want to move the status into a new object that has a sub object called metadata, like

this:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "metadata":{

 "status": "available"

 }

}

Then we need to create a mapping that copies the property to a new location trough mapping, like

this:

{

 "title": "A simple mapping for animals",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "mapping": {

 "id": "id",

 "name": "name",

 "metadata.status": "status"

 }

}

So what happened under the hood? How is de status moved? Let's take a look at the first mapping set

{

 "mapping": {

 "id": "id",

 "name": "name",

 "metadata.status": "status"

http://localhost:34775/
https://petstore.swagger.io/#/pet/findPetsByStatus

 }

}

Rules are carried out as a To <- From pair. In this case, the metadata.status key has a status

value. When interpreting what the description is, the mapping service has two options:

The value is either a dot notation array pointing to another position in the object (see dot

notation). If so, then the value of that position is copied to the new position. (Under the hood

the gateway uses PHP dot notation to achieve this result)

The value is not a dot notation array to another position in the object (see dot notation), then

the value is rendered as a twig template.

Note

The key is ALWAYS treated as a dot notation telling the service where to move the

properties content to.

Mapping object MUST have a title and $schema definition, and SHOULD have a

description.

It is not necessary to declare every step of the array (e.g. metadata, metadata.status,

metadata.status.name) just declaring the property where you want it will create the in

between array key’s

Keep in mind that dot notations have no maximum depth, so an original object like:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "status": "available"

}

Could be mapped like:

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "mapping": {

 "id": "id",

 "name": "name",

 "metadata.status.name": "status"

 }

}

To a new object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "metadata":{

 "status":{

 "name": "available"

 }

https://grasshopper.app/glossary/data-types/object-dot-notation/#:~:text=Dot%20notation%20is%20one%20way,%3A%205%2C%20%7D%3B%20console
https://github.com/adbario/php-dot-notation
https://twig.symfony.com/

 }

}

Note

Using dot notation to move values around within an object will NOT cause the value to

change or be converted. In other words you can move an entire array or sub object around

by simply moving the property that it is in. Also, booleans will remain booleans, integers

remain integers etc.

In the case that a key has a dot in it, and you don’t want it to trigger the array pointing

with dot notation you can use the ASCII code for a dot instead. Example:

“location.first.name” if you want first.name to be a string (just to show what I mean:

“location.’first.name’”) it is possible to do this: “location.first.name”. For more options like

this, see: https://www.freeformatter.com/html-entities.html.

Advanced (Twig) mapping and/or adding key's

Another means of mapping is Twig mapping. Let's look at a more complex mapping example to

transform or map out data. The petstore decided that we would like to assign pets to an aisle, there

are three aisle (green, blue and red) and every pet needs to be assigned randomly. That means that

we need business logic in our mapping. fortunately we can use twig logic in our mapping by placing it

in {{}} braces. that means that we can do this in our mapping

{

 "name": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "mapping": {

 "id": "id",

 "name": "name",

 "status": "status",

 "aisle": "{{ random([green, blue , red]) }}"

 }

}

To turn this orignal object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "status": "available"

}

Into this new object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "status": "available",

https://www.freeformatter.com/html-entities.html
https://twig.symfony.com/doc/2.x/

 "aisle": "red"

}

As you might have noticed we have now added a key that wasn't present in the old object. That is

because the mappings simply copies values into the new object. These values MAY be created on the

fly trough use of the twig extension.

Note

Both dot-notation and twig-based mapping are valid to move value's around in an object.

BUT Dot-notation is preferred performance-wise.

It is possible to add key's by just declaring them

Pass Through and/or dropping key's

In the above examples we are mapping a lot of properties into our new object that stay in the same

location as the where in hour old object. e.g. id , name , status . You can spot these in our mapping:

{

 "name": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "mapping": {

 "id": "id",

 "name": "name",

 "status": "status"

 }

}

If we have large objects this might be a lot of work (we would need to map EVERY value). This is

where passTrough comes to our rescue. When setting passTrough to true in our mapping all the

data from the original object is copied to ouw new objects (passed through the mapper). So if we want

our object to stay exactly the same we can simply do the following mapping.

{

 "name": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true

}

Now that's just going to give us exactly the same object, so let's add a simple bit of mapping. And we

should see something interesting happening.

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "mapping": {

 "metadata.status.name": "status"

 }

}

Will turn this original object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "status": "available"

}

Into this new object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "status": "available",

 "metadata":{

 "status":{

 "name": "available"

 }

 }

}

Okay, so we now have a double status that is because the mapper always copies a value from the

old key position to the new key position. So if we are using passTrough we will copy that value twice

(once through the mapper and once trough passthrough). To solve this we will need to manually unset

the undesired key. Which we can do with a mapping like:

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "mapping": {

 "metadata.status.name": "status"

 },

 "unset":["status"]

}

Which wil turn this original object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "status": "available"

}

Into this new object

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "metadata":{

 "status":{

 "name": "available"

 }

 }

}

Note

Using passthrough represents a security risk. All values make it to the new object, so it

should only be used on trusted or internal objects

passthrough is applied BEFORE mapping, so a mapping can be used to 'overwrite' values

that where passed through

Normally when using passthrough we would like to clean up the result because we tend to

end up with double data.

Dropping keys is always the second last action performed in the mapping process (before

casting).

Unset should contain an array of key's, key's are defined in dot notation. So its possible

to remove properties from any place within an object.

Working with conditional data

Twig natively supports many logical operators, but a few of those are exceptionally handy when

dealing with mappings. For example, concatenating strings like {{ 'string 1' ~ 'string 2' }} which can

be used as the source data inside the mapping

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "mapping": {

 "metadata.color": "{{ \"The color is \" ~ color }}"

 },

 "unset": ["color"]

}

The same is achieved with string interpolation via a mapping of:

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "mapping": {

 "metadata.color": "{{ \"The color is #{color}\" }}"

 },

https://grasshopper.app/glossary/data-types/object-dot-notation/#:~:text=Dot%20notation%20is%20one%20way,%3A%205%2C%20%7D%3B%20console
https://twig.symfony.com/doc/3.x/templates.html
https://twig.symfony.com/doc/1.x/templates.html#string-interpolation

 "unset": ["color"]

}

Both turn this original object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "color": "blue"

}

Into this new object

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "metadata": {

 "color": "The color is blue"

 }

}

Another useful twig take is the if statement. This can be used to check if a values exists in the first

place in our mapping

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "mapping": {

 "metadata.color": "{% if color %} {{color}} {% else %} unknown {% endif %}"

 },

 "unset": ["color"]

}

or to check for specific values in our mapping

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "mapping": {

 "metadata.color": "{% if color == \"violet\" %} pink {% endif %}"

 },

 "unset": ["color"]

}

Sub mappings

In some cases you might want to make use of mappings that you have created before with the

mapping you are currently defining. Common cases include mapping an array of sub objects or

dividing your mapping into smaller files for stability and maintenance purposes.

To do this you can access the mapping service from within a mapping trough twig like:

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "mapping": {

 "color": "{{ color|map(‘{id or ref}’, {array}) }}"

 }

}

The mapping service takes three arguments: id [required]: Either the UUID or reference of the

mapping that you want to use array [required]: The actual data that you want to map list [optional,

defaults to false]: Whether you want to be mapped in its entirety (as an object) or as an list (of

objects)

Casting (Forcing) the type/format of values

In some cases you might want to change the properties variable type or if you a ussing twig

rendering, mapping output will always change all the values to string . For internal gateway traffic,

this isn’t problematic, as the data layer will cast values to the appropriate outputs. When sending data

to an external source, having all Booleans cast to strings might be bothersome. To avoid this

predicament, we can force the datatype of your values by ‘casting’ them.

We can cast values by including a cast property in our mapping, the following casts are currently

available:

Cast Function Twig

string https://www.php.net/manual/en/function.strval.php No

bool / boolean https://www.php.net/manual/en/function.boolval.php No

int / integer https://www.php.net/manual/en/function.intval.php No

float https://www.php.net/manual/en/function.floatval No

array No

date https://www.php.net/manual/en/function.date No

url https://www.php.net/manual/en/function.urlencode.php Yes

rawurl https://www.php.net/manual/en/function.rawurlencode.php Yes

base64 https://www.php.net/manual/en/function.base64-encode.php Yes

json https://www.php.net/manual/en/function.json-encode.php Yes

xml No

https://www.php.net/manual/en/function.strval.php
https://www.php.net/manual/en/function.boolval.php
https://www.php.net/manual/en/function.intval.php
https://www.php.net/manual/en/function.floatval
https://www.php.net/manual/en/function.date
https://www.php.net/manual/en/function.urlencode.php
https://www.php.net/manual/en/function.rawurlencode.php
https://www.php.net/manual/en/function.base64-encode.php
https://www.php.net/manual/en/function.json-encode.php

That meanns that we can write a mapping like

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "cast": {

 "age": "int",

 "available": "bool"

 }

}

To turn this original object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "age": "2",

 "available": "yes"

}

Into the new object

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "age": 2,

 "available": true

}

Note

Beware what functions PHP uses to map these values and if the cast should be possible (or

else a n error is thrown).

Casting is always the last action performed by the mapping service

Translating values

Twig natively supports translations, but remember that translations are an active filter |trans . And

thus should be specifically called on values you want to translate. Translations are performed against

a translation table. You can read more about configuring your translation table here.

The base for translations is the locale, as provided in the localization header of a request. When

sending data, the base is in the default setting of a gateway environment. You can also translate from

a specific table and language by configuring the translation filter e.g. {{ 'greeting' | trans({},

[table_name] , [language]) }}

The following mapping:

https://symfony.com/doc/current/translation.html
http://localhost:34775/

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "mapping": {

 "color":"{{source.color|trans({},\"colors\") }}"

 }

}

Wil turn this original object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "color": "blue"

}

Into this new object (on locale nl):

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "color": "blauw"

}

If we want to force German (even if the requester asked for a different language), we'd map like

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "mapping": {

 "color":"{{source.color|trans({},\"colors\".\"de\") }}"

 }

}

And get the following new object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "color": "Blau"

}

Note

In most cases request won't be originating from a browser, so its best to ALWAYS define

the language that you would like to use

Renaming Keys

The mapping doesn't support the renaming of keys directly but can rename keys indirectly by moving

the data to a new position and dropping the old position (is we are using passThrough).

For example, we could write a mapping like:

{

 "title": "A simple mapping",

 "$schema": "https://docs.commongateway.nl/schemas/Mapping.schema.json",

 "passthrough": true,

 "mapping": {

 "title":"name"

 },

 "unset": [

 "name"

]

}

To turn this original object:

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "color": "blue"

}

Into this new object

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "title":"doggie",

 "color": "blue"

}

Order of mapping

The mapping service always handles all mappings in the following order

1. passTrough

2. mapping

3. unset

4. cast

What if I can't map?

Even with all the above options, it might be possible that the objects you are looking at are too

different to map. In that case, don't look for mapping solutions. If the old and new object are to

differend, add them to the data layer and write a plugin to keep them in sync based on actions.

http://localhost:34775/

Using ChatGDP

Mappings are mostly bassed on comparing the original object you have and the new object you

require the actual, or in other word comparing statuses and writing something to get from original to

new. In practice this is a pretty straight forward process that can easily be left to online AI's (like

ChatGDP) to write the firts version for you. Simply head over to https://chat.openai.com/ and start a

prompt to let chat GDP know what you want to do.

We generally ask it to Can you provide an new example based on the mapping service? [copy

past this readme from start to passTrough] , like:

https://chat.openai.com/

ChatGDP should now explain to you how it would create mappings.

Oke so now we have ChatGDP setup, we can as it to create mappings for us. Let's ask it te create a

simple mapping for us

Normally we would ask something like this:

Can you create a mapping from this original object

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "color": "blue"

}

Into the following new object

{

 "id":"0d671e30-04af-479a-926a-5e7044484171",

 "name":"doggie",

 "metadata":{

 "color": "blue",

 "dateCreated":"use twig to create a time stamp"

 }

}

based on the mapping service

[copy past this readme from start to passTrough]

And, presto! ChatGDP writes a basic mapping for us

Note

Conveniently ChatGDP provides a copy code button in the right top of the codding

example that allows us to simply download the provided mapping an import it into the

gateway.

We cut the above screenshots short for layout reasons but be sure to include as much

from the mapping readme as you can

Always check the code that ChatGDP provided! It is known to make errors ;)

Monitoring

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions or

alterations there.

As a gateway, the Common Gateway sits at the front of your application landscape, acting as the main

entry point for all incoming requests. This central position makes it a prime location for collecting

valuable data about the health, performance, and behavior of your application ecosystem.

Monitoring is vital to the Common Gateway for several reasons:

1. Performance Monitoring: By tracking metrics like request duration, rate, and error rates,

you can gain insights into the performance of your application. This can help you identify

bottlenecks, understand capacity needs, and ensure that your application is performing

optimally.

2. Health Checks: Health checks provide a way to quickly detect and respond to issues that

could impact the availability or performance of your services. These checks can be used to

trigger alerts, ensuring that you can respond quickly when problems arise.

https://docs.google.com/document/d/1guerprkkQgqTqMVEy9xQnyhRP8ME8lHVP0Ogy0_GkYM/edit

3. Debugging and Troubleshooting: When issues do arise, having detailed metrics at your

disposal can be invaluable for diagnosing and resolving the problem. Prometheus's querying

language PromQL can be used to slice and dice the data in various ways, making it easier to

understand the root cause of an issue.

4. Capacity Planning and Scaling: By tracking the load on your services, you can make

informed decisions about when to scale up or down, helping you manage costs and ensure

sufficient capacity to handle your traffic.

Prometheus

The Common Gateway supports Prometheus monitoring through its MetricsService. This service

exposes a /metrics endpoint that Prometheus can scrape to collect metrics about the operation of the

Common Gateway. This makes it easy to integrate the Common Gateway with Prometheus, allowing

you to benefit from the rich insights that Prometheus can provide about the health and performance

of your gateway and the services behind it.

Prometheus is an open-source systems monitoring and alerting toolkit that is widely adopted for its

simplicity and effectiveness. It collects metrics from monitored targets by scraping metrics HTTP

endpoints on these targets.

Supported Metrics

The common gateway supports several metrics

General information

Name Type Help

app_version gauge The current version of the application.

app_name gauge The name of the current version of the application.

app_description gauge The description of the current version of the application.

app_users gauge The current amount of users

app_organisations gauge The current amount of organisations

app_applications gauge The current amount of applications

app_requests counter The total amount of incoming requests handled by this gateway

app_calls counter The total amount of outgoing calls handled by this gateway

Errors

Name Type Help

app_error_count counter
The amount of errors, this only counts logs with level_name

'EMERGENCY', 'ALERT', 'CRITICAL' or 'ERROR'.

app_error_list counter The list of errors and their error level/type.

Objects

Name Type Help

app_objects_count gauge The amount objects in the data layer

app_cached_objects_count gauge
The amount objects in the data layer that are stored in

the MongoDB cache

app_schemas_count gauge The amount defined schemas

app_schemas gauge The list of defined schemas and the amount of objects.

Plugins

Name Type Help

app_plugins_count gauge The amount of installed plugins

app_installed_plugins gauge The list of installed plugins.

Notifications

Warning This file is maintained at Conduction’s Google Drive Please make any suggestions of

alterations there.

CloudEvents is a specification that enables consistent description of event data across diverse

services, platforms, and systems. This uniformity addresses the challenge of different event producers

describing events in varying ways, which often requires developers to continuously learn how to

consume these events. The existence of a common event description can enhance the utility of

libraries, tools, and infrastructure designed to facilitate the delivery of event data across different

environments, such as SDKs, event routers, and tracing systems. By promoting interoperability,

CloudEvents increases the potential for data portability and productivity. The specification has

attracted considerable interest from various industry players, including major cloud providers and

popular SaaS companies. Hosted by the Cloud Native Computing Foundation (CNCF), CloudEvents was

approved as a Cloud Native sandbox level project on May 15, 2018, and as an incubator project on

October 24, 2019 1 .

Plugins

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions or

alterations there.

Plugins are a neat way of separating concerns and making sure that client specific code doesn't get

into the core. You can read a bit more about why we use plugins under code quality.

The Common Gateway is easily extendable through a plugin structure. The structure is based on the

Symfony bundle system in other words, all Common Gateway plugins are Symfony bundles, and

Symfony bundles can be Common Gateway plugins. You can consider a plugin for the Common

Gateway as a configuration set to extend a base Gateway's functionality. The plugin structure is based

https://docs.google.com/document/d/1O5mSTaCFdlQykypylFs_Tkx53aBf2UgddJTtD9g3aVw/edit
https://docs.google.com/document/d/1TOQbfFrwDel4sF2D36tGjDAZJD9K7P0VKd9I10JDVy0/edit
http://localhost:34775/Code_quality.md
https://symfony.com/doc/current/bundles.html

on the Symfony bundle system. In other words, all Common Gateway plugins are Symfony bundles,

and Symfony bundles can be Common Gateway plugins.

If you want to develop your own plugin, we suggest using the Pet store plugin as a starting point.

Finding and installing plugins

If you start from a brand new Gateway installation and head over to your Dashboard, you can find the

plugin section on the left side panel. You can search for the plugins you want to add from this tab by

selecting Search for plugins. Find the plugin you wish to install and view its details page. You should

see an install button in the top right corner if the plugin is not installed.

The Common Gateway finds plugins to install with packagist. It does this entirely under the hood, and

the only requirement is that plugins need a ‘common-gateway-plugin” tag. Packagist functions as a

plugin store as well in this regard.

The plugins are installed, updated, and removed with the composer CLI. While this feature still exists

for developers, we recommend using the user interface see plugins for installing plugins.

Creating plugins

If you want to develop your plugin, we recommend using the PetStoreBundle. This method ensures all

necessary steps are taken, and the plugin will be found and installable through the method described

above.

Updating and removing plugins

In case you want to update or remove a plugin, go to “Plugins” in the Gateway UI main menu and

select “Installed”. Click on the plugin that you want to update or remove and press the Update or

Remove button in the top right of the screen.

Adding Actions, Sources, Cronjobs, to your plugin

You can include an installation folder in the root of your plugin repository containing schema.json files

or other files. Whenever the Gateway installs or updates a plugin, it looks for the schema map and

handles all schema.json files in that folder as a schema upload.

Keep in mind that you will need to properly set the $schema of the object in order for the gateway to

understand what schema you are trying to create. The core schema’s of the gateway are defined as

'https://docs.commongateway.nl/schemas/Action.schema.json',

'https://docs.commongateway.nl/schemas/Application.schema.json',

'https://docs.commongateway.nl/schemas/CollectionEntity.schema.json,

'https://docs.commongateway.nl/schemas/Cronjob.schema.json',

'https://docs.commongateway.nl/schemas/DashboardCard.schema.json',

'https://docs.commongateway.nl/schemas/Endpoint.schema.json',

'https://docs.commongateway.nl/schemas/Entity.schema.json',

'https://docs.commongateway.nl/schemas/Gateway.schema.json',

'https://docs.commongateway.nl/schemas/Mapping.schema.json',

'https://docs.commongateway.nl/schemas/Organization.schema.json',

'https://docs.commongateway.nl/schemas/SecurityGroup.schema.json',

https://symfony.com/doc/current/bundles.html
https://github.com/CommonGateway/PetStoreBundle
https://docs.commongateway.nl/schemas/Action.schema.json
https://docs.commongateway.nl/schemas/Application.schema.json
https://docs.commongateway.nl/schemas/CollectionEntity.schema.json
https://docs.commongateway.nl/schemas/Cronjob.schema.json
https://docs.commongateway.nl/schemas/DashboardCard.schema.json
https://docs.commongateway.nl/schemas/Endpoint.schema.json
https://docs.commongateway.nl/schemas/Entity.schema.json
https://docs.commongateway.nl/schemas/Gateway.schema.json
https://docs.commongateway.nl/schemas/Mapping.schema.json
https://docs.commongateway.nl/schemas/Organization.schema.json
https://docs.commongateway.nl/schemas/SecurityGroup.schema.json

Note: While adding SecurityGroups through core schema's is allowed, adding (or changing) Users

is not, because of security reasons, if you would like to add users (in a more secure way) take a

look at how to configure an installation.json file.

'https://docs.commongateway.nl/schemas/User.schema.json',

Here is an example. The $id and $schema properties are needed for the Gateway to find the plugin.

The version property's value helps the Gateway decide whether an update is required and will update

automatically.

Installation

The gateway supports installations, update and remove actions for plugins. Allowing them to change

configurations and alter data, this is done through stallation.json file. The installation.json file is a

fundamental part of the plugin installation process. It provides the necessary configuration for a

plugin to integrate smoothly with the platform. This file should be located in the /Installation

folder of the plugin's directory.

Here is an explanation of the various sections in the installation.json file:

InstallationService

installationService: This specifies the service that handles the installation process. For

example: "installationService": "CommonGateway\PetStoreBundle\Service\InstallationService"

The installation service allows you to run code during changes to the plugins livecycle. It MUST

always implement the CommonGateway\CoreBundle\Installer\InstallerInterface . And it CAN

provide functions that are called during changes to the plugin from the gateways installer.

An example installationService could like like

<?php

/**

 * The installation service

 *

 * @author Conduction.nl <info@conduction.nl>

 * @license EUPL-1.2 https://joinup.ec.europa.eu/collection/eupl/eupl-text-eupl-12

 */

namespace CommonGateway\PetStoreBundle\Service;

use CommonGateway\CoreBundle\Installer\InstallerInterface;

use Doctrine\ORM\EntityManagerInterface;

use Psr\Log\LoggerInterface;

class InstallationService implements InstallerInterface

{

 /**

 * The entity manager

 *

 * @var EntityManagerInterface

https://docs.commongateway.nl/schemas/User.schema.json
https://github.com/CommonGateway/CoreBundle/blob/master/Schema/example.json

 */

 private EntityManagerInterface $entityManager;

 /**

 * The installation logger.

 *

 * @var LoggerInterface

 */

 private LoggerInterface $logger;

 /**

 * The constructor

 *

 * @param EntityManagerInterface $entityManager The entity manager.

 * @param LoggerInterface $installationLogger The installation logger.

 */

 public function __construct(

 EntityManagerInterface $entityManager,

 LoggerInterface $installationLogger

) {

 $this->entityManager = $entityManager;

 $this->logger = $installationLogger;

 }//end __construct()

 /**

 * Every installation service should implement an install function

 *

 * @return void

 */

 public function install()

 {

 $this->logger->debug("PetStoreBundle -> Install()");

 $this->checkDataConsistency();

 }//end install()

 /**

 * Every installation service should implement an update function

 *

 * @return void

 */

 public function update()

 {

 $this->logger->debug("PetStoreBundle -> Update()");

 $this->checkDataConsistency();

 }//end update()

 /**

 * Every installation service should implement an uninstall function

 *

 * @return void

 */

 public function uninstall()

 {

 $this->logger->debug("PetStoreBundle -> Uninstall()");

 // Do some cleanup to uninstall correctly...

 }//end uninstall()

 /**

 * The actual code run on update and installation of this bundle

 *

 * @return void

 */

 public function checkDataConsistency()

 {

 //This is the place where you can add or change Installation data from/for

this bundle or other required bundles.

 //Note that in most cases it is recommended to use .json files in the

Installation folder instead, if possible.

 $this->entityManager->flush();

 }//end checkDataConsistency()

}//end class

Note: In most cases it isn’t actually necessary to write an installation service, you can just load

configurations by supplying the necessary objects.

Configuration

There are two routes to include configuration (objects) in your plugin. The first and easiest one is to

include them directly into your installation.json. This is possible for applications, users, cards, actions,

collections, endpoints and cronjobs. You can also supply the object separately, in that case they MUST

be contained in de the /Installation folder of the plugin's directory and SHOULD be in a sub

folder labeled after the type of object that you want to create e.g. /Cards . This is the preferred way

(especially with larger plugins) because it keeps a repository more readable.

If however you want to create objects from the installation.json you can use the following

properties:

applications: This is an array of applications related to the plugin. Each application should

have properties like title, $id, $schema, version, description, and domains.

users: This section defines the users that have access to the plugin. Each user should have

properties like $id, version, description, email, locale, and securityGroups.

cards: This section includes properties like schemas, collections, and applications.

actions: This section defines the handlers and the actions associated with them. Each handler

should have properties like reference, actionHandler, listens, and configuration. The

configuration section includes specific parameters that the handler uses.

collections: This is an array of collections that the plugin should have access to. Each

collection should have properties like reference and schemaPrefix.

endpoints: This section defines the API endpoints that the plugin exposes. This section is

divided into multipleSchemas and schemas. The multipleSchemas section allows defining

endpoints that use multiple schemas. Each endpoint should have properties like $id, version,

name, description, schemas, path, pathRegex, and methods. The schemas section allows

defining endpoints specific to a schema.

cronjobs:

Below is an example of the structure of an installation.json file:

{

 "installationService":

"CommonGateway\\PetStoreBundle\\Service\\InstallationService",

 "applications": [

 {

 "title": "Example Front-end Application",

 "$id": "https://example.com/application/ps.frontend.application.json",

 "$schema": "https://docs.commongateway.nl/schemas/Application.schema.json",

 "version": "0.0.1",

 "description": "An example Front-end Application. This is not required for the

gateway to work, there is a default Application created on init. Applications can be

used to allow the given domains to use the gateway. And can be used by plugin

services to get a domain of an application.",

 "domains": [

 "frontend.example.com"

]

 }

],

 "users": [

 {

 "$id": "https://example.com/user/johnDoe.user.json",

 "version": "0.0.1",

 "description": "An example User with an example SecurityGroup. It is not

allowed to set a User password or change/create Admin Users this way.",

 "email": "johnDoe@username.com",

 "locale": "en",

 "securityGroups": [

 "https://example.com/securityGroup/example.securityGroup.json"

]

 }

],

 ...

}

The above configuration represents a part of the installation.json for a hypothetical Pet Store plugin. It

specifies the installation service, an application, and a user. Additional sections should be added as

needed, following the structure outlined above.

Please ensure that your installation.json file follows this structure and includes all required sections for

your plugin. This will ensure a smooth installation process and correct integration of your plugin with

the system

Note: The installation.json should not contain any descriptionarry information about the plugin.

That should be provided trough the composer.json in the plugins route.

Adding test data or fixtures to your plugin

You can include both fixtures and test data in your plugin. The difference is that fixtures are required

for your plugin to work, and test data is optional. You can include both data sets as .json files in the

folder at the root of your plugin repository. An example is shown here.

Datasets are categorized by name, e.g., data.json in the data folder will be considered a fixture,

whereas [anything else].json will be regarded as test or optional data (and not loaded by default).

As a fixture, anything in data.json is always loaded on a plugin installation or update. The other files

are never loaded on a plugin install or update. However, the user can load the files manually from the

plugin details page in the gateway UI.

All files should follow the following convention in their structure 1 - A primary array indexes on schema

refs, 2 - Secondary array within each primary array containing the objects that you want to upload or

update for that specific schema.

{

 "ref1": [

 {"object1"},

 {"object2"},

 {"object3"}

],

 "ref2":[

 {"object1"},

 {"object2"},

 {"object3"}

],

 "ref3":[

 {"object1"},

 {"object2"},

 {"object3"}

]

}

Keep in mind that the ref here could either be a schema you defined yourself or a gateway core

schema. It is therefore also possible to upload several configuration files through a data.json.

When handling data uploads (be it fixtures or others), the Gateway will loop through the primary

array, trying to find the appropriate schema for your object. If it finds this schema, it creates or

updates the object for the schema.

For fixtures, this is done in an unsafe manner, meaning that When the Gateway can’t find a schema

for a reference, it will ignore the reference and continue The Gateway won't validate the objects

(meaning that you can ignore property requirements, but you can't add values for non-existent

properties)

When handling other uploads with optional ore test data the Gateway does so in a safe manner,

meaning: When the Gateway can’t find a schema for a reference, it will throw an error The Gateway

will validate the objects and throw an error when it reaches an invalid object

Describing your plugin

Plugins are described trough a composer.json file in the plugin root. In order for a plugin to findable

and installable for common gateway installations it MUST meet the following criteria:

Have a name

Type is set to symfony-bundle

common-gateway-plugin is added to the key-words commongateway/corebundle is a

requirement

Other fields are optional but highly recommended, keep in mind that both the gateway plugin store

and common-gateway website look for a readme.md in the repository root to display as personal page

for the plugin.

An example composer file would look like

{

 "name": "common-gateway/pet-store-bundle",

 "description": "An example package for creating symfony flex bundles as

plugins",

 "type": "symfony-bundle",

 "keywords": [

 "commongateway",

 "common",

 "gateway",

 "conduction",

 "symfony",

 "common-gateway-plugin",

 "pet store"

],

 "homepage": "https://commongateway.nl",

 "license": "EUPL-1.2",

 "minimum-stability": "dev",

 "require": {

 "php": ">=7.4",

 "commongateway/corebundle": "^1.0.51"

 },

https://getcomposer.org/doc/04-schema.md

 "require-dev": {

 "symfony/dependency-injection": "~3.4|~4.1|~5.0"

 },

 "autoload": {

 "psr-4": {

 "CommonGateway\\PetStoreBundle\\": "src/"

 }

 }

}

Publishing your plugin

The gateway used the packagist netwerk for plugin discovery, that means that you do not need to

upload your plugin to an appstore etc. You simply submit your plugin repository to packagist.

Note: It is also possible to keep your plugins private, read more about that under {private

packages](https://packagist.com/)

Warning: Plugins are only finable if they adhere to all of the description requirements.

Requiring other plugins

Schemas

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions or

alterations there.

Schemas are the core of the Common Gateway’s data layer. They define and model objects and set

the conditions for objects. Each object in the gateway always belongs to ONE schema. Schemas follow

the JSON schema standard and are therefore interchangeable with OAS3 schemas. For the Dutch

governmental ecosystem this means that a schema adheres to the overige objecten standaard

description of an object type . In action to this we extend schema’s with metadata.

In a more traditional way, schema’s can be viewed as the “tables” of the data layer as they store data

in a predefined way. However, unlike tables, the data is stored as objects. Where each data set, that

would normally be a row, becomes an object. The main difference between tables and objects is that

objects are multidimensional(a value can be another object) and table rows are flat (each column

containing one value). An object can contain an array, objects or arrays of objects. Objects present us

with a vastly superior way of serving data.

An example object could be

{

 "id": 1,

 "name": "doggie",

 "status": "available"

}

Schema's define objects by giving us the properties they contain and conditional validations for the

value of each property.

https://packagist.org/packages/submit
https://packagist.com/
https://docs.google.com/document/d/1T1EGcUsA9Old1zvoBRRhE5qLO_UHbSvhrwJ3F74xYso/edit
https://json-schema.org/
https://swagger.io/specification/

Creating or updating a schema

Schema’s can be modeled from the schema page in the Admin UI or through the /admin/schema

endpoint. To create a new schema go to “Schemas” in the menu, and press “Add schema”. Just fill in

the name “PET and hit save (a schema needs to be created before you can add properties). After the

schema is created you are automatically redirected to the edit page of that schema.

Adding properties to a schema

Go to the properties tab and press “Add property” to add a property to your schema. When adding a

property

Adding objects

After adding properties to a schema

Downloading schema’s

Uploading schema’s

You can upload a schema in the Gateway UI by pressing the upload button in the top right corner.

Schemas might also be uploaded by plugins or collections. When a schema is uploaded the following

things will happen:

The Gateway will look in its schema library if a version of that schema is already present. It does so

based on the schema ID. Based on that result the Gateway will handle the schema accordingly: If no

matching schema is found the gateway will create a new schema If a matching schema is found the

gateway wil compare versions and decide what to do: The old schema has no set version and the new

schema has no set version -> The gateway will update the old schema with the new schema The old

schema has no set version and the new schema has a set version -> The gateway will update the old

schema with the new schema The old schema has a set version number and the new schema has a

higher set version number -> The gateway will update the old schema with the new schema The old

schema has a set version number and the new schema has a lower set version number -> The

gateway does not update the schema The old schema has a set version number and the new schema

does not have a set version number -> The gateway does not update the schema

Let's take a look at an example. We have a weather plugin that contains a weather schema.

Properties

An entity consists of the following properties that can be configured

Property Required Description

name yes An unique name for this entity

description no
The description for this entity that will be shown in de API

documentation

source no The source where this entity resides

endpoint
yes if an source is

provided

The endpoint within the source that this entity should be

posted to as an object

route no
The route this entity can be found easier, should be a

path

extend no
Whether or not the properties of the original object are

automatically included

Properties

Properties represent variables on objects. In the following object from the petstore api id, name, and

status are properties.

{

 "id": 1,

 "name": "doggie",

 "status": "available"

}

that you want to communicate to underlying sources. In a normal setup and attribute should at least

apply the same restrictions as the underlying property (e.g. required) to prevent errors when pushing

the entity to its source. It can however provide additional validations to a property, for example the

source AIU might simply require the property ‘email’ to be a unique string, but you could set the form

to ‘email’ causing the input to be validated as an ISO compatible email address.

Properties

Property Required Description

name yes

string An name for this attribute. MUST be unique on an entity

level and MAY NOT be ‘id’,’file’,‘files’,

’search’,’fields’,’start’,’page’,’limit’,’extend’ or ’organization’

description no
The description for this attribute that will be shown in de API

documentation

type yes string See types

format no string See formats

validations no array of strings See validations

multiple no boolean if this attribute expects an array of the given type

defaultValue no
string An default value for this value that will be used if a user

doesn't supply a value

deprecated no
boolean Whether or not this property has been deprecated and

will be removed in the future

required no
boolean whether or not this property is required to be in a POST

or UPDATE

requiredIf no
array a nested set of validations that will cause this attribute to

become required

forbidden no
boolean whether or not this property is forbidden to be in a POST

or UPDATE

forbiddenIf no
array a nested set of validations that will cause this attribute to

become forbidden

example no string An example of the value that should be supplied

persistToSource no

boolean Setting this property to true will force the property to be

saved in the gateway endpoint (default behavior is saving in

the EAV)

searchable no boolean Whether or not this property is searchable

cascade no

boolean Whether or not this property can be used to create new

entities (versus when it can only be used to link existing

entities)

Warning To prevent collisions with json-ld, json-hall, graphql and inner gateway workings property

names aren't allowed to start with the following characters _ , @ , $ additionally you can’t add a

property called id to your schema’s. When importing schema’s all properties in violation of the

above will be ignored without warning.

####Types The type of attribute provides basic validations and a way for the gateway to store and

cash values in an efficient manner. Types are derived from the OAS3 specification. Current available

types are:

Format Description

string a text

integer a full number without decimals

decimal a number including decimals

boolean a true/false

date an ISO-??? date

date-

time
an ISO-??? date

array an array or list of values

object Used to nest a Entity as attribute of another Entity, read more about nesting

file
Used to handle file uploads, an Entity SHOULD only contain one attribute of the type

file, read more about handling file uploads

you are allowed to use integer instead of int, boolean instead of bool, date-time or dateTime

instead of datetime,

http://localhost:34775/
http://localhost:34775/

####Formats A format defines a way a value should be formatted, and is directly connected to a

type, for example a string MAY BE a format of email, but an integer cannot be a valid email. Formats

are derived from the OAS3 specification, but supplemented with formats that are generally needed in

governmental applications (like BSN) . Current available formats are:

General formats

Format Type(s) Description

alnum
Validates whether the input is alphanumeric or not. Alphanumeric

is a combination of alphabetic and numeric characters

alpha Validates whether the input contains only alphabetic characters

numeric Validates whether the input contains only numeric characters

uuid string

base Validate numbers in any base, even with non regular bases.

base64 Validate if a string is Base64-encoded.

countryCode string
Validates whether the input is a country code in ISO 3166-1

standard.

creditCard string Validates a credit card number.

currencyCode string Validates an ISO 4217 currency code like GBP or EUR.

digit string Validates whether the input contains only digits.

directory string Validates if the given path is a directory.

domain string Validates whether the input is a valid domain name or not.

url string Validates whether the input is a valid url or not.

email string Validates an email address.

phone string Validates a phone number.

fibonacci integer Validates whether the input follows the Fibonacci integer sequence.

file string Validates whether file input is as a regular filename.

hexRgbColor string Validates whether the input is a hex RGB color or not.

iban string
Validates whether the input is a valid IBAN (International Bank

Account Number) or not.

imei string Validates if the input is a valid IMEI.

ip string Validates whether the input is a valid IP address.

isbn string Validates whether the input is a valid ISBN or not.

json string Validates if the given input is a valid JSON.

xml string Validates if the given input is a valid XML.

languageCode string Validates whether the input is language code based on ISO 639.

luhn string Validate whether a given input is a Luhn number.

macAddress string Validates whether the input is a valid MAC address.

nfeAccessKey string Validates the access key of the Brazilian electronic invoice (NFe).

Phone numbers should ALWAYS be treated as a string since they MAY contain a leading zero.

Country specific formats

Format Type(s) Description

bsn string Dutch social security number (BSN)

nip
string,

integer
Polish VAT identification number (NIP)

nif
string,

integer
Spanish fiscal identification number (NIF)

cnh
string,

integer
Brazilian driver’s license

cpf
string,

integer
Validates a Brazilian CPF number

cnpj
string,

integer

Validates if the input is a Brazilian National Registry of Legal Entities

(CNPJ) number

Dutch BSN numbers should ALWAYS be treated as a string since they MAY contain a leading

zero.

####Validations Besides validations on type and string you can also use specific validations, these

are contained in the validation array. Validation might be specific to certain types or formats e.g.

minValue can only be applied to values that can be turned into numeric values. And other validations

might be of a more general nature e.g. required.

Validation value Description

between Validates whether the input is between two other values.

boolType Validates whether the type of the input is boolean.

boolVal Validates if the input results in a boolean value.

call Validates the return of a [callable][] for a given input.

callableType Validates whether the pseudo-type of the input is callable.

callback Validates the input using the return of a given callable.

charset Validates if a string is in a specific charset.

alwaysInvalid Validates any input as invalid

alwaysValid Validates any input as valid

anyOf
This is a group validator that acts as an OR operator. AnyOf returns

true if at least one inner validator passes.

arrayType Validates whether the type of an input is array

arrayVal
Validates if the input is an array or if the input can be used as an

array (instance of ArrayAcces or SimpleXMLElement.

attribute Validates an object attribute, even private ones.

consonant Validates if the input contains only consonants.

contains Validates if the input contains some value.

containsAny Validates if the input contains at least one of defined values.

control
Validates if all of the characters in the provided string, are control

characters.

countable
Validates if the input is countable, in other words, if you’re allowed to

use count() function on it.

decimal
Validates whether the input matches the expected number or

decimals.

each
Validates whether each value in the input is valid according to

another rule.

endsWith
This validator is similar to Contains(), but validates only if the value is

at the end of the input.

equals Validates if the input is equal to some value.

equivalent Validates if the input is equivalent to some value.

even Validates whether the input is an even number or not.

executable Validates if a file is an executable.

exists Validates files or directories.

extension
Validates if the file extension matches the expected one. This rule is

case-sensitive.

factor Validates if the input is a factor of the defined dividend.

falseVal Validates if a value is considered as false.

file Validates whether file input is as a regular filename.

image Validates if the file is a valid image by checking its MIME type.

filterVar Validates the input with the PHP’s filter_var() function.

finite Validates if the input is a firtine number.

floatType Validates whether the type of the input is float.

floatVal Validate whether the input value is float.

graph
Validates if all characters in the input are printable and actually

creates visible output (no white space).

greaterThen Validates whether the input is greater than a value.

identical Validates if the input is identical to some value.

in Validates if the input is contained in a specific haystack.

infinite Validates if the input is an infinite number.

instance Validates if the input is an instance of the given class or interface.

iterableType

Validates whether the pseudo-type of the input is iterable or not, in

other words, if you're able to iterate over it with foreach language

construct.

key Validates an array key.

keyNested
Validates an array key or an object property using . to represent

nested data.

keySet Validates keys in a defined structure.

keyValue

leapDate Validates if a date is leap.

leapYear Validates if a year is leap.

length

lessThan Validates whether the input is less than a value.

lowercase Validates whether the characters in the input are lowercase.

not

notBlank
Validates if the given input is not a blank value (null, zeros, empty

strings or empty arrays, recursively).

notEmoji Validates if the input does not contain an emoji.

no Validates if value is considered as “No”.

noWhitespace
Validates if a string contains no whitespace (spaces, tabs and line

breaks).

noneOf Validates if NONE of the given validators validate.

max Validates whether the input is less than or equal to a value.

maxAge
Validates a maximum age for a given date. The $format argument

should be in accordance with PHP's date() function.

mimetype
Validates if the input is a file and if its MIME type matches the

expected one.

min Validates whether the input is greater than or equal to a value.

minAge
Validates a minimum age for a given date. The $format argument

should be in accordance with PHP's date() function.

multiple Validates if the input is a multiple of the given parameter.

negative Validates whether the input is a negative number.

Objects

An object is a data set conforming to schema, e.g for the schema pet we might have an object pluto.

Metadata

Hydration

The process of transforming incoming data to objects is called hydration.

Security

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions or

alterations there.

We believe in integrating security into the core of our development process. We employ automated

penetration testing and scanning as part of our Continuous Integration and Continuous Deployment

(CI/CD) pipeline. This approach allows us to identify and address potential security vulnerabilities

early, during the development phase, rather than later in the production phase.

Automated Penetration Testing

Automated penetration testing tools are integrated into our CI/CD pipeline to simulate attacks on our

systems and identify security weaknesses. These tools conduct a series of tests to check for common

vulnerabilities, including those listed in the OWASP Top 10.

The results from these tests are then used to inform our development and security teams about

potential vulnerabilities. This process enables us to address these vulnerabilities before the software is

deployed to production.

Scanning

Our CI/CD pipeline also includes automated scanning tools that check our source code, containers,

and cloud infrastructure for security issues.

https://docs.google.com/document/d/1dGqnB0Wdbj8BXT9yqYkGVZpfsTQ88T-ta_tk0iz11p0/edit

Source code scanners analyze our code to find security weaknesses such as those in the OWASP Top

10 list of common security risks. Container scanners inspect our Docker and other container images

for vulnerabilities, misconfigurations, and compliance with best practices. This is in line with our

commitment to adhere to the top ten containerization security tips. Cloud security scanners ensure

that our cloud infrastructure is configured securely, following the principle of least privilege and other

cloud security best practices. Adhering to the Top Ten Containerization Security Tips In our

commitment to maintain robust security, we adhere to the top ten containerization security tips. Here

are some of the practices we follow:

Use minimal base images: We only include the necessary services and components in our

container images to reduce the attack surface.

Manage secrets securely: We don't store sensitive information like passwords, API keys, or

secret tokens in our container images. Instead, we use secure secrets management tools.

Use containers with non-root privileges: We run our containers as non-root users

whenever possible to limit the potential damage if a container is compromised.

Regularly update and patch containers: We keep our containers up to date with the latest

security patches.

Scan images for vulnerabilities: As mentioned above, we use automated tools to scan our

container images for known vulnerabilities.

Limit resource usage: We use container runtime security features to limit the amount of

system resources a container can use.

Use network segmentation: We isolate our containers in separate network segments to

limit lateral movement in case of a breach.

Implement strong authentication and authorization controls: We ensure that only

authorized individuals can access our containers and the data within them.

Monitor and log container activity: We collect and analyze logs from our containers to

detect any suspicious activity.

Ensure immutability and maintain an effective CI/CD pipeline: Our containers are

designed to be immutable, meaning they are not updated or patched once they are deployed.

Instead, changes are made to the container image and a new version of the container is

deployed through our CI/CD pipeline.

By integrating security into our development process, we aim to create a secure, reliable environment

for our software and services.

User Authentication

We implement user authentication through oAuth or Active Directory Federation Services (ADFS).

ADFS is a software component developed by Microsoft that provides users with single-sign-on access

to systems and applications located across organizational boundaries.

Users first authenticate through oAuth/ADFS, which then produces a series of claims identifying the

user. These claims are then used by the Open Catalogi application, which uses them to decide

whether to grant the user access and roles (See RBAC). This system simplifies the login process for

users and allows for secure authentication across different systems and applications.

Identification Based on Two-Way SSL

Identification of other catalogs in our federated network is based on two-way SSL (Secure Sockets

Layer) certificates, specifically adhering to the Dutch PKI (Public Key Infrastructure) system. This

approach ensures a secure and trusted communication channel between the software and the

catalog.

The two-way SSL authentication mechanism requires both the client and the server to present and

accept each other's public certificates before any communication can take place. This process

guarantees the identity of both the client and server, ensuring a high level of security and trust in the

communication.

Role-Based Access Control (RBAC)

Our system implements Role-Based Access Control (RBAC) to manage both user and application

rights. RBAC is a method of regulating access to computer or network resources based on the roles of

individual users within the organization.

In RBAC, permissions are associated with roles (and configured in our software), and users and other

applications are assigned appropriate roles. This setup simplifies managing user privileges and helps

to ensure that only authorized users and applications can access certain resources or perform certain

operations.

Data Security Levels

Our system handles various types of data, each requiring different levels of security:

Public Data: This data is available to all users and doesn't contain any sensitive information.

Even though it's public, we still take measures to ensure its integrity and availability.

Data Available to Specified Organizations: Some data is only accessible to certain

organizations. We implement strict access controls and authentication methods to ensure that

only authorized organizations can access this data.

Data Available Only to the Own Organization: Certain data is strictly internal and only

accessible by our organization. This data is protected by multiple layers of security and can

only be accessed by authenticated and authorized personnel within our organization.

User-Specific Data: Some data is personalized and only available to specific users. This data

is protected by strong access controls and encryption. Only the specific user and authorized

personnel within our organization can access this data.

We take data security very seriously and have implemented robust measures to ensure the safety,

confidentiality, integrity, and availability of all data in our system.

Seperating Landing Zone, Execution Zone and Data

In our setup, we utilize NGINX and PHP containers to ensure a clean separation of concerns between

internet/network access, code execution, and data storage. This design facilitates robust security and

improved manageability of our applications and services.

NGINX Containers as Landing Zone: The first layer of our architecture involves NGINX

containers serving as a landing zone. NGINX is a popular open-source software used for web

serving, reverse proxying, caching, load balancing, and media streaming, among other things.

In our context, we use it primarily as a reverse proxy and load balancer. When a request

arrives from the internet, it first hits the NGINX container. The role of this container is to

handle network traffic from the internet, perform necessary load balancing, and forward

requests to appropriate application containers in a secure manner. This arrangement shields

our application containers from direct exposure to the internet, enhancing our security

posture.

PHP Containers as Execution Zone: Once a request has been forwarded by the NGINX

container, it lands in the appropriate PHP container for processing. These containers serve as

our execution zone, where application logic is executed. Each PHP container runs an instance

of our application. By isolating the execution environment in this way, we can ensure that any

issues or vulnerabilities within one container don't affect others. This encapsulation provides a

significant security advantage and makes it easier to manage and scale individual

components of our application.

Data Storage Outside the Cluster: For data storage, we follow a strategy of keeping data

outside the cluster. This approach separates data from the execution environment and the

network access layer, providing an additional layer of security. Data stored outside the cluster

can be thoroughly protected with specific security controls, encryption, and backup

procedures, independent of the application and network layers.

This three-tiered approach – NGINX containers for network access, PHP containers for code execution,

and external storage for data – provides us with a secure, scalable, and resilient architecture. It allows

us to isolate potential issues and manage each layer independently, thereby enhancing our ability to

maintain and secure our services.

#Sources

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions or

alterations there.

Sources represent places where the Gateway can get its information, typically these would be other

APIs, but the gateway can also connect the files servers through (S)FTP and databases directly

(MongoDB, PostgreSQL, MySQL, Oracle, and MSSQL), blockchain solutions, or networks of trust

(NLX/FCS). The source object represents information about the source (status and transaction logs) as

well as the current connection setting. You can find sources through the sources menu item on the left

side of the Admin UI or the admin/sources endpoint on the gateway API

.

Adding and testing a source

Sources can be added through the add source button at the top right of the sources overview page.

Let's take a look at configuring a source for the Swagger Pet store. Head over to the sources page and

press “add source” on the following page and set the source location to

https://petstore.swagger.io/v2/pet and pick a name. Since the Swagger Petstore is unconnected, we

don’t need additional details and can save our connection by pressing the save button.

After saving our connection the test tab appears below the connection detail page. We can now test

the connection to our source. Let's try a request with the GET method to the endpoint

/findByStatus?status=available . Enter the details in the form and press test connection . If

the connection test is successful, we should see the result of our test in the right bottom corner

Additionally, the status of the connection should update to the last call, and a new call log should be

available under the logs tab with the results of our test described.

Now that we tested our connection, we can add the connection to our dashboard by pressing “+ Add

to dashboard” Head back over to the dashboard to see the status card of our new connection.

Syncing a source

For this part we assume that you already have made a schema called pet containing the properties

name and status . If you haven't yet done this, follow the steps under schema to create a schema

https://docs.google.com/document/d/1htUlWeImLmybSjF9_yqXLoDSMyfmpgbWDnTMcB68hCA/edit
https://petstore.swagger.io/v2/pet
http://localhost:34775/

resource accordingly

Exposing a source to applications

todo

(Reverse) Proxy

The easiest way to expose a source to applications is setting up a reverse proxy. A reverse proxy

means that all the requests sent to a specific endpoint on the gateway are forwarded to the source,

and the response of the source is forwarded to the asking applications.

Setting up a reverse proxy shields the underlying source from the application. The application

authenticates itself to the gateway and the gateway then contacts the source. This means that the

application doesn’t need authentication or access to the source itself and allows the gateway to

monitor the traffic. You can read more about setting up proxies under endpoints.

Datalayer

A different approach to exposing the data (directly) within a source is creating a schema that maps to

the source. This method gives a bit more flexibility in the transformer

Synchronizations

Warning This file is maintained at Conduction’s Google Drive Please make any suggestions of

alterations there.

The data synchronization process is an essential part of the Common Gateway data layer. This process

ensures that data between the data layer and an external source remains consistent. While it's

possible to sync directly between sources, this would necessitate a tripartite setup involving the

Gateway.

Determining the Current State of Data

The initial step in the synchronization process involves determining the current state of data. There

are three main scenarios:

1. The object exists on the Gateway but not on the source: In this case, we need to decide if the

object should be deleted from the Gateway or added to the source, based on the specific rules

and constraints of the system.

2. The object exists on the source but not on the Gateway: Here, we usually need to add the

object to the Gateway to maintain synchronization.

3. The object exists on both the source and Gateway: In this situation, we need to establish

which version is newer and update accordingly. There are three sub-scenarios:

The Gateway version is newer: The source should be updated with the Gateway's

version.

The source version is newer: The Gateway should be updated with the source's

version.

The versions are the same: No action is required.

In instances where we can't establish which version is newer, we must assume which

party is "right" and determine a source of truth. Typically, this would be the source,

https://common-ground-documentation.readthedocs.io/en/latest/endpoints/
https://docs.google.com/document/d/1bJ45SdIaB21TdIoB2sL5biXeJ_L_6QbrfMb0TmzgXGs/edit

but it can be configured to be the Gateway.

Determin ing the Current Sta te o f Data

ObjectNotExistsInSource

decide if the object
should be deleted from Gateway
or added to source

ObjectSync

ObjectSynced

Objects are synchronized

ObjectNotExistsInGateway

add the object to Gateway

ObjectExistsBoth

establish which version is newer

GatewayVersionNewer

update source with Gateway's version

SourceVersionNewer

update Gateway with source's version

VersionsSame

CannotDetermineVersion

assume which party is "right"
and determine source of truth

Object only exists on Datalayer

Object added to source (POST)

Object deleted from Gateway

Object only exists on source

Object added to Gateway

Object exists on both

Gateway version is newer

Source updated (PUT)

Source version is newer

Gateway updated

Versions are the same

No action required

Can't determine newer version

Datalayer is determined as truth Source is determined as truth

Creation of a Synchronization Object

The next step is to create a synchronization object that holds and describes the relationship between

the two objects (Data Layer and Source). This object includes details such as the IDs on both ends, the

dates of changes, and a hash of the source object.

The synchronization object is crucial as it allows us to determine if the source object has changed,

even if the object doesn't have a property that enables this detection. By comparing the current hash

with the previous hash stored in the synchronization object, we can detect any changes and trigger

the necessary updates. This method ensures the consistency of data across the Gateway and the

source, enhancing the reliability and integrity of our system.

Twig

Warning This file is maintained at the Conduction Google Drive. Please make any suggestions or

alterations there.

https://docs.google.com/document/d/1qvexgsRPGA4aMotY4u7D24dELDPt2i5IZSvXaVtHG6E/edit

