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Introduction

In the present work, we replicate the results of Young et al. 2001 “Reproductive pair
correlations and the clustering of organisms” [1], an analysis of the formation of aggre‐
gates in an otherwise homogeneous environment mimicking marine small‐scale hydro‐
dynamics. Using an individual‐based model of independent, random‐walking particles
(also called “Brownian bugs”), they show that reproduction by fission in a turbulent [2]
and viscous flow leads to the formation of elongated clusters. Spatial patterns therefore
depart from the usual, homogeneous solution of the advection‐diffusion‐reaction equa‐
tion for a large population.

Due to their size, phytoplankton organisms experience amostly viscous environment in
a laminar shear field, with random but homogeneous changes in directions due to tur‐
bulence [3, 4]. Reproduction and limited movement of daughter cells, which occur at
the phytoplankton scale, interact with these hydrodynamics processes and can lead to
aggregates. In this context, a better understanding of the interactions between demog‐
raphy and small‐scale hydrodynamics could provide further explanation for observed
spatial distribution of phytoplankton species, and perhaps even their coexistence. This
motivated us to revisit Young et al. 2001 [1].

In addition to replicating the numerical and mathematical results of Young et al. 2001,
we also wished to present themathematical derivations that weremissing from the orig‐
inal paper, which should make this replication article more accessible to most readers,
especially those without a fluid mechanics background.

Brownian bug model

The Brownian bug model is defined as an individual‐based model in continuous space
and time, here presented in its 2D formulation. For efficient computer simulation, it
is implemented in discrete time [1]. Each particle is characterized by the vector of its

Cartesian coordinates x =

(
x1

x2

)
and its original position on the y‐axis at t = 0 (a child

particle inherits this attribute), this last characteristic beingused only for representation
purposes. Space is a L × L square with periodic boundary conditions. Each timestep,
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[Re] Reproductive pair correlations and the clustering of organisms

of duration τ , is divided into three substeps: (1) demographic processes, (2) diffusion,
and (3) advection.

Demographic processes take place during thefirst substep (1). Each organismhas afixed
probability (p) of reproducing, dying (q), or remaining unchanged (1− p− q). When an
individual reproduces, a new organism appears on top of the parent. In the following,
p = q = 0.5. Diffusion is then modeled as a Brownian motion (2), i.e. x′(t) = x(t) +
δx(t) where each component of δx(t) follows a Gaussian distribution N (0,∆) where
D = ∆2

2τ is the diffusivity. The discrete‐timeMarkov chain presented here approximates
the continuous‐time Brownian bug model, which can be thought of as a spatial birth‐
death or branching process (described in the Supplementary Material), step (1) being
referred to in Young et al. [1] as a Galton‐Watson process. Finally, (3) the turbulent flow
governing advective stirring follows the Pierrehumbert randommap [5].

x1(t+ τ) = x′
1(t) + (Uτ/2) cos[kx′

2(t) + ϕ(t)] (1)
x2(t+ τ) = x′

2(t) + (Uτ/2) cos[kx1(t+ τ) + θ(t)] (2)

whereϕ(t) and θ(t) are randomphases uniformly distributedbetween 0 and 2π, k = 2π/L
and U is the stretching parameter.

Unless otherwise specified, each simulation is initialized with N0 = 20, 000 particles
uniformly distributed in a 1× 1 square and run for 1000 timesteps.

Pair density functionG(r, t)

The pair density function G(xi,xj , t) is defined so that G(xi,xj , t)dA1dA2 is the prob‐
ability of finding a pair of Brownian bugs with one member in the area dA1 around
xi and the other in the area dA2 around xj . Defining ξ = xi − xj , G(ξ, t) is actually
called the pair correlation function in [1]. The radial density function g(r, t) is defined
as G(ξ, t) = C2g(r, t) where C is the concentration of bugs and r = |ξ|. As the pair
correlation disappears when r → ∞, g → 1.

Derivation ofG(r, t) — All details of the derivation of G(r, t) are to be found in the Supple‐
mentary Material. We finally obtain:

∂G

∂t
= 2Dr1−d ∂

∂r

(
rd−1 ∂G

∂r

)
+ 2(λ− µ)G+ γr1−d ∂

∂r

(
rd+1 ∂G

∂r

)
+ 2λCδ(ξ) (3)

where λ is the birth rate (p = λτ ) and µ is the death rate (q = µτ ).

We focus on the case d = 2 and λ = µ, which means Eq. 3 can be reduced to

∂G

∂t
=

2D

r

∂

∂r

(
r
∂G

∂r

)
+

γ

r

∂

∂r

(
r3

∂G

∂r

)
+ 2λCδ(ξ). (4)

The value of γ is computed from simulations (see Supplementary Material).

Analytical solution with advection — CP and FB could only find the analytical solutions of
G(r, t) with and without advection with the indications of WY. In the presence of ad‐
vection (γ ̸= 0), a steady‐state solution can be found; without advection, there is no
steady‐state and the solution changes through time. Let us first examine the steady‐state
solution, given by:
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2D

r

∂

∂r

(
r
∂G

∂r

)
+

γ

r

∂

∂r

(
r3

∂G

∂r

)
+ 2λCδ(ξ) = 0

⇔2πr

(
2D

r

∂

∂r

(
r
∂G

∂r

)
+

γ

r

∂

∂r

(
r3

∂G

∂r

)
+ 2λCδ(ξ)

)
= 0

⇔2π

(
2D

∂

∂r

(
r
∂G

∂r

)
+ γ

∂

∂r

(
r3

∂G

∂r

))
+ 2πr2λCδ(ξ) = 0. (5)

We can then integrate Eq. 5 over a small area centered on a particle, with radius ρ. Let
us first note that

∫
R2

δ(x)dx = 1

⇔
∫ 2π

0

∫ ρ

0

δ(r)δ(θ)rdrdθ = 1

⇔2π

∫ ρ

0

δ(r)rdr = 1. (6)

Using Eq. 5 and 6, we can integrate between 0 and ρ,

0 = 2π

(
2Dρ

∂G

∂ρ
+ γρ3

∂G

∂ρ

)
+ 2λC

⇔ ∂G

∂ρ
= − 1

2π

2λC

2Dρ+ γρ3
. (7)

Eq. 7 can now be integrated between ρ and∞, knowing that G(∞) = C2:

C2 −G(ρ) = − 1

2π

∫ ∞

ρ

2λC

2Dr + γr3
dr. (8)

Using the variable change u = 2D
r2 + γ, with du = −4D

r3 dr, the integral writes

G(ρ) = C2 + λC
π

∫ γ

2D
ρ2

+γ

1
r3u

r3

−4Ddu

= C2 − λC
4πD [lnu]

γ
2D
ρ2

+γ

= C2 − λC
4πD

(
ln(γ)− ln

(
2D
ρ2 + γ

))
= C2 + λC

4πD ln
(

2D+γρ2

γρ2

)
.

(9)

Finally, the pair correlation function g = G/C2 is defined as

g(r) =
λ

4πDC
ln

(
2D + γr2

γr2

)
+ 1. (10)

Analytical solution without advection —When U = 0, γ = 0 and there is no steady solution
in 2D. We can get back to Eq. 4:

∂G

∂t
=

2D

r

∂

∂r

(
r
∂G

∂r

)
+ 2λCδ(ξ). (11)

Assuming an isotropic environment (and switching to the Cartesian coordinate system),
this means
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∂G

∂t
− 2D∆G = 2λCδ(ξ) (12)

where∆ = ∇2 is the Laplacian operator.

We therefore have

LG(ξ, t) = 2λCδ(ξ) (13)

where L is the linear differential operator ∂t − 2D∆.

We can use a Green’s functionH, defined with LH = δ(ξ, t) = δ(ξ)δ(t).

By definition, we know that G(y) =
∫
H(y, s)2λCδ(s)ds (where y = (ξ, t)) is a solution

to Eq. 13.

G(ξ, t) =2λC

∫
R2

∫ t

0

H(ξ − ξ′, t′)δ(ξ′)dξ′dt′

=2λC

∫ t

0

H(ξ, t′)dt′. (14)

Eq. 14 can be used in Eq. 11:

∂

∂t

(
2λC

∫ t

0

H(ξ, t′)dt′
)

= 2D2λC∆

∫ t

0

H(ξ, t′)dt′ + 2λCδ(ξ) (15)

⇔
∫ t

0

(
∂H(ξ, t′)

∂t′
− 2D∆H(ξ, t′)

)
dt′ = δ(ξ) (16)

⇔
∫ t

0

δ(ξ)δ(t′)dt′ = δ(ξ) (17)

which is true.

A solution for the Green’s function using L = ∂t − 2D∆ in 2 dimensions is

H(r, t) =
1

4π2Dt
exp

(
−r2

4× 2Dt

)
. (18)

G(r, t) can then be computed:

G(r, t) = 2λC

E1

(
r2

8Dt′

)
8Dπ

t

0

(19)

whereE1(x) =
∫∞
x

e−t

t dt is the exponential integral. UsingG(r, 0) = C2 and limx→+∞ E1 = 0
in Eq. 19, we finally obtain

G(r, t) = λC
E1

(
r2

8Dt

)
4Dπ

+ C2 (20)

⇔ g(r, t) =
λ

C

E1

(
r2

8Dt

)
4Dπ

+ 1. (21)
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Results

We were able to reproduce the three figures of Young et al. [1] highlighting the spatial
distributions of Brownian bugs.

In Fig. 1, the model has been run without the advection component and we can see
the clumping of organisms due to reproduction. In Fig. 2 a), the model has been run
without its demographic component, but with advection and diffusion, confirming that
hydrodynamics alone cannot ensure cluster formation, while in Fig. 2 b), advection,
diffusion and demography are present, in which case organisms form elongated aggre‐
gates.

Fig. 3 proved much more challenging. Retrieving the analytical solutions of Eq. 4 was
difficult as there was no other equation than Eq. 3 in the original paper. We also en‐
countered issues when computing the pair correlation functions on simulations: for
large values of r/∆, we observed zero values (absent pairs) of the pcf when U = 0. This
is a sampling effect as pcf values get very low for large distances without advection, even
though we multiplied the study area by 10 to produce Fig. 3 and counter such effects.
Despite themissing values, we can confirm that simulated and analytical pcfmatch (Fig.
3), with a slight underestimation by the simulations. The numerical pcf also got closer
to 1 than the analytical predictions for large values of r.
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Figure 1. Distribution of Brownian bugs at different times in a simulation with ∆ = 10−3 and
U = 0: initial conditions with a Poisson spatial distribution (a), t = 100τ (b) and t = 1000τ (c).
Each particle is identified by a color which corresponds to the initial position on the y‐axis of its
ancestor at t = 0.
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Figure 2. Distribution of Brownian bugs in a simulation with advection and∆ = 10−3,Uτ/2 = 0.1:
without demographic processes at t = 30τ (a), and with demographic processes at t = 1000τ (b).
Each particle is identified by a color which corresponds to the initial position on the y‐axis of its
ancestor at t = 0.
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Figure 3. Logarithmic (a) and linear (b) plots of g(r, t) versus r/∆, with ∆ = 10−7 and Uτ/2 =
0, 0.1, 0.5, 2.5 at t = 1000τ . To compute simulation‐based values of g(r) with a large number of
points (N0 = 200, 000) and avoid sampling issues, we replicated the 1 × 1 square 10 times, so
that its length is

√
10 while keeping L = 1 and k = 2π/L in eq. 1 and 2. Solid lines result from

simulations, dotted lines correspond to analytical solutions and the solid grey line indicates the
r−2 scaling predicted by Eq. 3.
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Discussion

We successfully replicated both the numerical results and analytical solutions of Young
et al. [1]. Even though stochasticity prevents us from replicating exactly the same spatial
point patterns as those seen in the original Fig. 1 and Fig. 2, we considered the patterns
to be close enough to validate the replication. Fig. 3 was also very close to the one shown
in the original article, despite a slight underestimation of the pcf in simulated data.

The most challenging part of the replication was actually not to replicate the numeri‐
cal results, but to find back the analytical expression of the pair density functionG(r, t)
dynamics from first principles. How to derive such dynamics was indeed briefly ex‐
plained in words in the original article, but the many intermediate steps involved (see
Supplementary Material) make the additional mathematical derivations presented here
worthwhile in our opinion. In addition to providing critical information to CP and FB
regarding how to obtain the pair correlation dynamics, WY also communicated the re‐
quired mathematical steps to find back the analytical solutions forG(r, t) plotted in Fig.
3. We hope that the additional material on the derivation ofG(r, t) dynamics (as Supple‐
mentary Material) as well as the provided analytical solutions of such dynamics (now
presented in the main text) will help readers through both the original and replication
articles.

The original article did not provide quantitative values exactly matching marine mi‐
crobes ecology; we thus wondered about the time and spatial scales that could be used
for a realistic phytoplanktonmodel. The length of the square side, L, is defined roughly
as the Kolmogorov scale [2], the scale at which viscosity starts dominating turbulence
(we useL = 1 cmas an upper bound). Here, we consider k the smallest wavenumber cor‐
responding to the largest length scale L, i.e. k = 2π/L. The chosen length scale defines
the Reynolds number which then allows to obtain U , the velocity difference between
two points separated by a distance L.

Re =
U

kν
(22)

⇒ 1 =
UL

2πν
(23)

⇔ U =
2πν

L
(24)

where ν = 10−6 m2 s−1 is the kinematic viscosity for water. These numerical values
lead to U = 6.3 × 10−4 m s−1. Note that U is the speed in the frame of reference of
the small square area considered here, which might itself be embedded within larger
spatial structures (e.g., large eddies) moving at higher speeds in the ocean or any large
waterbody.

To determine the diffusivity of small organisms, we use the Stokes‐Einstein equation [6]:

D =
RT

NA

1

6πηa
(25)

whereR = 8.314 J K−1 mol−1 is the molar gas constant, T = 293 K is the temperature of
the environment,NA = 6.0225× 1023 is Avogadro’s number, η = 10−3 m−1 kg s−1 is the
viscosity of water and a is the radius of the organism considered. We apply this formula
to microphytoplankton organisms of diameter 50 μm, keeping τ outside of the equation
for now:
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∆ =
√
2Dτ (26)

=

√
RT

NA

τ

3πηa
(27)

=

√
8.314× 293

6.0225× 1023
1

3π × 10−3 × 25× 10−6

√
τ (28)

= 1.3× 10−7
√
τ m. (29)

To compute τ , we can consider a phytoplankton doubling rate of 1 d−1 [7], whichmeans,
with p = 0.5, that τ = 0.5 d.

This leads to Uτ/2 ≈ 5.4 × 103 cm d−1 and ∆ ≈ 5 × 10−5 cm. These two values are
much higher than those used in Fig. 3 (0.1 < Uτ/2 < 2.5 and ∆ = 10−7). A thorough
discussion of the parameters is therefore necessary before extrapolating these results to
real phytoplanktonic systems.

As the Brownian bugmodel is currently fairly theoretical in its 2D formulation, a logical
next step would be to consider similar dynamics in a 3D‐model, which would render the
comparison to real data easier. Using actual concentrations of phytoplanktonic organ‐
isms (e.g., diatoms), between 103 and 106 C/L, this would lead to 1 to 103 organisms if we
kept L = 1 cm. Wemight therefore need to increase the size of the considered square, or
apply themodel to small bacteria only. With a closermatch between field and simulated
concentrations, the model could provide us with a better picture of the likely fine‐scale
spatial structure of phytoplanktonic populations.
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Supplementary Material

Derivation ofG(r, t)

Diffusion and birth/death processes — In this section, we aim to find back from first princi‐
ples Eq. 2 in Young et al. [1], i.e. Eq. 3 in our manuscript. We will first focus on the
diffusion and birth/death processes, corresponding to the evolution equation for the
pair density:

∂G

∂t
= 2Dr1−d ∂

∂r

(
rd−1 ∂G

∂r

)
+ 2(λ− µ)G+ 2λCδ(ξ). (30)

We first define an ensemble of k identical Brownian bugs in a d‐dimensional space. The
bug number p is located at xp = [x1, x2, ...xd]. At time t, the space is defined by (a) the
number of Brownian bugs k and (b) the vector of their locations Xk = [x1,x2, ...xk].
This is also called the Fock space [8].

The probability distribution over the state space is given by the functionsPk(Xk, t) such
that:

Pk(Xk, t)dXk = Pr{k bugs, with a bug in dx1, a bug in dx2, etc.} (31)

As bugs are indistinguishable, we can exchange xp and xq (permutation symmetry):

Pk(x1, . . . ,xp, . . . ,xq, . . . ,xk, t) = Pk(x1, . . . ,xq, . . . ,xp, . . . ,xk, t). (32)

The normalization is:

P0(t)+

∫
P1(X1, t)dx1+

∫ ∫
P2(X2, t)dx1dx2+. . .+

∫
R2k

Pk(Xk, t)dXk+. . . = 1 (33)

because having k individuals at time t defines a partition of the sample space for k =
0, 1, 2, .... We define bk(x, t) =

∫
Pk(x,Xk−1, t)dXk−1, i.e. bk(x, t)dx is the probability

that there are k bugs and bug number 1 is in dx.

The density of points is defined as:

ρ(x, t) =

∞∑
k=1

kbk(x, t) =

∞∑
k=1

k

∫
Pk(x,Xk−1, t)dXk−1. (34)

The pair correlation function is then:

G(x,y, t) =

∞∑
k=2

k(k − 1)

∫
Pk(x,y,Xk−2, t)dXk−2. (35)

We define the two particle distribution functions ck(x,y, t) =
∫
Pk(x,y,Xk−2, t)dXk−2.

Note that G(x,y, t) =
∑∞

k=2 k(k − 1)ck(x,y, t).
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Proposition

The time derivative of ck is given by:

∂ck
∂t

(x,y, t) = D∇2
2ck (36a)

− k(λ+ µ)ck (36b)
+ (k + 1)µck+1 (36c)

+ 2
λ

k
δ(x− y)bk−1(x) + λ

(k − 2)(k + 1)

k
ck−1. (36d)

Proof

We write the evolution of Pk(Xk, t):

∂Pk

∂t
= D∇2

kPk (37a)

− k(λ+ µ)Pk (37b)

+ (k + 1)µ

∫
Pk+1(Xk,y, t)dy (37c)

+
λ

k

k∑
p=1

k∑
q=1,q ̸=p

δ(xp − xq)Pk−1(Xk|p,t) (37d)

where∇2
k = ∂2

∂x2
1
+ ∂2

∂y2
1
+ . . .+ ∂2

∂x2
k
+ ∂2

∂y2
k
in two dimensions andXk|p = Xk without xp.

Here, Eq. 37a is the diffusion part of the process, Eq. 37b corresponds to the rate at which
realizations with k bugs lose a bug by mortality or gain a bug through birth, Eq. 37c cor‐
responds to the rate at which realizationswith k+1 bugs lose a bug. Finally, a realization
with k bugs can also be produced by a birth in a realization with k − 1 bugs.

Combining the time derivative of Pk(Xk, t) with the definition of ck, we obtain:

∂ck
∂t

(x,y, t) = D

∫
∇2

kPk(x,y,Xk−2, t)dXk−2 (38a)

− k(λ+ µ)

∫
Pk(x,y,Xk−2, t)dXk−2 (38b)

+ (k + 1)µ

∫
Pk+1(x,y,Xk−2, z, t)dXk−2dz (38c)

+
λ

k

∫ k∑
p=1

k∑
q=1,q ̸=p

δ(xp − xq)Pk−1(Xk|p,t)dXk−2. (38d)

We will treat one term after the other.

Diffusion term (38a)

D

∫
∇2

kPk(x,y,Xk−2, t)dXk−2 = D∇2
k

∫
Pk(x,y,Xk−2, t)dXk−2 (39a)

= D∇2
2

∫
Pk(x,y,Xk−2, t)dXk−2 (39b)

= D∇2
2ck (39c)
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because we already integrate over k − 2 coordinates (and thus Laplacians for these co‐
ordinates are zero).

Second term (38b)

k(λ+ µ)

∫
Pk(x,y,Xk−2, t)dXk−2 = k(λ+ µ)ck. (40)

Death term (38c)

(k + 1)µ

∫
Pk+1(x,y,Xk−2, z, t)dXk−2dz = (k + 1)µ

∫
Pk+1(x,y,Xk−1, t)dXk−1

(41a)
= (k + 1)µck+1. (41b)

Birth term (38d)
In this section, we assume x = x1 and y = x2 (the reasoning is the same for different
positions of x and y due to permutation symmetry).

We can decompose the double sum, starting with p = 1.

k∑
q=2

δ(x1 − xq)Pk−1(x2, . . . ,xk, t) = δ(x1 − x2)Pk−1(x2, . . . ,xk, t) (42a)

+ δ(x1 − x3)Pk−1(x2, . . . ,xk, t) (42b)
+ . . . (42c)
+ δ(x1 − xk)Pk−1(x2, . . . ,xk, t). (42d)

We integrate over the last k − 2 coordinates.

∫ k∑
q=2

δ(x1 − xq)Pk−1(x2, . . . ,xk, t)dx3 . . . dxk (43a)

=

∫
δ(x1 − x2)Pk−1(x2, . . . ,xk, t)dx3 . . . dxk (43b)

+

∫
δ(x1 − x3)Pk−1(x2, . . . ,xk, t)dx3 . . . dxk + . . . (43c)

+

∫
δ(x1 − xk)Pk−1(x2, . . . ,xk, t)dx3 . . . dxk (43d)
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which leads to

∫ k∑
q=2

δ(x1 − xq)Pk−1(x2, . . . ,xk, t)dx3 . . . dxk (44a)

= δ(x1 − x2)

∫
Pk−1(x2, . . . ,xk, t)dx3 . . . dxk (44b)

+

∫
Pk−1(x2,x1, . . . ,xk, t)dx4 . . . dxk + . . . (44c)

+

∫
Pk−1(x2, . . . ,x1, t)dx3 . . . dx1 (44d)

=δ(x1 − x2)

∫
Pk−1(x2, . . . ,xk, t)dx3 . . . dxk (44e)

+

∫
Pk−1(x1,x2,Xk−3, t)dXk−3 + . . . (44f)

+

∫
Pk−1(x1,x2,Xk−3, t)dXk−3 (44g)

=δ(x1 − x2)bk−1(x2) + (k − 2)ck−1. (44h)

By symmetry, if p = 2, we obtain δ(x1 − x2)bk−1(x1) + (k − 2)ck−1.

Now, we need to use p ≥ 3.

∫ k∑
q=1,q ̸=p

δ(xp − xq)Pk−1(x1, . . . ,xp−1,xp+1, . . . ,xk, t)dx3 . . . dxk (45a)

=

∫
δ(xp − x1)Pk−1(x1, . . . ,xp−1,xp+1, . . . ,xk, t)dx3 . . . dxk (45b)

+

∫
δ(xp − x2)Pk−1(x1, . . . ,xp−1,xp+1, . . . ,xk, t)dx3 . . . dxk+ (45c)

+

∫
δ(xp − x3)Pk−1(x1, . . . ,xp−1,xp+1, . . . ,xk, t)dx3 . . . dxk + . . . (45d)

+

∫
δ(xp − xk)Pk−1(x1, . . . ,xp−1,xp+1, . . . ,xk, t)dx3 . . . dxk (45e)

=

∫
δ(xp − x1)dxp

∫
Pk−1(x1,x2, . . . ,xp−1,xp+1, . . . ,xk, t)dx3 . . . dxp−1dxp+1 . . . dxk

(45f)

+

∫
δ(xp − x2)dxp

∫
Pk−1(x1,x2, . . . ,xp−1,xp+1, . . . ,xk, t)dx3 . . . dxp−1dxp+1 . . . dxk

(45g)

+

∫
Pk−1(x1,x2,xp, . . . ,xp−1,xp+1, . . . ,xk, t)dx4 . . . dxk + . . . (45h)

+

∫
Pk−1(x1,x2, . . . ,xp−1,xp+1, . . . ,xp, t)dx3 . . . dxk−1 (45i)

=2

∫
Pk−1(x1,x2,Xk−3, t)dXk−3 (45j)

+ (k − 3)

∫
Pk−1(x1,x2,Xk−3, t)dXk−3 (45k)

=2ck−1 + (k − 3)ck−1 (45l)
=(k − 1)ck−1. (45m)
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Thus,
∑k

p=3

∑
q ̸=p

∫
δ(xp − xq)Pk−1(Xk|p)dXk−2 = (k − 2)(k − 1)ck−1.

Finally, the birth term is

λ

k

(
2δ(x−y)bk−1(x)+2(k−2)ck−1+(k−2)(k−1)ck−1

)
= 2

λ

k
δ(x−y)bk−1(x)+λ

(k − 2)(k + 1)

k
ck−1.

(46)
Combining all terms, we obtain the expected result:

∂ck
∂t

(x,y, t) = D∇2
2ck (47a)

− k(λ+ µ)ck (47b)
+ (k + 1)µck+1 (47c)

+ 2
λ

k
δ(x− y)bk−1(x) + λ

(k − 2)(k + 1)

k
ck−1. (47d)

Proposition

In Cartesian coordinates, the pair density admits the following evolution equation:

∂G

∂t
(x,y, t) = D∇2

2G+ 2(λ− µ)G+ 2λδ(x− y)ρ(x). (48)

Proof

Using the definition of G(x,y, t) and Eq. 36a‐36d:

∂G

∂t
(x,y, t) =

∞∑
k=2

k(k − 1)D∇2
2ck ≡ T1 (49a)

−
∞∑
k=2

k(k − 1)k(λ+ µ)ck ≡ T2 (49b)

+

∞∑
k=2

k(k − 1)(k + 1)µck+1 ≡ T3 (49c)

+

∞∑
k=2

k(k − 1)2
λ

k
δ(x− y)bk−1(x) ≡ T4 (49d)

+

∞∑
k=2

λk(k − 1)
(k − 2)(k + 1)

k
ck−1 ≡ T5 (49e)

T1 T1 = D∇2
2

∑∞
k=2 k(k − 1)ck = D∇2

2Gk

T3

T3 =

∞∑
k=2

k(k − 1)(k + 1)µck+1 (50a)

=

∞∑
k′=3

(k′ − 1)(k′ − 2)k′µck′ with k′ = k + 1 (50b)

=

∞∑
k′=2

(k′ − 1)(k′ − 2)k′µck′ if k′ = 2, k′ − 2 = 0 (50c)
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T4

T4 = 2λδ(x− y)

∞∑
k=2

(k − 1)bk−1(x) (51a)

= 2λδ(x− y)

∞∑
k′′=1

k′′bk′′(x) with k′′ = k − 1 (51b)

= 2λδ(x− y)ρ(x) (51c)

T5

T5 = λ

∞∑
k=2

k(k − 1)
(k − 2)(k + 1)

k
ck−1 (52a)

= λ

∞∑
k′′=1

k′′(k′′ − 1)(k′′ + 2)ck′′ with k′′ = k − 1 (52b)

= λ

∞∑
k′′=2

k′′(k′′ − 1)(k′′ + 2)ck′′ if k′′ = 1, k′′ − 1 = 0 (52c)

T2+T3+T5

T2 + T3 + T5 =

∞∑
k=2

−k(k − 1)k(λ+ µ)ck + (k − 1)(k − 2)kµck + k(k − 1)(k + 2)λck

(53a)

=

∞∑
k=2

k(k − 1)ck(−k(λ+ µ) + (k − 2)µ+ (k + 2)λ) (53b)

= 2(λ− µ)

∞∑
k=2

k(k − 1)ck (53c)

= 2(λ− µ)Gk (53d)

T1+T2+T3+T4+T5 Combining all terms, we have

∂G

∂t
(x,y, t) = D∇2

2G (54a)

+ 2(λ− µ)Gk (54b)
+ 2λδ(x− y)ρ(x). (54c)

We can write the diffusion term in Eq. 54a, D∇2
2G where ∇2

2 = ∂2

∂x2
1
+ ∂2

∂y2
1
+ ∂2

∂x2
2
+ ∂2

∂y2
2
,

with a more classical Laplacian operator. Hereafter, we use the notations x and y for
coordinates, as opposed to positions x and y. We define two points at positions p1 =
(x1, y1)

T and p2 = (x2, y2)
T , and the vectors ξ = p1 − p2 and X =(p1 + p2) /2. Along x,

the correspondence between coordinates is as follows:{
ξx = x1 − x2

Xx = x1+x2

2

⇔

{
x1 = Xx + ξx

2

x2 = Xx − ξx
2

, (55)

which can be derived as

∂

∂x1
=

∂

∂ξx
+

1

2

∂

∂Xx
⇒ ∂2

∂x2
1

=
∂2

∂ξ2x
+

1

4

∂2

∂X2
x

+
∂2

∂ξx∂Xx
(56)
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and

∂

∂x2
= − ∂

∂ξx
+

1

2

∂

∂Xx
⇒ ∂2

∂x2
2

=
∂2

∂ξ2x
+

1

4

∂2

∂X2
x

− ∂2

∂ξx∂Xx
. (57)

Therefore

∂2

∂x2
1

+
∂2

∂x2
2

= 2
∂2

∂ξ2x
+

1

2

∂2

∂X2
x

. (58)

With the same arguments,

∂2

∂y21
+

∂2

∂y22
= 2

∂2

∂ξ2y
+

1

2

∂2

∂X2
y

(59)

and, finally,

∂2

∂x2
1

+
∂2

∂y21
+

∂2

∂x2
2

+
∂2

∂y22
= 2

(
∂2

∂ξ2x
+

∂2

∂ξ2y

)
+

1

2

(
∂2

∂X2
x

+
∂2

∂X2
y

)
. (60)

As the environment is homogeneous, ∂G
∂Xx

= ∂2G
∂X2

x
= ∂G

∂Xy
= ∂2G

∂X2
y
= 0.

We can thus writeD∇2
2G(p1,p2, t) = 2D∇2G(ξ, t). The Laplacian formulation we have

used above corresponds to Cartesian coordinates. Its equivalent in polar coordinates is
∇2G = 1

r
∂
∂r

(
r ∂G

∂r

)
+ 1

r2
∂2G
∂θ2 . As the process is isotropic, ∂2G

∂θ2 = 0. Finally, we can write

2D∇2G(ξ, t) =
2D

r

∂

∂r

(
r
∂G

∂r

)
(61)

with r = |ξ|.

Advection process — The stretching of line elements considered by Kraichnan [9] leads to
the following term for the advection process:

∂G

∂t
= γr1−d ∂

∂r

(
rd+1 ∂G

∂r

)
. (62)

We showbelow that this equation corresponds indeed to the convectionof passive scalars
in the Batchelor regime envisioned by Kraichnan [9]. Let r(t) be the distance between
two points as a function of time, which follows a geometric Brownian motion as we
are in the Batchelor regime, and q(t) = log(r(t)/r(0)). Kraichnan defines Q(q) as the
probability distribution of q. We have Q = rdG, leading to

∂G

∂r
=

∂

∂r

(
Q/rd

)
=

1

rd
∂Q

∂r
+Q(−d)r−d−1. (63)

Now
rd

∂G

∂t
=

∂Q

∂t
= γr

∂

∂r

(
r
∂Q

∂r
− dQ

)
. (64)

We have dq
dr = 1

r so that using ∂Q
∂r = ∂Q

∂q
dq
dr we obtain

∂Q

∂t
= γ

∂

∂q

(
∂Q

∂q
− dQ

)
= γ

∂2Q

∂q2
− γd

∂Q

∂q
(65)

which is the Fokker‐Planck equation with diffusion coefficient γ (noted c in [9], and also
called the stretching parameter) and drift γd (noted< a > in [9]). Eq. 65 leads to Kraich‐
nan’s solution for pair separation (Eq. 2.31 in [9]), with drift and diffusion coefficients
linked by Eq. 2.27 and 2.33 in [9].

Combining Eq. 62 with Eq. 30, we obtain Eq. 3.
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Stretching parameter γ

γ is computed with simulations, using the formula r(t) ∝ exp(γdt) → 1
2 ln(r(t)) = γt if

d = 2, with r the separation between pairs of particles. γ is estimated as the slope of

1

2
⟨ln(r(t))⟩ = f(t)

with ⟨ln(r(t))⟩ the average obtained from 800 pairs of particles.

∀t, ⟨ln(r(t))⟩ = 1

800

800∑
p=1

ln(r(x1p(t)− x2p(t)))

where r(x1p(t) − x2p(t)) is the distance between a particle 1p at position x1p and its
counterpart 2p, initialized with r(0) = 10−7∀p (see Fig. 4 for γ estimates).
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Figure 4. Estimates of γ for different Uτ/2.
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