{ "nbformat": 4, "nbformat_minor": 0, "metadata": { "colab": { "name": "CoronaForecast.ipynb", "provenance": [], "collapsed_sections": [] }, "kernelspec": { "name": "python3", "display_name": "Python 3" } }, "cells": [ { "cell_type": "code", "metadata": { "id": "DUPB4tucl_pb", "colab_type": "code", "outputId": "a533cc80-69ea-4cfa-f924-d2085136b97b", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 } }, "source": [ "import os\n", "import pandas as pd\n", "from google.colab import auth\n", "from datetime import datetime\n", "auth.authenticate_user()\n", "!gcloud source repos clone github_aistream-peelout_flow-forecast --project=gmap-997\n", "os.chdir('/content/github_aistream-peelout_flow-forecast')\n", "!git checkout -t origin/covid_fixes\n", "!python setup.py develop\n", "!pip install -r requirements.txt\n", "!mkdir data\n", "from flood_forecast.trainer import train_function\n", "!pip install git+https://github.com/CoronaWhy/task-geo.git\n", "!wandb login" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "\u001b[1;33mWARNING:\u001b[0m Repository \"github_aistream-peelout_flow-forecast\" in project \"gmap-997\" is a mirror. Pushing to this clone will have no effect. Instead, clone the mirrored repository directly with \n", "$ git clone https://github.com/AIStream-Peelout/flow-forecast\n", "Cloning into '/content/github_aistream-peelout_flow-forecast'...\n", "remote: Total 3703 (delta 2463), reused 3703 (delta 2463)\u001b[K\n", "Receiving objects: 100% (3703/3703), 2.63 MiB | 13.23 MiB/s, done.\n", "Resolving deltas: 100% (2463/2463), done.\n", "Project [gmap-997] repository [github_aistream-peelout_flow-forecast] was cloned to [/content/github_aistream-peelout_flow-forecast].\n", "Branch 'covid_fixes' set up to track remote branch 'covid_fixes' from 'origin'.\n", "Switched to a new branch 'covid_fixes'\n", "/usr/local/lib/python3.6/dist-packages/setuptools/dist.py:454: UserWarning: Normalizing '0.01dev' to '0.1.dev0'\n", " warnings.warn(tmpl.format(**locals()))\n", "running develop\n", "running egg_info\n", "creating flood_forecast.egg-info\n", "writing flood_forecast.egg-info/PKG-INFO\n", "writing dependency_links to flood_forecast.egg-info/dependency_links.txt\n", "writing requirements to flood_forecast.egg-info/requires.txt\n", "writing top-level names to flood_forecast.egg-info/top_level.txt\n", "writing manifest file 'flood_forecast.egg-info/SOURCES.txt'\n", "package init file 'flood_forecast/__init__.py' not found (or not a regular file)\n", "package init file 'flood_forecast/transformer_xl/__init__.py' not found (or not a regular file)\n", "package init file 'flood_forecast/preprocessing/__init__.py' not found (or not a regular file)\n", "package init file 'flood_forecast/da_rnn/__init__.py' not found (or not a regular file)\n", "package init file 'flood_forecast/basic/__init__.py' not found (or not a regular file)\n", "package init file 'flood_forecast/custom/__init__.py' not found (or not a regular file)\n", "writing manifest file 'flood_forecast.egg-info/SOURCES.txt'\n", "running build_ext\n", "Creating /usr/local/lib/python3.6/dist-packages/flood-forecast.egg-link (link to .)\n", "Adding flood-forecast 0.1.dev0 to easy-install.pth file\n", "\n", "Installed /content/github_aistream-peelout_flow-forecast\n", "Processing dependencies for flood-forecast==0.1.dev0\n", "Searching for google-cloud\n", "Reading https://pypi.org/simple/google-cloud/\n", "Downloading https://files.pythonhosted.org/packages/ba/b1/7c54d1950e7808df06642274e677dbcedba57f75307adf2e5ad8d39e5e0e/google_cloud-0.34.0-py2.py3-none-any.whl#sha256=fb1ab7b0548fe44b3d538041f0a374505b7f990d448a935ea36649c5ccab5acf\n", "Best match: google-cloud 0.34.0\n", "Processing google_cloud-0.34.0-py2.py3-none-any.whl\n", "Installing google_cloud-0.34.0-py2.py3-none-any.whl to /usr/local/lib/python3.6/dist-packages\n", "Adding google-cloud 0.34.0 to easy-install.pth file\n", "\n", "Installed /usr/local/lib/python3.6/dist-packages/google_cloud-0.34.0-py3.6.egg\n", "Searching for pandas==1.0.3\n", "Best match: pandas 1.0.3\n", "Adding pandas 1.0.3 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for tensorflow==2.2.0rc4\n", "Best match: tensorflow 2.2.0rc4\n", "Adding tensorflow 2.2.0rc4 to easy-install.pth file\n", "Installing estimator_ckpt_converter script to /usr/local/bin\n", "Installing saved_model_cli script to /usr/local/bin\n", "Installing tensorboard script to /usr/local/bin\n", "Installing tf_upgrade_v2 script to /usr/local/bin\n", "Installing tflite_convert script to /usr/local/bin\n", "Installing toco script to /usr/local/bin\n", "Installing toco_from_protos script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for torch==1.5.0+cu101\n", "Best match: torch 1.5.0+cu101\n", "Adding torch 1.5.0+cu101 to easy-install.pth file\n", "Installing convert-caffe2-to-onnx script to /usr/local/bin\n", "Installing convert-onnx-to-caffe2 script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for scikit-learn==0.22.2.post1\n", "Best match: scikit-learn 0.22.2.post1\n", "Adding scikit-learn 0.22.2.post1 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for python-dateutil==2.8.1\n", "Best match: python-dateutil 2.8.1\n", "Adding python-dateutil 2.8.1 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for numpy==1.18.4\n", "Best match: numpy 1.18.4\n", "Adding numpy 1.18.4 to easy-install.pth file\n", "Installing f2py script to /usr/local/bin\n", "Installing f2py3 script to /usr/local/bin\n", "Installing f2py3.6 script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for pytz==2018.9\n", "Best match: pytz 2018.9\n", "Adding pytz 2018.9 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for wrapt==1.12.1\n", "Best match: wrapt 1.12.1\n", "Adding wrapt 1.12.1 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for wheel==0.34.2\n", "Best match: wheel 0.34.2\n", "Adding wheel 0.34.2 to easy-install.pth file\n", "Installing wheel script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for h5py==2.10.0\n", "Best match: h5py 2.10.0\n", "Adding h5py 2.10.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for six==1.12.0\n", "Best match: six 1.12.0\n", "Adding six 1.12.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for absl-py==0.9.0\n", "Best match: absl-py 0.9.0\n", "Adding absl-py 0.9.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for Keras-Preprocessing==1.1.0\n", "Best match: Keras-Preprocessing 1.1.0\n", "Adding Keras-Preprocessing 1.1.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for google-pasta==0.2.0\n", "Best match: google-pasta 0.2.0\n", "Adding google-pasta 0.2.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for scipy==1.4.1\n", "Best match: scipy 1.4.1\n", "Adding scipy 1.4.1 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for gast==0.3.3\n", "Best match: gast 0.3.3\n", "Adding gast 0.3.3 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for opt-einsum==3.2.1\n", "Best match: opt-einsum 3.2.1\n", "Adding opt-einsum 3.2.1 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for protobuf==3.10.0\n", "Best match: protobuf 3.10.0\n", "Adding protobuf 3.10.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for grpcio==1.28.1\n", "Best match: grpcio 1.28.1\n", "Adding grpcio 1.28.1 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for tensorflow-estimator==2.2.0\n", "Best match: tensorflow-estimator 2.2.0\n", "Adding tensorflow-estimator 2.2.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for tensorboard==2.2.1\n", "Best match: tensorboard 2.2.1\n", "Adding tensorboard 2.2.1 to easy-install.pth file\n", "Installing tensorboard script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for astunparse==1.6.3\n", "Best match: astunparse 1.6.3\n", "Adding astunparse 1.6.3 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for termcolor==1.1.0\n", "Best match: termcolor 1.1.0\n", "Adding termcolor 1.1.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for future==0.16.0\n", "Best match: future 0.16.0\n", "Adding future 0.16.0 to easy-install.pth file\n", "Installing futurize script to /usr/local/bin\n", "Installing pasteurize script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for joblib==0.14.1\n", "Best match: joblib 0.14.1\n", "Adding joblib 0.14.1 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for setuptools==46.1.3\n", "Best match: setuptools 46.1.3\n", "Adding setuptools 46.1.3 to easy-install.pth file\n", "Installing easy_install script to /usr/local/bin\n", "Installing easy_install-3.8 script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for Werkzeug==1.0.1\n", "Best match: Werkzeug 1.0.1\n", "Adding Werkzeug 1.0.1 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for google-auth==1.7.2\n", "Best match: google-auth 1.7.2\n", "Adding google-auth 1.7.2 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for google-auth-oauthlib==0.4.1\n", "Best match: google-auth-oauthlib 0.4.1\n", "Adding google-auth-oauthlib 0.4.1 to easy-install.pth file\n", "Installing google-oauthlib-tool script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for Markdown==3.2.1\n", "Best match: Markdown 3.2.1\n", "Adding Markdown 3.2.1 to easy-install.pth file\n", "Installing markdown_py script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for tensorboard-plugin-wit==1.6.0.post3\n", "Best match: tensorboard-plugin-wit 1.6.0.post3\n", "Adding tensorboard-plugin-wit 1.6.0.post3 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for requests==2.23.0\n", "Best match: requests 2.23.0\n", "Adding requests 2.23.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for cachetools==3.1.1\n", "Best match: cachetools 3.1.1\n", "Adding cachetools 3.1.1 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for rsa==4.0\n", "Best match: rsa 4.0\n", "Adding rsa 4.0 to easy-install.pth file\n", "Installing pyrsa-decrypt script to /usr/local/bin\n", "Installing pyrsa-encrypt script to /usr/local/bin\n", "Installing pyrsa-keygen script to /usr/local/bin\n", "Installing pyrsa-priv2pub script to /usr/local/bin\n", "Installing pyrsa-sign script to /usr/local/bin\n", "Installing pyrsa-verify script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for pyasn1-modules==0.2.8\n", "Best match: pyasn1-modules 0.2.8\n", "Adding pyasn1-modules 0.2.8 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for requests-oauthlib==1.3.0\n", "Best match: requests-oauthlib 1.3.0\n", "Adding requests-oauthlib 1.3.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for chardet==3.0.4\n", "Best match: chardet 3.0.4\n", "Adding chardet 3.0.4 to easy-install.pth file\n", "Installing chardetect script to /usr/local/bin\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for urllib3==1.24.3\n", "Best match: urllib3 1.24.3\n", "Adding urllib3 1.24.3 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for idna==2.9\n", "Best match: idna 2.9\n", "Adding idna 2.9 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for certifi==2020.4.5.1\n", "Best match: certifi 2020.4.5.1\n", "Adding certifi 2020.4.5.1 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for pyasn1==0.4.8\n", "Best match: pyasn1 0.4.8\n", "Adding pyasn1 0.4.8 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Searching for oauthlib==3.1.0\n", "Best match: oauthlib 3.1.0\n", "Adding oauthlib 3.1.0 to easy-install.pth file\n", "\n", "Using /usr/local/lib/python3.6/dist-packages\n", "Finished processing dependencies for flood-forecast==0.1.dev0\n", "Requirement already satisfied: scikit-learn in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 1)) (0.22.2.post1)\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 2)) (1.0.3)\n", "Requirement already satisfied: torch in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 3)) (1.5.0+cu101)\n", "Collecting tb-nightly\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/ba/68/c413fa084dfcb95cb1b3fe9ea9d9de072e6c4acac3c3763a0ce50e1d8daf/tb_nightly-2.3.0a20200509-py3-none-any.whl (2.9MB)\n", "\u001b[K |████████████████████████████████| 3.0MB 3.5MB/s \n", "\u001b[?25hRequirement already satisfied: seaborn in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 5)) (0.10.1)\n", "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 6)) (0.16.0)\n", "Collecting wandb\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/2d/c9/ebbcefa6ef2ba14a7c62a4ee4415a5fecef8fac5e4d1b4e22af26fd9fe22/wandb-0.8.35-py2.py3-none-any.whl (1.4MB)\n", "\u001b[K |████████████████████████████████| 1.4MB 47.1MB/s \n", "\u001b[?25hRequirement already satisfied: pandas_gbq in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 8)) (0.11.0)\n", "Requirement already satisfied: google-cloud in /usr/local/lib/python3.6/dist-packages/google_cloud-0.34.0-py3.6.egg (from -r requirements.txt (line 9)) (0.34.0)\n", "Requirement already satisfied: google-cloud-storage in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 10)) (1.18.1)\n", "Requirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 11)) (3.13)\n", "Requirement already satisfied: plotly in /usr/local/lib/python3.6/dist-packages (from -r requirements.txt (line 12)) (4.4.1)\n", "Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->-r requirements.txt (line 1)) (0.14.1)\n", "Requirement already satisfied: numpy>=1.11.0 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->-r requirements.txt (line 1)) (1.18.4)\n", "Requirement already satisfied: scipy>=0.17.0 in /usr/local/lib/python3.6/dist-packages (from scikit-learn->-r requirements.txt (line 1)) (1.4.1)\n", "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->-r requirements.txt (line 2)) (2018.9)\n", "Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas->-r requirements.txt (line 2)) (2.8.1)\n", "Requirement already satisfied: requests<3,>=2.21.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (2.23.0)\n", "Requirement already satisfied: markdown>=2.6.8 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (3.2.1)\n", "Requirement already satisfied: google-auth-oauthlib<0.5,>=0.4.1 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (0.4.1)\n", "Requirement already satisfied: six>=1.10.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (1.12.0)\n", "Requirement already satisfied: tensorboard-plugin-wit>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (1.6.0.post3)\n", "Requirement already satisfied: setuptools>=41.0.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (46.1.3)\n", "Requirement already satisfied: google-auth<2,>=1.6.3 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (1.7.2)\n", "Requirement already satisfied: werkzeug>=0.11.15 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (1.0.1)\n", "Requirement already satisfied: wheel>=0.26; python_version >= \"3\" in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (0.34.2)\n", "Requirement already satisfied: protobuf>=3.6.0 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (3.10.0)\n", "Requirement already satisfied: grpcio>=1.24.3 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (1.28.1)\n", "Requirement already satisfied: absl-py>=0.4 in /usr/local/lib/python3.6/dist-packages (from tb-nightly->-r requirements.txt (line 4)) (0.9.0)\n", "Requirement already satisfied: matplotlib>=2.1.2 in /usr/local/lib/python3.6/dist-packages (from seaborn->-r requirements.txt (line 5)) (3.2.1)\n", "Collecting gql==0.2.0\n", " Downloading https://files.pythonhosted.org/packages/c4/6f/cf9a3056045518f06184e804bae89390eb706168349daa9dff8ac609962a/gql-0.2.0.tar.gz\n", "Collecting sentry-sdk>=0.4.0\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/20/7e/19545324e83db4522b885808cd913c3b93ecc0c88b03e037b78c6a417fa8/sentry_sdk-0.14.3-py2.py3-none-any.whl (103kB)\n", "\u001b[K |████████████████████████████████| 112kB 43.1MB/s \n", "\u001b[?25hRequirement already satisfied: psutil>=5.0.0 in /usr/local/lib/python3.6/dist-packages (from wandb->-r requirements.txt (line 7)) (5.4.8)\n", "Requirement already satisfied: nvidia-ml-py3>=7.352.0 in /usr/local/lib/python3.6/dist-packages (from wandb->-r requirements.txt (line 7)) (7.352.0)\n", "Collecting shortuuid>=0.5.0\n", " Downloading https://files.pythonhosted.org/packages/25/a6/2ecc1daa6a304e7f1b216f0896b26156b78e7c38e1211e9b798b4716c53d/shortuuid-1.0.1-py3-none-any.whl\n", "Collecting configparser>=3.8.1\n", " Downloading https://files.pythonhosted.org/packages/4b/6b/01baa293090240cf0562cc5eccb69c6f5006282127f2b846fad011305c79/configparser-5.0.0-py3-none-any.whl\n", "Collecting subprocess32>=3.5.3\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/32/c8/564be4d12629b912ea431f1a50eb8b3b9d00f1a0b1ceff17f266be190007/subprocess32-3.5.4.tar.gz (97kB)\n", "\u001b[K |████████████████████████████████| 102kB 9.5MB/s \n", "\u001b[?25hCollecting watchdog>=0.8.3\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/73/c3/ed6d992006837e011baca89476a4bbffb0a91602432f73bd4473816c76e2/watchdog-0.10.2.tar.gz (95kB)\n", "\u001b[K |████████████████████████████████| 102kB 10.2MB/s \n", "\u001b[?25hCollecting docker-pycreds>=0.4.0\n", " Downloading https://files.pythonhosted.org/packages/f5/e8/f6bd1eee09314e7e6dee49cbe2c5e22314ccdb38db16c9fc72d2fa80d054/docker_pycreds-0.4.0-py2.py3-none-any.whl\n", "Requirement already satisfied: Click>=7.0 in /usr/local/lib/python3.6/dist-packages (from wandb->-r requirements.txt (line 7)) (7.1.2)\n", "Collecting GitPython>=1.0.0\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/44/33/917e6fde1cad13daa7053f39b7c8af3be287314f75f1b1ea8d3fe37a8571/GitPython-3.1.2-py3-none-any.whl (451kB)\n", "\u001b[K |████████████████████████████████| 460kB 45.8MB/s \n", "\u001b[?25hRequirement already satisfied: pydata-google-auth in /usr/local/lib/python3.6/dist-packages (from pandas_gbq->-r requirements.txt (line 8)) (1.1.0)\n", "Requirement already satisfied: google-cloud-bigquery>=1.9.0 in /usr/local/lib/python3.6/dist-packages (from pandas_gbq->-r requirements.txt (line 8)) (1.21.0)\n", "Requirement already satisfied: google-cloud-core<2.0dev,>=1.0.0 in /usr/local/lib/python3.6/dist-packages (from google-cloud-storage->-r requirements.txt (line 10)) (1.0.3)\n", "Requirement already satisfied: google-resumable-media<0.5.0dev,>=0.3.1 in /usr/local/lib/python3.6/dist-packages (from google-cloud-storage->-r requirements.txt (line 10)) (0.4.1)\n", "Requirement already satisfied: retrying>=1.3.3 in /usr/local/lib/python3.6/dist-packages (from plotly->-r requirements.txt (line 12)) (1.3.3)\n", "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 4)) (2.9)\n", "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 4)) (1.24.3)\n", "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 4)) (3.0.4)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests<3,>=2.21.0->tb-nightly->-r requirements.txt (line 4)) (2020.4.5.1)\n", "Requirement already satisfied: requests-oauthlib>=0.7.0 in /usr/local/lib/python3.6/dist-packages (from google-auth-oauthlib<0.5,>=0.4.1->tb-nightly->-r requirements.txt (line 4)) (1.3.0)\n", "Requirement already satisfied: cachetools<3.2,>=2.0.0 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 4)) (3.1.1)\n", "Requirement already satisfied: rsa<4.1,>=3.1.4 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 4)) (4.0)\n", "Requirement already satisfied: pyasn1-modules>=0.2.1 in /usr/local/lib/python3.6/dist-packages (from google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 4)) (0.2.8)\n", "Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2->seaborn->-r requirements.txt (line 5)) (1.2.0)\n", "Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2->seaborn->-r requirements.txt (line 5)) (2.4.7)\n", "Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.6/dist-packages (from matplotlib>=2.1.2->seaborn->-r requirements.txt (line 5)) (0.10.0)\n", "Collecting graphql-core<2,>=0.5.0\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/b0/89/00ad5e07524d8c523b14d70c685e0299a8b0de6d0727e368c41b89b7ed0b/graphql-core-1.1.tar.gz (70kB)\n", "\u001b[K |████████████████████████████████| 71kB 7.2MB/s \n", "\u001b[?25hRequirement already satisfied: promise<3,>=2.0 in /usr/local/lib/python3.6/dist-packages (from gql==0.2.0->wandb->-r requirements.txt (line 7)) (2.3)\n", "Collecting pathtools>=0.1.1\n", " Downloading https://files.pythonhosted.org/packages/e7/7f/470d6fcdf23f9f3518f6b0b76be9df16dcc8630ad409947f8be2eb0ed13a/pathtools-0.1.2.tar.gz\n", "Collecting gitdb<5,>=4.0.1\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/48/11/d1800bca0a3bae820b84b7d813ad1eff15a48a64caea9c823fc8c1b119e8/gitdb-4.0.5-py3-none-any.whl (63kB)\n", "\u001b[K |████████████████████████████████| 71kB 5.7MB/s \n", "\u001b[?25hRequirement already satisfied: google-api-core<2.0.0dev,>=1.14.0 in /usr/local/lib/python3.6/dist-packages (from google-cloud-core<2.0dev,>=1.0.0->google-cloud-storage->-r requirements.txt (line 10)) (1.16.0)\n", "Requirement already satisfied: oauthlib>=3.0.0 in /usr/local/lib/python3.6/dist-packages (from requests-oauthlib>=0.7.0->google-auth-oauthlib<0.5,>=0.4.1->tb-nightly->-r requirements.txt (line 4)) (3.1.0)\n", "Requirement already satisfied: pyasn1>=0.1.3 in /usr/local/lib/python3.6/dist-packages (from rsa<4.1,>=3.1.4->google-auth<2,>=1.6.3->tb-nightly->-r requirements.txt (line 4)) (0.4.8)\n", "Collecting smmap<4,>=3.0.1\n", " Downloading https://files.pythonhosted.org/packages/b0/9a/4d409a6234eb940e6a78dfdfc66156e7522262f5f2fecca07dc55915952d/smmap-3.0.4-py2.py3-none-any.whl\n", "Requirement already satisfied: googleapis-common-protos<2.0dev,>=1.6.0 in /usr/local/lib/python3.6/dist-packages (from google-api-core<2.0.0dev,>=1.14.0->google-cloud-core<2.0dev,>=1.0.0->google-cloud-storage->-r requirements.txt (line 10)) (1.51.0)\n", "Building wheels for collected packages: gql, subprocess32, watchdog, graphql-core, pathtools\n", " Building wheel for gql (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for gql: filename=gql-0.2.0-cp36-none-any.whl size=7630 sha256=efdb6942864b790a728bf5da03b8f5217618c33f4db086398a4e65c0702548c9\n", " Stored in directory: /root/.cache/pip/wheels/ce/0e/7b/58a8a5268655b3ad74feef5aa97946f0addafb3cbb6bd2da23\n", " Building wheel for subprocess32 (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for subprocess32: filename=subprocess32-3.5.4-cp36-none-any.whl size=6489 sha256=5ad23f1ec1134b6b82eca206bdd195eeedf3fab18493700cff5834ff8ee37041\n", " Stored in directory: /root/.cache/pip/wheels/68/39/1a/5e402bdfdf004af1786c8b853fd92f8c4a04f22aad179654d1\n", " Building wheel for watchdog (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for watchdog: filename=watchdog-0.10.2-cp36-none-any.whl size=73605 sha256=4f13410c32204b416349c9f898ad95f5a3c89ff1b3e07d3724dfd9de0898886c\n", " Stored in directory: /root/.cache/pip/wheels/bc/ed/6c/028dea90d31b359cd2a7c8b0da4db80e41d24a59614154072e\n", " Building wheel for graphql-core (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for graphql-core: filename=graphql_core-1.1-cp36-none-any.whl size=104650 sha256=990e5fb8fe2bece99f37b18a8bcc3ebe91f66b477f239cae3791e95b2058d7df\n", " Stored in directory: /root/.cache/pip/wheels/45/99/d7/c424029bb0fe910c63b68dbf2aa20d3283d023042521bcd7d5\n", " Building wheel for pathtools (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for pathtools: filename=pathtools-0.1.2-cp36-none-any.whl size=8784 sha256=1959d68adefe6f08809257d74c1bbe351986b205e7cc04b9ad84ad3e024d075b\n", " Stored in directory: /root/.cache/pip/wheels/0b/04/79/c3b0c3a0266a3cb4376da31e5bfe8bba0c489246968a68e843\n", "Successfully built gql subprocess32 watchdog graphql-core pathtools\n", "Installing collected packages: tb-nightly, graphql-core, gql, sentry-sdk, shortuuid, configparser, subprocess32, pathtools, watchdog, docker-pycreds, smmap, gitdb, GitPython, wandb\n", "Successfully installed GitPython-3.1.2 configparser-5.0.0 docker-pycreds-0.4.0 gitdb-4.0.5 gql-0.2.0 graphql-core-1.1 pathtools-0.1.2 sentry-sdk-0.14.3 shortuuid-1.0.1 smmap-3.0.4 subprocess32-3.5.4 tb-nightly-2.3.0a20200509 wandb-0.8.35 watchdog-0.10.2\n", "Collecting git+https://github.com/CoronaWhy/task-geo.git\n", " Cloning https://github.com/CoronaWhy/task-geo.git to /tmp/pip-req-build-xptgbhwy\n", " Running command git clone -q https://github.com/CoronaWhy/task-geo.git /tmp/pip-req-build-xptgbhwy\n", "Requirement already satisfied: pandas in /usr/local/lib/python3.6/dist-packages (from task-geo==0.1.0.dev0) (1.0.3)\n", "Requirement already satisfied: requests in /usr/local/lib/python3.6/dist-packages (from task-geo==0.1.0.dev0) (2.23.0)\n", "Requirement already satisfied: jupyter in /usr/local/lib/python3.6/dist-packages (from task-geo==0.1.0.dev0) (1.0.0)\n", "Collecting hdx-python-api\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/79/32/7033d6d9ff01fd592ec649756f78460dc66640c1001f39c2d421037866f3/hdx_python_api-4.5.8-py2.py3-none-any.whl (67kB)\n", "\u001b[K |████████████████████████████████| 71kB 2.3MB/s \n", "\u001b[?25hRequirement already satisfied: numpy>=1.13.3 in /usr/local/lib/python3.6/dist-packages (from pandas->task-geo==0.1.0.dev0) (1.18.4)\n", "Requirement already satisfied: pytz>=2017.2 in /usr/local/lib/python3.6/dist-packages (from pandas->task-geo==0.1.0.dev0) (2018.9)\n", "Requirement already satisfied: python-dateutil>=2.6.1 in /usr/local/lib/python3.6/dist-packages (from pandas->task-geo==0.1.0.dev0) (2.8.1)\n", "Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (1.24.3)\n", "Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (2020.4.5.1)\n", "Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (3.0.4)\n", "Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.6/dist-packages (from requests->task-geo==0.1.0.dev0) (2.9)\n", "Requirement already satisfied: nbconvert in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (5.6.1)\n", "Requirement already satisfied: ipywidgets in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (7.5.1)\n", "Requirement already satisfied: qtconsole in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (4.7.3)\n", "Requirement already satisfied: jupyter-console in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (5.2.0)\n", "Requirement already satisfied: ipykernel in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (4.10.1)\n", "Requirement already satisfied: notebook in /usr/local/lib/python3.6/dist-packages (from jupyter->task-geo==0.1.0.dev0) (5.2.2)\n", "Requirement already satisfied: pyasn1 in /usr/local/lib/python3.6/dist-packages (from hdx-python-api->task-geo==0.1.0.dev0) (0.4.8)\n", "Collecting ckanapi>=4.3\n", " Downloading https://files.pythonhosted.org/packages/07/c6/50449e18aaf1600dfda955805c58aa7462493511f3ebbb20d0a65874397c/ckanapi-4.3.tar.gz\n", "Collecting pyOpenSSL\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/9e/de/f8342b68fa9e981d348039954657bdf681b2ab93de27443be51865ffa310/pyOpenSSL-19.1.0-py2.py3-none-any.whl (53kB)\n", "\u001b[K |████████████████████████████████| 61kB 5.3MB/s \n", "\u001b[?25hCollecting quantulum3>=0.7.3; python_version >= \"3\"\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/d0/d5/60d72e7c9393199eba72f88deb06e0fddc4e357d600bdbe5f86e8cfc4512/quantulum3-0.7.3-py3-none-any.whl (11.1MB)\n", "\u001b[K |████████████████████████████████| 11.1MB 25.3MB/s \n", "\u001b[?25hCollecting ndg-httpsclient\n", " Downloading https://files.pythonhosted.org/packages/fb/67/c2f508c00ed2a6911541494504b7cac16fe0b0473912568df65fd1801132/ndg_httpsclient-0.5.1-py3-none-any.whl\n", "Collecting hdx-python-country>=2.5.6\n", " Downloading https://files.pythonhosted.org/packages/24/45/684ec41e237b3e185c268b4ad4cd71581c3dfdb9c3e279d7777473edb8c2/hdx_python_country-2.5.6-py2.py3-none-any.whl\n", "Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.6/dist-packages (from python-dateutil>=2.6.1->pandas->task-geo==0.1.0.dev0) (1.12.0)\n", "Requirement already satisfied: pygments in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (2.1.3)\n", "Requirement already satisfied: testpath in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.4.4)\n", "Requirement already satisfied: traitlets>=4.2 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (4.3.3)\n", "Requirement already satisfied: entrypoints>=0.2.2 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.3)\n", "Requirement already satisfied: jupyter-core in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (4.6.3)\n", "Requirement already satisfied: pandocfilters>=1.4.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (1.4.2)\n", "Requirement already satisfied: defusedxml in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.6.0)\n", "Requirement already satisfied: mistune<2,>=0.8.1 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (0.8.4)\n", "Requirement already satisfied: bleach in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (3.1.5)\n", "Requirement already satisfied: nbformat>=4.4 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (5.0.6)\n", "Requirement already satisfied: jinja2>=2.4 in /usr/local/lib/python3.6/dist-packages (from nbconvert->jupyter->task-geo==0.1.0.dev0) (2.11.2)\n", "Requirement already satisfied: ipython>=4.0.0; python_version >= \"3.3\" in /usr/local/lib/python3.6/dist-packages (from ipywidgets->jupyter->task-geo==0.1.0.dev0) (5.5.0)\n", "Requirement already satisfied: widgetsnbextension~=3.5.0 in /usr/local/lib/python3.6/dist-packages (from ipywidgets->jupyter->task-geo==0.1.0.dev0) (3.5.1)\n", "Requirement already satisfied: pyzmq>=17.1 in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (19.0.0)\n", "Requirement already satisfied: ipython-genutils in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (0.2.0)\n", "Requirement already satisfied: jupyter-client>=4.1 in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (5.3.4)\n", "Requirement already satisfied: qtpy in /usr/local/lib/python3.6/dist-packages (from qtconsole->jupyter->task-geo==0.1.0.dev0) (1.9.0)\n", "Requirement already satisfied: prompt-toolkit<2.0.0,>=1.0.0 in /usr/local/lib/python3.6/dist-packages (from jupyter-console->jupyter->task-geo==0.1.0.dev0) (1.0.18)\n", "Requirement already satisfied: tornado>=4.0 in /usr/local/lib/python3.6/dist-packages (from ipykernel->jupyter->task-geo==0.1.0.dev0) (4.5.3)\n", "Requirement already satisfied: terminado>=0.3.3; sys_platform != \"win32\" in /usr/local/lib/python3.6/dist-packages (from notebook->jupyter->task-geo==0.1.0.dev0) (0.8.3)\n", "Requirement already satisfied: setuptools in /usr/local/lib/python3.6/dist-packages (from ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (46.1.3)\n", "Requirement already satisfied: docopt in /usr/local/lib/python3.6/dist-packages (from ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (0.6.2)\n", "Requirement already satisfied: python-slugify>=1.0 in /usr/local/lib/python3.6/dist-packages (from ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (4.0.0)\n", "Collecting cryptography>=2.8\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/3c/04/686efee2dcdd25aecf357992e7d9362f443eb182ecd623f882bc9f7a6bba/cryptography-2.9.2-cp35-abi3-manylinux2010_x86_64.whl (2.7MB)\n", "\u001b[K |████████████████████████████████| 2.7MB 46.7MB/s \n", "\u001b[?25hRequirement already satisfied: inflect in /usr/local/lib/python3.6/dist-packages (from quantulum3>=0.7.3; python_version >= \"3\"->hdx-python-api->task-geo==0.1.0.dev0) (2.1.0)\n", "Collecting num2words\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/eb/a2/ea800689730732e27711c41beed4b2a129b34974435bdc450377ec407738/num2words-0.5.10-py3-none-any.whl (101kB)\n", "\u001b[K |████████████████████████████████| 102kB 10.4MB/s \n", "\u001b[?25hCollecting libhxl>=4.19; python_version >= \"3\"\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/d1/bb/7713720c382aad5260694fd5875fe013ee7ccef771e41a3298f661c01c84/libhxl-4.19.tar.gz (77kB)\n", "\u001b[K |████████████████████████████████| 81kB 8.6MB/s \n", "\u001b[?25hCollecting hdx-python-utilities>=2.3.4\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/13/0c/dd417c960de745a129d6c0cf63bb0215b179c29674e45ca041c75cf76baf/hdx_python_utilities-2.3.4-py2.py3-none-any.whl (46kB)\n", "\u001b[K |████████████████████████████████| 51kB 4.9MB/s \n", "\u001b[?25hRequirement already satisfied: decorator in /usr/local/lib/python3.6/dist-packages (from traitlets>=4.2->nbconvert->jupyter->task-geo==0.1.0.dev0) (4.4.2)\n", "Requirement already satisfied: packaging in /usr/local/lib/python3.6/dist-packages (from bleach->nbconvert->jupyter->task-geo==0.1.0.dev0) (20.3)\n", "Requirement already satisfied: webencodings in /usr/local/lib/python3.6/dist-packages (from bleach->nbconvert->jupyter->task-geo==0.1.0.dev0) (0.5.1)\n", "Requirement already satisfied: jsonschema!=2.5.0,>=2.4 in /usr/local/lib/python3.6/dist-packages (from nbformat>=4.4->nbconvert->jupyter->task-geo==0.1.0.dev0) (2.6.0)\n", "Requirement already satisfied: MarkupSafe>=0.23 in /usr/local/lib/python3.6/dist-packages (from jinja2>=2.4->nbconvert->jupyter->task-geo==0.1.0.dev0) (1.1.1)\n", "Requirement already satisfied: pickleshare in /usr/local/lib/python3.6/dist-packages (from ipython>=4.0.0; python_version >= \"3.3\"->ipywidgets->jupyter->task-geo==0.1.0.dev0) (0.7.5)\n", "Requirement already satisfied: simplegeneric>0.8 in /usr/local/lib/python3.6/dist-packages (from ipython>=4.0.0; python_version >= \"3.3\"->ipywidgets->jupyter->task-geo==0.1.0.dev0) (0.8.1)\n", "Requirement already satisfied: pexpect; sys_platform != \"win32\" in /usr/local/lib/python3.6/dist-packages (from ipython>=4.0.0; python_version >= \"3.3\"->ipywidgets->jupyter->task-geo==0.1.0.dev0) (4.8.0)\n", "Requirement already satisfied: wcwidth in /usr/local/lib/python3.6/dist-packages (from prompt-toolkit<2.0.0,>=1.0.0->jupyter-console->jupyter->task-geo==0.1.0.dev0) (0.1.9)\n", "Requirement already satisfied: ptyprocess; os_name != \"nt\" in /usr/local/lib/python3.6/dist-packages (from terminado>=0.3.3; sys_platform != \"win32\"->notebook->jupyter->task-geo==0.1.0.dev0) (0.6.0)\n", "Requirement already satisfied: text-unidecode>=1.3 in /usr/local/lib/python3.6/dist-packages (from python-slugify>=1.0->ckanapi>=4.3->hdx-python-api->task-geo==0.1.0.dev0) (1.3)\n", "Requirement already satisfied: cffi!=1.11.3,>=1.8 in /usr/local/lib/python3.6/dist-packages (from cryptography>=2.8->pyOpenSSL->hdx-python-api->task-geo==0.1.0.dev0) (1.14.0)\n", "Requirement already satisfied: xlrd in /usr/local/lib/python3.6/dist-packages (from libhxl>=4.19; python_version >= \"3\"->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.1.0)\n", "Collecting unidecode\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/d0/42/d9edfed04228bacea2d824904cae367ee9efd05e6cce7ceaaedd0b0ad964/Unidecode-1.1.1-py2.py3-none-any.whl (238kB)\n", "\u001b[K |████████████████████████████████| 245kB 48.8MB/s \n", "\u001b[?25hCollecting python-io-wrapper\n", " Downloading https://files.pythonhosted.org/packages/76/81/88e02bc603e55883a087811a641fd3836749b7509365778fea29d74fd58c/python-io-wrapper-0.1.tar.gz\n", "Collecting jsonpath_rw\n", " Downloading https://files.pythonhosted.org/packages/71/7c/45001b1f19af8c4478489fbae4fc657b21c4c669d7a5a036a86882581d85/jsonpath-rw-1.4.0.tar.gz\n", "Collecting ply\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/a3/58/35da89ee790598a0700ea49b2a66594140f44dec458c07e8e3d4979137fc/ply-3.11-py2.py3-none-any.whl (49kB)\n", "\u001b[K |████████████████████████████████| 51kB 5.4MB/s \n", "\u001b[?25hCollecting sshtunnel\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/c5/5c/4b320d7ec4b0d5d4d6df1fdf66a5799625b3623d0ce4efe81719c6f8dfb3/sshtunnel-0.1.5.tar.gz (49kB)\n", "\u001b[K |████████████████████████████████| 51kB 5.5MB/s \n", "\u001b[?25hRequirement already satisfied: html5lib in /usr/local/lib/python3.6/dist-packages (from hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.0.1)\n", "Collecting ratelimit\n", " Downloading https://files.pythonhosted.org/packages/ab/38/ff60c8fc9e002d50d48822cc5095deb8ebbc5f91a6b8fdd9731c87a147c9/ratelimit-2.2.1.tar.gz\n", "Requirement already satisfied: beautifulsoup4 in /usr/local/lib/python3.6/dist-packages (from hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (4.6.3)\n", "Collecting basicauth\n", " Downloading https://files.pythonhosted.org/packages/76/47/08d21ffcc837bebf3306b8295f5d179f9bc498f6235ebf4a4e38be57839c/basicauth-0.4.1-py2.py3-none-any.whl\n", "Collecting email-validator\n", " Downloading https://files.pythonhosted.org/packages/45/54/1a1da475b684aa4eb30da169ea5ebd9341a5d3138138bc2b365222b9ac87/email_validator-1.1.0-py2.py3-none-any.whl\n", "Collecting psycopg2-binary\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/d3/8a/a7ed55c2c55bd4f5844d72734fedc0cef8a74518a0a19105a21c15628f1e/psycopg2_binary-2.8.5-cp36-cp36m-manylinux1_x86_64.whl (2.9MB)\n", "\u001b[K |████████████████████████████████| 2.9MB 35.6MB/s \n", "\u001b[?25hCollecting yamlloader\n", " Downloading https://files.pythonhosted.org/packages/93/a2/2f0c2394af1559021703c8cbb1bc7419bb5a94ea6bde0ab8cd1e973bb605/yamlloader-0.5.5-py3-none-any.whl\n", "Collecting tabulator[cchardet]>=1.42.0\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/57/82/517ec480d4cfadb0e6d6d441e11a349d7d607f929f2f34f7777d65b1e421/tabulator-1.44.0-py2.py3-none-any.whl (69kB)\n", "\u001b[K |████████████████████████████████| 71kB 964kB/s \n", "\u001b[?25hCollecting colorlog\n", " Downloading https://files.pythonhosted.org/packages/00/0d/22c73c2eccb21dd3498df7d22c0b1d4a30f5a5fb3feb64e1ce06bc247747/colorlog-4.1.0-py2.py3-none-any.whl\n", "Collecting pyaml\n", " Downloading https://files.pythonhosted.org/packages/15/c4/1310a054d33abc318426a956e7d6df0df76a6ddfa9c66f6310274fb75d42/pyaml-20.4.0-py2.py3-none-any.whl\n", "Requirement already satisfied: pyparsing>=2.0.2 in /usr/local/lib/python3.6/dist-packages (from packaging->bleach->nbconvert->jupyter->task-geo==0.1.0.dev0) (2.4.7)\n", "Requirement already satisfied: pycparser in /usr/local/lib/python3.6/dist-packages (from cffi!=1.11.3,>=1.8->cryptography>=2.8->pyOpenSSL->hdx-python-api->task-geo==0.1.0.dev0) (2.20)\n", "Collecting paramiko>=1.15.2\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/06/1e/1e08baaaf6c3d3df1459fd85f0e7d2d6aa916f33958f151ee1ecc9800971/paramiko-2.7.1-py2.py3-none-any.whl (206kB)\n", "\u001b[K |████████████████████████████████| 215kB 42.9MB/s \n", "\u001b[?25hCollecting dnspython>=1.15.0\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/ec/d3/3aa0e7213ef72b8585747aa0e271a9523e713813b9a20177ebe1e939deb0/dnspython-1.16.0-py2.py3-none-any.whl (188kB)\n", "\u001b[K |████████████████████████████████| 194kB 45.1MB/s \n", "\u001b[?25hRequirement already satisfied: pyyaml in /usr/local/lib/python3.6/dist-packages (from yamlloader->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (3.13)\n", "Collecting openpyxl>=2.6\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/95/8c/83563c60489954e5b80f9e2596b93a68e1ac4e4a730deb1aae632066d704/openpyxl-3.0.3.tar.gz (172kB)\n", "\u001b[K |████████████████████████████████| 174kB 46.9MB/s \n", "\u001b[?25hCollecting linear-tsv>=1.0\n", " Downloading https://files.pythonhosted.org/packages/82/e5/03207a0f11e1d60df85b97b61704ed701b725a7c2feaf83f7bfbd0c2d83e/linear-tsv-1.1.0.tar.gz\n", "Collecting jsonlines>=1.1\n", " Downloading https://files.pythonhosted.org/packages/4f/9a/ab96291470e305504aa4b7a2e0ec132e930da89eb3ca7a82fbe03167c131/jsonlines-1.2.0-py2.py3-none-any.whl\n", "Collecting ijson>=3.0.3\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/75/38/e2d650844fd69ced9fb8d2804ffd3cd76d43bcc1950c266367aaf9a456f6/ijson-3.0.3-cp36-cp36m-manylinux1_x86_64.whl (96kB)\n", "\u001b[K |████████████████████████████████| 102kB 8.2MB/s \n", "\u001b[?25hCollecting unicodecsv>=0.14\n", " Downloading https://files.pythonhosted.org/packages/6f/a4/691ab63b17505a26096608cc309960b5a6bdf39e4ba1a793d5f9b1a53270/unicodecsv-0.14.1.tar.gz\n", "Requirement already satisfied: sqlalchemy>=0.9.6 in /usr/local/lib/python3.6/dist-packages (from tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.3.16)\n", "Requirement already satisfied: click>=6.0 in /usr/local/lib/python3.6/dist-packages (from tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (7.1.2)\n", "Requirement already satisfied: boto3>=1.9 in /usr/local/lib/python3.6/dist-packages (from tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.13.3)\n", "Collecting cchardet>=2.0; extra == \"cchardet\"\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/1e/c5/7e1a0d7b4afd83d6f8de794fce82820ec4c5136c6d52e14000822681a842/cchardet-2.1.6-cp36-cp36m-manylinux2010_x86_64.whl (241kB)\n", "\u001b[K |████████████████████████████████| 245kB 35.6MB/s \n", "\u001b[?25hCollecting pynacl>=1.0.1\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/27/15/2cd0a203f318c2240b42cd9dd13c931ddd61067809fee3479f44f086103e/PyNaCl-1.3.0-cp34-abi3-manylinux1_x86_64.whl (759kB)\n", "\u001b[K |████████████████████████████████| 768kB 38.7MB/s \n", "\u001b[?25hCollecting bcrypt>=3.1.3\n", "\u001b[?25l Downloading https://files.pythonhosted.org/packages/8b/1d/82826443777dd4a624e38a08957b975e75df859b381ae302cfd7a30783ed/bcrypt-3.1.7-cp34-abi3-manylinux1_x86_64.whl (56kB)\n", "\u001b[K |████████████████████████████████| 61kB 6.8MB/s \n", "\u001b[?25hRequirement already satisfied: jdcal in /usr/local/lib/python3.6/dist-packages (from openpyxl>=2.6->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.4.1)\n", "Requirement already satisfied: et_xmlfile in /usr/local/lib/python3.6/dist-packages (from openpyxl>=2.6->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.0.1)\n", "Requirement already satisfied: botocore<1.17.0,>=1.16.3 in /usr/local/lib/python3.6/dist-packages (from boto3>=1.9->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (1.16.3)\n", "Requirement already satisfied: jmespath<1.0.0,>=0.7.1 in /usr/local/lib/python3.6/dist-packages (from boto3>=1.9->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (0.9.5)\n", "Requirement already satisfied: s3transfer<0.4.0,>=0.3.0 in /usr/local/lib/python3.6/dist-packages (from boto3>=1.9->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (0.3.3)\n", "Requirement already satisfied: docutils<0.16,>=0.10 in /usr/local/lib/python3.6/dist-packages (from botocore<1.17.0,>=1.16.3->boto3>=1.9->tabulator[cchardet]>=1.42.0->hdx-python-utilities>=2.3.4->hdx-python-country>=2.5.6->hdx-python-api->task-geo==0.1.0.dev0) (0.15.2)\n", "Building wheels for collected packages: task-geo, ckanapi, libhxl, python-io-wrapper, jsonpath-rw, sshtunnel, ratelimit, openpyxl, linear-tsv, unicodecsv\n", " Building wheel for task-geo (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for task-geo: filename=task_geo-0.1.0.dev0-py2.py3-none-any.whl size=177461 sha256=0715f4a9dc29541d20496dcf78309daca37dcecc0766292fd97b6013d48fc64e\n", " Stored in directory: /tmp/pip-ephem-wheel-cache-3sl_wni3/wheels/4f/c4/a4/33f04d80a745ae3ff088cae6f8cda3b46c48e007585d9ff0bf\n", " Building wheel for ckanapi (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for ckanapi: filename=ckanapi-4.3-cp36-none-any.whl size=38647 sha256=166b963560cbf1edd246d53404ba0507436fb0958384d80cce630caaf3520117\n", " Stored in directory: /root/.cache/pip/wheels/41/f2/fb/c8ce857007de64cc6b36b8f1048272396bc0817c35ee3a3e73\n", " Building wheel for libhxl (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for libhxl: filename=libhxl-4.19-cp36-none-any.whl size=81540 sha256=309fe0e5b61a416b217a1f4582902f2a769dfcd4a1007f300df360d73256c54b\n", " Stored in directory: /root/.cache/pip/wheels/99/4e/75/2c1d5d8cd3c34a42dcd9a388562d3dd3fb2197adbb47e20503\n", " Building wheel for python-io-wrapper (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for python-io-wrapper: filename=python_io_wrapper-0.1-cp36-none-any.whl size=2490 sha256=748d1694385e018f7999b32242ef7889fb519e710fc56845cd660a2eb0db8356\n", " Stored in directory: /root/.cache/pip/wheels/6b/26/be/da3c0a774901c557a0bee985e7aade5b9db75fe4dc8ef99ced\n", " Building wheel for jsonpath-rw (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for jsonpath-rw: filename=jsonpath_rw-1.4.0-cp36-none-any.whl size=15146 sha256=d5daeb5cf825d4b7f450ca43c889d1d2ae8c9767d9c5bf70cbe25e44c872a0c9\n", " Stored in directory: /root/.cache/pip/wheels/5c/00/9a/82822db383c2d96dcebf839786665a185f92d37e5026f9806f\n", " Building wheel for sshtunnel (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for sshtunnel: filename=sshtunnel-0.1.5-py2.py3-none-any.whl size=23243 sha256=fd7eb4dd7d7fe19108857f707f017972fcbea90a053e1856c4431746003fc41a\n", " Stored in directory: /root/.cache/pip/wheels/e8/d2/38/b9791b7391f634099194ec6697fa671194f3353906d94c8f92\n", " Building wheel for ratelimit (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for ratelimit: filename=ratelimit-2.2.1-cp36-none-any.whl size=5893 sha256=89b5a5ec5d39b5432f0338b114fce29ea2e1fb09d7dee74c0547102660f13e89\n", " Stored in directory: /root/.cache/pip/wheels/05/d9/82/3c6044cf1a54aab9151612458446d9b17a38416869e1b1d9b8\n", " Building wheel for openpyxl (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for openpyxl: filename=openpyxl-3.0.3-py2.py3-none-any.whl size=241262 sha256=e8124e8bea3e1eea2ed30c228a40eabb8003d9803813984a602fbde0b46c136f\n", " Stored in directory: /root/.cache/pip/wheels/b5/85/ca/e768ac132e57e75e645a151f8badac71cc0089e7225dddf76b\n", " Building wheel for linear-tsv (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for linear-tsv: filename=linear_tsv-1.1.0-cp36-none-any.whl size=7383 sha256=8b473779da3f1baccf57e16557a6ca83195947f8f2d7d03b26a3ccd7b7b620f8\n", " Stored in directory: /root/.cache/pip/wheels/3f/8a/cb/38917fd1ef4356b9870ace7331b83417dc594bf2c029bd991f\n", " Building wheel for unicodecsv (setup.py) ... \u001b[?25l\u001b[?25hdone\n", " Created wheel for unicodecsv: filename=unicodecsv-0.14.1-cp36-none-any.whl size=10768 sha256=52517a383a97e3efcdf4a77de6f33a714ce97cc4565733dd3d95f67cbb8caa52\n", " Stored in directory: /root/.cache/pip/wheels/a6/09/e9/e800279c98a0a8c94543f3de6c8a562f60e51363ed26e71283\n", "Successfully built task-geo ckanapi libhxl python-io-wrapper jsonpath-rw sshtunnel ratelimit openpyxl linear-tsv unicodecsv\n", "\u001b[31mERROR: hdx-python-utilities 2.3.4 has requirement six>=1.14.0, but you'll have six 1.12.0 which is incompatible.\u001b[0m\n", "Installing collected packages: ckanapi, cryptography, pyOpenSSL, num2words, quantulum3, ndg-httpsclient, unidecode, python-io-wrapper, ply, jsonpath-rw, libhxl, pynacl, bcrypt, paramiko, sshtunnel, ratelimit, basicauth, dnspython, email-validator, psycopg2-binary, yamlloader, openpyxl, linear-tsv, jsonlines, ijson, unicodecsv, cchardet, tabulator, colorlog, pyaml, hdx-python-utilities, hdx-python-country, hdx-python-api, task-geo\n", " Found existing installation: openpyxl 2.5.9\n", " Uninstalling openpyxl-2.5.9:\n", " Successfully uninstalled openpyxl-2.5.9\n", "Successfully installed basicauth-0.4.1 bcrypt-3.1.7 cchardet-2.1.6 ckanapi-4.3 colorlog-4.1.0 cryptography-2.9.2 dnspython-1.16.0 email-validator-1.1.0 hdx-python-api-4.5.8 hdx-python-country-2.5.6 hdx-python-utilities-2.3.4 ijson-3.0.3 jsonlines-1.2.0 jsonpath-rw-1.4.0 libhxl-4.19 linear-tsv-1.1.0 ndg-httpsclient-0.5.1 num2words-0.5.10 openpyxl-3.0.3 paramiko-2.7.1 ply-3.11 psycopg2-binary-2.8.5 pyOpenSSL-19.1.0 pyaml-20.4.0 pynacl-1.3.0 python-io-wrapper-0.1 quantulum3-0.7.3 ratelimit-2.2.1 sshtunnel-0.1.5 tabulator-1.44.0 task-geo-0.1.0.dev0 unicodecsv-0.14.1 unidecode-1.1.1 yamlloader-0.5.5\n", "\u001b[34m\u001b[1mwandb\u001b[0m: You can find your API key in your browser here: https://app.wandb.ai/authorize\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Paste an API key from your profile and hit enter: 936f243deff8f026e476a495792f87a7942c65bf\n", "\u001b[34m\u001b[1mwandb\u001b[0m: Appending key for api.wandb.ai to your netrc file: /root/.netrc\n", "\u001b[32mSuccessfully logged in to Weights & Biases!\u001b[0m\n" ], "name": "stdout" } ] }, { "cell_type": "code", "metadata": { "id": "jIvlu81jmNTm", "colab_type": "code", "colab": {} }, "source": [ "def make_config_file(file_path, df_len, weight_path=None):\n", " run = wandb.init(project=\"covid-forecast\")\n", " wandb_config = wandb.config\n", " train_number = df_len * .7\n", " validation_number = df_len *.9\n", " config_default={ \n", " \"model_name\": \"MultiAttnHeadSimple\",\n", " \"model_type\": \"PyTorch\",\n", " \"model_params\": {\n", " \"number_time_series\":3,\n", " \"seq_len\":wandb_config[\"forecast_history\"], \n", " \"output_seq_len\":wandb_config[\"out_seq_length\"],\n", " \"forecast_length\":wandb_config[\"out_seq_length\"]\n", " },\n", " \"dataset_params\":\n", " { \"class\": \"default\",\n", " \"training_path\": file_path,\n", " \"validation_path\": file_path,\n", " \"test_path\": file_path,\n", " \"batch_size\":wandb_config[\"batch_size\"],\n", " \"forecast_history\":wandb_config[\"forecast_history\"],\n", " \"forecast_length\":wandb_config[\"out_seq_length\"],\n", " \"train_end\": int(train_number),\n", " \"valid_start\":int(train_number+1),\n", " \"valid_end\": int(validation_number),\n", " \"target_col\": [\"new_cases\"],\n", " \"relevant_cols\": [\"new_cases\", \"month\", \"weekday\"],\n", " \"scaler\": \"StandardScaler\", \n", " \"interpolate\": False\n", " },\n", " \"training_params\":\n", " {\n", " \"criterion\":\"MSE\",\n", " \"optimizer\": wandb_config[\"optimizer\"],\n", " \"optim_params\":\n", " {\n", " \"lr\": wandb_config[\"lr\"]\n", " },\n", " \n", " \"epochs\": 10,\n", " \"batch_size\":wandb_config[\"batch_size\"]\n", " \n", " },\n", " \"GCS\": False,\n", " \n", " \"sweep\":True,\n", " \"wandb\":False,\n", " \"forward_params\":{},\n", " \"metrics\":[\"MSE\"],\n", " \"inference_params\":\n", " { \n", " \"datetime_start\":\"2020-04-21\",\n", " \"hours_to_forecast\":10, \n", " \"test_csv_path\":file_path,\n", " \"decoder_params\":{\n", " \"decoder_function\": \"simple_decode\", \n", " \"unsqueeze_dim\": 1\n", " },\n", " \"dataset_params\":{\n", " \"file_path\": file_path,\n", " \"forecast_history\":wandb_config[\"forecast_history\"],\n", " \"forecast_length\":wandb_config[\"out_seq_length\"],\n", " \"relevant_cols\": [\"new_cases\", \"month\", \"weekday\"],\n", " \"target_col\": [\"new_cases\"],\n", " \"scaling\": \"StandardScaler\",\n", " \"interpolate_param\": False\n", " }\n", " }\n", " }\n", " if weight_path: \n", " config_default[\"weight_path\"] = weight_path\n", " wandb.config.update(config_default)\n", " return config_default\n", "\n", "sweep_config = {\n", " \"name\": \"Default sweep\",\n", " \"method\": \"grid\",\n", " \"parameters\": {\n", " \"batch_size\": {\n", " \"values\": [2, 3, 4, 5]\n", " },\n", " \"lr\":{\n", " \"values\":[0.001, 0.002, 0.004, 0.01]\n", " },\n", " \"optimizer\":{\n", " \"values\":[\"Adam\"]\n", " },\n", " \"forecast_history\":{\n", " \"values\":[1, 2, 3, 4, 5, 6, 7, 8, 9, 10]\n", " },\n", " \n", " \"out_seq_length\":{\n", " \"values\":[1, 2, 3]\n", " }\n", " \n", " }\n", "}" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "6BHGcmwcn82q", "colab_type": "code", "colab": {} }, "source": [ "def format_corona_data(region_df:pd.DataFrame, region_name:str):\n", " \"\"\"\n", " Format data for a specific region into \n", " a format that can be used with flow forecast. \n", " \"\"\"\n", " if region_name == 'county':\n", " region_name = region_df['full_county'].iloc[0]\n", " else:\n", " region_name = region_df['state'].iloc[0]\n", " #else:\n", " #region_name = region_df['country'].iloc[0]\n", " print(region_name)\n", " region_df['datetime'] = region_df['date']\n", " region_df['precip'] = 0\n", " region_df['temp'] = 0\n", " region_df = region_df.fillna(0)\n", " region_df['new_cases'] = region_df['cases'].diff()\n", " region_df.iloc[0]['new_cases'] = 0\n", " region_df= region_df.fillna(0)\n", " region_df.to_csv(region_name+\".csv\")\n", " return region_df, len(region_df), region_name+\".csv\"\n", "\n", "def loop_through_geo_codes(df, column='full_county'):\n", " df_county_list = []\n", " df['full_county'] = df['state'] + \"_\" + df['county'] \n", " for code in df['full_county'].unique():\n", " mask = df['full_county'] == code\n", " df_code = df[mask]\n", " ts_count = len(df_code)\n", " if ts_count > 60:\n", " df_county_list.append(df_code)\n", " return df_county_list \n", "\n", "def fetch_time_series() -> pd.DataFrame:\n", " \"\"\"Fetch raw time series data from coronadatascraper.com\n", " Returns:\n", " pd.DataFrame: raw timeseries data at county/sub-region level\n", " \"\"\"\n", " if 1==1:\n", " url = \"https://coronadatascraper.com/timeseries.csv\"\n", " urllib.request.urlretrieve(url, \"timeseries.csv\")\n", "\n", " time_series_df = pd.read_csv(\"timeseries.csv\")\n", " return time_series_df" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "fcUXAwnypgC_", "colab_type": "code", "outputId": "723888eb-2772-4194-947f-1e1f92b8ff25", "colab": { "base_uri": "https://localhost:8080/", "height": 71 } }, "source": [ "import urllib\n", "df = fetch_time_series()\n", "df['month'] = pd.to_datetime(df['date']).map(lambda x: x.month)\n", "df['weekday'] = pd.to_datetime(df['date']).map(lambda x: x.weekday())\n", "df_list = loop_through_geo_codes(df)" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/IPython/core/interactiveshell.py:2822: DtypeWarning: Columns (2) have mixed types.Specify dtype option on import or set low_memory=False.\n", " if self.run_code(code, result):\n" ], "name": "stderr" } ] }, { "cell_type": "markdown", "metadata": { "id": "jlGrTTFm2GwI", "colab_type": "text" }, "source": [ "Run sweep" ] }, { "cell_type": "code", "metadata": { "id": "OqpXvjXKqtcl", "colab_type": "code", "outputId": "72a4b222-93cb-4918-c275-1225a6d90593", "colab": { "base_uri": "https://localhost:8080/", "height": 1000 } }, "source": [ "import wandb\n", "def sweep_all_geo(df_list, region_level, start_index=0, end_index=38):\n", " for array_index in range(start_index, end_index):\n", " region_df, full_len, file_path = format_corona_data(df_list[array_index], region_level)\n", " sweep_id = wandb.sweep(sweep_config, project=\"covid-forecast\")\n", " wandb.agent(sweep_id, lambda:train_function(\"PyTorch\", make_config_file(file_path, full_len)))\n", "print(len(df_list))\n", "sweep_all_geo(df_list, 'county', 40, len(df_list))" ], "execution_count": 0, "outputs": [ { "output_type": "stream", "text": [ "173\n", "Colorado_Douglas County\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:13: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " del sys.path[0]\n", "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:14: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " \n", "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " from ipykernel import kernelapp as app\n", "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:18: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Create sweep with ID: dmjolbmp\n", "Sweep URL: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp\n", "wandb: Agent Starting Run: ikjglsrm with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ikjglsrm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ikjglsrm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.209745293483138\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "1.0576069187372923\n", "The running loss is:\n", "25.875566819682717\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.23216984855632\n", "The running loss is:\n", "16.456275817006826\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "0.7836321817622298\n", "The running loss is:\n", "16.631219685077667\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "0.7919628421465555\n", "The running loss is:\n", "15.837834678590298\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "0.7541826037423951\n", "The running loss is:\n", "14.741810627281666\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "0.7019909822515079\n", "The running loss is:\n", "15.050849847495556\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "0.7167071355950265\n", "The running loss is:\n", "15.953906068578362\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "0.7597098127894458\n", "The running loss is:\n", "16.0874502658844\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "0.7660690602802095\n", "The running loss is:\n", "15.227701779454947\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.7251286561645213\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.894448\n", "48 30755 ... 11.626228\n", "49 30756 ... 11.733383\n", "50 30757 ... 12.008819\n", "51 30758 ... 12.359694\n", "52 30759 ... 12.744390\n", "53 30760 ... 13.144247\n", "54 30761 ... 11.959114\n", "55 30762 ... 11.655218\n", "56 30763 ... 11.746380\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ikjglsrm \n", "\n", "wandb: Agent Starting Run: sccle7in with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: sccle7in\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/sccle7in
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "32.99953880906105\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "1.5714066099552881\n", "The running loss is:\n", "34.578114688396454\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.6465768899236406\n", "The running loss is:\n", "25.18665075302124\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.19936432157244\n", "The running loss is:\n", "24.97196725010872\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.1891412976242246\n", "The running loss is:\n", "24.43036612868309\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.1633507680325281\n", "The running loss is:\n", "24.190653383731842\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.151935875415802\n", "The running loss is:\n", "23.219544798135757\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "1.1056926094350361\n", "The running loss is:\n", "22.971314638853073\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "1.0938721256596702\n", "The running loss is:\n", "21.56657423079014\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "1.026979725275721\n", "The running loss is:\n", "22.224213495850563\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "1.0582958807547886\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 15.966778\n", "48 30755 ... 17.588491\n", "49 30756 ... 18.489956\n", "50 30757 ... 19.005741\n", "51 30758 ... 19.315006\n", "52 30759 ... 19.513683\n", "53 30760 ... 19.653145\n", "54 30761 ... 19.529381\n", "55 30762 ... 19.496183\n", "56 30763 ... 19.511480\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: sccle7in \n", "\n", "wandb: Agent Starting Run: 1kbxwatt with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 1kbxwatt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1kbxwatt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "27.474478989839554\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.3737239494919777\n", "The running loss is:\n", "35.779832273721695\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.7889916136860848\n", "The running loss is:\n", "23.186582028865814\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.1593291014432907\n", "The running loss is:\n", "22.105967074632645\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.1052983537316323\n", "The running loss is:\n", "21.186039209365845\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.0593019604682923\n", "The running loss is:\n", "21.136306032538414\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.0568153016269206\n", "The running loss is:\n", "20.87136097252369\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.0435680486261845\n", "The running loss is:\n", "20.777209982275963\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.0388604991137982\n", "The running loss is:\n", "20.66132915019989\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.0330664575099946\n", "The running loss is:\n", "20.37255945801735\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.0186279729008674\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.496966\n", "48 30755 ... 3.573092\n", "49 30756 ... 2.030942\n", "50 30757 ... 1.022203\n", "51 30758 ... 0.219382\n", "52 30759 ... -0.503940\n", "53 30760 ... -1.196578\n", "54 30761 ... 1.016424\n", "55 30762 ... 1.457347\n", "56 30763 ... 1.214166\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1kbxwatt \n", "\n", "wandb: Agent Starting Run: yr7zkt33 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: yr7zkt33\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yr7zkt33
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.944366239011288\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "0.854493630429109\n", "The running loss is:\n", "34.34139671176672\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.6353046053222247\n", "The running loss is:\n", "27.00930019468069\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.286157152127652\n", "The running loss is:\n", "17.550274595618248\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "0.8357273616961071\n", "The running loss is:\n", "15.303298708051443\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "0.7287285099072116\n", "The running loss is:\n", "16.061053287237883\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "0.764812061297042\n", "The running loss is:\n", "15.270921267569065\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "0.7271867270270983\n", "The running loss is:\n", "15.990724802017212\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "0.7614630858103434\n", "The running loss is:\n", "15.62948726862669\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "0.7442612985060328\n", "The running loss is:\n", "15.671696230769157\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.7462712490842456\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.829262\n", "48 30755 ... 11.559772\n", "49 30756 ... 11.661650\n", "50 30757 ... 11.916553\n", "51 30758 ... 12.234512\n", "52 30759 ... 12.578454\n", "53 30760 ... 12.933103\n", "54 30761 ... 11.801696\n", "55 30762 ... 11.548413\n", "56 30763 ... 11.656969\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yr7zkt33 \n", "\n", "wandb: Agent Starting Run: 64pwuc2m with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 64pwuc2m\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/64pwuc2m
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "27.359292954206467\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "1.3028234740098317\n", "The running loss is:\n", "43.42585930228233\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "2.0678980620134446\n", "The running loss is:\n", "33.279954731464386\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.5847597491173517\n", "The running loss is:\n", "25.072028666734695\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.1939061269873665\n", "The running loss is:\n", "22.292101874947548\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.061528660711788\n", "The running loss is:\n", "23.1343837082386\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.1016373194399334\n", "The running loss is:\n", "21.76330964267254\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "1.0363480782225019\n", "The running loss is:\n", "21.404461607336998\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "1.019260076539857\n", "The running loss is:\n", "19.915255278348923\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "0.9483454894451868\n", "The running loss is:\n", "19.895478509366512\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.9474037385412625\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.941013\n", "48 30755 ... 15.908203\n", "49 30756 ... 16.418524\n", "50 30757 ... 16.714504\n", "51 30758 ... 16.909929\n", "52 30759 ... 17.058176\n", "53 30760 ... 17.184292\n", "54 30761 ... 16.904070\n", "55 30762 ... 16.829170\n", "56 30763 ... 16.850595\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 64pwuc2m \n", "\n", "wandb: Agent Starting Run: s51msur4 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: s51msur4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/s51msur4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.703781209886074\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.0351890604943037\n", "The running loss is:\n", "47.7876605540514\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "2.38938302770257\n", "The running loss is:\n", "35.47767253220081\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.7738836266100406\n", "The running loss is:\n", "23.832139432430267\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.1916069716215134\n", "The running loss is:\n", "21.081158697605133\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.0540579348802566\n", "The running loss is:\n", "20.350356683135033\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.0175178341567517\n", "The running loss is:\n", "19.832687944173813\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.9916343972086906\n", "The running loss is:\n", "19.82853750884533\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.9914268754422665\n", "The running loss is:\n", "19.4885743111372\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.97442871555686\n", "The running loss is:\n", "18.965040057897568\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.9482520028948784\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.287391\n", "48 30755 ... 4.862523\n", "49 30756 ... 3.617318\n", "50 30757 ... 2.795383\n", "51 30758 ... 2.125319\n", "52 30759 ... 1.509749\n", "53 30760 ... 0.913731\n", "54 30761 ... 2.950763\n", "55 30762 ... 3.306514\n", "56 30763 ... 3.059012\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: s51msur4 \n", "\n", "wandb: Agent Starting Run: wx5xxkqb with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: wx5xxkqb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/wx5xxkqb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.458090774714947\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "0.9741947987959498\n", "The running loss is:\n", "24.059880753979087\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.1457086073323375\n", "The running loss is:\n", "23.21456527709961\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.1054554893856956\n", "The running loss is:\n", "28.819509647786617\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.3723576022755533\n", "The running loss is:\n", "31.193957291543484\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.4854265376925468\n", "The running loss is:\n", "27.668494045734406\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.3175473355111622\n", "The running loss is:\n", "25.656272009015083\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "1.2217272385245277\n", "The running loss is:\n", "20.36942693591118\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "0.9699727112338656\n", "The running loss is:\n", "15.879903003573418\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "0.7561858573130199\n", "The running loss is:\n", "16.215510118752718\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.7721671485120342\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.331620\n", "48 30755 ... 12.283362\n", "49 30756 ... 12.453766\n", "50 30757 ... 12.701273\n", "51 30758 ... 12.975966\n", "52 30759 ... 13.260247\n", "53 30760 ... 13.547908\n", "54 30761 ... 12.524818\n", "55 30762 ... 12.351486\n", "56 30763 ... 12.477787\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: wx5xxkqb \n", "\n", "wandb: Agent Starting Run: 0wqxnael with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 0wqxnael\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0wqxnael
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "25.328899294137955\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "1.206138061625617\n", "The running loss is:\n", "28.402115911245346\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.3524817100593023\n", "The running loss is:\n", "27.489022433757782\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.3090010682741802\n", "The running loss is:\n", "32.18459129333496\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.532599585396903\n", "The running loss is:\n", "33.80143202841282\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.6095920013529914\n", "The running loss is:\n", "32.85577954351902\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.564560930643763\n", "The running loss is:\n", "30.47883702814579\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "1.4513731918164663\n", "The running loss is:\n", "25.70555293187499\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "1.2240739491369044\n", "The running loss is:\n", "20.333487920463085\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "0.9682613295458612\n", "The running loss is:\n", "18.726626021787524\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.8917440962755964\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.114093\n", "48 30755 ... 13.178655\n", "49 30756 ... 13.227503\n", "50 30757 ... 13.271365\n", "51 30758 ... 13.313645\n", "52 30759 ... 13.355424\n", "53 30760 ... 13.397043\n", "54 30761 ... 13.240062\n", "55 30762 ... 13.218620\n", "56 30763 ... 13.240183\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0wqxnael \n", "\n", "wandb: Agent Starting Run: vi2glmaj with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: vi2glmaj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vi2glmaj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.522139191627502\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.0261069595813752\n", "The running loss is:\n", "28.824470579624176\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.4412235289812088\n", "The running loss is:\n", "26.96215519309044\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.348107759654522\n", "The running loss is:\n", "24.277756571769714\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.2138878285884858\n", "The running loss is:\n", "39.18795786798\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.9593978933990002\n", "The running loss is:\n", "27.062116272747517\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.353105813637376\n", "The running loss is:\n", "31.32304859161377\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.5661524295806886\n", "The running loss is:\n", "25.954569905996323\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.297728495299816\n", "The running loss is:\n", "20.310090392827988\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.0155045196413994\n", "The running loss is:\n", "18.296321973204613\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.9148160986602306\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.719911\n", "48 30755 ... 7.223289\n", "49 30756 ... 6.481489\n", "50 30757 ... 5.944383\n", "51 30758 ... 5.462785\n", "52 30759 ... 4.996240\n", "53 30760 ... 4.533777\n", "54 30761 ... 6.424037\n", "55 30762 ... 6.600693\n", "56 30763 ... 6.312653\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vi2glmaj \n", "\n", "wandb: Agent Starting Run: t6tt7nnl with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: t6tt7nnl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/t6tt7nnl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "61.04869698733091\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "2.9070808089205196\n", "The running loss is:\n", "24.786502487957478\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.1803096422836894\n", "The running loss is:\n", "30.512474812567234\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.4529749910746301\n", "The running loss is:\n", "22.967344410717487\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.0936830671770232\n", "The running loss is:\n", "25.316022649407387\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.2055248880670184\n", "The running loss is:\n", "23.791697189211845\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.1329379613910402\n", "The running loss is:\n", "20.797373056411743\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "0.9903510979243687\n", "The running loss is:\n", "18.34804441407323\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "0.8737164006701538\n", "The running loss is:\n", "16.632033981382847\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "0.7920016181610879\n", "The running loss is:\n", "16.302831880748272\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.7763253276546797\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.427103\n", "48 30755 ... 11.119713\n", "49 30756 ... 11.244295\n", "50 30757 ... 11.516330\n", "51 30758 ... 11.838696\n", "52 30759 ... 12.178244\n", "53 30760 ... 12.523656\n", "54 30761 ... 11.264505\n", "55 30762 ... 11.064211\n", "56 30763 ... 11.225350\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: t6tt7nnl \n", "\n", "wandb: Agent Starting Run: i0dy7151 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: i0dy7151\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/i0dy7151
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "69.45899105072021\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "3.3075710024152483\n", "The running loss is:\n", "24.351533740758896\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.1595968447980427\n", "The running loss is:\n", "38.97736042737961\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.8560647822561718\n", "The running loss is:\n", "25.299872055649757\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.204755812173798\n", "The running loss is:\n", "23.097379501909018\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.09987521437662\n", "The running loss is:\n", "25.473997458815575\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.2130474980388368\n", "The running loss is:\n", "22.643349528312683\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "1.0782547394434612\n", "The running loss is:\n", "18.14205700904131\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "0.8639074766210147\n", "The running loss is:\n", "16.48433183133602\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "0.7849681824445724\n", "The running loss is:\n", "16.34719529747963\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.7784378713085538\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.766082\n", "48 30755 ... 11.452952\n", "49 30756 ... 11.440730\n", "50 30757 ... 11.526842\n", "51 30758 ... 11.645089\n", "52 30759 ... 11.773837\n", "53 30760 ... 11.906017\n", "54 30761 ... 11.408577\n", "55 30762 ... 11.336123\n", "56 30763 ... 11.402551\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: i0dy7151 \n", "\n", "wandb: Agent Starting Run: 4tuwhbc3 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 4tuwhbc3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4tuwhbc3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "73.17438182234764\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "3.658719091117382\n", "The running loss is:\n", "24.5871611982584\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.22935805991292\n", "The running loss is:\n", "48.73001056909561\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "2.4365005284547805\n", "The running loss is:\n", "35.53122544288635\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.7765612721443176\n", "The running loss is:\n", "24.193623542785645\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.2096811771392821\n", "The running loss is:\n", "31.478034928441048\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.5739017464220524\n", "The running loss is:\n", "26.469323992729187\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.3234661996364594\n", "The running loss is:\n", "21.868590533733368\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.0934295266866685\n", "The running loss is:\n", "17.746363550424576\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.8873181775212288\n", "The running loss is:\n", "16.37228138744831\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.8186140693724155\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.991632\n", "48 30755 ... 9.842609\n", "49 30756 ... 8.999443\n", "50 30757 ... 8.265136\n", "51 30758 ... 7.569574\n", "52 30759 ... 6.887804\n", "53 30760 ... 6.210940\n", "54 30761 ... 8.575280\n", "55 30762 ... 8.982585\n", "56 30763 ... 8.693344\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4tuwhbc3 \n", "\n", "wandb: Agent Starting Run: 0r1mvx0k with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 0r1mvx0k\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0r1mvx0k
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "23.008637461811304\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "1.0956494029433954\n", "The running loss is:\n", "32.2327605355531\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.5348933588358618\n", "The running loss is:\n", "17.726538762450218\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "0.8441208934500104\n", "The running loss is:\n", "12.940901616588235\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "0.6162334103137255\n", "The running loss is:\n", "16.331525344401598\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "0.7776916830667427\n", "The running loss is:\n", "12.3541901409626\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "0.5882947686172667\n", "The running loss is:\n", "12.735355507582426\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "0.6064455003610679\n", "The running loss is:\n", "13.34062596410513\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "0.6352679030526251\n", "The running loss is:\n", "11.95759018138051\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "0.5694090562562147\n", "The running loss is:\n", "12.26656811311841\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.5841222911008767\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.974232\n", "48 30755 ... 15.381114\n", "49 30756 ... 14.857310\n", "50 30757 ... 15.986811\n", "51 30758 ... 15.042921\n", "52 30759 ... 14.311747\n", "53 30760 ... 12.546846\n", "54 30761 ... 14.352466\n", "55 30762 ... 16.448072\n", "56 30763 ... 16.995480\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0r1mvx0k \n", "\n", "wandb: Agent Starting Run: e62ibr45 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: e62ibr45\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/e62ibr45
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.77712646126747\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.1388563230633735\n", "The running loss is:\n", "30.30465880036354\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.515232940018177\n", "The running loss is:\n", "19.663687139749527\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "0.9831843569874763\n", "The running loss is:\n", "17.537601500749588\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "0.8768800750374794\n", "The running loss is:\n", "17.679495960474014\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.8839747980237007\n", "The running loss is:\n", "15.744170039892197\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.7872085019946098\n", "The running loss is:\n", "15.426739200949669\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.7713369600474834\n", "The running loss is:\n", "14.944714151322842\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.7472357075661421\n", "The running loss is:\n", "14.250869244337082\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.712543462216854\n", "The running loss is:\n", "14.41989190876484\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.720994595438242\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.836431\n", "48 30755 ... 14.815100\n", "49 30756 ... 13.822679\n", "50 30757 ... 14.759495\n", "51 30758 ... 13.484217\n", "52 30759 ... 12.383018\n", "53 30760 ... 10.215312\n", "54 30761 ... 12.387611\n", "55 30762 ... 13.979239\n", "56 30763 ... 14.619460\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: e62ibr45 \n", "\n", "wandb: Agent Starting Run: 0g2cidja with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 0g2cidja\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0g2cidja
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.578702680766582\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.078935134038329\n", "The running loss is:\n", "28.895316019654274\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.4447658009827138\n", "The running loss is:\n", "17.934798389673233\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "0.8967399194836616\n", "The running loss is:\n", "15.32413261756301\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "0.7662066308781504\n", "The running loss is:\n", "15.212896093726158\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.7606448046863079\n", "The running loss is:\n", "13.6849125623703\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.684245628118515\n", "The running loss is:\n", "15.095305874943733\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.7547652937471867\n", "The running loss is:\n", "13.407148011028767\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.6703574005514383\n", "The running loss is:\n", "14.454618975520134\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.7227309487760067\n", "The running loss is:\n", "13.429822385311127\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.6714911192655564\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.413411\n", "48 30755 ... 15.669946\n", "49 30756 ... 17.122110\n", "50 30757 ... 18.615124\n", "51 30758 ... 19.127787\n", "52 30759 ... 19.283003\n", "53 30760 ... 18.859772\n", "54 30761 ... 21.885056\n", "55 30762 ... 23.855570\n", "56 30763 ... 25.221436\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0g2cidja \n", "\n", "wandb: Agent Starting Run: rjep75dc with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: rjep75dc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/rjep75dc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.55631679482758\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "0.8836341330870277\n", "The running loss is:\n", "39.76102647557855\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.893382213122788\n", "The running loss is:\n", "31.392640566453338\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.4948876460215874\n", "The running loss is:\n", "21.55244082212448\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.0263067058154516\n", "The running loss is:\n", "13.321244258899242\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "0.6343449647094876\n", "The running loss is:\n", "16.369411423802376\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "0.7794957820858274\n", "The running loss is:\n", "12.878714980557561\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "0.6132721419313124\n", "The running loss is:\n", "15.277130480855703\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "0.7274824038502716\n", "The running loss is:\n", "12.423281671479344\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "0.5915848414990164\n", "The running loss is:\n", "13.389100320637226\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.6375762057446298\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.093603\n", "48 30755 ... 15.438350\n", "49 30756 ... 15.362393\n", "50 30757 ... 15.736447\n", "51 30758 ... 15.006408\n", "52 30759 ... 14.255008\n", "53 30760 ... 12.908654\n", "54 30761 ... 14.277620\n", "55 30762 ... 15.742886\n", "56 30763 ... 16.026230\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: rjep75dc \n", "\n", "wandb: Agent Starting Run: 1hy1myeb with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 1hy1myeb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1hy1myeb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.790002673864365\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "0.9895001336932182\n", "The running loss is:\n", "35.51101356744766\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.7755506783723831\n", "The running loss is:\n", "29.900236278772354\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.4950118139386177\n", "The running loss is:\n", "20.32610148191452\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.016305074095726\n", "The running loss is:\n", "17.535978391766548\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.8767989195883275\n", "The running loss is:\n", "15.788296699523926\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.7894148349761962\n", "The running loss is:\n", "15.298003315925598\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.76490016579628\n", "The running loss is:\n", "14.471397161483765\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.7235698580741883\n", "The running loss is:\n", "15.182393252849579\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.759119662642479\n", "The running loss is:\n", "15.049454137682915\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.7524727068841457\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.637438\n", "48 30755 ... 13.303226\n", "49 30756 ... 12.201837\n", "50 30757 ... 12.177489\n", "51 30758 ... 10.806701\n", "52 30759 ... 9.582183\n", "53 30760 ... 7.934246\n", "54 30761 ... 8.110060\n", "55 30762 ... 10.489552\n", "56 30763 ... 10.417169\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1hy1myeb \n", "\n", "wandb: Agent Starting Run: izha8psp with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: izha8psp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/izha8psp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.73946076631546\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "0.836973038315773\n", "The running loss is:\n", "34.69972918741405\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.7349864593707025\n", "The running loss is:\n", "28.933668479323387\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.4466834239661694\n", "The running loss is:\n", "20.98772995173931\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.0493864975869656\n", "The running loss is:\n", "14.910560678690672\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.7455280339345336\n", "The running loss is:\n", "13.784054175019264\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.6892027087509632\n", "The running loss is:\n", "14.498991958796978\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.7249495979398489\n", "The running loss is:\n", "13.606230936944485\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.6803115468472243\n", "The running loss is:\n", "14.566328644752502\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.7283164322376251\n", "The running loss is:\n", "12.793043170124292\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.6396521585062146\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.115752\n", "48 30755 ... 14.251652\n", "49 30756 ... 15.619260\n", "50 30757 ... 16.408094\n", "51 30758 ... 16.587444\n", "52 30759 ... 16.368526\n", "53 30760 ... 15.831397\n", "54 30761 ... 17.615082\n", "55 30762 ... 19.396448\n", "56 30763 ... 20.256659\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: izha8psp \n", "\n", "wandb: Agent Starting Run: j4p3rea7 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: j4p3rea7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/j4p3rea7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.612260351888835\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "0.8386790643756589\n", "The running loss is:\n", "27.575611753884004\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.3131243692325716\n", "The running loss is:\n", "19.56693585170433\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "0.9317588500811586\n", "The running loss is:\n", "29.6243880931288\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.4106851472918476\n", "The running loss is:\n", "31.01244868338108\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.4767832706371944\n", "The running loss is:\n", "30.337950587272644\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.4446643136796498\n", "The running loss is:\n", "20.72286257147789\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "0.9868029795941853\n", "The running loss is:\n", "13.726178638637066\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "0.6536275542208126\n", "The running loss is:\n", "15.882041074335575\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "0.7562876702064559\n", "The running loss is:\n", "13.951960653066635\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.6643790787174588\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.314129\n", "48 30755 ... 14.173787\n", "49 30756 ... 13.942454\n", "50 30757 ... 14.106256\n", "51 30758 ... 13.663309\n", "52 30759 ... 13.262284\n", "53 30760 ... 12.640742\n", "54 30761 ... 13.062532\n", "55 30762 ... 14.247359\n", "56 30763 ... 14.199184\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: j4p3rea7 \n", "\n", "wandb: Agent Starting Run: oyn5vyw0 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: oyn5vyw0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/oyn5vyw0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.16664184629917\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "0.9583320923149585\n", "The running loss is:\n", "24.30276045203209\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.2151380226016044\n", "The running loss is:\n", "21.017927818000317\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.0508963909000157\n", "The running loss is:\n", "25.24866795539856\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.262433397769928\n", "The running loss is:\n", "29.989633813500404\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.4994816906750201\n", "The running loss is:\n", "27.833610378205776\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.3916805189102888\n", "The running loss is:\n", "20.38179862499237\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.0190899312496184\n", "The running loss is:\n", "19.694613575935364\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.9847306787967682\n", "The running loss is:\n", "16.29368768632412\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.8146843843162059\n", "The running loss is:\n", "16.283535540103912\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.8141767770051956\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.646613\n", "48 30755 ... 12.670735\n", "49 30756 ... 12.202353\n", "50 30757 ... 12.349521\n", "51 30758 ... 11.980251\n", "52 30759 ... 11.627564\n", "53 30760 ... 11.168602\n", "54 30761 ... 11.710465\n", "55 30762 ... 12.506949\n", "56 30763 ... 12.491008\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: oyn5vyw0 \n", "\n", "wandb: Agent Starting Run: ard0kcgk with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ard0kcgk\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ard0kcgk
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.326067708432674\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "0.8663033854216338\n", "The running loss is:\n", "26.125781033188105\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.3062890516594052\n", "The running loss is:\n", "20.05863458663225\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.0029317293316127\n", "The running loss is:\n", "26.94086644053459\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.3470433220267295\n", "The running loss is:\n", "27.031484097242355\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.3515742048621178\n", "The running loss is:\n", "26.107848599553108\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.3053924299776554\n", "The running loss is:\n", "19.87912854552269\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.9939564272761345\n", "The running loss is:\n", "19.120233863592148\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.9560116931796074\n", "The running loss is:\n", "18.272066473960876\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.9136033236980439\n", "The running loss is:\n", "16.09623235464096\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.804811617732048\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.101974\n", "48 30755 ... 10.439401\n", "49 30756 ... 9.826941\n", "50 30757 ... 9.700224\n", "51 30758 ... 9.537777\n", "52 30759 ... 9.432247\n", "53 30760 ... 9.338076\n", "54 30761 ... 8.713398\n", "55 30762 ... 9.319012\n", "56 30763 ... 9.401543\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ard0kcgk \n", "\n", "wandb: Agent Starting Run: qm4xgxw1 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: qm4xgxw1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qm4xgxw1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "88.16768562421203\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "4.198461220200572\n", "The running loss is:\n", "32.399377366527915\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.5428274936441864\n", "The running loss is:\n", "44.084197610616684\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "2.0992475052674613\n", "The running loss is:\n", "31.271542832255363\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.4891210872502554\n", "The running loss is:\n", "24.642942052334547\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.17347343106355\n", "The running loss is:\n", "25.46325683966279\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.2125360399839424\n", "The running loss is:\n", "22.69593182578683\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "1.0807586583708013\n", "The running loss is:\n", "22.1004674769938\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "1.0524032131901808\n", "The running loss is:\n", "21.082351729273796\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "1.0039215109178\n", "The running loss is:\n", "20.709456760436296\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "0.9861646076398236\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.968234\n", "48 30755 ... 12.532819\n", "49 30756 ... 12.348880\n", "50 30757 ... 12.427336\n", "51 30758 ... 12.384806\n", "52 30759 ... 12.386845\n", "53 30760 ... 12.371067\n", "54 30761 ... 11.455049\n", "55 30762 ... 12.432656\n", "56 30763 ... 12.267653\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qm4xgxw1 \n", "\n", "wandb: Agent Starting Run: xau7eqeu with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: xau7eqeu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xau7eqeu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "51.44850631058216\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "2.572425315529108\n", "The running loss is:\n", "26.536537259817123\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.3268268629908562\n", "The running loss is:\n", "25.394971758127213\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.2697485879063606\n", "The running loss is:\n", "26.157265178859234\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.3078632589429617\n", "The running loss is:\n", "26.907141968607903\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.345357098430395\n", "The running loss is:\n", "23.60898245871067\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.1804491229355336\n", "The running loss is:\n", "21.588230818510056\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.0794115409255027\n", "The running loss is:\n", "23.299431294202805\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.1649715647101402\n", "The running loss is:\n", "17.95345228165388\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.897672614082694\n", "The running loss is:\n", "21.56754533946514\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.078377266973257\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.127200\n", "48 30755 ... 9.427205\n", "49 30756 ... 8.578013\n", "50 30757 ... 8.423813\n", "51 30758 ... 8.186283\n", "52 30759 ... 8.086294\n", "53 30760 ... 7.967240\n", "54 30761 ... 8.324524\n", "55 30762 ... 8.337108\n", "56 30763 ... 8.307590\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xau7eqeu \n", "\n", "wandb: Agent Starting Run: falknk2c with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: falknk2c\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/falknk2c
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "50.97534599900246\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "2.5487672999501227\n", "The running loss is:\n", "28.12403143942356\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.406201571971178\n", "The running loss is:\n", "24.375909984111786\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.2187954992055894\n", "The running loss is:\n", "22.562284395098686\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.1281142197549343\n", "The running loss is:\n", "28.00324049592018\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.4001620247960092\n", "The running loss is:\n", "21.4647678732872\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.0732383936643601\n", "The running loss is:\n", "21.226560071110725\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.0613280035555364\n", "The running loss is:\n", "20.05168192088604\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.002584096044302\n", "The running loss is:\n", "19.073723807930946\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.9536861903965473\n", "The running loss is:\n", "20.08955078572035\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.0044775392860175\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.038617\n", "48 30755 ... 10.301286\n", "49 30756 ... 10.527411\n", "50 30757 ... 10.665849\n", "51 30758 ... 10.829441\n", "52 30759 ... 10.893164\n", "53 30760 ... 11.022404\n", "54 30761 ... 9.990615\n", "55 30762 ... 10.360154\n", "56 30763 ... 10.527678\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: falknk2c \n", "\n", "wandb: Agent Starting Run: 6sarts3o with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 6sarts3o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6sarts3o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.16620772331953\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "0.6583103861659765\n", "The running loss is:\n", "47.089191913604736\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "2.354459595680237\n", "The running loss is:\n", "20.295180901885033\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.0147590450942516\n", "The running loss is:\n", "14.66391147999093\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "0.7331955739995465\n", "The running loss is:\n", "14.51472514308989\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.7257362571544945\n", "The running loss is:\n", "11.414592620916665\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.5707296310458332\n", "The running loss is:\n", "10.380168374627829\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.5190084187313915\n", "The running loss is:\n", "10.854458432644606\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.5427229216322302\n", "The running loss is:\n", "9.902051273267716\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.4951025636633858\n", "The running loss is:\n", "11.478069743141532\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.5739034871570766\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 4.791970\n", "48 30755 ... 4.017214\n", "49 30756 ... 9.296926\n", "50 30757 ... 8.501606\n", "51 30758 ... 7.561368\n", "52 30759 ... 6.628009\n", "53 30760 ... 4.479429\n", "54 30761 ... 3.208868\n", "55 30762 ... 2.426350\n", "56 30763 ... 6.978889\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6sarts3o \n", "\n", "wandb: Agent Starting Run: u7zvotqr with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: u7zvotqr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u7zvotqr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.250229328870773\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.0125114664435386\n", "The running loss is:\n", "36.03919892013073\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.8019599460065365\n", "The running loss is:\n", "21.369008541107178\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.068450427055359\n", "The running loss is:\n", "16.745819223113358\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "0.8372909611556679\n", "The running loss is:\n", "16.19626347720623\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.8098131738603115\n", "The running loss is:\n", "15.289014890789986\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.7644507445394992\n", "The running loss is:\n", "14.291767127811909\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.7145883563905955\n", "The running loss is:\n", "13.00631546229124\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.650315773114562\n", "The running loss is:\n", "12.850601639598608\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.6425300819799304\n", "The running loss is:\n", "11.07451168447733\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.5537255842238664\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.846800\n", "48 30755 ... 8.844935\n", "49 30756 ... 11.833019\n", "50 30757 ... 11.595754\n", "51 30758 ... 10.915969\n", "52 30759 ... 9.609382\n", "53 30760 ... 6.918744\n", "54 30761 ... 7.512626\n", "55 30762 ... 9.482866\n", "56 30763 ... 11.247615\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u7zvotqr \n", "\n", "wandb: Agent Starting Run: cf5ckshz with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: cf5ckshz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cf5ckshz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.24230197072029\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.8548579984589627\n", "The running loss is:\n", "33.577625170350075\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.767243430018425\n", "The running loss is:\n", "17.50975675880909\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "0.9215661452004784\n", "The running loss is:\n", "15.19348393380642\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.7996570491477063\n", "The running loss is:\n", "14.183778703212738\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.7465146685901441\n", "The running loss is:\n", "13.036552771925926\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.686134356417154\n", "The running loss is:\n", "12.580513373017311\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.6621322827903848\n", "The running loss is:\n", "12.409655019640923\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.653139737875838\n", "The running loss is:\n", "12.531418025493622\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.6595483171312433\n", "The running loss is:\n", "11.11167886853218\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.5848252036069569\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.913255\n", "48 30755 ... 10.473210\n", "49 30756 ... 13.590547\n", "50 30757 ... 14.313401\n", "51 30758 ... 14.773838\n", "52 30759 ... 15.313439\n", "53 30760 ... 15.069212\n", "54 30761 ... 17.728813\n", "55 30762 ... 18.329552\n", "56 30763 ... 21.203745\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cf5ckshz \n", "\n", "wandb: Agent Starting Run: olx3ydle with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: olx3ydle\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/olx3ydle
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.871346639934927\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "0.8435673319967464\n", "The running loss is:\n", "38.40473223477602\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.920236611738801\n", "The running loss is:\n", "31.12108042370528\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.556054021185264\n", "The running loss is:\n", "24.62357160821557\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.2311785804107784\n", "The running loss is:\n", "12.468314666301012\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.6234157333150506\n", "The running loss is:\n", "13.174285745597444\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.6587142872798722\n", "The running loss is:\n", "11.788977996446192\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.5894488998223096\n", "The running loss is:\n", "11.11843922547996\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.5559219612739981\n", "The running loss is:\n", "9.287355293519795\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.4643677646759897\n", "The running loss is:\n", "9.838816735893488\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.4919408367946744\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.513413\n", "48 30755 ... 7.168951\n", "49 30756 ... 11.346724\n", "50 30757 ... 10.831080\n", "51 30758 ... 10.000001\n", "52 30759 ... 9.303995\n", "53 30760 ... 7.738368\n", "54 30761 ... 7.970766\n", "55 30762 ... 7.753849\n", "56 30763 ... 10.696944\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: olx3ydle \n", "\n", "wandb: Agent Starting Run: 6d8tazmf with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 6d8tazmf\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6d8tazmf
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.881873853504658\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "0.9440936926752329\n", "The running loss is:\n", "33.3425434269011\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.667127171345055\n", "The running loss is:\n", "29.829890869557858\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.4914945434778928\n", "The running loss is:\n", "25.49375832080841\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.2746879160404205\n", "The running loss is:\n", "17.11493468284607\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.8557467341423035\n", "The running loss is:\n", "14.997745260596275\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.7498872630298138\n", "The running loss is:\n", "14.11250153183937\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.7056250765919685\n", "The running loss is:\n", "12.541615918278694\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.6270807959139347\n", "The running loss is:\n", "11.791180847212672\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.5895590423606336\n", "The running loss is:\n", "11.034595467150211\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.5517297733575106\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.561110\n", "48 30755 ... 12.150685\n", "49 30756 ... 14.576173\n", "50 30757 ... 16.192913\n", "51 30758 ... 17.393833\n", "52 30759 ... 18.037010\n", "53 30760 ... 17.864153\n", "54 30761 ... 22.358480\n", "55 30762 ... 24.322353\n", "56 30763 ... 28.962704\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6d8tazmf \n", "\n", "wandb: Agent Starting Run: tsnek2xz with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: tsnek2xz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/tsnek2xz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.180935945361853\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.7989966287032554\n", "The running loss is:\n", "32.76849117875099\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.7246574304605786\n", "The running loss is:\n", "29.06931023299694\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.5299636964735233\n", "The running loss is:\n", "19.419804587960243\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.022094978313697\n", "The running loss is:\n", "15.750009074807167\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.8289478460424825\n", "The running loss is:\n", "13.63320517539978\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.7175371144947252\n", "The running loss is:\n", "12.82888300716877\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.6752043687983563\n", "The running loss is:\n", "12.820624247193336\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.6747696972207019\n", "The running loss is:\n", "12.8362637758255\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.6755928303066053\n", "The running loss is:\n", "12.048322603106499\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.6341222422687631\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.238999\n", "48 30755 ... 12.542111\n", "49 30756 ... 14.634971\n", "50 30757 ... 15.151684\n", "51 30758 ... 15.261534\n", "52 30759 ... 15.495893\n", "53 30760 ... 15.244351\n", "54 30761 ... 18.465002\n", "55 30762 ... 18.929951\n", "56 30763 ... 19.493837\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: tsnek2xz \n", "\n", "wandb: Agent Starting Run: ouepskbi with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ouepskbi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ouepskbi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "25.258195054717362\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.2629097527358681\n", "The running loss is:\n", "28.71645049750805\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.4358225248754024\n", "The running loss is:\n", "21.496938847005367\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.0748469423502685\n", "The running loss is:\n", "32.175556898117065\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.6087778449058532\n", "The running loss is:\n", "31.53068858385086\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.576534429192543\n", "The running loss is:\n", "25.01493700221181\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.2507468501105905\n", "The running loss is:\n", "20.540104411542416\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.0270052205771207\n", "The running loss is:\n", "13.346534442156553\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.6673267221078276\n", "The running loss is:\n", "14.965123616158962\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.7482561808079481\n", "The running loss is:\n", "12.449737954884768\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.6224868977442384\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.540903\n", "48 30755 ... 8.264866\n", "49 30756 ... 11.485750\n", "50 30757 ... 10.229491\n", "51 30758 ... 9.189299\n", "52 30759 ... 8.309838\n", "53 30760 ... 6.608351\n", "54 30761 ... 6.017721\n", "55 30762 ... 5.683835\n", "56 30763 ... 8.788109\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ouepskbi \n", "\n", "wandb: Agent Starting Run: hvnouxk7 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: hvnouxk7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hvnouxk7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.307929329574108\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.1153964664787055\n", "The running loss is:\n", "24.764474764466286\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.2382237382233143\n", "The running loss is:\n", "20.000230103731155\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.0000115051865577\n", "The running loss is:\n", "27.805497139692307\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.3902748569846153\n", "The running loss is:\n", "25.04505816102028\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.2522529080510139\n", "The running loss is:\n", "27.622999258339405\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.3811499629169703\n", "The running loss is:\n", "21.294054619967937\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.064702730998397\n", "The running loss is:\n", "18.15154094994068\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.907577047497034\n", "The running loss is:\n", "18.175693213939667\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.9087846606969834\n", "The running loss is:\n", "16.293617084622383\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.8146808542311191\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.284172\n", "48 30755 ... 11.301517\n", "49 30756 ... 12.338721\n", "50 30757 ... 12.630889\n", "51 30758 ... 12.970084\n", "52 30759 ... 13.607054\n", "53 30760 ... 14.193722\n", "54 30761 ... 14.774322\n", "55 30762 ... 14.798644\n", "56 30763 ... 14.683531\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hvnouxk7 \n", "\n", "wandb: Agent Starting Run: j32zrla3 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: j32zrla3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/j32zrla3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.678802952170372\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.9304633132721248\n", "The running loss is:\n", "23.775851890444756\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.2513606258128818\n", "The running loss is:\n", "19.22152805328369\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.0116593712254573\n", "The running loss is:\n", "22.740102007985115\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.1968474741044797\n", "The running loss is:\n", "23.430920630693436\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.233206348983865\n", "The running loss is:\n", "20.96139857172966\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.1032315037752454\n", "The running loss is:\n", "16.538328647613525\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.8704383498743961\n", "The running loss is:\n", "16.061340644955635\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.8453337181555597\n", "The running loss is:\n", "12.803979389369488\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.6738936520720783\n", "The running loss is:\n", "13.952543005347252\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.734344368702487\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.579448\n", "48 30755 ... 8.149343\n", "49 30756 ... 9.415684\n", "50 30757 ... 8.551306\n", "51 30758 ... 7.895852\n", "52 30759 ... 7.565929\n", "53 30760 ... 6.785355\n", "54 30761 ... 6.457073\n", "55 30762 ... 6.417875\n", "56 30763 ... 7.045417\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: j32zrla3 \n", "\n", "wandb: Agent Starting Run: vwt7qbzu with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: vwt7qbzu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vwt7qbzu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "109.38623917661607\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "5.4693119588308035\n", "The running loss is:\n", "36.06812307983637\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.8034061539918185\n", "The running loss is:\n", "27.07236859574914\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.353618429787457\n", "The running loss is:\n", "19.878866678103805\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "0.9939433339051902\n", "The running loss is:\n", "36.85931820055703\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.8429659100278513\n", "The running loss is:\n", "19.018329231534153\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.9509164615767076\n", "The running loss is:\n", "22.288700968027115\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.1144350484013557\n", "The running loss is:\n", "30.49784292280674\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.524892146140337\n", "The running loss is:\n", "21.91693382896483\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.0958466914482414\n", "The running loss is:\n", "15.250084459781647\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.7625042229890824\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.705070\n", "48 30755 ... 10.367969\n", "49 30756 ... 13.145773\n", "50 30757 ... 12.067879\n", "51 30758 ... 11.397724\n", "52 30759 ... 11.419276\n", "53 30760 ... 10.288182\n", "54 30761 ... 8.814781\n", "55 30762 ... 10.714540\n", "56 30763 ... 12.394072\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vwt7qbzu \n", "\n", "wandb: Agent Starting Run: d9ptfhot with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: d9ptfhot\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/d9ptfhot
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "68.95865529216826\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "3.447932764608413\n", "The running loss is:\n", "27.954812914133072\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.3977406457066537\n", "The running loss is:\n", "21.58340122550726\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.079170061275363\n", "The running loss is:\n", "27.75279625505209\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.3876398127526044\n", "The running loss is:\n", "29.550814539194107\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.4775407269597054\n", "The running loss is:\n", "26.29482465982437\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.3147412329912185\n", "The running loss is:\n", "23.998366855084896\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.1999183427542448\n", "The running loss is:\n", "20.050680205225945\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.0025340102612972\n", "The running loss is:\n", "20.464960746467113\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.0232480373233557\n", "The running loss is:\n", "19.200842931866646\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.9600421465933323\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.980211\n", "48 30755 ... 11.990289\n", "49 30756 ... 12.143848\n", "50 30757 ... 12.068938\n", "51 30758 ... 12.045371\n", "52 30759 ... 12.029554\n", "53 30760 ... 12.001999\n", "54 30761 ... 11.946033\n", "55 30762 ... 11.977056\n", "56 30763 ... 12.094289\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: d9ptfhot \n", "\n", "wandb: Agent Starting Run: x2eijjhc with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: x2eijjhc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/x2eijjhc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "51.38577203452587\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "2.7045143176066246\n", "The running loss is:\n", "26.914206624031067\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.4165371907384772\n", "The running loss is:\n", "27.34442164748907\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.4391800867099511\n", "The running loss is:\n", "21.851982936263084\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.1501043650664782\n", "The running loss is:\n", "19.491085931658745\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.0258466279820393\n", "The running loss is:\n", "20.605526842176914\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.0845014127461534\n", "The running loss is:\n", "17.233258858323097\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.9070136241222683\n", "The running loss is:\n", "16.62893322110176\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.8752070116369348\n", "The running loss is:\n", "14.914175763726234\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.784956619143486\n", "The running loss is:\n", "16.455472081899643\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.866077477994718\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.186721\n", "48 30755 ... 12.263892\n", "49 30756 ... 15.433131\n", "50 30757 ... 14.697458\n", "51 30758 ... 13.453771\n", "52 30759 ... 13.202712\n", "53 30760 ... 11.757782\n", "54 30761 ... 13.192609\n", "55 30762 ... 13.191557\n", "56 30763 ... 15.276033\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: x2eijjhc \n", "\n", "wandb: Agent Starting Run: ayj47mls with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ayj47mls\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ayj47mls
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.244433240033686\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "0.9122216620016843\n", "The running loss is:\n", "30.7520240098238\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.5376012004911899\n", "The running loss is:\n", "15.300197042524815\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "0.7650098521262407\n", "The running loss is:\n", "12.945850990712643\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "0.6472925495356321\n", "The running loss is:\n", "11.861743465065956\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.5930871732532979\n", "The running loss is:\n", "10.992941904813051\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.5496470952406526\n", "The running loss is:\n", "11.330213017761707\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.5665106508880854\n", "The running loss is:\n", "9.959945164620876\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.4979972582310438\n", "The running loss is:\n", "8.969771122094244\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.44848855610471217\n", "The running loss is:\n", "9.06965771317482\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.453482885658741\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.373440\n", "48 30755 ... 10.899719\n", "49 30756 ... 13.438485\n", "50 30757 ... 13.496451\n", "51 30758 ... 13.684741\n", "52 30759 ... 14.650225\n", "53 30760 ... 16.323957\n", "54 30761 ... 15.094393\n", "55 30762 ... 18.117064\n", "56 30763 ... 19.815842\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ayj47mls \n", "\n", "wandb: Agent Starting Run: ovsyk6z6 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ovsyk6z6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ovsyk6z6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.05331265926361\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.1080690873296637\n", "The running loss is:\n", "26.215594351291656\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.3797681237521924\n", "The running loss is:\n", "14.164807230234146\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "0.7455161700123235\n", "The running loss is:\n", "12.458269132301211\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.6556983753842743\n", "The running loss is:\n", "10.816738000139594\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.5693020000073471\n", "The running loss is:\n", "10.055854829028249\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.5292555173172763\n", "The running loss is:\n", "9.955036200582981\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.5239492737148937\n", "The running loss is:\n", "10.308482509106398\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.5425517110055998\n", "The running loss is:\n", "11.734940055757761\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.6176284239872506\n", "The running loss is:\n", "11.233778834342957\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.5912515175969977\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.582728\n", "48 30755 ... 8.345654\n", "49 30756 ... 8.558024\n", "50 30757 ... 7.619164\n", "51 30758 ... 7.354745\n", "52 30759 ... 7.545932\n", "53 30760 ... 8.023136\n", "54 30761 ... 7.720142\n", "55 30762 ... 7.814631\n", "56 30763 ... 7.839913\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ovsyk6z6 \n", "\n", "wandb: Agent Starting Run: 47aj1nt6 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 47aj1nt6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/47aj1nt6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.88846641778946\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.9941298114626032\n", "The running loss is:\n", "32.47899427264929\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.7094207511920678\n", "The running loss is:\n", "15.767253905534744\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "0.8298554687123549\n", "The running loss is:\n", "14.174503304064274\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.7460264896875933\n", "The running loss is:\n", "12.41873462498188\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.6536176118411516\n", "The running loss is:\n", "11.58222109079361\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.6095905837259794\n", "The running loss is:\n", "11.454800620675087\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.6028842431934256\n", "The running loss is:\n", "10.778091475367546\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.5672679723877656\n", "The running loss is:\n", "11.654729049652815\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.6134067920869902\n", "The running loss is:\n", "11.17945396900177\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.5883923141579879\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.925244\n", "48 30755 ... 9.496317\n", "49 30756 ... 9.974865\n", "50 30757 ... 9.552412\n", "51 30758 ... 9.775986\n", "52 30759 ... 10.380938\n", "53 30760 ... 11.176371\n", "54 30761 ... 11.189506\n", "55 30762 ... 11.451692\n", "56 30763 ... 11.802545\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 47aj1nt6 \n", "\n", "wandb: Agent Starting Run: z76wnyg2 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: z76wnyg2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/z76wnyg2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.582077455706894\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "0.7291038727853447\n", "The running loss is:\n", "36.46464059967548\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.8232320299837739\n", "The running loss is:\n", "26.12745802849531\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.3063729014247656\n", "The running loss is:\n", "15.507666435092688\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "0.7753833217546344\n", "The running loss is:\n", "13.647030219435692\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.6823515109717846\n", "The running loss is:\n", "12.357491072267294\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.6178745536133647\n", "The running loss is:\n", "12.394297644495964\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.6197148822247982\n", "The running loss is:\n", "12.705570708960295\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.6352785354480147\n", "The running loss is:\n", "11.57705445960164\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.5788527229800821\n", "The running loss is:\n", "11.144980823621154\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.5572490411810577\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.404851\n", "48 30755 ... 12.857892\n", "49 30756 ... 12.778332\n", "50 30757 ... 13.997534\n", "51 30758 ... 15.216475\n", "52 30759 ... 16.760254\n", "53 30760 ... 17.938425\n", "54 30761 ... 19.327490\n", "55 30762 ... 20.218571\n", "56 30763 ... 20.834126\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: z76wnyg2 \n", "\n", "wandb: Agent Starting Run: e8mr8uwe with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: e8mr8uwe\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/e8mr8uwe
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.169267039746046\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.7457508968287393\n", "The running loss is:\n", "37.72724857926369\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.9856446620665098\n", "The running loss is:\n", "24.199124343693256\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.2736381233522767\n", "The running loss is:\n", "16.194256775081158\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.8523293039516399\n", "The running loss is:\n", "13.103187538683414\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.6896414494043902\n", "The running loss is:\n", "11.879832331091166\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.6252543332153245\n", "The running loss is:\n", "10.950798781588674\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.5763578306099302\n", "The running loss is:\n", "13.645143084228039\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.7181654254856863\n", "The running loss is:\n", "10.349268220365047\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.5446983273876341\n", "The running loss is:\n", "10.853834997862577\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.5712544735717145\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.738805\n", "48 30755 ... 9.343151\n", "49 30756 ... 9.593056\n", "50 30757 ... 7.918449\n", "51 30758 ... 7.861307\n", "52 30759 ... 8.376973\n", "53 30760 ... 9.427421\n", "54 30761 ... 9.342373\n", "55 30762 ... 9.391384\n", "56 30763 ... 9.584616\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: e8mr8uwe \n", "\n", "wandb: Agent Starting Run: s3zxbtg0 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: s3zxbtg0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/s3zxbtg0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.212389975786209\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.695388946094011\n", "The running loss is:\n", "38.891341254115105\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "2.0469126975850056\n", "The running loss is:\n", "29.096228800714016\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.5313804631954746\n", "The running loss is:\n", "16.55887496471405\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.8715197349849501\n", "The running loss is:\n", "14.256739430129528\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.7503547068489226\n", "The running loss is:\n", "12.388054355978966\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.6520028608409982\n", "The running loss is:\n", "10.843463119119406\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.5707085852168108\n", "The running loss is:\n", "10.851479662582278\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.571130508556962\n", "The running loss is:\n", "10.446336604654789\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.5498071897186732\n", "The running loss is:\n", "14.638044934719801\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.7704234176168316\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.673492\n", "48 30755 ... 10.855934\n", "49 30756 ... 11.532489\n", "50 30757 ... 10.763280\n", "51 30758 ... 11.245664\n", "52 30759 ... 12.068069\n", "53 30760 ... 13.055459\n", "54 30761 ... 12.345917\n", "55 30762 ... 13.218924\n", "56 30763 ... 13.677047\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: s3zxbtg0 \n", "\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Network error resolved after 0:00:14.038303, resuming normal operation.\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Starting Run: maiell3o with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: maiell3o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/maiell3o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.558507455512881\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.7662372345006779\n", "The running loss is:\n", "26.34476036950946\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.3865663352373399\n", "The running loss is:\n", "24.001122549176216\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.2632169762724323\n", "The running loss is:\n", "19.9936896674335\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0522994561807106\n", "The running loss is:\n", "17.85635165683925\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.939807981938908\n", "The running loss is:\n", "19.134501039981842\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.0070790021043075\n", "The running loss is:\n", "16.33119323849678\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.8595364862366727\n", "The running loss is:\n", "17.35211842507124\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9132693907932231\n", "The running loss is:\n", "16.150467596948147\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.850024610365692\n", "The running loss is:\n", "15.309038482606411\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.8057388675056005\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.779421\n", "48 30755 ... 8.413671\n", "49 30756 ... 8.781001\n", "50 30757 ... 7.955806\n", "51 30758 ... 6.871974\n", "52 30759 ... 6.721382\n", "53 30760 ... 6.816398\n", "54 30761 ... 7.125331\n", "55 30762 ... 6.847043\n", "56 30763 ... 6.823972\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: maiell3o \n", "\n", "wandb: Agent Starting Run: 1s257vao with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 1s257vao\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1s257vao
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.950616918504238\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.8395061536054862\n", "The running loss is:\n", "25.045804142951965\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.3182002180501033\n", "The running loss is:\n", "28.8318188264966\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.517464148762979\n", "The running loss is:\n", "20.126703716814518\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0593001956218167\n", "The running loss is:\n", "17.79351157695055\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.9365006093131868\n", "The running loss is:\n", "17.524609372019768\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.922347861685251\n", "The running loss is:\n", "18.517031900584698\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.9745806263465631\n", "The running loss is:\n", "16.52970390021801\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.8699844158009479\n", "The running loss is:\n", "15.491389200091362\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.8153362736890191\n", "The running loss is:\n", "16.75063694268465\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.8816124706676132\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.217892\n", "48 30755 ... 9.550221\n", "49 30756 ... 10.142497\n", "50 30757 ... 10.430239\n", "51 30758 ... 10.068516\n", "52 30759 ... 10.002805\n", "53 30760 ... 10.005158\n", "54 30761 ... 8.552078\n", "55 30762 ... 9.498129\n", "56 30763 ... 10.014200\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1s257vao \n", "\n", "wandb: Agent Starting Run: gdwm1mi5 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: gdwm1mi5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gdwm1mi5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "61.71031776070595\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "3.0855158880352973\n", "The running loss is:\n", "22.180610413313843\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.109030520665692\n", "The running loss is:\n", "23.172951824963093\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.1586475912481546\n", "The running loss is:\n", "18.153760477900505\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "0.9076880238950252\n", "The running loss is:\n", "17.846179999411106\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.8923089999705553\n", "The running loss is:\n", "16.6478939242661\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.832394696213305\n", "The running loss is:\n", "22.557837568223476\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.1278918784111738\n", "The running loss is:\n", "21.72391752898693\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.0861958764493465\n", "The running loss is:\n", "18.882404036819935\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.9441202018409968\n", "The running loss is:\n", "16.341234251856804\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.8170617125928402\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.028555\n", "48 30755 ... 10.223789\n", "49 30756 ... 10.591708\n", "50 30757 ... 12.109409\n", "51 30758 ... 10.868167\n", "52 30759 ... 10.671272\n", "53 30760 ... 10.249063\n", "54 30761 ... 9.258160\n", "55 30762 ... 10.242380\n", "56 30763 ... 10.538944\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gdwm1mi5 \n", "\n", "wandb: Agent Starting Run: w0lg5o37 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: w0lg5o37\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/w0lg5o37
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "41.49641283042729\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "2.1840217279172256\n", "The running loss is:\n", "19.970189593732357\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.0510626101964398\n", "The running loss is:\n", "24.242495357990265\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.275920808315277\n", "The running loss is:\n", "22.579135298728943\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.1883755420383655\n", "The running loss is:\n", "20.04605047404766\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.0550552881077717\n", "The running loss is:\n", "19.928060449659824\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.0488452868242013\n", "The running loss is:\n", "20.826875373721123\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.0961513354590064\n", "The running loss is:\n", "17.959194883704185\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9452207833528519\n", "The running loss is:\n", "19.45036144554615\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.0237032339761132\n", "The running loss is:\n", "19.660989113152027\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.034788900692212\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.188835\n", "48 30755 ... 10.382625\n", "49 30756 ... 10.807488\n", "50 30757 ... 10.160336\n", "51 30758 ... 10.386367\n", "52 30759 ... 10.618712\n", "53 30760 ... 10.833608\n", "54 30761 ... 10.601640\n", "55 30762 ... 10.604479\n", "56 30763 ... 10.606827\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: w0lg5o37 \n", "\n", "wandb: Agent Starting Run: y5e4tm4j with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: y5e4tm4j\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/y5e4tm4j
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "52.42885746061802\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "2.7594135505588433\n", "The running loss is:\n", "24.32117458432913\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.2800618202278489\n", "The running loss is:\n", "30.122551828622818\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.585397464664359\n", "The running loss is:\n", "20.29300230368972\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0680527528257746\n", "The running loss is:\n", "18.420647092163563\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.9695077416928191\n", "The running loss is:\n", "17.05812880396843\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.8977962528404436\n", "The running loss is:\n", "17.698757626116276\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.9315135592692777\n", "The running loss is:\n", "15.643727265298367\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.8233540665946508\n", "The running loss is:\n", "17.527575224637985\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.9225039591914729\n", "The running loss is:\n", "13.784894995391369\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.7255207892311247\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.834595\n", "48 30755 ... 10.046051\n", "49 30756 ... 10.053276\n", "50 30757 ... 9.926423\n", "51 30758 ... 9.764924\n", "52 30759 ... 10.050706\n", "53 30760 ... 10.521197\n", "54 30761 ... 10.678264\n", "55 30762 ... 10.684898\n", "56 30763 ... 10.683672\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: y5e4tm4j \n", "\n", "wandb: Agent Starting Run: yw3yr804 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: yw3yr804\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yw3yr804
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "23.151611974462867\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.2185058933927824\n", "The running loss is:\n", "24.21296002715826\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.2743663172188557\n", "The running loss is:\n", "14.147806107997894\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "0.7446213741051523\n", "The running loss is:\n", "11.688982851803303\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.6152096237791213\n", "The running loss is:\n", "11.189231188967824\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.588906904682517\n", "The running loss is:\n", "10.066100733820349\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.5297947754642289\n", "The running loss is:\n", "9.523541389033198\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.5012390204754315\n", "The running loss is:\n", "10.919814303517342\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.5747270686061758\n", "The running loss is:\n", "9.636709606507793\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.5071952424477786\n", "The running loss is:\n", "10.427344053983688\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.5488075817886152\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.963048\n", "48 30755 ... 7.921071\n", "49 30756 ... 7.497608\n", "50 30757 ... 7.718255\n", "51 30758 ... 7.543673\n", "52 30759 ... 7.132375\n", "53 30760 ... 6.909460\n", "54 30761 ... 6.758762\n", "55 30762 ... 6.579365\n", "56 30763 ... 6.642597\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yw3yr804 \n", "\n", "wandb: Agent Starting Run: sfugzwzq with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: sfugzwzq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/sfugzwzq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.778223261237144\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.0409591190124814\n", "The running loss is:\n", "32.143462881445885\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.6917612042866255\n", "The running loss is:\n", "16.04269601404667\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "0.8443524217919299\n", "The running loss is:\n", "14.474790960550308\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.7618311031868583\n", "The running loss is:\n", "12.12663073092699\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.6382437226803679\n", "The running loss is:\n", "11.022467166185379\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.5801298508518621\n", "The running loss is:\n", "10.14216186851263\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.5337979930796122\n", "The running loss is:\n", "10.681325320154428\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.5621750168502331\n", "The running loss is:\n", "11.375485748052597\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.5987097762132946\n", "The running loss is:\n", "9.121527703478932\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.4800804054462596\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.768013\n", "48 30755 ... 10.675665\n", "49 30756 ... 9.865327\n", "50 30757 ... 11.112760\n", "51 30758 ... 11.969445\n", "52 30759 ... 13.426899\n", "53 30760 ... 15.257719\n", "54 30761 ... 15.186352\n", "55 30762 ... 14.411901\n", "56 30763 ... 15.222851\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: sfugzwzq \n", "\n", "wandb: Agent Starting Run: zorqe447 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: zorqe447\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/zorqe447
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.629800878465176\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.0905444932480652\n", "The running loss is:\n", "25.255747854709625\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.4030971030394237\n", "The running loss is:\n", "15.05001075565815\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "0.836111708647675\n", "The running loss is:\n", "13.016271352767944\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.7231261862648858\n", "The running loss is:\n", "12.27754981070757\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.682086100594865\n", "The running loss is:\n", "11.391240701079369\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.6328467056155205\n", "The running loss is:\n", "11.72953286767006\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.6516407148705589\n", "The running loss is:\n", "11.442858997732401\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.6357143887629112\n", "The running loss is:\n", "12.431051224470139\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.6906139569150077\n", "The running loss is:\n", "11.048863388597965\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.6138257438109981\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.032237\n", "48 30755 ... 12.643246\n", "49 30756 ... 6.603610\n", "50 30757 ... 6.592432\n", "51 30758 ... 4.413502\n", "52 30759 ... 3.218659\n", "53 30760 ... 2.618341\n", "54 30761 ... 1.748638\n", "55 30762 ... 1.638597\n", "56 30763 ... 0.533958\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: zorqe447 \n", "\n", "wandb: Agent Starting Run: 3un1inbj with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 3un1inbj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3un1inbj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.982001293450594\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.7885263838658207\n", "The running loss is:\n", "33.174809351563454\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.7460425974507081\n", "The running loss is:\n", "21.882377948611975\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.151704102558525\n", "The running loss is:\n", "15.876857874915004\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.8356240986797371\n", "The running loss is:\n", "13.362504370510578\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.703289703711083\n", "The running loss is:\n", "10.210133947432041\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.5373754709174758\n", "The running loss is:\n", "10.241281794384122\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.5390148312833748\n", "The running loss is:\n", "9.936604705639184\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.5229791950336412\n", "The running loss is:\n", "11.438727487111464\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.6020382887953403\n", "The running loss is:\n", "12.369946470251307\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.651049814223753\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.245392\n", "48 30755 ... 14.129043\n", "49 30756 ... 13.174330\n", "50 30757 ... 13.520782\n", "51 30758 ... 14.763544\n", "52 30759 ... 15.160839\n", "53 30760 ... 15.549007\n", "54 30761 ... 15.544765\n", "55 30762 ... 15.403012\n", "56 30763 ... 15.567816\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3un1inbj \n", "\n", "wandb: Agent Starting Run: or2ftbf5 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: or2ftbf5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/or2ftbf5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.938185892999172\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.7335887312104827\n", "The running loss is:\n", "34.40718472003937\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.8109044589494403\n", "The running loss is:\n", "27.414366364479065\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.4428613876041614\n", "The running loss is:\n", "16.21256609261036\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.8532929522426504\n", "The running loss is:\n", "13.721442848443985\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.7221812025496834\n", "The running loss is:\n", "11.4379528388381\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.6019975178335842\n", "The running loss is:\n", "9.260038580745459\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.48737045161818204\n", "The running loss is:\n", "12.055675242096186\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.6345092232682203\n", "The running loss is:\n", "10.1099742539227\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.5321039081011948\n", "The running loss is:\n", "11.101317666471004\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.5842798771826845\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.715038\n", "48 30755 ... 13.290008\n", "49 30756 ... 10.847966\n", "50 30757 ... 12.697416\n", "51 30758 ... 13.276269\n", "52 30759 ... 14.771571\n", "53 30760 ... 17.032900\n", "54 30761 ... 16.310585\n", "55 30762 ... 14.025554\n", "56 30763 ... 16.796951\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: or2ftbf5 \n", "\n", "wandb: Agent Starting Run: qyjq7c0a with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: qyjq7c0a\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qyjq7c0a
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.219057638198137\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.7899476465665631\n", "The running loss is:\n", "32.766083881258965\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.8203379934032757\n", "The running loss is:\n", "22.88953396677971\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.2716407759322061\n", "The running loss is:\n", "15.694544300436974\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.871919127802054\n", "The running loss is:\n", "13.966531410813332\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.7759184117118517\n", "The running loss is:\n", "11.931890279054642\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.6628827932808135\n", "The running loss is:\n", "11.502507656812668\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.6390282031562593\n", "The running loss is:\n", "10.604379296302795\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.589132183127933\n", "The running loss is:\n", "12.21282433718443\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.6784902409546905\n", "The running loss is:\n", "11.869370594620705\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.6594094774789281\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.175922\n", "48 30755 ... 10.767483\n", "49 30756 ... 4.415483\n", "50 30757 ... 6.104957\n", "51 30758 ... 4.019737\n", "52 30759 ... 3.290065\n", "53 30760 ... 3.420416\n", "54 30761 ... 1.564515\n", "55 30762 ... -3.665913\n", "56 30763 ... -0.584266\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qyjq7c0a \n", "\n", "wandb: Agent Starting Run: e7l2v3n1 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: e7l2v3n1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/e7l2v3n1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.939907671883702\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.7863109300991422\n", "The running loss is:\n", "27.58423702418804\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.451801948641476\n", "The running loss is:\n", "21.350735876709223\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.1237229408794327\n", "The running loss is:\n", "22.028746308758855\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.1594077004609924\n", "The running loss is:\n", "20.440568597987294\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.0758193998940682\n", "The running loss is:\n", "18.65727076679468\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.9819616193049833\n", "The running loss is:\n", "19.96857689321041\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.0509777312216007\n", "The running loss is:\n", "18.768428467214108\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9878120245902162\n", "The running loss is:\n", "18.98760063573718\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.9993474018809042\n", "The running loss is:\n", "18.08189932629466\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.9516789119102453\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.355700\n", "48 30755 ... 11.807974\n", "49 30756 ... 11.397798\n", "50 30757 ... 11.411679\n", "51 30758 ... 11.352333\n", "52 30759 ... 11.283925\n", "53 30760 ... 11.236071\n", "54 30761 ... 11.371363\n", "55 30762 ... 11.656288\n", "56 30763 ... 11.443694\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: e7l2v3n1 \n", "\n", "wandb: Agent Starting Run: tzqyy8oc with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: tzqyy8oc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/tzqyy8oc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.767386704683304\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.882494037088595\n", "The running loss is:\n", "23.7237149477005\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.2486165761947632\n", "The running loss is:\n", "21.810965567827225\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.147945556201433\n", "The running loss is:\n", "21.628697000443935\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.1383524737075756\n", "The running loss is:\n", "18.608572021126747\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.9793985274277235\n", "The running loss is:\n", "17.807227961719036\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.937222524301002\n", "The running loss is:\n", "16.818491958081722\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.885183787267459\n", "The running loss is:\n", "17.390442237257957\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9152864335398925\n", "The running loss is:\n", "16.504042580723763\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.8686338200380928\n", "The running loss is:\n", "14.063714668154716\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.7401955088502482\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 17.209160\n", "48 30755 ... 21.750385\n", "49 30756 ... 16.280861\n", "50 30757 ... 16.302153\n", "51 30758 ... 18.620329\n", "52 30759 ... 20.607368\n", "53 30760 ... 19.939861\n", "54 30761 ... 21.928680\n", "55 30762 ... 21.918089\n", "56 30763 ... 22.155098\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: tzqyy8oc \n", "\n", "wandb: Agent Starting Run: y09gepr6 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: y09gepr6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/y09gepr6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.607820570468903\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.8671011428038279\n", "The running loss is:\n", "21.899810507893562\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.2166561393274202\n", "The running loss is:\n", "23.761934000998735\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3201074444999297\n", "The running loss is:\n", "16.91294802725315\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.9396082237362862\n", "The running loss is:\n", "18.267082534730434\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0148379185961351\n", "The running loss is:\n", "17.08760144561529\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9493111914230717\n", "The running loss is:\n", "15.896970629692078\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.8831650349828932\n", "The running loss is:\n", "17.839499786496162\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9910833214720091\n", "The running loss is:\n", "16.226146705448627\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.901452594747146\n", "The running loss is:\n", "15.652418322861195\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8695787957145108\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.320057\n", "48 30755 ... 13.447205\n", "49 30756 ... 9.804661\n", "50 30757 ... 9.939509\n", "51 30758 ... 10.391244\n", "52 30759 ... 10.271468\n", "53 30760 ... 10.242510\n", "54 30761 ... 9.979496\n", "55 30762 ... 9.834205\n", "56 30763 ... 9.926790\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: y09gepr6 \n", "\n", "wandb: Agent Starting Run: cbzex9pt with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: cbzex9pt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cbzex9pt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "47.5149762108922\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "2.500788221625905\n", "The running loss is:\n", "22.905585899949074\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.2055571526288986\n", "The running loss is:\n", "24.01019530929625\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.2636944899629605\n", "The running loss is:\n", "23.0567737929523\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.213514410155384\n", "The running loss is:\n", "26.211633875966072\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.3795596776824248\n", "The running loss is:\n", "20.059789837221615\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.0557784124853482\n", "The running loss is:\n", "18.259545739740133\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.9610287231442175\n", "The running loss is:\n", "20.72789303958416\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.090941738925482\n", "The running loss is:\n", "23.105668414384127\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.216087811283375\n", "The running loss is:\n", "20.80936250090599\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.0952296053108417\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.992377\n", "48 30755 ... 10.127301\n", "49 30756 ... 10.745222\n", "50 30757 ... 10.946898\n", "51 30758 ... 11.551901\n", "52 30759 ... 11.699575\n", "53 30760 ... 11.576552\n", "54 30761 ... 11.900595\n", "55 30762 ... 10.091677\n", "56 30763 ... 11.018733\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cbzex9pt \n", "\n", "wandb: Agent Starting Run: y92u1zia with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: y92u1zia\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/y92u1zia
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "60.506285328418016\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "3.1845413330746326\n", "The running loss is:\n", "22.747136116027832\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.1972176903172542\n", "The running loss is:\n", "22.141358107328415\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.1653346372278113\n", "The running loss is:\n", "20.66910433769226\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0878475967206453\n", "The running loss is:\n", "21.232126966118813\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.1174803666378323\n", "The running loss is:\n", "19.210107535123825\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.0110582913223065\n", "The running loss is:\n", "16.590289562940598\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.8731731348916104\n", "The running loss is:\n", "15.67080619931221\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.8247792736480111\n", "The running loss is:\n", "14.635391503572464\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.7702837633459192\n", "The running loss is:\n", "12.694482833147049\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.668130675428792\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.763491\n", "48 30755 ... 12.762318\n", "49 30756 ... 10.953236\n", "50 30757 ... 11.089784\n", "51 30758 ... 10.986698\n", "52 30759 ... 11.406321\n", "53 30760 ... 12.214860\n", "54 30761 ... 12.406092\n", "55 30762 ... 12.407260\n", "56 30763 ... 12.401293\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: y92u1zia \n", "\n", "wandb: Agent Starting Run: 7tyjl8ck with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 7tyjl8ck\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/7tyjl8ck
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "51.1738221719861\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "2.8429901206658945\n", "The running loss is:\n", "20.108996018767357\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.1171664454870753\n", "The running loss is:\n", "20.94754420220852\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.163752455678251\n", "The running loss is:\n", "19.241921558976173\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.068995642165343\n", "The running loss is:\n", "19.614308521151543\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0896838067306414\n", "The running loss is:\n", "18.551492542028427\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.0306384745571349\n", "The running loss is:\n", "17.22895458340645\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9571641435225805\n", "The running loss is:\n", "16.789826542139053\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9327681412299474\n", "The running loss is:\n", "15.875566244125366\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.8819759024514092\n", "The running loss is:\n", "16.926526993513107\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.9403626107507281\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.480230\n", "48 30755 ... 13.879719\n", "49 30756 ... 13.271286\n", "50 30757 ... 13.021132\n", "51 30758 ... 13.106910\n", "52 30759 ... 13.234471\n", "53 30760 ... 13.401170\n", "54 30761 ... 13.149764\n", "55 30762 ... 12.935968\n", "56 30763 ... 13.315945\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 7tyjl8ck \n", "\n", "wandb: Agent Starting Run: xtufua36 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: xtufua36\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xtufua36
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.662442736327648\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.9822338282277709\n", "The running loss is:\n", "32.4536609929055\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.7080874206792367\n", "The running loss is:\n", "16.78804411087185\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "0.8835812689932553\n", "The running loss is:\n", "13.13648857921362\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.6913941357480852\n", "The running loss is:\n", "11.167816616594791\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.5877798219260416\n", "The running loss is:\n", "9.475702971220016\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.4987212090115798\n", "The running loss is:\n", "9.611646829172969\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.5058761489038405\n", "The running loss is:\n", "8.849040357898048\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.4657389662051604\n", "The running loss is:\n", "10.830722641199827\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.5700380337473593\n", "The running loss is:\n", "8.893724239896983\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.46809074946826223\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.932547\n", "48 30755 ... 13.332523\n", "49 30756 ... 16.218235\n", "50 30757 ... 13.282401\n", "51 30758 ... 13.402158\n", "52 30759 ... 13.695475\n", "53 30760 ... 16.110184\n", "54 30761 ... 15.520673\n", "55 30762 ... 16.442516\n", "56 30763 ... 18.135046\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xtufua36 \n", "\n", "wandb: Agent Starting Run: 6q31wbqt with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 6q31wbqt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6q31wbqt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.809781923890114\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.9338767735494508\n", "The running loss is:\n", "31.100095892790705\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.7277831051550392\n", "The running loss is:\n", "14.82688376866281\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "0.8237157649257116\n", "The running loss is:\n", "12.923846289515495\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.7179914605286386\n", "The running loss is:\n", "10.198259711265564\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.566569983959198\n", "The running loss is:\n", "9.777777466922998\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.5432098592735\n", "The running loss is:\n", "8.726226492086425\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.4847903606714681\n", "The running loss is:\n", "9.029325045645237\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.5016291692025132\n", "The running loss is:\n", "9.306042216718197\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.5170023453732332\n", "The running loss is:\n", "9.190385576337576\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.5105769764631987\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.777914\n", "48 30755 ... 12.234770\n", "49 30756 ... 12.906726\n", "50 30757 ... 9.613279\n", "51 30758 ... 10.035604\n", "52 30759 ... 10.181870\n", "53 30760 ... 11.437014\n", "54 30761 ... 11.337413\n", "55 30762 ... 11.397779\n", "56 30763 ... 11.538319\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6q31wbqt \n", "\n", "wandb: Agent Starting Run: piuk49km with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: piuk49km\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/piuk49km
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.207939341664314\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.067107741203573\n", "The running loss is:\n", "26.95139818638563\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.4972998992436461\n", "The running loss is:\n", "15.8444182574749\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "0.8802454587486055\n", "The running loss is:\n", "13.982900321483612\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.7768277956379784\n", "The running loss is:\n", "12.15248690545559\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.6751381614141994\n", "The running loss is:\n", "11.28390198200941\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.6268834434449673\n", "The running loss is:\n", "11.802641343325377\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.6557022968514098\n", "The running loss is:\n", "10.794923435896635\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.5997179686609242\n", "The running loss is:\n", "11.76518764346838\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.6536215357482433\n", "The running loss is:\n", "11.923004761338234\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.6623891534076797\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.162495\n", "48 30755 ... 7.129919\n", "49 30756 ... 9.476668\n", "50 30757 ... 4.542667\n", "51 30758 ... 4.005393\n", "52 30759 ... 0.559879\n", "53 30760 ... -1.379381\n", "54 30761 ... -2.445561\n", "55 30762 ... -2.441918\n", "56 30763 ... -2.303915\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: piuk49km \n", "\n", "wandb: Agent Starting Run: zh6e9hk0 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: zh6e9hk0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/zh6e9hk0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.526742728427052\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.7645654067593185\n", "The running loss is:\n", "30.84717154005193\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.6235353442132596\n", "The running loss is:\n", "26.77706977725029\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.4093194619605416\n", "The running loss is:\n", "15.642113384790719\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.823269125515301\n", "The running loss is:\n", "11.526011761277914\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.6066321979619955\n", "The running loss is:\n", "10.011572066694498\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.5269248456154999\n", "The running loss is:\n", "10.000060603022575\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.5263189791064513\n", "The running loss is:\n", "8.50434441305697\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.44759707437141943\n", "The running loss is:\n", "9.07707198522985\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.47774063080157103\n", "The running loss is:\n", "7.321829241234809\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.3853594337492005\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.666120\n", "48 30755 ... 9.921270\n", "49 30756 ... 16.465700\n", "50 30757 ... 12.533557\n", "51 30758 ... 12.186483\n", "52 30759 ... 11.201939\n", "53 30760 ... 10.682373\n", "54 30761 ... 9.363009\n", "55 30762 ... 11.541510\n", "56 30763 ... 17.120123\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: zh6e9hk0 \n", "\n", "wandb: Agent Starting Run: 2p9wj7al with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 2p9wj7al\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2p9wj7al
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.093412643298507\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.6718562579610281\n", "The running loss is:\n", "31.850913926959038\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.769495218164391\n", "The running loss is:\n", "24.548495411872864\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3638053006596036\n", "The running loss is:\n", "14.259857133030891\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.7922142851683829\n", "The running loss is:\n", "11.60143318399787\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.6445240657776594\n", "The running loss is:\n", "10.158630147576332\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.5643683415320184\n", "The running loss is:\n", "10.024041716009378\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.5568912064449655\n", "The running loss is:\n", "10.450636763125658\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.5805909312847588\n", "The running loss is:\n", "12.88908988237381\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.7160605490207672\n", "The running loss is:\n", "9.649638891220093\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.5360910495122274\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.349866\n", "48 30755 ... 12.485463\n", "49 30756 ... 14.009510\n", "50 30757 ... 5.725533\n", "51 30758 ... 5.484777\n", "52 30759 ... 4.383102\n", "53 30760 ... 4.634890\n", "54 30761 ... 4.904810\n", "55 30762 ... 5.281286\n", "56 30763 ... 0.289950\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2p9wj7al \n", "\n", "wandb: Agent Starting Run: miih8z8l with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: miih8z8l\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/miih8z8l
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.902076788246632\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.772337599347035\n", "The running loss is:\n", "30.734783306717873\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.7074879614843264\n", "The running loss is:\n", "24.098938152194023\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3388298973441124\n", "The running loss is:\n", "16.15599799156189\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.8975554439756606\n", "The running loss is:\n", "14.88480393588543\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.8269335519936349\n", "The running loss is:\n", "13.353974744677544\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.7418874858154191\n", "The running loss is:\n", "13.012045174837112\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.7228913986020618\n", "The running loss is:\n", "11.28533148765564\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.6269628604253134\n", "The running loss is:\n", "11.091172754764557\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.6161762641535865\n", "The running loss is:\n", "14.631795093417168\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8128775051898427\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.164349\n", "48 30755 ... 9.647461\n", "49 30756 ... 11.834938\n", "50 30757 ... 8.905302\n", "51 30758 ... 8.214365\n", "52 30759 ... 8.132830\n", "53 30760 ... 8.303577\n", "54 30761 ... 7.712473\n", "55 30762 ... 8.126958\n", "56 30763 ... 9.033283\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: miih8z8l \n", "\n", "wandb: Agent Starting Run: 3x0ouo97 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 3x0ouo97\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3x0ouo97
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.53110232204199\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.080584332739052\n", "The running loss is:\n", "22.649866599589586\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.1920982420836623\n", "The running loss is:\n", "20.07614903151989\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.0566394227115732\n", "The running loss is:\n", "21.142045558430254\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.1127392399173819\n", "The running loss is:\n", "14.569156531244516\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.766797712170764\n", "The running loss is:\n", "13.339449528604746\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.7020762909791971\n", "The running loss is:\n", "11.777572210878134\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.619872221625165\n", "The running loss is:\n", "16.930491030216217\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.8910784752745378\n", "The running loss is:\n", "13.112162977457047\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.6901138409187919\n", "The running loss is:\n", "11.765430979430676\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.6192332094437197\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.341544\n", "48 30755 ... 13.739527\n", "49 30756 ... 16.690649\n", "50 30757 ... 11.087149\n", "51 30758 ... 10.845184\n", "52 30759 ... 10.669495\n", "53 30760 ... 11.297999\n", "54 30761 ... 10.704900\n", "55 30762 ... 11.647568\n", "56 30763 ... 6.396082\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3x0ouo97 \n", "\n", "wandb: Agent Starting Run: 8zvt4j88 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 8zvt4j88\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8zvt4j88
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.847276613116264\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.9359598118397925\n", "The running loss is:\n", "22.086317025125027\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.2270176125069459\n", "The running loss is:\n", "21.75656918808818\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.208698288227121\n", "The running loss is:\n", "20.252290658652782\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.1251272588140435\n", "The running loss is:\n", "17.040222689509392\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9466790383060774\n", "The running loss is:\n", "16.73467853665352\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9297043631474177\n", "The running loss is:\n", "15.817666858434677\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.8787592699130377\n", "The running loss is:\n", "17.491646096110344\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9717581164505746\n", "The running loss is:\n", "14.300822883844376\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.7944901602135764\n", "The running loss is:\n", "14.148024834692478\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.7860013797051377\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.154796\n", "48 30755 ... 9.414880\n", "49 30756 ... 9.848639\n", "50 30757 ... 7.001806\n", "51 30758 ... 7.194446\n", "52 30759 ... 6.755281\n", "53 30760 ... 7.121027\n", "54 30761 ... 6.964331\n", "55 30762 ... 6.581292\n", "56 30763 ... 5.964928\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8zvt4j88 \n", "\n", "wandb: Agent Starting Run: codhaw7z with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: codhaw7z\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/codhaw7z
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.63626703619957\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.9242370575666428\n", "The running loss is:\n", "21.218304097652435\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.1787946720918019\n", "The running loss is:\n", "20.293749123811722\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.127430506878429\n", "The running loss is:\n", "19.309033408761024\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.0727240782645013\n", "The running loss is:\n", "17.63574704527855\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9797637247376971\n", "The running loss is:\n", "16.501740634441376\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9167633685800765\n", "The running loss is:\n", "16.07330948114395\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.8929616378413306\n", "The running loss is:\n", "14.988985002040863\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.8327213890022702\n", "The running loss is:\n", "15.27691513299942\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.8487175073888567\n", "The running loss is:\n", "15.855083525180817\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8808379736211565\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.524234\n", "48 30755 ... 11.504997\n", "49 30756 ... 11.519807\n", "50 30757 ... 11.319865\n", "51 30758 ... 11.301481\n", "52 30759 ... 11.427913\n", "53 30760 ... 11.322249\n", "54 30761 ... 11.377673\n", "55 30762 ... 11.367601\n", "56 30763 ... 11.353683\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: codhaw7z \n", "\n", "wandb: Agent Starting Run: 3tphqgn9 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 3tphqgn9\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3tphqgn9
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "89.16724638454616\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "4.693012967607693\n", "The running loss is:\n", "26.253339409828186\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.381754705780431\n", "The running loss is:\n", "22.28419649042189\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.17285244686431\n", "The running loss is:\n", "20.892348155379295\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0995972713357525\n", "The running loss is:\n", "16.460732923820615\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.8663543644116113\n", "The running loss is:\n", "18.3472553268075\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.9656450172003946\n", "The running loss is:\n", "15.07598640746437\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.7934729688139143\n", "The running loss is:\n", "17.23325503244996\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9070134227605242\n", "The running loss is:\n", "16.722626268863678\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.8801382246770357\n", "The running loss is:\n", "13.728390574455261\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.7225468723397506\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.590704\n", "48 30755 ... 13.399076\n", "49 30756 ... 13.402116\n", "50 30757 ... 12.507936\n", "51 30758 ... 12.685381\n", "52 30759 ... 12.882812\n", "53 30760 ... 12.423203\n", "54 30761 ... 12.690681\n", "55 30762 ... 12.690515\n", "56 30763 ... 12.690374\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3tphqgn9 \n", "\n", "wandb: Agent Starting Run: xuut9khr with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: xuut9khr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xuut9khr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "68.00627230107784\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "3.778126238948769\n", "The running loss is:\n", "19.79006164520979\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.0994478691783216\n", "The running loss is:\n", "17.850837409496307\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "0.9917131894164615\n", "The running loss is:\n", "24.54628086835146\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.36368227046397\n", "The running loss is:\n", "21.807621747255325\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.2115345415141847\n", "The running loss is:\n", "16.156769186258316\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.897598288125462\n", "The running loss is:\n", "15.531101047992706\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.8628389471107059\n", "The running loss is:\n", "15.293164731934667\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.8496202628852593\n", "The running loss is:\n", "14.162357330322266\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.7867976294623481\n", "The running loss is:\n", "13.308439128100872\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.7393577293389373\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.417884\n", "48 30755 ... 11.351794\n", "49 30756 ... 11.415997\n", "50 30757 ... 10.585990\n", "51 30758 ... 10.834534\n", "52 30759 ... 10.455210\n", "53 30760 ... 10.706393\n", "54 30761 ... 10.487299\n", "55 30762 ... 10.475573\n", "56 30763 ... 10.091512\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xuut9khr \n", "\n", "wandb: Agent Starting Run: opcbv3h4 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: opcbv3h4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/opcbv3h4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "55.38436781615019\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "3.076909323119455\n", "The running loss is:\n", "20.806777961552143\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.155932108975119\n", "The running loss is:\n", "18.307716690003872\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.0170953716668818\n", "The running loss is:\n", "18.69004149734974\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.0383356387416522\n", "The running loss is:\n", "19.871280409395695\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.1039600227442052\n", "The running loss is:\n", "17.01835998892784\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9454644438293245\n", "The running loss is:\n", "16.486702501773834\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.915927916765213\n", "The running loss is:\n", "16.326455369591713\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9070252983106507\n", "The running loss is:\n", "16.18179951608181\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.898988862004545\n", "The running loss is:\n", "15.756254091858864\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8753474495477147\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.574912\n", "48 30755 ... 11.343673\n", "49 30756 ... 10.713832\n", "50 30757 ... 9.781120\n", "51 30758 ... 9.948353\n", "52 30759 ... 10.150012\n", "53 30760 ... 9.753569\n", "54 30761 ... 9.639825\n", "55 30762 ... 9.856399\n", "56 30763 ... 9.539119\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: opcbv3h4 \n", "\n", "wandb: Agent Starting Run: payrwmn7 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: payrwmn7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/payrwmn7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.764818392693996\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.7091565773718886\n", "The running loss is:\n", "41.29002905637026\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "2.293890503131681\n", "The running loss is:\n", "17.83612199127674\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "0.9908956661820412\n", "The running loss is:\n", "16.420202357694507\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.9122334643163614\n", "The running loss is:\n", "12.88229051977396\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.7156828066541089\n", "The running loss is:\n", "11.19569367915392\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.6219829821752177\n", "The running loss is:\n", "10.120619802735746\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.5622566557075415\n", "The running loss is:\n", "9.58696399955079\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.5326091110861549\n", "The running loss is:\n", "8.832727583125234\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.4907070879514019\n", "The running loss is:\n", "8.69556760089472\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.48308708893859553\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.861172\n", "48 30755 ... 11.517205\n", "49 30756 ... 11.780841\n", "50 30757 ... 11.693560\n", "51 30758 ... 8.127285\n", "52 30759 ... 8.260897\n", "53 30760 ... 8.410134\n", "54 30761 ... 8.223893\n", "55 30762 ... 8.788653\n", "56 30763 ... 8.309381\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: payrwmn7 \n", "\n", "wandb: Agent Starting Run: yzkklixg with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: yzkklixg\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yzkklixg
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.693578988313675\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.8163099437952042\n", "The running loss is:\n", "35.63161541521549\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.979534189734194\n", "The running loss is:\n", "16.785623099654913\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "0.9325346166474952\n", "The running loss is:\n", "15.402808114886284\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.8557115619381269\n", "The running loss is:\n", "12.666369892656803\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.7036872162587113\n", "The running loss is:\n", "11.15108098834753\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.6195044993526406\n", "The running loss is:\n", "10.014611192047596\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.5563672884470887\n", "The running loss is:\n", "9.563246592879295\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.5312914773821831\n", "The running loss is:\n", "9.08486569300294\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.5047147607223855\n", "The running loss is:\n", "9.686499211937189\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.5381388451076217\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.070226\n", "48 30755 ... 6.394022\n", "49 30756 ... 7.502196\n", "50 30757 ... 8.509747\n", "51 30758 ... 3.066005\n", "52 30759 ... 2.097596\n", "53 30760 ... -1.188965\n", "54 30761 ... -2.204936\n", "55 30762 ... -1.965081\n", "56 30763 ... -2.326006\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yzkklixg \n", "\n", "wandb: Agent Starting Run: qgblb6h1 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: qgblb6h1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qgblb6h1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.94256365299225\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.9966213913524852\n", "The running loss is:\n", "25.57343617081642\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.5043197747539072\n", "The running loss is:\n", "13.54184927791357\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "0.7965793692890335\n", "The running loss is:\n", "12.523482795804739\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.7366754585767493\n", "The running loss is:\n", "10.940785882994533\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.643575640176149\n", "The running loss is:\n", "10.1965466234833\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.5997968602049\n", "The running loss is:\n", "9.783029923215508\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.5754723484244417\n", "The running loss is:\n", "9.331181142479181\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.5488930083811283\n", "The running loss is:\n", "8.621533285826445\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.5071490168133203\n", "The running loss is:\n", "9.149149924516678\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.5381852896774516\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.083263\n", "48 30755 ... 6.330942\n", "49 30756 ... 6.745354\n", "50 30757 ... 6.260278\n", "51 30758 ... 2.354475\n", "52 30759 ... 1.357481\n", "53 30760 ... -2.238031\n", "54 30761 ... -3.122238\n", "55 30762 ... -3.426826\n", "56 30763 ... -3.572912\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qgblb6h1 \n", "\n", "wandb: Agent Starting Run: f9x7y7pi with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: f9x7y7pi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/f9x7y7pi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.917671071365476\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.773203948409193\n", "The running loss is:\n", "32.96171744167805\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.8312065245376692\n", "The running loss is:\n", "28.98233161121607\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.6101295339564483\n", "The running loss is:\n", "15.695902362465858\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.8719945756925477\n", "The running loss is:\n", "13.521882995963097\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.7512157219979498\n", "The running loss is:\n", "10.357533072587103\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.5754185040326169\n", "The running loss is:\n", "10.813971852883697\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.6007762140490942\n", "The running loss is:\n", "9.83951736614108\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.5466398536745045\n", "The running loss is:\n", "7.9957271702587605\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.44420706501437557\n", "The running loss is:\n", "9.712909625843167\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.5396060903246204\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.825358\n", "48 30755 ... 8.746976\n", "49 30756 ... 8.922942\n", "50 30757 ... 9.659204\n", "51 30758 ... 3.814860\n", "52 30759 ... 2.959181\n", "53 30760 ... 1.246872\n", "54 30761 ... 2.002126\n", "55 30762 ... 2.633024\n", "56 30763 ... 2.873677\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: f9x7y7pi \n", "\n", "wandb: Agent Starting Run: 582syw3h with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 582syw3h\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/582syw3h
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.806585595011711\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.7114769775006506\n", "The running loss is:\n", "30.424656696617603\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.6902587053676446\n", "The running loss is:\n", "26.228094905614853\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.4571163836452696\n", "The running loss is:\n", "15.915115505456924\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.8841730836364958\n", "The running loss is:\n", "13.321218777447939\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.7400677098582188\n", "The running loss is:\n", "12.429280959069729\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.6905156088372072\n", "The running loss is:\n", "10.585802391171455\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.5881001328428587\n", "The running loss is:\n", "10.051417954266071\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.5584121085703373\n", "The running loss is:\n", "10.791548609733582\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.5995304783185323\n", "The running loss is:\n", "10.503232896327972\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.5835129386848874\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.806384\n", "48 30755 ... 9.270082\n", "49 30756 ... 9.476368\n", "50 30757 ... 11.667879\n", "51 30758 ... 7.077388\n", "52 30759 ... 7.040015\n", "53 30760 ... 6.562690\n", "54 30761 ... 6.141752\n", "55 30762 ... 7.215327\n", "56 30763 ... 6.751134\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 582syw3h \n", "\n", "wandb: Agent Starting Run: rb2iuxuw with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: rb2iuxuw\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/rb2iuxuw
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.165790781378746\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.7156347518458086\n", "The running loss is:\n", "27.170376665890217\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.5982574509347187\n", "The running loss is:\n", "21.744665786623955\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.279097987448468\n", "The running loss is:\n", "13.72632198035717\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.8074307047268924\n", "The running loss is:\n", "12.807656642049551\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.7533915671793854\n", "The running loss is:\n", "11.399554572999477\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.6705620337058517\n", "The running loss is:\n", "10.820783462375402\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.6365166742573766\n", "The running loss is:\n", "10.212848238646984\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.6007557787439403\n", "The running loss is:\n", "9.258121870458126\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.5445954041445956\n", "The running loss is:\n", "10.42987996339798\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.6135223507881165\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.905188\n", "48 30755 ... 7.925228\n", "49 30756 ... 7.197696\n", "50 30757 ... 6.468437\n", "51 30758 ... 3.872510\n", "52 30759 ... 3.471162\n", "53 30760 ... 2.644137\n", "54 30761 ... 0.842908\n", "55 30762 ... 1.020092\n", "56 30763 ... 0.611532\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: rb2iuxuw \n", "\n", "wandb: Agent Starting Run: q8pk37k7 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: q8pk37k7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/q8pk37k7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "25.0777577906847\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.39320876614915\n", "The running loss is:\n", "29.13719865679741\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.618733258710967\n", "The running loss is:\n", "27.344745717942715\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.5191525398857064\n", "The running loss is:\n", "28.274847473949194\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.570824859663844\n", "The running loss is:\n", "13.97701994329691\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.7765011079609394\n", "The running loss is:\n", "12.554442692548037\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.697469038474891\n", "The running loss is:\n", "13.142991535365582\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.730166196409199\n", "The running loss is:\n", "14.788394697010517\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.821577483167251\n", "The running loss is:\n", "14.111675955122337\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.7839819975067965\n", "The running loss is:\n", "12.757243922678754\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.708735773482153\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.673750\n", "48 30755 ... 8.759176\n", "49 30756 ... 11.605460\n", "50 30757 ... 12.306805\n", "51 30758 ... 9.116247\n", "52 30759 ... 8.930177\n", "53 30760 ... 8.762095\n", "54 30761 ... 8.338878\n", "55 30762 ... 8.324352\n", "56 30763 ... 8.409344\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: q8pk37k7 \n", "\n", "wandb: Agent Starting Run: yuaoe3t1 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: yuaoe3t1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yuaoe3t1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.664488945156336\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.092471608064241\n", "The running loss is:\n", "24.840459644794464\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.3800255358219147\n", "The running loss is:\n", "24.18926414847374\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3438480082485411\n", "The running loss is:\n", "22.759043589234352\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.2643913105130196\n", "The running loss is:\n", "18.388007149100304\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0215559527277946\n", "The running loss is:\n", "17.054414674639702\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9474674819244279\n", "The running loss is:\n", "16.19636530429125\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.8997980724606249\n", "The running loss is:\n", "16.092383541166782\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.894021307842599\n", "The running loss is:\n", "16.495493300259113\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.9164162944588397\n", "The running loss is:\n", "14.59353306889534\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8107518371608522\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.460387\n", "48 30755 ... 11.318052\n", "49 30756 ... 11.491536\n", "50 30757 ... 11.200739\n", "51 30758 ... 7.772702\n", "52 30759 ... 7.833028\n", "53 30760 ... 8.080965\n", "54 30761 ... 7.146588\n", "55 30762 ... 7.603038\n", "56 30763 ... 7.158749\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yuaoe3t1 \n", "\n", "wandb: Agent Starting Run: msnqy4jq with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: msnqy4jq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/msnqy4jq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.602887228131294\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.9178168957724291\n", "The running loss is:\n", "20.492954045534134\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.2054678850314196\n", "The running loss is:\n", "18.17607271671295\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.0691807480419384\n", "The running loss is:\n", "17.942578546702862\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.0554457968648743\n", "The running loss is:\n", "15.375115282833576\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.9044185460490339\n", "The running loss is:\n", "14.95146494358778\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.8794979378581047\n", "The running loss is:\n", "14.935466520488262\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.8785568541463684\n", "The running loss is:\n", "13.655654460191727\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.8032737917759839\n", "The running loss is:\n", "13.988929450511932\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.8228782029712901\n", "The running loss is:\n", "12.398067966103554\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.7292981156531502\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.182483\n", "48 30755 ... 11.828949\n", "49 30756 ... 9.899583\n", "50 30757 ... 5.444458\n", "51 30758 ... 6.187648\n", "52 30759 ... 5.976255\n", "53 30760 ... 5.439822\n", "54 30761 ... 4.073036\n", "55 30762 ... 4.531176\n", "56 30763 ... 2.037996\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: msnqy4jq \n", "\n", "wandb: Agent Starting Run: 28zecqnv with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 28zecqnv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/28zecqnv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "132.11954160500318\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "7.339974533611287\n", "The running loss is:\n", "33.18467270210385\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.8435929278946586\n", "The running loss is:\n", "15.044109242036939\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "0.83578384677983\n", "The running loss is:\n", "32.12868493422866\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.784926940790481\n", "The running loss is:\n", "16.458579962607473\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9143655534781929\n", "The running loss is:\n", "16.18535217642784\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.8991862320237689\n", "The running loss is:\n", "13.845332082360983\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.7691851156867213\n", "The running loss is:\n", "18.111790597438812\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.0062105887466006\n", "The running loss is:\n", "15.37386241927743\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.854103467737635\n", "The running loss is:\n", "14.108973555266857\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.7838318641814921\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.096198\n", "48 30755 ... 6.123454\n", "49 30756 ... 17.012180\n", "50 30757 ... 18.440594\n", "51 30758 ... 15.032338\n", "52 30759 ... 14.862954\n", "53 30760 ... 14.920713\n", "54 30761 ... 14.467838\n", "55 30762 ... 14.409379\n", "56 30763 ... 17.330112\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 28zecqnv \n", "\n", "wandb: Agent Starting Run: wyy0ykxe with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: wyy0ykxe\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/wyy0ykxe
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "92.95915368199348\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "5.164397426777416\n", "The running loss is:\n", "22.1982841193676\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.2332380066315334\n", "The running loss is:\n", "14.565131276845932\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "0.809173959824774\n", "The running loss is:\n", "27.13835011422634\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.5076861174570189\n", "The running loss is:\n", "19.970424134284258\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.1094680074602365\n", "The running loss is:\n", "16.359486132860184\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9088603407144547\n", "The running loss is:\n", "15.630101136863232\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.8683389520479573\n", "The running loss is:\n", "14.64559318125248\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.8136440656251378\n", "The running loss is:\n", "16.040196174755692\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.8911220097086496\n", "The running loss is:\n", "15.461667504161596\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8589815280089775\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.144684\n", "48 30755 ... 8.574534\n", "49 30756 ... 11.426785\n", "50 30757 ... 10.841069\n", "51 30758 ... 10.581007\n", "52 30759 ... 10.608530\n", "53 30760 ... 11.141614\n", "54 30761 ... 10.802588\n", "55 30762 ... 10.750504\n", "56 30763 ... 10.328904\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: wyy0ykxe \n", "\n", "wandb: Agent Starting Run: 00dey2s4 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 00dey2s4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/00dey2s4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "61.90179131925106\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "3.641281842308886\n", "The running loss is:\n", "19.271656930446625\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.1336268782615662\n", "The running loss is:\n", "19.321099177002907\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.1365352457060534\n", "The running loss is:\n", "15.400234825909138\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.9058961662299493\n", "The running loss is:\n", "14.907342068850994\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.8769024746382937\n", "The running loss is:\n", "14.489337973296642\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.8523139984292143\n", "The running loss is:\n", "14.622908413410187\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.8601710831417757\n", "The running loss is:\n", "13.41513104736805\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.7891253557275323\n", "The running loss is:\n", "13.095239669084549\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.7703082158285028\n", "The running loss is:\n", "12.160573348402977\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.7153278440237045\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.955428\n", "48 30755 ... 10.954730\n", "49 30756 ... 11.092212\n", "50 30757 ... 11.093774\n", "51 30758 ... 8.547292\n", "52 30759 ... 8.556589\n", "53 30760 ... 8.530978\n", "54 30761 ... 6.731397\n", "55 30762 ... 6.504598\n", "56 30763 ... 6.419131\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 00dey2s4 \n", "\n", "wandb: Agent Starting Run: l00hyprr with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: l00hyprr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l00hyprr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.450659646186978\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.1361477581214987\n", "The running loss is:\n", "25.368839150760323\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.409379952820018\n", "The running loss is:\n", "13.926943810191005\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "0.773719100566167\n", "The running loss is:\n", "12.035636499524117\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.6686464721957842\n", "The running loss is:\n", "9.788120612502098\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.5437844784723388\n", "The running loss is:\n", "10.819668479263783\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.6010926932924323\n", "The running loss is:\n", "9.73928571306169\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.5410714285034273\n", "The running loss is:\n", "9.011047106876504\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.5006137281598058\n", "The running loss is:\n", "8.731201235204935\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.48506673528916305\n", "The running loss is:\n", "7.952998843044043\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.44183326905800235\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.977856\n", "48 30755 ... 11.868648\n", "49 30756 ... 17.565083\n", "50 30757 ... 15.627804\n", "51 30758 ... 9.883644\n", "52 30759 ... 10.390420\n", "53 30760 ... 11.200606\n", "54 30761 ... 10.064157\n", "55 30762 ... 11.100951\n", "56 30763 ... 13.825031\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l00hyprr \n", "\n", "wandb: Agent Starting Run: 40olhm4s with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 40olhm4s\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/40olhm4s
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.027740366756916\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.119278845103348\n", "The running loss is:\n", "26.84563284367323\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.5791548731572487\n", "The running loss is:\n", "14.248602889478207\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "0.8381531111457768\n", "The running loss is:\n", "12.727784872055054\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.7486932277679443\n", "The running loss is:\n", "12.753539435565472\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.7502082020920866\n", "The running loss is:\n", "11.517959401011467\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.6775270235889098\n", "The running loss is:\n", "11.238709852099419\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.6611005795352599\n", "The running loss is:\n", "10.820317476987839\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.6364892633522258\n", "The running loss is:\n", "10.896733909845352\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.6409843476379619\n", "The running loss is:\n", "9.990343987941742\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.5876672934083378\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.421764\n", "48 30755 ... 11.356266\n", "49 30756 ... 12.500781\n", "50 30757 ... 12.673218\n", "51 30758 ... 11.942869\n", "52 30759 ... 10.421821\n", "53 30760 ... 11.093673\n", "54 30761 ... 11.154191\n", "55 30762 ... 11.348830\n", "56 30763 ... 11.964188\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 40olhm4s \n", "\n", "wandb: Agent Starting Run: qa1p7boy with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: qa1p7boy\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qa1p7boy
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.990485712885857\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.0582638654638739\n", "The running loss is:\n", "27.865905489772558\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.6391709111630917\n", "The running loss is:\n", "13.985774576663971\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "0.8226926221567041\n", "The running loss is:\n", "12.147280521690845\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.714545913040638\n", "The running loss is:\n", "10.898061953485012\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.6410624678520596\n", "The running loss is:\n", "10.279500223696232\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.6046764837468371\n", "The running loss is:\n", "10.136913530528545\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.5962890312075615\n", "The running loss is:\n", "9.784845240414143\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.5755791317890672\n", "The running loss is:\n", "9.845538966357708\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.5791493509622181\n", "The running loss is:\n", "9.486583903431892\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.5580343472606996\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.509616\n", "48 30755 ... 9.559368\n", "49 30756 ... 11.189049\n", "50 30757 ... 10.662446\n", "51 30758 ... 9.135548\n", "52 30759 ... 6.710083\n", "53 30760 ... 6.572598\n", "54 30761 ... 6.372887\n", "55 30762 ... 5.868860\n", "56 30763 ... 6.114229\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qa1p7boy \n", "\n", "wandb: Agent Starting Run: z60hhdo0 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: z60hhdo0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/z60hhdo0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.5401990711689\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.8077888372871611\n", "The running loss is:\n", "27.375006180256605\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.5208336766809225\n", "The running loss is:\n", "19.92556830495596\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.1069760169419978\n", "The running loss is:\n", "12.793712127953768\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.7107617848863205\n", "The running loss is:\n", "10.154001401970163\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.5641111889983423\n", "The running loss is:\n", "11.277737976284698\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.6265409986824833\n", "The running loss is:\n", "10.516089941374958\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.5842272189652754\n", "The running loss is:\n", "10.196689029689878\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.5664827238716599\n", "The running loss is:\n", "9.814422994852066\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.5452457219362259\n", "The running loss is:\n", "9.361941157840192\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.5201078421022329\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.364668\n", "48 30755 ... 11.533773\n", "49 30756 ... 18.344410\n", "50 30757 ... 16.221804\n", "51 30758 ... 10.735049\n", "52 30759 ... 11.302640\n", "53 30760 ... 11.773656\n", "54 30761 ... 9.497039\n", "55 30762 ... 11.057786\n", "56 30763 ... 15.525364\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: z60hhdo0 \n", "\n", "wandb: Agent Starting Run: r13hrd64 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: r13hrd64\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/r13hrd64
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.9246169552207\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.8190951150129823\n", "The running loss is:\n", "27.833781890571117\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.637281287680654\n", "The running loss is:\n", "20.855405513197184\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.2267885595998342\n", "The running loss is:\n", "13.618450827896595\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.8010853428174468\n", "The running loss is:\n", "13.988207560032606\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.8228357388254475\n", "The running loss is:\n", "12.185236137360334\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.7167785963153138\n", "The running loss is:\n", "12.937843896448612\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.7610496409675654\n", "The running loss is:\n", "12.002348616719246\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.706020506865838\n", "The running loss is:\n", "11.300229970365763\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.6647194100215155\n", "The running loss is:\n", "10.760703813284636\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.6329825772520374\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.507266\n", "48 30755 ... 11.811560\n", "49 30756 ... 13.621972\n", "50 30757 ... 13.042014\n", "51 30758 ... 11.766799\n", "52 30759 ... 9.670241\n", "53 30760 ... 10.042046\n", "54 30761 ... 9.816596\n", "55 30762 ... 9.815838\n", "56 30763 ... 10.284580\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: r13hrd64 \n", "\n", "wandb: Agent Starting Run: ylv24ywo with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ylv24ywo\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ylv24ywo
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.265747778117657\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.7215145751833916\n", "The running loss is:\n", "25.639500468969345\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.5082059099393732\n", "The running loss is:\n", "21.685997530817986\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.2756469135775286\n", "The running loss is:\n", "13.566235706210136\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.7980138650711845\n", "The running loss is:\n", "12.054102204740047\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.709064835572944\n", "The running loss is:\n", "11.060121264308691\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.6505953684887466\n", "The running loss is:\n", "11.129384398460388\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.6546696704976699\n", "The running loss is:\n", "10.726066958159208\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.6309451151858357\n", "The running loss is:\n", "10.483027771115303\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.6166486924185473\n", "The running loss is:\n", "9.922650948166847\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.5836853498921675\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.026129\n", "48 30755 ... 10.119618\n", "49 30756 ... 13.747051\n", "50 30757 ... 12.436648\n", "51 30758 ... 9.467723\n", "52 30759 ... 8.617616\n", "53 30760 ... 8.754156\n", "54 30761 ... 8.447451\n", "55 30762 ... 8.298104\n", "56 30763 ... 9.212432\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ylv24ywo \n", "\n", "wandb: Agent Starting Run: 202c29sd with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 202c29sd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/202c29sd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.38165923114866\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.9656477350638144\n", "The running loss is:\n", "22.52288119122386\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.2512711772902145\n", "The running loss is:\n", "20.58570908382535\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.1436505046569638\n", "The running loss is:\n", "17.03510294482112\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "0.9463946080456177\n", "The running loss is:\n", "16.227192664518952\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9015107035843862\n", "The running loss is:\n", "15.710538178682327\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.8728076765934626\n", "The running loss is:\n", "16.636069810017943\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9242261005565524\n", "The running loss is:\n", "16.63070970028639\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9239283166825771\n", "The running loss is:\n", "14.5533220928628\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.8085178940479333\n", "The running loss is:\n", "12.518009976483881\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.6954449986935489\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.864379\n", "48 30755 ... 13.484338\n", "49 30756 ... 13.468613\n", "50 30757 ... 13.644678\n", "51 30758 ... 13.640962\n", "52 30759 ... 12.436494\n", "53 30760 ... 12.610359\n", "54 30761 ... 12.908359\n", "55 30762 ... 12.950767\n", "56 30763 ... 13.025203\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 202c29sd \n", "\n", "wandb: Agent Starting Run: u9eo4dfi with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: u9eo4dfi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u9eo4dfi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.665514931082726\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.9803244077107486\n", "The running loss is:\n", "21.98633325099945\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.2933137206470264\n", "The running loss is:\n", "20.401913326233625\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.200112548601978\n", "The running loss is:\n", "17.110268775373697\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.0064863985513939\n", "The running loss is:\n", "15.317520216107368\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.9010306009474922\n", "The running loss is:\n", "14.436367448419333\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.8491980852011372\n", "The running loss is:\n", "11.61998137831688\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.6835283163715812\n", "The running loss is:\n", "14.995876673609018\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.8821103925652364\n", "The running loss is:\n", "12.463443532586098\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.7331437372109469\n", "The running loss is:\n", "12.348684921860695\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.7263932306976879\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.883090\n", "48 30755 ... 11.924982\n", "49 30756 ... 11.952619\n", "50 30757 ... 11.935939\n", "51 30758 ... 11.950844\n", "52 30759 ... 7.756837\n", "53 30760 ... 7.546932\n", "54 30761 ... 7.714972\n", "55 30762 ... 7.608711\n", "56 30763 ... 7.573092\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u9eo4dfi \n", "\n", "wandb: Agent Starting Run: gfy2ld4o with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: gfy2ld4o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gfy2ld4o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.57657253742218\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.0339160316130693\n", "The running loss is:\n", "21.085083961486816\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.240299056558048\n", "The running loss is:\n", "20.510505497455597\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.206500323379741\n", "The running loss is:\n", "18.18516470491886\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.06971557087758\n", "The running loss is:\n", "15.011801198124886\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.8830471293014639\n", "The running loss is:\n", "15.11803139001131\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.8892959641183124\n", "The running loss is:\n", "14.489876501262188\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.8523456765448346\n", "The running loss is:\n", "14.646412342786789\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.8615536672227523\n", "The running loss is:\n", "14.810041315853596\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.8711789009325644\n", "The running loss is:\n", "13.977952808141708\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.8222325181259829\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.258494\n", "48 30755 ... 11.628599\n", "49 30756 ... 12.363077\n", "50 30757 ... 12.457399\n", "51 30758 ... 11.434335\n", "52 30759 ... 11.597588\n", "53 30760 ... 11.598228\n", "54 30761 ... 11.475595\n", "55 30762 ... 11.413112\n", "56 30763 ... 11.466397\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gfy2ld4o \n", "\n", "wandb: Agent Starting Run: 6b6shvso with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 6b6shvso\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6b6shvso
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "78.06080336868763\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "4.336711298260424\n", "The running loss is:\n", "23.151071030646563\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.2861706128136978\n", "The running loss is:\n", "18.575490936636925\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.0319717187020514\n", "The running loss is:\n", "23.149101957678795\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.2860612198710442\n", "The running loss is:\n", "17.067200284451246\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9481777935806248\n", "The running loss is:\n", "17.59191408008337\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9773285600046316\n", "The running loss is:\n", "14.751718316227198\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.8195399064570665\n", "The running loss is:\n", "17.836396224796772\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9909109013775984\n", "The running loss is:\n", "12.664922920055687\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.7036068288919827\n", "The running loss is:\n", "19.829482200788334\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "1.1016379000437964\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.880940\n", "48 30755 ... 10.986598\n", "49 30756 ... 10.924918\n", "50 30757 ... 12.085524\n", "51 30758 ... 11.770830\n", "52 30759 ... 11.676743\n", "53 30760 ... 11.817716\n", "54 30761 ... 11.519333\n", "55 30762 ... 11.551911\n", "56 30763 ... 11.689872\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6b6shvso \n", "\n", "wandb: Agent Starting Run: v0ak9wcn with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: v0ak9wcn\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v0ak9wcn
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "61.02029025554657\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "3.589428838561563\n", "The running loss is:\n", "19.11992210894823\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.1247013005263664\n", "The running loss is:\n", "20.35962064191699\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.1976247436421759\n", "The running loss is:\n", "17.901119500398636\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.0530070294352138\n", "The running loss is:\n", "19.68121352046728\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.1577184423804283\n", "The running loss is:\n", "15.582372598350048\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.9166101528441205\n", "The running loss is:\n", "15.728278800845146\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.9251928706379497\n", "The running loss is:\n", "15.83667142689228\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9315689074642518\n", "The running loss is:\n", "15.11179693043232\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.8889292312019011\n", "The running loss is:\n", "14.601482972502708\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.8589107630883946\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.328428\n", "48 30755 ... 12.166418\n", "49 30756 ... 10.337872\n", "50 30757 ... 11.427995\n", "51 30758 ... 12.571464\n", "52 30759 ... 10.586956\n", "53 30760 ... 10.826715\n", "54 30761 ... 11.615481\n", "55 30762 ... 10.511208\n", "56 30763 ... 10.188934\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v0ak9wcn \n", "\n", "wandb: Agent Starting Run: v0kjygd2 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: v0kjygd2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v0kjygd2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "89.38227146863937\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "5.257780674625845\n", "The running loss is:\n", "24.08541053533554\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.4167888550197376\n", "The running loss is:\n", "14.835047475993633\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "0.8726498515290373\n", "The running loss is:\n", "17.46521347016096\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.0273654982447624\n", "The running loss is:\n", "14.109677575528622\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.8299810338546249\n", "The running loss is:\n", "14.43064521253109\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.8488614830900642\n", "The running loss is:\n", "13.140712775290012\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.7729831044288242\n", "The running loss is:\n", "12.153762593865395\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.7149272114038467\n", "The running loss is:\n", "12.104884780943394\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.7120520459378467\n", "The running loss is:\n", "11.55245054513216\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.6795559144195389\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.822438\n", "48 30755 ... 11.070477\n", "49 30756 ... 13.553607\n", "50 30757 ... 11.531958\n", "51 30758 ... 12.513781\n", "52 30759 ... 10.915012\n", "53 30760 ... 11.354100\n", "54 30761 ... 10.394032\n", "55 30762 ... 10.346492\n", "56 30763 ... 10.777813\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v0kjygd2 \n", "\n", "wandb: Agent Starting Run: 47x2i8jx with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 47x2i8jx\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/47x2i8jx
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.129226248711348\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.9487780146300793\n", "The running loss is:\n", "33.76753030810505\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.9863253122414737\n", "The running loss is:\n", "14.467158187180758\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "0.8510093051282799\n", "The running loss is:\n", "12.87113780900836\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.75712575347108\n", "The running loss is:\n", "9.909067310392857\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.5828863123760504\n", "The running loss is:\n", "9.568089163396508\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.5628287743174416\n", "The running loss is:\n", "9.66799031291157\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.56870531252421\n", "The running loss is:\n", "9.636533673852682\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.5668549219913342\n", "The running loss is:\n", "8.8233229694888\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.5190189982052235\n", "The running loss is:\n", "7.847568524535745\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.4616216779138674\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.663638\n", "48 30755 ... 9.835592\n", "49 30756 ... 11.178393\n", "50 30757 ... 13.019385\n", "51 30758 ... 12.181848\n", "52 30759 ... 9.387854\n", "53 30760 ... 8.466204\n", "54 30761 ... 8.803273\n", "55 30762 ... 8.617043\n", "56 30763 ... 8.495243\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 47x2i8jx \n", "\n", "wandb: Agent Starting Run: k64zd0i7 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: k64zd0i7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/k64zd0i7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.11563566327095\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.0656256272512323\n", "The running loss is:\n", "24.05933529138565\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.4152550171403324\n", "The running loss is:\n", "12.897609576582909\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "0.7586829162695828\n", "The running loss is:\n", "11.346729777753353\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.6674546928090208\n", "The running loss is:\n", "10.032144397497177\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.5901261410292458\n", "The running loss is:\n", "9.255228951573372\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.5444252324454925\n", "The running loss is:\n", "8.855674020946026\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.5209220012321192\n", "The running loss is:\n", "8.337467238307\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.4904392493121764\n", "The running loss is:\n", "7.936403177678585\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.4668472457457991\n", "The running loss is:\n", "7.299756273627281\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.4293974278604283\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.314528\n", "48 30755 ... 4.023320\n", "49 30756 ... 7.303198\n", "50 30757 ... 10.772114\n", "51 30758 ... 8.226935\n", "52 30759 ... 2.058505\n", "53 30760 ... -0.580315\n", "54 30761 ... -1.148522\n", "55 30762 ... -3.539087\n", "56 30763 ... -3.183217\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: k64zd0i7 \n", "\n", "wandb: Agent Starting Run: 90hzhwlz with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 90hzhwlz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/90hzhwlz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.229821100831032\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "0.7643638188019395\n", "The running loss is:\n", "31.796365045011044\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.9872728153131902\n", "The running loss is:\n", "15.763759694993496\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "0.9852349809370935\n", "The running loss is:\n", "13.028775602579117\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "0.8142984751611948\n", "The running loss is:\n", "13.04194351285696\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "0.81512146955356\n", "The running loss is:\n", "10.17906753718853\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.6361917210742831\n", "The running loss is:\n", "9.676793612539768\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.6047996007837355\n", "The running loss is:\n", "9.569400377571583\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.5980875235982239\n", "The running loss is:\n", "9.05061225220561\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.5656632657628506\n", "The running loss is:\n", "8.944659441709518\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.5590412151068449\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.322592\n", "48 30755 ... 8.571899\n", "49 30756 ... 8.965311\n", "50 30757 ... 9.146642\n", "51 30758 ... 9.041492\n", "52 30759 ... 7.654950\n", "53 30760 ... 5.084298\n", "54 30761 ... 4.954723\n", "55 30762 ... 4.857830\n", "56 30763 ... 3.960097\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 90hzhwlz \n", "\n", "wandb: Agent Starting Run: v8g59dsp with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: v8g59dsp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v8g59dsp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.235776502639055\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.7785750883905327\n", "The running loss is:\n", "26.4114770591259\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.5536162975956411\n", "The running loss is:\n", "19.23542471975088\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.1314955717500519\n", "The running loss is:\n", "13.774107448756695\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.8102416146327468\n", "The running loss is:\n", "10.821895120665431\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.6365820659214959\n", "The running loss is:\n", "10.974949937546626\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.6455852904439192\n", "The running loss is:\n", "10.996416509151459\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.6468480299500858\n", "The running loss is:\n", "10.585891755763441\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.6226995150449083\n", "The running loss is:\n", "10.654300592839718\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.6267235642846893\n", "The running loss is:\n", "9.282092098146677\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.5460054175380398\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.044758\n", "48 30755 ... 11.963025\n", "49 30756 ... 12.449036\n", "50 30757 ... 13.799903\n", "51 30758 ... 14.154404\n", "52 30759 ... 11.899445\n", "53 30760 ... 11.876869\n", "54 30761 ... 11.815728\n", "55 30762 ... 12.099028\n", "56 30763 ... 12.176918\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v8g59dsp \n", "\n", "wandb: Agent Starting Run: mkxr9eu3 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: mkxr9eu3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mkxr9eu3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.2156822681427\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.7773930745966294\n", "The running loss is:\n", "24.976793557405472\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.469223150435616\n", "The running loss is:\n", "19.48406381905079\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.1461214011206347\n", "The running loss is:\n", "12.607521995902061\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.7416189409354154\n", "The running loss is:\n", "10.452070504426956\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.6148276767309975\n", "The running loss is:\n", "10.917114395648241\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.6421831997440142\n", "The running loss is:\n", "8.793405067175627\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.5172591215985662\n", "The running loss is:\n", "8.538302391767502\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.5022530818686766\n", "The running loss is:\n", "8.421132470248267\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.4953607335440157\n", "The running loss is:\n", "9.026005014777184\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.5309414714574814\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.012664\n", "48 30755 ... 9.073854\n", "49 30756 ... 9.042130\n", "50 30757 ... 8.332397\n", "51 30758 ... 9.797338\n", "52 30759 ... 8.877247\n", "53 30760 ... 4.768612\n", "54 30761 ... 4.516591\n", "55 30762 ... 4.144512\n", "56 30763 ... 2.947486\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mkxr9eu3 \n", "\n", "wandb: Agent Starting Run: 1dip79bl with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 1dip79bl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1dip79bl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.258202567696571\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "0.8911376604810357\n", "The running loss is:\n", "24.629937380552292\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.5393710862845182\n", "The running loss is:\n", "21.176617115736008\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.3235385697335005\n", "The running loss is:\n", "15.326480709016323\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "0.9579050443135202\n", "The running loss is:\n", "12.801851324737072\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "0.800115707796067\n", "The running loss is:\n", "10.181393705308437\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.6363371065817773\n", "The running loss is:\n", "9.973678585141897\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.6233549115713686\n", "The running loss is:\n", "9.959196142852306\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.6224497589282691\n", "The running loss is:\n", "9.231910694390535\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.5769944183994085\n", "The running loss is:\n", "9.512702483683825\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.594543905230239\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.897227\n", "48 30755 ... 7.666417\n", "49 30756 ... 7.981510\n", "50 30757 ... 7.585426\n", "51 30758 ... 7.403520\n", "52 30759 ... 6.230840\n", "53 30760 ... 2.108467\n", "54 30761 ... 2.234306\n", "55 30762 ... 1.988864\n", "56 30763 ... 0.100393\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1dip79bl \n", "\n", "wandb: Agent Starting Run: frrjdi26 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: frrjdi26\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/frrjdi26
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.684900924563408\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.2755824073272592\n", "The running loss is:\n", "21.957859233021736\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.2916387784130432\n", "The running loss is:\n", "18.442369546741247\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.0848452674553675\n", "The running loss is:\n", "18.312154326587915\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.0771855486228186\n", "The running loss is:\n", "12.220995549112558\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.7188820911242682\n", "The running loss is:\n", "12.270410992205143\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.7217888818944201\n", "The running loss is:\n", "13.395324366167188\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.787960256833364\n", "The running loss is:\n", "12.515632160007954\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.7362136564710561\n", "The running loss is:\n", "13.149393206462264\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.773493718027192\n", "The running loss is:\n", "10.945322513580322\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.6438425007988425\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.736698\n", "48 30755 ... 8.398017\n", "49 30756 ... 9.863556\n", "50 30757 ... 12.266246\n", "51 30758 ... 11.361032\n", "52 30759 ... 9.679527\n", "53 30760 ... 7.219286\n", "54 30761 ... 7.760244\n", "55 30762 ... 7.901274\n", "56 30763 ... 6.949949\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: frrjdi26 \n", "\n", "wandb: Agent Starting Run: 5e6yghhl with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 5e6yghhl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5e6yghhl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.075793281197548\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.9456348988939735\n", "The running loss is:\n", "21.148211747407913\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.2440124557298773\n", "The running loss is:\n", "18.14787855744362\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.0675222680849188\n", "The running loss is:\n", "17.102335512638092\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.006019736037535\n", "The running loss is:\n", "16.263279542326927\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.9566635024898192\n", "The running loss is:\n", "14.015104442834854\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.8244179084020502\n", "The running loss is:\n", "14.513734132051468\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.8537490665912628\n", "The running loss is:\n", "14.677594423294067\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.8633879072525922\n", "The running loss is:\n", "13.664641842246056\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.8038024613085915\n", "The running loss is:\n", "12.593484312295914\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.7407931948409361\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.824028\n", "48 30755 ... 11.951849\n", "49 30756 ... 12.901361\n", "50 30757 ... 12.866081\n", "51 30758 ... 12.723232\n", "52 30759 ... 12.266067\n", "53 30760 ... 10.750948\n", "54 30761 ... 10.552313\n", "55 30762 ... 10.710556\n", "56 30763 ... 10.648995\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5e6yghhl \n", "\n", "wandb: Agent Starting Run: 49t73wpr with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 49t73wpr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/49t73wpr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "27.19437624514103\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.6996485153213143\n", "The running loss is:\n", "23.46845108270645\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.4667781926691532\n", "The running loss is:\n", "23.564942955970764\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.4728089347481728\n", "The running loss is:\n", "21.112747326493263\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.319546707905829\n", "The running loss is:\n", "16.332939110696316\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0208086944185197\n", "The running loss is:\n", "13.240181624889374\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.8275113515555859\n", "The running loss is:\n", "10.968062326312065\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.6855038953945041\n", "The running loss is:\n", "9.933336228132248\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.6208335142582655\n", "The running loss is:\n", "9.906222566962242\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.6191389104351401\n", "The running loss is:\n", "9.35060365498066\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.5844127284362912\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.286353\n", "48 30755 ... 8.572885\n", "49 30756 ... 9.695906\n", "50 30757 ... 9.246380\n", "51 30758 ... 9.367085\n", "52 30759 ... 7.058271\n", "53 30760 ... 4.291282\n", "54 30761 ... 4.404593\n", "55 30762 ... 4.206285\n", "56 30763 ... 1.904286\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 49t73wpr \n", "\n", "wandb: Agent Starting Run: fg7lzlcs with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: fg7lzlcs\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fg7lzlcs
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "105.85407214425504\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "6.22671012613265\n", "The running loss is:\n", "28.3312635589391\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.6665449152317118\n", "The running loss is:\n", "22.39996526762843\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.317645015742849\n", "The running loss is:\n", "24.83209763467312\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.460711625569007\n", "The running loss is:\n", "18.151431158185005\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.067731244599118\n", "The running loss is:\n", "15.67039943113923\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.9217882018317195\n", "The running loss is:\n", "16.54207806289196\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.9730634154642329\n", "The running loss is:\n", "15.77171096089296\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9277477035819388\n", "The running loss is:\n", "13.84425493516028\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.8143679373623693\n", "The running loss is:\n", "14.698465192690492\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.8646155995700289\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.290987\n", "48 30755 ... 12.374711\n", "49 30756 ... 11.975950\n", "50 30757 ... 10.584239\n", "51 30758 ... 11.698794\n", "52 30759 ... 12.389561\n", "53 30760 ... 11.581156\n", "54 30761 ... 11.558187\n", "55 30762 ... 11.589575\n", "56 30763 ... 11.612144\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fg7lzlcs \n", "\n", "wandb: Agent Starting Run: c0an2nim with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: c0an2nim\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c0an2nim
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "68.1619100868702\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "4.00952412275707\n", "The running loss is:\n", "22.371742129325867\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.3159848311368156\n", "The running loss is:\n", "16.736645698547363\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "0.9845085705027861\n", "The running loss is:\n", "15.064269214868546\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.8861334832275615\n", "The running loss is:\n", "15.606667906045914\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.9180392885909361\n", "The running loss is:\n", "15.834020808339119\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.9314129887258306\n", "The running loss is:\n", "14.995947480201721\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.8821145576589248\n", "The running loss is:\n", "16.214449003338814\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9537911178434596\n", "The running loss is:\n", "13.982399955391884\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.822494115023052\n", "The running loss is:\n", "13.378327805548906\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.7869604591499356\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.399013\n", "48 30755 ... 10.975351\n", "49 30756 ... 10.943957\n", "50 30757 ... 11.364924\n", "51 30758 ... 12.050787\n", "52 30759 ... 10.258490\n", "53 30760 ... 11.160790\n", "54 30761 ... 10.898850\n", "55 30762 ... 11.130223\n", "56 30763 ... 10.652694\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c0an2nim \n", "\n", "wandb: Agent Starting Run: ncqc46kb with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ncqc46kb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ncqc46kb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "134.06062477827072\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "8.37878904864192\n", "The running loss is:\n", "42.89721769094467\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "2.681076105684042\n", "The running loss is:\n", "42.296622425317764\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "2.6435389015823603\n", "The running loss is:\n", "14.58924949169159\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "0.9118280932307243\n", "The running loss is:\n", "13.531480722129345\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "0.8457175451330841\n", "The running loss is:\n", "11.921478353440762\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.7450923970900476\n", "The running loss is:\n", "11.945398841053247\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.746587427565828\n", "The running loss is:\n", "11.684036530554295\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.7302522831596434\n", "The running loss is:\n", "11.216044843196869\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.7010028026998043\n", "The running loss is:\n", "10.252280615270138\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.6407675384543836\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.261765\n", "48 30755 ... 9.229461\n", "49 30756 ... 9.328590\n", "50 30757 ... 9.209830\n", "51 30758 ... 9.307390\n", "52 30759 ... 9.452641\n", "53 30760 ... 7.193860\n", "54 30761 ... 7.226322\n", "55 30762 ... 7.089177\n", "56 30763 ... 5.841412\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ncqc46kb \n", "\n", "wandb: Agent Starting Run: yh35fkau with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: yh35fkau\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yh35fkau
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.99254409223795\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.117208476013997\n", "The running loss is:\n", "27.134451758436626\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.5961442210845074\n", "The running loss is:\n", "14.144931258633733\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "0.8320547799196314\n", "The running loss is:\n", "12.379254553001374\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.7281914442941985\n", "The running loss is:\n", "10.936451382935047\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.6433206695844146\n", "The running loss is:\n", "10.157983610406518\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.5975284476709717\n", "The running loss is:\n", "10.516974926926196\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.618645583936835\n", "The running loss is:\n", "10.19902788894251\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.5999428169966182\n", "The running loss is:\n", "9.524700343608856\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.560276490800521\n", "The running loss is:\n", "8.423859127797186\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.4955211251645404\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.894247\n", "48 30755 ... 9.785186\n", "49 30756 ... 12.737395\n", "50 30757 ... 12.269347\n", "51 30758 ... 10.923274\n", "52 30759 ... 11.233722\n", "53 30760 ... 10.437478\n", "54 30761 ... 6.463241\n", "55 30762 ... 6.731721\n", "56 30763 ... 7.264863\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yh35fkau \n", "\n", "wandb: Agent Starting Run: og55gigm with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: og55gigm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/og55gigm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.133108966052532\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.0083193103782833\n", "The running loss is:\n", "28.869964830577374\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.8043728019110858\n", "The running loss is:\n", "12.548532001674175\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "0.784283250104636\n", "The running loss is:\n", "11.040770269930363\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "0.6900481418706477\n", "The running loss is:\n", "9.910119865089655\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "0.6193824915681034\n", "The running loss is:\n", "9.276767298579216\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.579797956161201\n", "The running loss is:\n", "9.77975993603468\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.6112349960021675\n", "The running loss is:\n", "8.785409968346357\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.5490881230216473\n", "The running loss is:\n", "8.258642934262753\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.516165183391422\n", "The running loss is:\n", "8.085627540946007\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.5053517213091254\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.732769\n", "48 30755 ... 5.782502\n", "49 30756 ... 7.366888\n", "50 30757 ... 6.974564\n", "51 30758 ... 5.465569\n", "52 30759 ... 6.234188\n", "53 30760 ... 6.124003\n", "54 30761 ... -0.098097\n", "55 30762 ... -0.405543\n", "56 30763 ... -0.950591\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: og55gigm \n", "\n", "wandb: Agent Starting Run: lsyxrhtc with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: lsyxrhtc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lsyxrhtc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.61077520623803\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.038173450389877\n", "The running loss is:\n", "25.137400671839714\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.5710875419899821\n", "The running loss is:\n", "12.270547769963741\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "0.7669092356227338\n", "The running loss is:\n", "10.999523766338825\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "0.6874702353961766\n", "The running loss is:\n", "9.699016734957695\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "0.6061885459348559\n", "The running loss is:\n", "9.058913193643093\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.5661820746026933\n", "The running loss is:\n", "9.072721466422081\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.5670450916513801\n", "The running loss is:\n", "9.164514727890491\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.5727821704931557\n", "The running loss is:\n", "8.674532353878021\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.5421582721173763\n", "The running loss is:\n", "8.324480183422565\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.5202800114639103\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.418834\n", "48 30755 ... 7.616541\n", "49 30756 ... 6.665627\n", "50 30757 ... 7.502685\n", "51 30758 ... 7.146316\n", "52 30759 ... 7.690778\n", "53 30760 ... 7.678141\n", "54 30761 ... 2.797157\n", "55 30762 ... 2.660590\n", "56 30763 ... 2.548421\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lsyxrhtc \n", "\n", "wandb: Agent Starting Run: raan5oee with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: raan5oee\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/raan5oee
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.07104841247201\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "0.8277087301454124\n", "The running loss is:\n", "22.927550297230482\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.348679429248852\n", "The running loss is:\n", "18.472346489550546\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.086608617032385\n", "The running loss is:\n", "12.637594176456332\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.7433878927327254\n", "The running loss is:\n", "11.350484196096659\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.6676755409468623\n", "The running loss is:\n", "9.470307543873787\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.5570769143455169\n", "The running loss is:\n", "12.329006131738424\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.7252356548081426\n", "The running loss is:\n", "10.936658833175898\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.6433328725397587\n", "The running loss is:\n", "10.534783300827257\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.6196931353427798\n", "The running loss is:\n", "8.076542284339666\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.47509072260821567\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.749610\n", "48 30755 ... 10.477225\n", "49 30756 ... 12.733251\n", "50 30757 ... 11.301854\n", "51 30758 ... 10.135816\n", "52 30759 ... 11.677883\n", "53 30760 ... 14.390694\n", "54 30761 ... 9.135997\n", "55 30762 ... 8.562580\n", "56 30763 ... 7.725478\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: raan5oee \n", "\n", "wandb: Agent Starting Run: 78dfcr0h with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 78dfcr0h\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/78dfcr0h
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.633374132215977\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "0.7895858832634985\n", "The running loss is:\n", "24.585037760436535\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.5365648600272834\n", "The running loss is:\n", "20.226487666368484\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.2641554791480303\n", "The running loss is:\n", "10.598256275057793\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "0.662391017191112\n", "The running loss is:\n", "10.891551569104195\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "0.6807219730690122\n", "The running loss is:\n", "9.729584485292435\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.6080990303307772\n", "The running loss is:\n", "10.25032301992178\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.6406451887451112\n", "The running loss is:\n", "12.466548934578896\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.779159308411181\n", "The running loss is:\n", "9.112505622208118\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.5695316013880074\n", "The running loss is:\n", "8.59875401854515\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.5374221261590719\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.815525\n", "48 30755 ... 4.415236\n", "49 30756 ... 3.473031\n", "50 30757 ... 4.546901\n", "51 30758 ... 4.515433\n", "52 30759 ... 4.815760\n", "53 30760 ... 5.747679\n", "54 30761 ... 2.746140\n", "55 30762 ... 1.751836\n", "56 30763 ... 1.695187\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 78dfcr0h \n", "\n", "wandb: Agent Starting Run: hoczfgq1 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: hoczfgq1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hoczfgq1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.084807999432087\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "0.7553004999645054\n", "The running loss is:\n", "22.603727489709854\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.4127329681068659\n", "The running loss is:\n", "18.862066105008125\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.1788791315630078\n", "The running loss is:\n", "12.395430564880371\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "0.7747144103050232\n", "The running loss is:\n", "11.394499212503433\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "0.7121562007814646\n", "The running loss is:\n", "10.081028185784817\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.630064261611551\n", "The running loss is:\n", "9.585860520601273\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.5991162825375795\n", "The running loss is:\n", "11.116112791001797\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.6947570494376123\n", "The running loss is:\n", "9.021495692431927\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.5638434807769954\n", "The running loss is:\n", "8.90778385847807\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.5567364911548793\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.413387\n", "48 30755 ... 5.729298\n", "49 30756 ... 4.455645\n", "50 30757 ... 6.159957\n", "51 30758 ... 5.956176\n", "52 30759 ... 6.667638\n", "53 30760 ... 7.277160\n", "54 30761 ... 4.641956\n", "55 30762 ... 4.200748\n", "56 30763 ... 4.200795\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hoczfgq1 \n", "\n", "wandb: Agent Starting Run: c27e7jkt with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: c27e7jkt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c27e7jkt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.021860733628273\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.118932984331075\n", "The running loss is:\n", "19.840141020715237\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.167067118865602\n", "The running loss is:\n", "19.325562549754977\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.1367977970444105\n", "The running loss is:\n", "14.916489260271192\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.8774405447218347\n", "The running loss is:\n", "13.93316643126309\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.819598025368417\n", "The running loss is:\n", "10.690809190273285\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.6288711288396049\n", "The running loss is:\n", "13.479163165204227\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.7928919508943663\n", "The running loss is:\n", "14.082069613039494\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.8283570360611466\n", "The running loss is:\n", "12.653895137831569\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.7443467728136217\n", "The running loss is:\n", "10.394164901226759\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.6114214647780446\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.782250\n", "48 30755 ... 6.847810\n", "49 30756 ... 8.922386\n", "50 30757 ... 9.392108\n", "51 30758 ... 7.796653\n", "52 30759 ... 9.359842\n", "53 30760 ... 10.251583\n", "54 30761 ... 9.111098\n", "55 30762 ... 4.847028\n", "56 30763 ... 8.793217\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c27e7jkt \n", "\n", "wandb: Agent Starting Run: rc0hdh5k with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: rc0hdh5k\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/rc0hdh5k
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.67585827410221\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.2297411421313882\n", "The running loss is:\n", "20.92596773058176\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.30787298316136\n", "The running loss is:\n", "21.21123907715082\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.3257024423219264\n", "The running loss is:\n", "13.602266885340214\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "0.8501416803337634\n", "The running loss is:\n", "12.655046753585339\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "0.7909404220990837\n", "The running loss is:\n", "10.041675612330437\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.6276047257706523\n", "The running loss is:\n", "12.342215452343225\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.7713884657714516\n", "The running loss is:\n", "14.822323441505432\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.9263952150940895\n", "The running loss is:\n", "10.33838652074337\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.6461491575464606\n", "The running loss is:\n", "12.166576441377401\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.7604110275860876\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.075967\n", "48 30755 ... 9.071111\n", "49 30756 ... 9.542653\n", "50 30757 ... 9.827929\n", "51 30758 ... 10.330853\n", "52 30759 ... 9.926955\n", "53 30760 ... 9.483013\n", "54 30761 ... 6.208332\n", "55 30762 ... 5.910884\n", "56 30763 ... 6.146338\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: rc0hdh5k \n", "\n", "wandb: Agent Starting Run: 0dph3cu7 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 0dph3cu7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0dph3cu7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.855378910899162\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.0534611819311976\n", "The running loss is:\n", "20.029029339551926\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.2518143337219954\n", "The running loss is:\n", "16.415701150894165\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.0259813219308853\n", "The running loss is:\n", "15.392409943044186\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "0.9620256214402616\n", "The running loss is:\n", "12.786209851503372\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "0.7991381157189608\n", "The running loss is:\n", "10.640215292572975\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.665013455785811\n", "The running loss is:\n", "10.768309026956558\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.6730193141847849\n", "The running loss is:\n", "12.681664541363716\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.7926040338352323\n", "The running loss is:\n", "10.68557322025299\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.6678483262658119\n", "The running loss is:\n", "9.19628544151783\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.5747678400948644\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.187110\n", "48 30755 ... 8.600869\n", "49 30756 ... 7.328359\n", "50 30757 ... 9.198733\n", "51 30758 ... 10.732364\n", "52 30759 ... 10.814871\n", "53 30760 ... 12.901135\n", "54 30761 ... 3.767852\n", "55 30762 ... 2.326275\n", "56 30763 ... 3.856884\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0dph3cu7 \n", "\n", "wandb: Agent Starting Run: scb18cx2 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: scb18cx2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/scb18cx2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "95.02955102175474\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "5.589973589514985\n", "The running loss is:\n", "24.03973775357008\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.4141022207982399\n", "The running loss is:\n", "15.009492529556155\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "0.8829113252680091\n", "The running loss is:\n", "15.12568387016654\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "0.8897461100097965\n", "The running loss is:\n", "14.419101245701313\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.8481824262177243\n", "The running loss is:\n", "14.80416202545166\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.8708330603206859\n", "The running loss is:\n", "14.07496515661478\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.827939126859693\n", "The running loss is:\n", "16.150368846952915\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9500216968795833\n", "The running loss is:\n", "13.275858359294944\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.7809328446644085\n", "The running loss is:\n", "10.595419317483902\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.6232599598519942\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 15.195083\n", "48 30755 ... 12.213925\n", "49 30756 ... 6.223370\n", "50 30757 ... 10.297009\n", "51 30758 ... 10.625719\n", "52 30759 ... 12.546183\n", "53 30760 ... 13.704164\n", "54 30761 ... 12.491216\n", "55 30762 ... 12.667259\n", "56 30763 ... 12.886582\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: scb18cx2 \n", "\n", "wandb: Agent Starting Run: wzhv9dbd with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: wzhv9dbd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/wzhv9dbd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "95.46283769607544\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "5.966427356004715\n", "The running loss is:\n", "27.861441023647785\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.7413400639779866\n", "The running loss is:\n", "13.78494793176651\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "0.8615592457354069\n", "The running loss is:\n", "21.267036229372025\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.3291897643357515\n", "The running loss is:\n", "19.88978810235858\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.2431117563974112\n", "The running loss is:\n", "15.775068141520023\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.9859417588450015\n", "The running loss is:\n", "14.655570544302464\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.915973159018904\n", "The running loss is:\n", "14.580344870686531\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.9112715544179082\n", "The running loss is:\n", "12.412341699004173\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.7757713561877608\n", "The running loss is:\n", "12.429722763597965\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.7768576727248728\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.551174\n", "48 30755 ... 10.476337\n", "49 30756 ... 8.249887\n", "50 30757 ... 6.252807\n", "51 30758 ... 11.140751\n", "52 30759 ... 10.062581\n", "53 30760 ... 13.128551\n", "54 30761 ... 8.388356\n", "55 30762 ... 8.294368\n", "56 30763 ... 8.297700\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: wzhv9dbd \n", "\n", "wandb: Agent Starting Run: g6lldpjl with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: g6lldpjl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/g6lldpjl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "74.41158412396908\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "4.650724007748067\n", "The running loss is:\n", "21.020324990153313\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.313770311884582\n", "The running loss is:\n", "16.04583202302456\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.002864501439035\n", "The running loss is:\n", "17.90377826243639\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.1189861414022744\n", "The running loss is:\n", "14.566076338291168\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "0.910379771143198\n", "The running loss is:\n", "14.132137462496758\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.8832585914060473\n", "The running loss is:\n", "13.948560565710068\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.8717850353568792\n", "The running loss is:\n", "13.438048601150513\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.839878037571907\n", "The running loss is:\n", "13.514577560126781\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.8446610975079238\n", "The running loss is:\n", "12.867796912789345\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.804237307049334\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.610271\n", "48 30755 ... 10.570126\n", "49 30756 ... 10.616474\n", "50 30757 ... 10.498391\n", "51 30758 ... 11.009744\n", "52 30759 ... 10.557771\n", "53 30760 ... 10.617533\n", "54 30761 ... 10.595282\n", "55 30762 ... 10.595298\n", "56 30763 ... 10.593192\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: g6lldpjl \n", "\n", "wandb: Agent Starting Run: 5kgpjqql with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 5kgpjqql\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5kgpjqql
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.670363292098045\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.2621688065784318\n", "The running loss is:\n", "10.943816676735878\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "0.7817011911954198\n", "The running loss is:\n", "10.41209028288722\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "0.7437207344919443\n", "The running loss is:\n", "9.48156014829874\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "0.6772542963070529\n", "The running loss is:\n", "9.911844491958618\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.7079888922827584\n", "The running loss is:\n", "9.89071624726057\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.7064797319471836\n", "The running loss is:\n", "9.785955913364887\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.6989968509546348\n", "The running loss is:\n", "9.477959398645908\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.6769970999032792\n", "The running loss is:\n", "10.341568265110254\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.7386834475078753\n", "The running loss is:\n", "10.629889108240604\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.7592777934457574\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.328932\n", "48 30755 ... 11.992808\n", "49 30756 ... 11.800481\n", "50 30757 ... 11.669888\n", "51 30758 ... 11.565799\n", "52 30759 ... 11.473088\n", "53 30760 ... 11.385262\n", "54 30761 ... 11.635700\n", "55 30762 ... 11.695193\n", "56 30763 ... 11.672710\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5kgpjqql \n", "\n", "wandb: Agent Starting Run: 7qvksyb1 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 7qvksyb1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/7qvksyb1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.802268385887146\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.6287334561347961\n", "The running loss is:\n", "17.569238662719727\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.2549456187656947\n", "The running loss is:\n", "16.22460624575615\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.1589004461254393\n", "The running loss is:\n", "14.956971347332\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.068355096238\n", "The running loss is:\n", "15.105294823646545\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.0789496302604675\n", "The running loss is:\n", "15.303263306617737\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.0930902361869812\n", "The running loss is:\n", "15.001798063516617\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.0715570045369012\n", "The running loss is:\n", "14.771975100040436\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.055141078574317\n", "The running loss is:\n", "14.277655333280563\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.0198325238057546\n", "The running loss is:\n", "14.258073136210442\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "1.018433795443603\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 17.221895\n", "48 30755 ... 19.612215\n", "49 30756 ... 20.901167\n", "50 30757 ... 21.527845\n", "51 30758 ... 21.756281\n", "52 30759 ... 21.745245\n", "53 30760 ... 21.590210\n", "54 30761 ... 22.387379\n", "55 30762 ... 22.718334\n", "56 30763 ... 22.768944\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 7qvksyb1 \n", "\n", "wandb: Agent Starting Run: py7m8aa2 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: py7m8aa2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/py7m8aa2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.336795777082443\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.5954854126487459\n", "The running loss is:\n", "16.64599171280861\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.1889994080577577\n", "The running loss is:\n", "14.604424864053726\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.0431732045752662\n", "The running loss is:\n", "14.123595744371414\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.008828267455101\n", "The running loss is:\n", "14.480102002620697\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.0342930001871926\n", "The running loss is:\n", "13.984807938337326\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.9989148527383804\n", "The running loss is:\n", "14.12735378742218\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.0090966991015844\n", "The running loss is:\n", "14.249413669109344\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.017815262079239\n", "The running loss is:\n", "13.871794015169144\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.9908424296549388\n", "The running loss is:\n", "13.480072140693665\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.9628622957638332\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.018013\n", "48 30755 ... 3.923897\n", "49 30756 ... 2.033710\n", "50 30757 ... 0.645433\n", "51 30758 ... -0.533605\n", "52 30759 ... -1.625411\n", "53 30760 ... -2.680852\n", "54 30761 ... 0.480797\n", "55 30762 ... 1.198586\n", "56 30763 ... 0.897552\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: py7m8aa2 \n", "\n", "wandb: Agent Starting Run: fhkws31a with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: fhkws31a\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fhkws31a
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.473997741937637\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "0.9624284101384026\n", "The running loss is:\n", "27.837897576391697\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.9884212554565497\n", "The running loss is:\n", "11.861431896686554\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "0.847245135477611\n", "The running loss is:\n", "10.067777810618281\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "0.7191269864727344\n", "The running loss is:\n", "9.917817741632462\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.7084155529737473\n", "The running loss is:\n", "9.74946603924036\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.6963904313743114\n", "The running loss is:\n", "9.383864752948284\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.6702760537820203\n", "The running loss is:\n", "9.33708634832874\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.6669347391663385\n", "The running loss is:\n", "10.058764830231667\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.7184832021594048\n", "The running loss is:\n", "10.721103806048632\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.7657931290034737\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.203970\n", "48 30755 ... 11.892198\n", "49 30756 ... 11.772248\n", "50 30757 ... 11.728283\n", "51 30758 ... 11.714417\n", "52 30759 ... 11.712473\n", "53 30760 ... 11.715252\n", "54 30761 ... 11.695059\n", "55 30762 ... 11.690609\n", "56 30763 ... 11.692395\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fhkws31a \n", "\n", "wandb: Agent Starting Run: o8fp0wdh with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: o8fp0wdh\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/o8fp0wdh
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.880937218666077\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.3486383727618627\n", "The running loss is:\n", "30.557601034641266\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.1826857881886617\n", "The running loss is:\n", "16.620768785476685\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.1871977703911918\n", "The running loss is:\n", "15.550219416618347\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.110729958329882\n", "The running loss is:\n", "14.529386848211288\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.0378133463008063\n", "The running loss is:\n", "14.709754675626755\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.0506967625447683\n", "The running loss is:\n", "14.263691067695618\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.0188350762639726\n", "The running loss is:\n", "13.642646819353104\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.974474772810936\n", "The running loss is:\n", "13.388307765126228\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.9563076975090163\n", "The running loss is:\n", "13.098741456866264\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.9356243897761617\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 16.511818\n", "48 30755 ... 18.479959\n", "49 30756 ... 19.515354\n", "50 30757 ... 19.987150\n", "51 30758 ... 20.118399\n", "52 30759 ... 20.043875\n", "53 30760 ... 19.845016\n", "54 30761 ... 20.647829\n", "55 30762 ... 20.979090\n", "56 30763 ... 21.025421\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: o8fp0wdh \n", "\n", "wandb: Agent Starting Run: npyvux13 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: npyvux13\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/npyvux13
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.19215828180313\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.2280113058430808\n", "The running loss is:\n", "35.54996246099472\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.539283032928194\n", "The running loss is:\n", "16.276898205280304\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.1626355860914503\n", "The running loss is:\n", "15.494183450937271\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.1067273893526621\n", "The running loss is:\n", "13.394286423921585\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.9567347445658275\n", "The running loss is:\n", "13.729548782110214\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.9806820558650153\n", "The running loss is:\n", "13.483346164226532\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.9630961545876094\n", "The running loss is:\n", "13.767163097858429\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.9833687927041735\n", "The running loss is:\n", "13.156352579593658\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.9397394699709756\n", "The running loss is:\n", "12.842736065387726\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.9173382903848376\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.175701\n", "48 30755 ... 4.349280\n", "49 30756 ... 2.709584\n", "50 30757 ... 1.539658\n", "51 30758 ... 0.555692\n", "52 30759 ... -0.354660\n", "53 30760 ... -1.235872\n", "54 30761 ... 1.540366\n", "55 30762 ... 2.118507\n", "56 30763 ... 1.826522\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: npyvux13 \n", "\n", "wandb: Agent Starting Run: v4j861hu with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: v4j861hu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v4j861hu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.81423806399107\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.272445575999362\n", "The running loss is:\n", "27.287052668631077\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.9490751906165056\n", "The running loss is:\n", "23.304617062211037\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.6646155044436455\n", "The running loss is:\n", "13.46847514808178\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "0.9620339391486985\n", "The running loss is:\n", "10.77438042499125\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.7695986017850893\n", "The running loss is:\n", "10.228682920336723\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.7306202085954803\n", "The running loss is:\n", "9.9163583740592\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.7083113124328\n", "The running loss is:\n", "9.541842748411\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.6815601963150714\n", "The running loss is:\n", "10.52641460672021\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.751886757622872\n", "The running loss is:\n", "10.936396487057209\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.7811711776469435\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.996588\n", "48 30755 ... 11.617249\n", "49 30756 ... 11.487004\n", "50 30757 ... 11.456182\n", "51 30758 ... 11.465044\n", "52 30759 ... 11.489745\n", "53 30760 ... 11.520768\n", "54 30761 ... 11.406167\n", "55 30762 ... 11.381589\n", "56 30763 ... 11.392943\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v4j861hu \n", "\n", "wandb: Agent Starting Run: pb2xg24u with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: pb2xg24u\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/pb2xg24u
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.450218737125397\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.3178727669375283\n", "The running loss is:\n", "33.69246228039265\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.4066044485994746\n", "The running loss is:\n", "30.424543470144272\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "2.1731816764388765\n", "The running loss is:\n", "21.68705663084984\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.5490754736321313\n", "The running loss is:\n", "15.464419141411781\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.1046013672436987\n", "The running loss is:\n", "13.43197026848793\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.9594264477491379\n", "The running loss is:\n", "13.450857311487198\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.9607755222490856\n", "The running loss is:\n", "12.503621444106102\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.8931158174361501\n", "The running loss is:\n", "12.548032850027084\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.8962880607162204\n", "The running loss is:\n", "12.026508867740631\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.8590363476957593\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 15.448249\n", "48 30755 ... 16.847450\n", "49 30756 ... 17.598450\n", "50 30757 ... 17.948925\n", "51 30758 ... 18.051918\n", "52 30759 ... 18.001993\n", "53 30760 ... 17.857580\n", "54 30761 ... 18.449734\n", "55 30762 ... 18.702061\n", "56 30763 ... 18.744408\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: pb2xg24u \n", "\n", "wandb: Agent Starting Run: w8s1lsld with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: w8s1lsld\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/w8s1lsld
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.729584485292435\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.194970320378031\n", "The running loss is:\n", "31.90469980239868\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.278907128742763\n", "The running loss is:\n", "26.94806531071663\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.9248618079083306\n", "The running loss is:\n", "21.172048971056938\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.5122892122183527\n", "The running loss is:\n", "14.548314154148102\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.0391652967248644\n", "The running loss is:\n", "14.059065759181976\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.0042189827987127\n", "The running loss is:\n", "13.152787834405899\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.9394848453147071\n", "The running loss is:\n", "13.332339078187943\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.9523099341562816\n", "The running loss is:\n", "12.577288955450058\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.898377782532147\n", "The running loss is:\n", "12.499642044305801\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.8928315745932716\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.248249\n", "48 30755 ... 6.103832\n", "49 30756 ... 4.877185\n", "50 30757 ... 3.973589\n", "51 30758 ... 3.183706\n", "52 30759 ... 2.433849\n", "53 30760 ... 1.698083\n", "54 30761 ... 4.270024\n", "55 30762 ... 4.703514\n", "56 30763 ... 4.384280\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: w8s1lsld \n", "\n", "wandb: Agent Starting Run: 5rzp4ajy with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 5rzp4ajy\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5rzp4ajy
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "36.93057554960251\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "2.637898253543036\n", "The running loss is:\n", "26.37780451774597\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.8841288941247123\n", "The running loss is:\n", "22.75959214195609\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.6256851529968637\n", "The running loss is:\n", "30.54565773718059\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "2.1818326955128993\n", "The running loss is:\n", "36.84430718794465\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "2.631736227710332\n", "The running loss is:\n", "36.018092423677444\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "2.5727208874055316\n", "The running loss is:\n", "19.373262114822865\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.3838044367730618\n", "The running loss is:\n", "11.502933956682682\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.8216381397630487\n", "The running loss is:\n", "10.898656576871872\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.7784754697765622\n", "The running loss is:\n", "10.19880486652255\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.7284860618944679\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.216917\n", "48 30755 ... 11.971518\n", "49 30756 ... 11.933516\n", "50 30757 ... 11.975511\n", "51 30758 ... 12.048363\n", "52 30759 ... 12.133118\n", "53 30760 ... 12.222463\n", "54 30761 ... 11.917004\n", "55 30762 ... 11.855834\n", "56 30763 ... 11.888893\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5rzp4ajy \n", "\n", "wandb: Agent Starting Run: 3ek9rvyd with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 3ek9rvyd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3ek9rvyd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "41.207330763339996\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "2.9433807688099995\n", "The running loss is:\n", "27.082152098417282\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.9344394356012344\n", "The running loss is:\n", "25.876445710659027\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.8483175507613592\n", "The running loss is:\n", "33.90110743790865\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "2.421507674136332\n", "The running loss is:\n", "44.29538279771805\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "3.1639559141227176\n", "The running loss is:\n", "37.04779974371195\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "2.6462714102651392\n", "The running loss is:\n", "17.184944421052933\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.2274960300752096\n", "The running loss is:\n", "13.733961462974548\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.9809972473553249\n", "The running loss is:\n", "14.716185823082924\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.0511561302202088\n", "The running loss is:\n", "13.83261838182807\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.9880441701305764\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.035178\n", "48 30755 ... 8.766874\n", "49 30756 ... 8.916343\n", "50 30757 ... 9.113027\n", "51 30758 ... 9.315046\n", "52 30759 ... 9.517670\n", "53 30760 ... 9.720361\n", "54 30761 ... 8.664521\n", "55 30762 ... 8.724984\n", "56 30763 ... 8.911608\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3ek9rvyd \n", "\n", "wandb: Agent Starting Run: 874h0d1x with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 874h0d1x\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/874h0d1x
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "44.45691132545471\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "3.175493666103908\n", "The running loss is:\n", "29.342597395181656\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.095899813941547\n", "The running loss is:\n", "31.56341904401779\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "2.2545299317155565\n", "The running loss is:\n", "22.378557235002518\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.5984683739287513\n", "The running loss is:\n", "29.19557212293148\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "2.08539800878082\n", "The running loss is:\n", "19.708526015281677\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.4077518582344055\n", "The running loss is:\n", "16.751707702875137\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.196550550205367\n", "The running loss is:\n", "17.867665767669678\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.276261840547834\n", "The running loss is:\n", "17.180501848459244\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.2271787034613746\n", "The running loss is:\n", "11.488581970334053\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.8206129978810038\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.363071\n", "48 30755 ... 8.094663\n", "49 30756 ... 7.382749\n", "50 30757 ... 6.801587\n", "51 30758 ... 6.251144\n", "52 30759 ... 5.707920\n", "53 30760 ... 5.166392\n", "54 30761 ... 7.522529\n", "55 30762 ... 7.662219\n", "56 30763 ... 7.281145\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 874h0d1x \n", "\n", "wandb: Agent Starting Run: 59n65cyk with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 59n65cyk\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/59n65cyk
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.64117774181068\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.3315126958436199\n", "The running loss is:\n", "13.435925766825676\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "0.9597089833446911\n", "The running loss is:\n", "9.767426192760468\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "0.6976732994828906\n", "The running loss is:\n", "8.82443618774414\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "0.6303168705531529\n", "The running loss is:\n", "8.694632604718208\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.6210451860513005\n", "The running loss is:\n", "9.05456755310297\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.6467548252216407\n", "The running loss is:\n", "8.356636479496956\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.596902605678354\n", "The running loss is:\n", "9.370028473436832\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.6692877481026309\n", "The running loss is:\n", "9.064932033419609\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.6474951452442578\n", "The running loss is:\n", "7.789532475173473\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.5563951767981052\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.928371\n", "48 30755 ... 15.471230\n", "49 30756 ... 15.420227\n", "50 30757 ... 15.615501\n", "51 30758 ... 14.940125\n", "52 30759 ... 14.135720\n", "53 30760 ... 12.981010\n", "54 30761 ... 14.701076\n", "55 30762 ... 15.958694\n", "56 30763 ... 16.192640\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 59n65cyk \n", "\n", "wandb: Agent Starting Run: mwiqfbe8 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: mwiqfbe8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mwiqfbe8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.326901137828827\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.3090643669877733\n", "The running loss is:\n", "15.11211396753788\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.0794367119669914\n", "The running loss is:\n", "12.211668342351913\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "0.8722620244537082\n", "The running loss is:\n", "11.787426233291626\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "0.8419590166636876\n", "The running loss is:\n", "11.032762914896011\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.7880544939211437\n", "The running loss is:\n", "10.791624754667282\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.7708303396190915\n", "The running loss is:\n", "10.629769459366798\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.7592692470976284\n", "The running loss is:\n", "10.726359777152538\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.7661685555108956\n", "The running loss is:\n", "10.42826895415783\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.7448763538684163\n", "The running loss is:\n", "10.19526007771492\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.7282328626939228\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.490717\n", "48 30755 ... 11.641187\n", "49 30756 ... 9.905563\n", "50 30757 ... 9.972510\n", "51 30758 ... 8.155688\n", "52 30759 ... 6.332791\n", "53 30760 ... 3.572726\n", "54 30761 ... 2.926773\n", "55 30762 ... 4.603442\n", "56 30763 ... 4.082183\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mwiqfbe8 \n", "\n", "wandb: Agent Starting Run: odk5x886 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: odk5x886\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/odk5x886
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.417068786919117\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.3397745220707014\n", "The running loss is:\n", "12.89317137002945\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "0.9917824130791885\n", "The running loss is:\n", "10.928997546434402\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.8406921189564925\n", "The running loss is:\n", "9.924030363559723\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.7633869510430557\n", "The running loss is:\n", "9.564537711441517\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7357336701108859\n", "The running loss is:\n", "9.373335793614388\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7210258302780298\n", "The running loss is:\n", "9.464933928102255\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.7280718406232504\n", "The running loss is:\n", "8.969834722578526\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.6899872863521943\n", "The running loss is:\n", "9.041607558727264\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6955082737482511\n", "The running loss is:\n", "8.688183203339577\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6683217848722751\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.460793\n", "48 30755 ... 12.863463\n", "49 30756 ... 13.743500\n", "50 30757 ... 14.807247\n", "51 30758 ... 15.064708\n", "52 30759 ... 14.955314\n", "53 30760 ... 14.306695\n", "54 30761 ... 16.493378\n", "55 30762 ... 18.610914\n", "56 30763 ... 19.960632\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: odk5x886 \n", "\n", "wandb: Agent Starting Run: t7774fje with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: t7774fje\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/t7774fje
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.82401143014431\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.058857959296022\n", "The running loss is:\n", "32.10828600823879\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.293449000588485\n", "The running loss is:\n", "16.21480782330036\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.1582005588071687\n", "The running loss is:\n", "10.950186144560575\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "0.7821561531828982\n", "The running loss is:\n", "9.553723186254501\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.6824087990181786\n", "The running loss is:\n", "9.226969838142395\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.6590692741530282\n", "The running loss is:\n", "8.455528162419796\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.6039662973156997\n", "The running loss is:\n", "8.660504542291164\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.6186074673065117\n", "The running loss is:\n", "9.142078697681427\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.653005621262959\n", "The running loss is:\n", "7.957540884613991\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.5683957774724279\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.434075\n", "48 30755 ... 15.096694\n", "49 30756 ... 14.959582\n", "50 30757 ... 14.883185\n", "51 30758 ... 14.149712\n", "52 30759 ... 13.306772\n", "53 30760 ... 12.192998\n", "54 30761 ... 13.766081\n", "55 30762 ... 14.880667\n", "56 30763 ... 15.032399\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: t7774fje \n", "\n", "wandb: Agent Starting Run: hebxlk2l with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: hebxlk2l\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hebxlk2l
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.723597005009651\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.1231140717864037\n", "The running loss is:\n", "28.490644335746765\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.035046023981912\n", "The running loss is:\n", "13.955412358045578\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "0.996815168431827\n", "The running loss is:\n", "13.241860419511795\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "0.945847172822271\n", "The running loss is:\n", "11.466906487941742\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.8190647491386959\n", "The running loss is:\n", "10.924891918897629\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.780349422778402\n", "The running loss is:\n", "10.513674184679985\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.7509767274771418\n", "The running loss is:\n", "9.895356297492981\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.7068111641066415\n", "The running loss is:\n", "9.991915211081505\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.7137082293629646\n", "The running loss is:\n", "9.326003551483154\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.6661431108202253\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.664345\n", "48 30755 ... 13.185613\n", "49 30756 ... 11.520662\n", "50 30757 ... 11.929882\n", "51 30758 ... 10.195442\n", "52 30759 ... 8.390749\n", "53 30760 ... 5.661302\n", "54 30761 ... 5.480610\n", "55 30762 ... 7.734272\n", "56 30763 ... 7.415340\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hebxlk2l \n", "\n", "wandb: Agent Starting Run: f9q3bn5p with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: f9q3bn5p\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/f9q3bn5p
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.760922595858574\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.0585325073737364\n", "The running loss is:\n", "28.3547403216362\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.1811338708950925\n", "The running loss is:\n", "12.500449031591415\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.9615730024301089\n", "The running loss is:\n", "11.595830231904984\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.8919869409157679\n", "The running loss is:\n", "9.472603611648083\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7286618162806218\n", "The running loss is:\n", "9.583042055368423\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7371570811821864\n", "The running loss is:\n", "9.448577012866735\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.7268136163743643\n", "The running loss is:\n", "8.934248983860016\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.6872499218353858\n", "The running loss is:\n", "8.718861654400826\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6706816657231405\n", "The running loss is:\n", "8.367036566138268\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6436181973952514\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.351791\n", "48 30755 ... 13.041138\n", "49 30756 ... 14.050688\n", "50 30757 ... 14.945793\n", "51 30758 ... 15.019467\n", "52 30759 ... 14.608635\n", "53 30760 ... 13.617412\n", "54 30761 ... 15.745596\n", "55 30762 ... 18.032488\n", "56 30763 ... 19.294676\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: f9q3bn5p \n", "\n", "wandb: Agent Starting Run: mx7h8bz8 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: mx7h8bz8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mx7h8bz8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.776539117097855\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.1983242226498467\n", "The running loss is:\n", "26.58887927979231\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.8992056628423077\n", "The running loss is:\n", "24.896283831447363\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.7783059879605259\n", "The running loss is:\n", "17.928823247551918\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.280630231967994\n", "The running loss is:\n", "12.109752431511879\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.8649823165365628\n", "The running loss is:\n", "8.675509860739112\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.6196792757670794\n", "The running loss is:\n", "10.843803316354752\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.7745573797396251\n", "The running loss is:\n", "9.790428780019283\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.6993163414299488\n", "The running loss is:\n", "8.949594028294086\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.6392567163067204\n", "The running loss is:\n", "8.564673632383347\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.6117624023130962\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.665448\n", "48 30755 ... 13.411776\n", "49 30756 ... 13.063972\n", "50 30757 ... 12.983979\n", "51 30758 ... 12.259508\n", "52 30759 ... 11.530276\n", "53 30760 ... 10.420552\n", "54 30761 ... 11.024097\n", "55 30762 ... 12.358281\n", "56 30763 ... 12.445353\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mx7h8bz8 \n", "\n", "wandb: Agent Starting Run: lm9loxi1 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: lm9loxi1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lm9loxi1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.176710434257984\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.155479316732713\n", "The running loss is:\n", "22.872309029102325\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.6337363592215948\n", "The running loss is:\n", "22.13676345348358\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.5811973895345415\n", "The running loss is:\n", "19.3515884578228\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.3822563184159142\n", "The running loss is:\n", "12.773187398910522\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.9123705284936088\n", "The running loss is:\n", "11.72696629166603\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.8376404494047165\n", "The running loss is:\n", "10.596563547849655\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.7568973962749753\n", "The running loss is:\n", "10.482213720679283\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.7487295514770916\n", "The running loss is:\n", "10.999816179275513\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.7857011556625366\n", "The running loss is:\n", "8.992802858352661\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.6423430613109044\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.652482\n", "48 30755 ... 11.203905\n", "49 30756 ... 9.210129\n", "50 30757 ... 9.121360\n", "51 30758 ... 7.296506\n", "52 30759 ... 5.924037\n", "53 30760 ... 3.844475\n", "54 30761 ... 3.221498\n", "55 30762 ... 6.493601\n", "56 30763 ... 6.209036\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lm9loxi1 \n", "\n", "wandb: Agent Starting Run: 3mgs8xbf with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 3mgs8xbf\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3mgs8xbf
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.498512089252472\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.0383470837886517\n", "The running loss is:\n", "25.564792200922966\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.9665224769940743\n", "The running loss is:\n", "22.65778923034668\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.7429068638728216\n", "The running loss is:\n", "14.94919142127037\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.1499378016361823\n", "The running loss is:\n", "13.298549711704254\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.0229653624387889\n", "The running loss is:\n", "10.945579677820206\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.8419676675246313\n", "The running loss is:\n", "10.539850123226643\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8107577017866648\n", "The running loss is:\n", "10.23940223455429\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.7876463257349454\n", "The running loss is:\n", "9.733535498380661\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7487334998754355\n", "The running loss is:\n", "8.944746106863022\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6880573928356171\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.021401\n", "48 30755 ... 11.561892\n", "49 30756 ... 12.308455\n", "50 30757 ... 12.756186\n", "51 30758 ... 12.854743\n", "52 30759 ... 12.682150\n", "53 30760 ... 12.287163\n", "54 30761 ... 13.468019\n", "55 30762 ... 14.454829\n", "56 30763 ... 15.026141\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3mgs8xbf \n", "\n", "wandb: Agent Starting Run: nihnfer9 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: nihnfer9\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nihnfer9
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "51.30401501059532\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "3.6645725007568086\n", "The running loss is:\n", "28.13227316737175\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.0094480833836963\n", "The running loss is:\n", "30.677978098392487\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "2.1912841498851776\n", "The running loss is:\n", "25.798474550247192\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.8427481821605138\n", "The running loss is:\n", "23.53739532828331\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.6812425234488078\n", "The running loss is:\n", "12.46931640803814\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.89066545771701\n", "The running loss is:\n", "14.836411327123642\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.0597436662231172\n", "The running loss is:\n", "11.940000280737877\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.8528571629098484\n", "The running loss is:\n", "9.431063748896122\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.6736474106354373\n", "The running loss is:\n", "9.614306479692459\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.68673617712089\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.500200\n", "48 30755 ... 13.090182\n", "49 30756 ... 12.382077\n", "50 30757 ... 12.541276\n", "51 30758 ... 11.883831\n", "52 30759 ... 11.478168\n", "53 30760 ... 10.748770\n", "54 30761 ... 11.050783\n", "55 30762 ... 12.022332\n", "56 30763 ... 11.973404\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nihnfer9 \n", "\n", "wandb: Agent Starting Run: ionv873k with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ionv873k\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ionv873k
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "33.80015930533409\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "2.4142970932381496\n", "The running loss is:\n", "21.325599938631058\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.523257138473647\n", "The running loss is:\n", "18.091121673583984\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.2922229766845703\n", "The running loss is:\n", "27.904833287000656\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.993202377642904\n", "The running loss is:\n", "19.25467175245285\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.375333696603775\n", "The running loss is:\n", "17.12490466237068\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.2232074758836202\n", "The running loss is:\n", "13.32920789718628\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.9520862783704486\n", "The running loss is:\n", "13.500364929437637\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.9643117806741169\n", "The running loss is:\n", "13.285066820681095\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.9489333443343639\n", "The running loss is:\n", "12.104208245873451\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.8645863032766751\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.968231\n", "48 30755 ... 9.625219\n", "49 30756 ... 9.401051\n", "50 30757 ... 9.150497\n", "51 30758 ... 8.870846\n", "52 30759 ... 8.580363\n", "53 30760 ... 8.285401\n", "54 30761 ... 7.854644\n", "55 30762 ... 9.419525\n", "56 30763 ... 9.371837\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ionv873k \n", "\n", "wandb: Agent Starting Run: oe5h8j48 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: oe5h8j48\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/oe5h8j48
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "36.88397306203842\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "2.837228697079879\n", "The running loss is:\n", "23.387097895145416\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.7990075303958013\n", "The running loss is:\n", "20.17457577586174\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.551890444297057\n", "The running loss is:\n", "20.294566094875336\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.5611204688365643\n", "The running loss is:\n", "18.586155623197556\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.4297042787075043\n", "The running loss is:\n", "13.293670758605003\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.0225900583542311\n", "The running loss is:\n", "13.621711760759354\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.0478239815968733\n", "The running loss is:\n", "10.410593956708908\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.800814919746839\n", "The running loss is:\n", "10.608880147337914\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8160677036413779\n", "The running loss is:\n", "9.719066202640533\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7476204771261948\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.146037\n", "48 30755 ... 13.109223\n", "49 30756 ... 13.432909\n", "50 30757 ... 13.972692\n", "51 30758 ... 13.988523\n", "52 30759 ... 13.896473\n", "53 30760 ... 13.568353\n", "54 30761 ... 12.816897\n", "55 30762 ... 14.419169\n", "56 30763 ... 14.700335\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: oe5h8j48 \n", "\n", "wandb: Agent Starting Run: uz0dql7o with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: uz0dql7o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/uz0dql7o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.755451019853354\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "0.7682465014180967\n", "The running loss is:\n", "38.836746633052826\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.7740533309323445\n", "The running loss is:\n", "11.501722127199173\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "0.8215515805142266\n", "The running loss is:\n", "10.499587520956993\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "0.7499705372112138\n", "The running loss is:\n", "8.515039145946503\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.6082170818533216\n", "The running loss is:\n", "8.96797063946724\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.6405693313905171\n", "The running loss is:\n", "7.806724339723587\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.5576231671231133\n", "The running loss is:\n", "7.387755490839481\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.5276968207742486\n", "The running loss is:\n", "7.427955038845539\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.5305682170603957\n", "The running loss is:\n", "7.187168009579182\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.5133691435413701\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.769258\n", "48 30755 ... 10.274848\n", "49 30756 ... 17.754297\n", "50 30757 ... 16.682022\n", "51 30758 ... 15.986617\n", "52 30759 ... 15.547783\n", "53 30760 ... 12.919273\n", "54 30761 ... 15.504961\n", "55 30762 ... 17.572283\n", "56 30763 ... 21.066988\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: uz0dql7o \n", "\n", "wandb: Agent Starting Run: imlwhsva with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: imlwhsva\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/imlwhsva
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.53025685250759\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.2715582194236608\n", "The running loss is:\n", "16.255148097872734\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.2503960075286717\n", "The running loss is:\n", "10.766040947288275\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.8281569959452519\n", "The running loss is:\n", "9.744163434952497\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.7495510334578844\n", "The running loss is:\n", "9.72730216011405\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7482540123164654\n", "The running loss is:\n", "9.620016269385815\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7400012514912165\n", "The running loss is:\n", "9.431224629282951\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.72547881763715\n", "The running loss is:\n", "9.202248107641935\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.7078652390493796\n", "The running loss is:\n", "9.111172825098038\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7008594480844644\n", "The running loss is:\n", "7.962752666324377\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6125194358711059\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.158216\n", "48 30755 ... 10.707749\n", "49 30756 ... 15.812157\n", "50 30757 ... 15.918945\n", "51 30758 ... 16.698002\n", "52 30759 ... 17.599003\n", "53 30760 ... 16.707861\n", "54 30761 ... 19.135910\n", "55 30762 ... 21.531374\n", "56 30763 ... 25.614202\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: imlwhsva \n", "\n", "wandb: Agent Starting Run: 6s6mkjgq with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 6s6mkjgq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6s6mkjgq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.457125097513199\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.1120865459625537\n", "The running loss is:\n", "16.085287496447563\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.2373298074190433\n", "The running loss is:\n", "10.15951931476593\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.7815014857512254\n", "The running loss is:\n", "9.465455561876297\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.7281119662981766\n", "The running loss is:\n", "9.188641458749771\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7068185737499824\n", "The running loss is:\n", "8.755524381995201\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.6735018755380924\n", "The running loss is:\n", "8.427750319242477\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.6482884860955752\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Network error resolved after 0:00:11.182615, resuming normal operation.\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "The running loss is:\n", "7.923837661743164\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.6095259739802434\n", "The running loss is:\n", "8.0590850263834\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6199296174141077\n", "The running loss is:\n", "8.314335748553276\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.639564288350252\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.424254\n", "48 30755 ... 7.630701\n", "49 30756 ... 9.997432\n", "50 30757 ... 9.401261\n", "51 30758 ... 8.641278\n", "52 30759 ... 7.329124\n", "53 30760 ... 4.651038\n", "54 30761 ... 5.290149\n", "55 30762 ... 4.552412\n", "56 30763 ... 5.032251\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6s6mkjgq \n", "\n", "wandb: Agent Starting Run: l03hgmub with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: l03hgmub\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l03hgmub
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.75971208512783\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "0.7685508632234165\n", "The running loss is:\n", "36.87247994542122\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.633748567530087\n", "The running loss is:\n", "17.486398860812187\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.2490284900580133\n", "The running loss is:\n", "15.61052069067955\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.1150371921913964\n", "The running loss is:\n", "11.076192826032639\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.7911566304309028\n", "The running loss is:\n", "8.441155915148556\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.6029397082248968\n", "The running loss is:\n", "7.802495114505291\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.5573210796075208\n", "The running loss is:\n", "7.1354983150959015\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.5096784510782787\n", "The running loss is:\n", "7.774059057235718\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.5552899326596942\n", "The running loss is:\n", "6.861661870032549\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.4901187050023249\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.290727\n", "48 30755 ... 10.207885\n", "49 30756 ... 18.020309\n", "50 30757 ... 17.071165\n", "51 30758 ... 16.314606\n", "52 30759 ... 16.627880\n", "53 30760 ... 14.441933\n", "54 30761 ... 18.675493\n", "55 30762 ... 21.162457\n", "56 30763 ... 22.604240\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l03hgmub \n", "\n", "wandb: Agent Starting Run: c9c5e13j with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: c9c5e13j\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c9c5e13j
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.687808863818645\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.9759852972168189\n", "The running loss is:\n", "30.817717105150223\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.370593623473094\n", "The running loss is:\n", "15.852080255746841\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.219390788903603\n", "The running loss is:\n", "13.337770016863942\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.025982308989534\n", "The running loss is:\n", "11.452782481908798\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.8809832678391383\n", "The running loss is:\n", "10.242657408118248\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7878967237014037\n", "The running loss is:\n", "9.236272256821394\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.7104824812939534\n", "The running loss is:\n", "9.14104574918747\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.703157365322113\n", "The running loss is:\n", "8.3548953384161\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6426842568012384\n", "The running loss is:\n", "8.045029904693365\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6188484542071819\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.374634\n", "48 30755 ... 8.578894\n", "49 30756 ... 12.920104\n", "50 30757 ... 13.142343\n", "51 30758 ... 13.096810\n", "52 30759 ... 13.633474\n", "53 30760 ... 12.822398\n", "54 30761 ... 13.097551\n", "55 30762 ... 13.966360\n", "56 30763 ... 17.648935\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c9c5e13j \n", "\n", "wandb: Agent Starting Run: axwlbwqd with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: axwlbwqd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/axwlbwqd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.29591067135334\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.8689162054887185\n", "The running loss is:\n", "31.16746847331524\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.397497574870403\n", "The running loss is:\n", "13.213620707392693\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.0164323621071303\n", "The running loss is:\n", "12.236616969108582\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9412782283929678\n", "The running loss is:\n", "10.079297959804535\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7753306122926565\n", "The running loss is:\n", "9.156161159276962\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.704320089175151\n", "The running loss is:\n", "8.367442056536674\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.6436493889643595\n", "The running loss is:\n", "7.782520815730095\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.5986554473638535\n", "The running loss is:\n", "7.92472417652607\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6095941674250823\n", "The running loss is:\n", "7.543179780244827\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.5802445984803714\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.698154\n", "48 30755 ... 6.577190\n", "49 30756 ... 7.777941\n", "50 30757 ... 7.032951\n", "51 30758 ... 5.768365\n", "52 30759 ... 3.849137\n", "53 30760 ... 0.948829\n", "54 30761 ... 1.004140\n", "55 30762 ... 0.095635\n", "56 30763 ... -0.856214\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: axwlbwqd \n", "\n", "wandb: Agent Starting Run: bngef59s with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: bngef59s\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bngef59s
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.474827259778976\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.605344804269927\n", "The running loss is:\n", "25.603744968771935\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.8288389263408524\n", "The running loss is:\n", "23.369097493588924\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.669221249542066\n", "The running loss is:\n", "17.44265967607498\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.2459042625767844\n", "The running loss is:\n", "12.164395917207003\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.868885422657643\n", "The running loss is:\n", "12.119173973798752\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.865655283842768\n", "The running loss is:\n", "9.556369185447693\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.6825977989605495\n", "The running loss is:\n", "9.649928107857704\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.6892805791326931\n", "The running loss is:\n", "11.666721649467945\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.8333372606762818\n", "The running loss is:\n", "8.00122594833374\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.5715161391666957\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.312113\n", "48 30755 ... 15.524620\n", "49 30756 ... 21.541870\n", "50 30757 ... 20.370146\n", "51 30758 ... 19.467724\n", "52 30759 ... 19.207888\n", "53 30760 ... 16.430124\n", "54 30761 ... 22.729057\n", "55 30762 ... 23.434126\n", "56 30763 ... 24.633392\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bngef59s \n", "\n", "wandb: Agent Starting Run: nsmc9ilv with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: nsmc9ilv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nsmc9ilv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.707977592945099\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.2083059686880846\n", "The running loss is:\n", "19.711661607492715\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.5162816621148243\n", "The running loss is:\n", "20.035046309232712\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.5411574084025164\n", "The running loss is:\n", "15.251697435975075\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.1732074950750058\n", "The running loss is:\n", "11.459911532700062\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.8815316563615432\n", "The running loss is:\n", "9.84505944699049\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7573122651531146\n", "The running loss is:\n", "9.718630462884903\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.747586958683454\n", "The running loss is:\n", "8.777115888893604\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.6751627606841234\n", "The running loss is:\n", "9.399527624249458\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7230405864807276\n", "The running loss is:\n", "9.292045809328556\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7147727545637351\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.226769\n", "48 30755 ... 9.470608\n", "49 30756 ... 9.915501\n", "50 30757 ... 9.908090\n", "51 30758 ... 9.937128\n", "52 30759 ... 10.003601\n", "53 30760 ... 10.060073\n", "54 30761 ... 9.755686\n", "55 30762 ... 9.939466\n", "56 30763 ... 10.018828\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nsmc9ilv \n", "\n", "wandb: Agent Starting Run: ifw0p83l with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ifw0p83l\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ifw0p83l
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.531682252883911\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.963975557914147\n", "The running loss is:\n", "20.678108781576157\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.590623752428935\n", "The running loss is:\n", "20.66189543902874\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.58937657223298\n", "The running loss is:\n", "15.72855657339096\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.2098889671839201\n", "The running loss is:\n", "11.498915523290634\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.8845319633300488\n", "The running loss is:\n", "10.46013493835926\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.8046257644891739\n", "The running loss is:\n", "9.681835949420929\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.7447566114939176\n", "The running loss is:\n", "8.949368417263031\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.6884129551740793\n", "The running loss is:\n", "8.690906845033169\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6685312957717822\n", "The running loss is:\n", "9.19144169986248\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7070339769124985\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.390057\n", "48 30755 ... 9.157915\n", "49 30756 ... 11.250272\n", "50 30757 ... 11.213902\n", "51 30758 ... 10.737865\n", "52 30759 ... 10.233933\n", "53 30760 ... 9.121439\n", "54 30761 ... 10.235040\n", "55 30762 ... 9.953352\n", "56 30763 ... 10.905466\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ifw0p83l \n", "\n", "wandb: Agent Starting Run: ipvidfam with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ipvidfam\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ipvidfam
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "119.7130461782217\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "8.55093186987298\n", "The running loss is:\n", "55.55126856267452\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "3.9679477544767514\n", "The running loss is:\n", "24.79954195022583\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.7713958535875594\n", "The running loss is:\n", "29.550060272216797\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "2.1107185908726285\n", "The running loss is:\n", "34.141096126288176\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "2.4386497233062983\n", "The running loss is:\n", "19.86576085537672\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.4189829182411944\n", "The running loss is:\n", "12.140714094042778\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.8671938638601985\n", "The running loss is:\n", "10.807734534144402\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.7719810381531715\n", "The running loss is:\n", "8.74726428091526\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.6248045914939472\n", "The running loss is:\n", "8.744693741202354\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.6246209815144539\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.098480\n", "48 30755 ... 11.234056\n", "49 30756 ... 16.740345\n", "50 30757 ... 15.662832\n", "51 30758 ... 13.948870\n", "52 30759 ... 13.708152\n", "53 30760 ... 11.351399\n", "54 30761 ... 11.689322\n", "55 30762 ... 11.627025\n", "56 30763 ... 16.219433\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ipvidfam \n", "\n", "wandb: Agent Starting Run: vol92wf7 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: vol92wf7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vol92wf7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "60.953131318092346\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "4.688702409084026\n", "The running loss is:\n", "35.30423188209534\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.7157101447765646\n", "The running loss is:\n", "17.126852050423622\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.317450157724894\n", "The running loss is:\n", "29.961639672517776\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "2.3047415132705984\n", "The running loss is:\n", "28.83660078048706\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "2.218200060037466\n", "The running loss is:\n", "13.997964818030596\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.076766524463892\n", "The running loss is:\n", "13.703625090420246\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.0541250069554036\n", "The running loss is:\n", "14.603826694190502\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.1233712841685002\n", "The running loss is:\n", "12.683620244264603\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.9756630957126617\n", "The running loss is:\n", "11.017892237752676\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.8475301721348212\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.601355\n", "48 30755 ... 8.784111\n", "49 30756 ... 14.580492\n", "50 30757 ... 13.166733\n", "51 30758 ... 11.297988\n", "52 30759 ... 10.419773\n", "53 30760 ... 8.309337\n", "54 30761 ... 8.855109\n", "55 30762 ... 9.287474\n", "56 30763 ... 13.585121\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vol92wf7 \n", "\n", "wandb: Agent Starting Run: ui1q5amn with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ui1q5amn\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ui1q5amn
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "43.07047265768051\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "3.3131132813600392\n", "The running loss is:\n", "24.968651235103607\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.9206654796233544\n", "The running loss is:\n", "19.673025608062744\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.5133096621586726\n", "The running loss is:\n", "15.400908634066582\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.1846852795435832\n", "The running loss is:\n", "13.345179736614227\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.0265522874318636\n", "The running loss is:\n", "12.23420536518097\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9410927203985361\n", "The running loss is:\n", "12.980785593390465\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.9985219687223434\n", "The running loss is:\n", "11.168275743722916\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.859098134132532\n", "The running loss is:\n", "10.740023881196976\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8261556831689981\n", "The running loss is:\n", "10.570404797792435\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.8131080613686488\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.098559\n", "48 30755 ... 10.974888\n", "49 30756 ... 15.032891\n", "50 30757 ... 14.901587\n", "51 30758 ... 13.627957\n", "52 30759 ... 13.362471\n", "53 30760 ... 11.854248\n", "54 30761 ... 13.219946\n", "55 30762 ... 13.206392\n", "56 30763 ... 15.721452\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ui1q5amn \n", "\n", "wandb: Agent Starting Run: 1godljqj with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 1godljqj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1godljqj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.187944933772087\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.1683034564440067\n", "The running loss is:\n", "12.53387589007616\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "0.9641442992366277\n", "The running loss is:\n", "8.774933334439993\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.6749948718799994\n", "The running loss is:\n", "7.201144218444824\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.5539341706496018\n", "The running loss is:\n", "7.156394409015775\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.550491877616598\n", "The running loss is:\n", "6.275515090674162\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.4827319300518586\n", "The running loss is:\n", "6.67833286896348\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5137179129971907\n", "The running loss is:\n", "5.711407098919153\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.4393390076091656\n", "The running loss is:\n", "5.9839532896876335\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.46030409920674104\n", "The running loss is:\n", "6.153777305036783\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.4733674850028295\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.458205\n", "48 30755 ... 7.137259\n", "49 30756 ... 8.528614\n", "50 30757 ... 8.608210\n", "51 30758 ... 8.303369\n", "52 30759 ... 7.806078\n", "53 30760 ... 7.328808\n", "54 30761 ... 5.026564\n", "55 30762 ... 6.488012\n", "56 30763 ... 8.036192\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1godljqj \n", "\n", "wandb: Agent Starting Run: ptu5e09p with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ptu5e09p\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ptu5e09p
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.338553577661514\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.3337348905893474\n", "The running loss is:\n", "12.01589360833168\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "0.9242995083332062\n", "The running loss is:\n", "9.383199691772461\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.7217845916748047\n", "The running loss is:\n", "7.883500777184963\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.6064231367065356\n", "The running loss is:\n", "7.181640453636646\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.5524338810489728\n", "The running loss is:\n", "7.315292157232761\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.562714781325597\n", "The running loss is:\n", "6.892123244702816\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5301633265156013\n", "The running loss is:\n", "6.666610881686211\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.5128162216681701\n", "The running loss is:\n", "6.246898893266916\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.4805306840974551\n", "The running loss is:\n", "6.445175599306822\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.49578273840821707\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.591523\n", "48 30755 ... 9.032697\n", "49 30756 ... 9.293599\n", "50 30757 ... 9.884513\n", "51 30758 ... 10.124650\n", "52 30759 ... 10.684422\n", "53 30760 ... 11.456519\n", "54 30761 ... 12.109084\n", "55 30762 ... 12.055717\n", "56 30763 ... 12.309025\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ptu5e09p \n", "\n", "wandb: Agent Starting Run: 1bn7u6ek with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 1bn7u6ek\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1bn7u6ek
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.496125161647797\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.2689327047421382\n", "The running loss is:\n", "14.214829742908478\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.0934484417621906\n", "The running loss is:\n", "10.41348597407341\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.8010373826210315\n", "The running loss is:\n", "9.035328388214111\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.6950252606318548\n", "The running loss is:\n", "8.10020449757576\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.6230926536596738\n", "The running loss is:\n", "8.421209901571274\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.6477853770439441\n", "The running loss is:\n", "7.663483992218971\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5894987686322286\n", "The running loss is:\n", "8.22572796791792\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.6327483052244554\n", "The running loss is:\n", "7.9032817631959915\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6079447510150763\n", "The running loss is:\n", "7.974031358957291\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6133870276120993\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.992487\n", "48 30755 ... 12.461034\n", "49 30756 ... 13.230320\n", "50 30757 ... 13.786767\n", "51 30758 ... 14.966878\n", "52 30759 ... 16.526970\n", "53 30760 ... 18.361691\n", "54 30761 ... 18.917545\n", "55 30762 ... 19.258251\n", "56 30763 ... 19.971638\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1bn7u6ek \n", "\n", "wandb: Agent Starting Run: utturoc5 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: utturoc5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/utturoc5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.249525194987655\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.8653480919221272\n", "The running loss is:\n", "30.46081379801035\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.343139522923873\n", "The running loss is:\n", "9.777215026319027\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.7520934635630021\n", "The running loss is:\n", "10.099652647972107\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.7768963575363159\n", "The running loss is:\n", "7.714620653539896\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.5934323579646074\n", "The running loss is:\n", "6.230708753690124\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.4792852887453941\n", "The running loss is:\n", "6.548743784427643\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5037495218790494\n", "The running loss is:\n", "5.332755489274859\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.41021196071345073\n", "The running loss is:\n", "5.4890450509265065\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.42223423468665433\n", "The running loss is:\n", "6.13737740367651\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.4721059541289623\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.758069\n", "48 30755 ... 10.323517\n", "49 30756 ... 11.307789\n", "50 30757 ... 10.594126\n", "51 30758 ... 10.666987\n", "52 30759 ... 11.087155\n", "53 30760 ... 11.666491\n", "54 30761 ... 10.458287\n", "55 30762 ... 12.071755\n", "56 30763 ... 13.168046\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: utturoc5 \n", "\n", "wandb: Agent Starting Run: nvxoca53 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: nvxoca53\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nvxoca53
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.307263173162937\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.1005587056279182\n", "The running loss is:\n", "26.481370121240616\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.0370284708646627\n", "The running loss is:\n", "10.21297961473465\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.78561381651805\n", "The running loss is:\n", "9.383397921919823\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.7217998401476786\n", "The running loss is:\n", "7.646930389106274\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.5882254145466365\n", "The running loss is:\n", "7.441839635372162\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.5724492027209356\n", "The running loss is:\n", "7.128525517880917\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5483481167600706\n", "The running loss is:\n", "6.7704630345106125\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.5208048488085086\n", "The running loss is:\n", "6.290463771671057\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.4838818285900813\n", "The running loss is:\n", "6.040915712714195\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.4646858240549381\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.632046\n", "48 30755 ... 10.507959\n", "49 30756 ... 9.999850\n", "50 30757 ... 11.279503\n", "51 30758 ... 11.918778\n", "52 30759 ... 12.729056\n", "53 30760 ... 13.610320\n", "54 30761 ... 15.292119\n", "55 30762 ... 14.556417\n", "56 30763 ... 14.570903\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nvxoca53 \n", "\n", "wandb: Agent Starting Run: bqts5xmo with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: bqts5xmo\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bqts5xmo
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.725847855210304\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.9789113734777157\n", "The running loss is:\n", "30.892170883715153\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.376320837208858\n", "The running loss is:\n", "13.146855235099792\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.0112965565461378\n", "The running loss is:\n", "12.148904085159302\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9345310834737924\n", "The running loss is:\n", "9.722107946872711\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7478544574517471\n", "The running loss is:\n", "9.249086931347847\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7114682254882959\n", "The running loss is:\n", "8.29569448530674\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.6381303450235953\n", "The running loss is:\n", "8.795628726482391\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.6765868251140301\n", "The running loss is:\n", "8.55500802397728\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6580775403059446\n", "The running loss is:\n", "8.533968634903431\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6564591257618024\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.248339\n", "48 30755 ... 11.703672\n", "49 30756 ... 12.366732\n", "50 30757 ... 12.580591\n", "51 30758 ... 13.153063\n", "52 30759 ... 13.921073\n", "53 30760 ... 14.727524\n", "54 30761 ... 14.668133\n", "55 30762 ... 15.302679\n", "56 30763 ... 15.801561\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bqts5xmo \n", "\n", "wandb: Agent Starting Run: 97en7jps with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 97en7jps\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/97en7jps
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.382418245077133\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.8755706342367026\n", "The running loss is:\n", "23.412592843174934\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.8009686802442257\n", "The running loss is:\n", "17.038911778479815\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.3106855214215243\n", "The running loss is:\n", "10.114607397466898\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.7780467228820691\n", "The running loss is:\n", "9.873054258525372\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7594657121942594\n", "The running loss is:\n", "6.991059593856335\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.5377738149120257\n", "The running loss is:\n", "7.195119507610798\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5534707313546767\n", "The running loss is:\n", "8.087266314774752\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.622097408828827\n", "The running loss is:\n", "6.980310961604118\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.5369469970464706\n", "The running loss is:\n", "8.746676992624998\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6728213071249999\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.572081\n", "48 30755 ... 10.249009\n", "49 30756 ... 9.171862\n", "50 30757 ... 8.501332\n", "51 30758 ... 8.400084\n", "52 30759 ... 8.862746\n", "53 30760 ... 8.692664\n", "54 30761 ... 9.124661\n", "55 30762 ... 9.978867\n", "56 30763 ... 9.774427\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 97en7jps \n", "\n", "wandb: Agent Starting Run: mqseoc3o with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: mqseoc3o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mqseoc3o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.85589762032032\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.9119921246400247\n", "The running loss is:\n", "23.438958287239075\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.8029967913260827\n", "The running loss is:\n", "16.074821338057518\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.2365247183121169\n", "The running loss is:\n", "10.657343104481697\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.819795623421669\n", "The running loss is:\n", "11.378557436168194\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.8752736489360149\n", "The running loss is:\n", "10.08240570127964\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7755696693292031\n", "The running loss is:\n", "9.281341701745987\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.7139493616727682\n", "The running loss is:\n", "9.217081643640995\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.7090062802800765\n", "The running loss is:\n", "8.837434470653534\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6798026515887334\n", "The running loss is:\n", "8.208003804087639\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6313849080067414\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.769919\n", "48 30755 ... 11.215531\n", "49 30756 ... 11.267628\n", "50 30757 ... 12.318272\n", "51 30758 ... 12.608529\n", "52 30759 ... 13.034577\n", "53 30760 ... 13.474689\n", "54 30761 ... 14.320210\n", "55 30762 ... 14.396397\n", "56 30763 ... 14.574674\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mqseoc3o \n", "\n", "wandb: Agent Starting Run: pfd9jj82 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: pfd9jj82\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/pfd9jj82
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.825587838888168\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.8327375260683206\n", "The running loss is:\n", "28.150420397520065\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.1654169536553898\n", "The running loss is:\n", "20.6149685382843\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.585766810637254\n", "The running loss is:\n", "11.813875526189804\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9087596558607541\n", "The running loss is:\n", "12.213937133550644\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9395336256577418\n", "The running loss is:\n", "11.47781416773796\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.8829087821336893\n", "The running loss is:\n", "10.867890685796738\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8359915912151337\n", "The running loss is:\n", "10.418911457061768\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8014547274662898\n", "The running loss is:\n", "9.896387428045273\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7612605713880979\n", "The running loss is:\n", "9.135141223669052\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7027031710514655\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 15.415048\n", "48 30755 ... 9.452928\n", "49 30756 ... 10.730062\n", "50 30757 ... 10.066430\n", "51 30758 ... 9.313263\n", "52 30759 ... 9.942549\n", "53 30760 ... 10.416265\n", "54 30761 ... 6.991664\n", "55 30762 ... 10.831858\n", "56 30763 ... 9.746800\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: pfd9jj82 \n", "\n", "wandb: Agent Starting Run: vz7xqs63 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: vz7xqs63\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vz7xqs63
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "46.30128153041005\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "3.561637040800773\n", "The running loss is:\n", "24.802572248037905\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.9078901729259927\n", "The running loss is:\n", "13.231589883565903\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.0178146064281464\n", "The running loss is:\n", "7.9983332976698875\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.6152564075130683\n", "The running loss is:\n", "10.238236993551254\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7875566918116349\n", "The running loss is:\n", "9.1368916220963\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7028378170843308\n", "The running loss is:\n", "8.546009212732315\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.6573853240563319\n", "The running loss is:\n", "8.557626497000456\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.6582789613077273\n", "The running loss is:\n", "8.405014142394066\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6465395494149282\n", "The running loss is:\n", "8.690803073346615\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.668523313334355\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.108495\n", "48 30755 ... 10.607700\n", "49 30756 ... 10.552139\n", "50 30757 ... 11.810363\n", "51 30758 ... 11.965808\n", "52 30759 ... 11.572226\n", "53 30760 ... 11.432143\n", "54 30761 ... 11.407201\n", "55 30762 ... 11.625036\n", "56 30763 ... 11.583269\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vz7xqs63 \n", "\n", "wandb: Agent Starting Run: vat0wthg with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: vat0wthg\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vat0wthg
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "38.69787164032459\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "2.9767593569480457\n", "The running loss is:\n", "20.345289036631584\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.565022233587045\n", "The running loss is:\n", "14.763616390526295\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.1356627992712534\n", "The running loss is:\n", "10.519289702177048\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.8091761309366959\n", "The running loss is:\n", "12.006632789969444\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9235871376899573\n", "The running loss is:\n", "10.068530097603798\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7745023152002921\n", "The running loss is:\n", "10.892198204994202\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8378614003841693\n", "The running loss is:\n", "9.449286311864853\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.726868177835758\n", "The running loss is:\n", "8.240423366427422\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6338787204944171\n", "The running loss is:\n", "8.944622784852982\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6880479065271524\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.047753\n", "48 30755 ... 11.163092\n", "49 30756 ... 11.282596\n", "50 30757 ... 12.519486\n", "51 30758 ... 13.338696\n", "52 30759 ... 14.516523\n", "53 30760 ... 15.342272\n", "54 30761 ... 15.626085\n", "55 30762 ... 15.729576\n", "56 30763 ... 15.897081\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vat0wthg \n", "\n", "wandb: Agent Starting Run: 7ympyi75 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 7ympyi75\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/7ympyi75
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "42.751119792461395\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "3.2885476763431845\n", "The running loss is:\n", "22.814359664916992\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.7549507434551532\n", "The running loss is:\n", "17.861228555440903\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.3739406581108387\n", "The running loss is:\n", "13.160692304372787\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0123609464902144\n", "The running loss is:\n", "12.061859995126724\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9278353842405173\n", "The running loss is:\n", "11.913350507616997\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9164115775089997\n", "The running loss is:\n", "10.849895969033241\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8346073822333262\n", "The running loss is:\n", "11.268224865198135\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8667865280921643\n", "The running loss is:\n", "10.611917436122894\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8163013412402227\n", "The running loss is:\n", "9.465873330831528\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7281441023716559\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.687474\n", "48 30755 ... 8.196827\n", "49 30756 ... 8.605579\n", "50 30757 ... 8.132575\n", "51 30758 ... 7.834826\n", "52 30759 ... 7.821600\n", "53 30760 ... 8.354590\n", "54 30761 ... 8.151829\n", "55 30762 ... 8.153378\n", "56 30763 ... 8.345223\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 7ympyi75 \n", "\n", "wandb: Agent Starting Run: wlmcvsr7 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: wlmcvsr7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/wlmcvsr7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.07284878194332\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.2363729832264094\n", "The running loss is:\n", "11.393546909093857\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "0.8764266853149121\n", "The running loss is:\n", "9.211045920848846\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.7085419939114497\n", "The running loss is:\n", "8.046417102217674\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.6189551617090518\n", "The running loss is:\n", "8.130555003881454\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.6254273079908811\n", "The running loss is:\n", "7.790109492838383\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.5992391917567986\n", "The running loss is:\n", "7.453979782760143\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5733830602123187\n", "The running loss is:\n", "7.104567661881447\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.5465052047601113\n", "The running loss is:\n", "6.915351435542107\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.5319501104263159\n", "The running loss is:\n", "7.459764987230301\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.5738280759407923\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.308602\n", "48 30755 ... 8.039572\n", "49 30756 ... 8.126947\n", "50 30757 ... 8.647640\n", "51 30758 ... 8.920097\n", "52 30759 ... 8.672168\n", "53 30760 ... 8.654925\n", "54 30761 ... 8.377190\n", "55 30762 ... 7.938785\n", "56 30763 ... 8.490222\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: wlmcvsr7 \n", "\n", "wandb: Agent Starting Run: 4usoutte with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 4usoutte\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4usoutte
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.015090629458427\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.308853125342956\n", "The running loss is:\n", "14.904403626918793\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.146492586686061\n", "The running loss is:\n", "9.877731040120125\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.759825464624625\n", "The running loss is:\n", "8.914640828967094\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.685741602228238\n", "The running loss is:\n", "8.24161709845066\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.6339705460346662\n", "The running loss is:\n", "7.48406345397234\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.5756971887671031\n", "The running loss is:\n", "7.502739422023296\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5771338016940997\n", "The running loss is:\n", "7.524602979421616\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.5788156138016627\n", "The running loss is:\n", "7.4196352288126945\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.5707411714471303\n", "The running loss is:\n", "8.976969480514526\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6905361138857328\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.343148\n", "48 30755 ... 7.248403\n", "49 30756 ... 6.399437\n", "50 30757 ... 6.592106\n", "51 30758 ... 4.307819\n", "52 30759 ... 3.254845\n", "53 30760 ... 2.614995\n", "54 30761 ... 2.333879\n", "55 30762 ... 1.141000\n", "56 30763 ... 0.928883\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4usoutte \n", "\n", "wandb: Agent Starting Run: qnbzxb65 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: qnbzxb65\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qnbzxb65
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.061375049874187\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.3384479208228488\n", "The running loss is:\n", "11.802918165922165\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "0.9835765138268471\n", "The running loss is:\n", "9.635548263788223\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.8029623553156853\n", "The running loss is:\n", "7.900071606040001\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.6583393005033334\n", "The running loss is:\n", "7.308927018195391\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.6090772515162826\n", "The running loss is:\n", "7.408294729888439\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.61735789415737\n", "The running loss is:\n", "7.30912384018302\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.609093653348585\n", "The running loss is:\n", "8.098075211048126\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6748396009206772\n", "The running loss is:\n", "8.676205836236477\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.7230171530197064\n", "The running loss is:\n", "8.98013935610652\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.7483449463422099\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.317636\n", "48 30755 ... 8.713526\n", "49 30756 ... 7.261724\n", "50 30757 ... 7.391668\n", "51 30758 ... 6.424718\n", "52 30759 ... 6.508060\n", "53 30760 ... 6.848399\n", "54 30761 ... 6.814502\n", "55 30762 ... 6.458637\n", "56 30763 ... 6.546707\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qnbzxb65 \n", "\n", "wandb: Agent Starting Run: 6u98nj7v with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 6u98nj7v\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6u98nj7v
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.765893511474133\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.0589148854980102\n", "The running loss is:\n", "23.43887052498758\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.8029900403836598\n", "The running loss is:\n", "10.36953791975975\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.7976567630584424\n", "The running loss is:\n", "8.904323771595955\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.6849479824304581\n", "The running loss is:\n", "7.417386781424284\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.5705682139557141\n", "The running loss is:\n", "7.913604368921369\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.6087387976093361\n", "The running loss is:\n", "6.859258336946368\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5276352566881821\n", "The running loss is:\n", "6.282172272214666\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.4832440209395897\n", "The running loss is:\n", "6.116885121911764\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.4705296247624434\n", "The running loss is:\n", "7.14730378985405\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.5497925992195423\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.736671\n", "48 30755 ... 11.564378\n", "49 30756 ... 9.607123\n", "50 30757 ... 10.786201\n", "51 30758 ... 10.428370\n", "52 30759 ... 11.004709\n", "53 30760 ... 11.867481\n", "54 30761 ... 11.287722\n", "55 30762 ... 10.306524\n", "56 30763 ... 11.843080\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6u98nj7v \n", "\n", "wandb: Agent Starting Run: x8y2ap84 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: x8y2ap84\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/x8y2ap84
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.553385689854622\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.9656450530657401\n", "The running loss is:\n", "32.152095057070255\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.4732380813130965\n", "The running loss is:\n", "13.22272926568985\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.0171330204376807\n", "The running loss is:\n", "12.398492097854614\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9537301613734319\n", "The running loss is:\n", "9.956698954105377\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7658999195465674\n", "The running loss is:\n", "8.292960315942764\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.6379200243032895\n", "The running loss is:\n", "7.7905485183000565\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5992729629461582\n", "The running loss is:\n", "7.017962105572224\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.539843238890171\n", "The running loss is:\n", "7.154788330197334\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.5503683330921026\n", "The running loss is:\n", "6.995831839740276\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.5381409107492521\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.034538\n", "48 30755 ... 3.927094\n", "49 30756 ... 3.308820\n", "50 30757 ... 3.999937\n", "51 30758 ... 1.726190\n", "52 30759 ... 0.882484\n", "53 30760 ... 0.202644\n", "54 30761 ... -2.367896\n", "55 30762 ... -4.971350\n", "56 30763 ... -3.257763\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: x8y2ap84 \n", "\n", "wandb: Agent Starting Run: f4nlybf9 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: f4nlybf9\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/f4nlybf9
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.682664819061756\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.056888734921813\n", "The running loss is:\n", "26.245943874120712\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.1871619895100594\n", "The running loss is:\n", "10.745129108428955\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.895427425702413\n", "The running loss is:\n", "10.478202775120735\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8731835645933946\n", "The running loss is:\n", "8.926227048039436\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.7438522540032864\n", "The running loss is:\n", "7.637079827487469\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6364233189572891\n", "The running loss is:\n", "7.005005210638046\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.5837504342198372\n", "The running loss is:\n", "6.797870747745037\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5664892289787531\n", "The running loss is:\n", "7.502613537013531\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.6252177947511276\n", "The running loss is:\n", "7.621904402971268\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.6351587002476057\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.770882\n", "48 30755 ... 8.434825\n", "49 30756 ... 5.860340\n", "50 30757 ... 6.031592\n", "51 30758 ... 3.103240\n", "52 30759 ... 1.140361\n", "53 30760 ... -0.055734\n", "54 30761 ... -0.050757\n", "55 30762 ... -0.057389\n", "56 30763 ... -0.524463\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: f4nlybf9 \n", "\n", "wandb: Agent Starting Run: bxrcu8tu with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: bxrcu8tu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bxrcu8tu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.525801971554756\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.963523228581135\n", "The running loss is:\n", "23.895836547017097\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.838141272847469\n", "The running loss is:\n", "14.084609515964985\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.0834315012280757\n", "The running loss is:\n", "10.381171528249979\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.7985516560192292\n", "The running loss is:\n", "10.052995964884758\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7733073819142121\n", "The running loss is:\n", "10.303962796926498\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7926125228404999\n", "The running loss is:\n", "8.726175464689732\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.6712442665145948\n", "The running loss is:\n", "9.212526094168425\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.7086558533975711\n", "The running loss is:\n", "10.139194697141647\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7799380536262805\n", "The running loss is:\n", "10.184998378157616\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.783461413704432\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.354187\n", "48 30755 ... 13.430566\n", "49 30756 ... 10.369150\n", "50 30757 ... 10.154779\n", "51 30758 ... 10.079480\n", "52 30759 ... 10.377722\n", "53 30760 ... 11.070954\n", "54 30761 ... 9.903352\n", "55 30762 ... 9.985621\n", "56 30763 ... 9.941944\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bxrcu8tu \n", "\n", "wandb: Agent Starting Run: je2yahnk with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: je2yahnk\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/je2yahnk
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.798818975687027\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.8306783827451559\n", "The running loss is:\n", "28.490219056606293\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.191555312046638\n", "The running loss is:\n", "19.000672325491905\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.4615901788839927\n", "The running loss is:\n", "12.530485570430756\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9638835054177505\n", "The running loss is:\n", "11.969089105725288\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9206991619788684\n", "The running loss is:\n", "10.927263751626015\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.8405587501250781\n", "The running loss is:\n", "10.749707907438278\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.826900608264483\n", "The running loss is:\n", "8.986315917223692\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.6912550705556686\n", "The running loss is:\n", "7.793350949883461\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.59948853460642\n", "The running loss is:\n", "7.86865272372961\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6052809787484316\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.091916\n", "48 30755 ... 11.852512\n", "49 30756 ... 10.316889\n", "50 30757 ... 11.192894\n", "51 30758 ... 12.840643\n", "52 30759 ... 13.993360\n", "53 30760 ... 15.278111\n", "54 30761 ... 12.534163\n", "55 30762 ... 9.271551\n", "56 30763 ... 11.861491\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: je2yahnk \n", "\n", "wandb: Agent Starting Run: pv154y7u with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: pv154y7u\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/pv154y7u
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.802732415497303\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "0.8168943679581085\n", "The running loss is:\n", "26.21215522289276\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.1843462685743966\n", "The running loss is:\n", "17.116993874311447\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.4264161561926205\n", "The running loss is:\n", "10.959399312734604\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.913283276061217\n", "The running loss is:\n", "10.964498907327652\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9137082422773043\n", "The running loss is:\n", "9.913394719362259\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.8261162266135216\n", "The running loss is:\n", "8.57229234278202\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.714357695231835\n", "The running loss is:\n", "7.871752962470055\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6559794135391712\n", "The running loss is:\n", "7.458349071443081\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.6215290892869234\n", "The running loss is:\n", "8.988392800092697\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.7490327333410581\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.390130\n", "48 30755 ... 11.972624\n", "49 30756 ... 8.251997\n", "50 30757 ... 8.524872\n", "51 30758 ... 7.873636\n", "52 30759 ... 6.769165\n", "53 30760 ... 5.787257\n", "54 30761 ... 4.192029\n", "55 30762 ... 2.647506\n", "56 30763 ... 3.688875\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: pv154y7u \n", "\n", "wandb: Agent Starting Run: tfairxgi with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: tfairxgi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/tfairxgi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "37.44812400639057\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "2.8806249235685053\n", "The running loss is:\n", "22.365391314029694\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.7204147164638226\n", "The running loss is:\n", "14.247072592377663\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.095928660952128\n", "The running loss is:\n", "12.75909799337387\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9814690764133747\n", "The running loss is:\n", "17.026127204298973\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.3097020926383824\n", "The running loss is:\n", "12.31944526731968\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9476496359476676\n", "The running loss is:\n", "13.54552149027586\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.0419631915596814\n", "The running loss is:\n", "12.44608373939991\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.9573910568769162\n", "The running loss is:\n", "10.811461791396141\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8316509070304724\n", "The running loss is:\n", "13.428137093782425\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.032933622598648\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.360991\n", "48 30755 ... 12.424065\n", "49 30756 ... 12.174776\n", "50 30757 ... 11.980565\n", "51 30758 ... 11.824924\n", "52 30759 ... 12.332734\n", "53 30760 ... 12.714437\n", "54 30761 ... 13.116733\n", "55 30762 ... 13.821445\n", "56 30763 ... 13.117739\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: tfairxgi \n", "\n", "wandb: Agent Starting Run: qaitrbya with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: qaitrbya\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qaitrbya
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "49.11082097887993\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "3.7777554599138408\n", "The running loss is:\n", "25.69899582862854\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.9768458329714262\n", "The running loss is:\n", "17.135295033454895\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.3180996179580688\n", "The running loss is:\n", "11.379485577344894\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.8753450444111457\n", "The running loss is:\n", "11.188541859388351\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.8606570661067963\n", "The running loss is:\n", "11.069215461611748\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.8514781124316729\n", "The running loss is:\n", "10.00205671787262\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.7693889782978938\n", "The running loss is:\n", "10.64719857275486\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.819015274827297\n", "The running loss is:\n", "10.02389670908451\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7710689776218854\n", "The running loss is:\n", "9.106609582901001\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7005084294539231\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.008989\n", "48 30755 ... 9.304375\n", "49 30756 ... 6.913957\n", "50 30757 ... 6.941987\n", "51 30758 ... 6.408734\n", "52 30759 ... 5.711936\n", "53 30760 ... 5.180847\n", "54 30761 ... 4.393548\n", "55 30762 ... 4.547277\n", "56 30763 ... 4.002431\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qaitrbya \n", "\n", "wandb: Agent Starting Run: iouf2wvs with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: iouf2wvs\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/iouf2wvs
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "39.271602153778076\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "3.27263351281484\n", "The running loss is:\n", "20.22679728269577\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.6855664402246475\n", "The running loss is:\n", "12.615855321288109\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.051321276774009\n", "The running loss is:\n", "11.286904752254486\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.9405753960212072\n", "The running loss is:\n", "10.426268815994263\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.8688557346661886\n", "The running loss is:\n", "10.909985393285751\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9091654494404793\n", "The running loss is:\n", "9.572229564189911\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.7976857970158259\n", "The running loss is:\n", "10.429155349731445\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8690962791442871\n", "The running loss is:\n", "8.921477675437927\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.7434564729531606\n", "The running loss is:\n", "10.159409493207932\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8466174577673277\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.940737\n", "48 30755 ... 8.700059\n", "49 30756 ... 7.716850\n", "50 30757 ... 7.790635\n", "51 30758 ... 7.375722\n", "52 30759 ... 7.020612\n", "53 30760 ... 7.071692\n", "54 30761 ... 7.064066\n", "55 30762 ... 7.515588\n", "56 30763 ... 7.197381\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: iouf2wvs \n", "\n", "wandb: Agent Starting Run: hissdac6 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: hissdac6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hissdac6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.642247676849365\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.280172898219182\n", "The running loss is:\n", "16.28763623908162\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.2528950953139708\n", "The running loss is:\n", "9.172755971550941\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.7055966131962262\n", "The running loss is:\n", "7.831138916313648\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.602395301254896\n", "The running loss is:\n", "7.456290934234858\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.5735608410949891\n", "The running loss is:\n", "7.011703036725521\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.5393617720558093\n", "The running loss is:\n", "6.7462056539952755\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5189388964611751\n", "The running loss is:\n", "6.409943629056215\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.4930725868504781\n", "The running loss is:\n", "6.455305725336075\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.49656197887200576\n", "The running loss is:\n", "5.876091826707125\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.45200706359285575\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.442939\n", "48 30755 ... 14.496378\n", "49 30756 ... 20.103035\n", "50 30757 ... 14.229822\n", "51 30758 ... 14.765225\n", "52 30759 ... 15.657488\n", "53 30760 ... 19.752836\n", "54 30761 ... 19.353802\n", "55 30762 ... 20.783958\n", "56 30763 ... 22.710882\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hissdac6 \n", "\n", "wandb: Agent Starting Run: sq780sr1 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: sq780sr1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/sq780sr1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.69208151102066\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2243401259183884\n", "The running loss is:\n", "13.725030314177275\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.1437525261814396\n", "The running loss is:\n", "8.605534479022026\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.7171278732518355\n", "The running loss is:\n", "7.257033374160528\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.604752781180044\n", "The running loss is:\n", "6.742498558014631\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.5618748798345526\n", "The running loss is:\n", "6.170779198408127\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.5142315998673439\n", "The running loss is:\n", "5.943502962589264\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.49529191354910534\n", "The running loss is:\n", "6.512494046241045\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5427078371867537\n", "The running loss is:\n", "5.600046152248979\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.4666705126874149\n", "The running loss is:\n", "6.0191479958593845\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5015956663216153\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.703872\n", "48 30755 ... 10.141007\n", "49 30756 ... 11.051534\n", "50 30757 ... 5.682369\n", "51 30758 ... 5.453309\n", "52 30759 ... 3.219275\n", "53 30760 ... 1.562811\n", "54 30761 ... 1.084062\n", "55 30762 ... 0.619162\n", "56 30763 ... -0.067193\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: sq780sr1 \n", "\n", "wandb: Agent Starting Run: 3lkpbgj0 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 3lkpbgj0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3lkpbgj0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.149451583623886\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2624542986353238\n", "The running loss is:\n", "12.484605565667152\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.0403837971389294\n", "The running loss is:\n", "9.57485019415617\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.7979041828463475\n", "The running loss is:\n", "8.463449150323868\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.7052874291936556\n", "The running loss is:\n", "7.940030604600906\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.6616692170500755\n", "The running loss is:\n", "7.351875007152557\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6126562505960464\n", "The running loss is:\n", "7.489130318164825\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6240941931804022\n", "The running loss is:\n", "6.787940315902233\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5656616929918528\n", "The running loss is:\n", "7.015684597194195\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5846403830995163\n", "The running loss is:\n", "6.8622966930270195\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5718580577522516\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.617135\n", "48 30755 ... 8.451162\n", "49 30756 ... 10.490123\n", "50 30757 ... 3.936914\n", "51 30758 ... 2.963327\n", "52 30759 ... -1.098660\n", "53 30760 ... -4.159821\n", "54 30761 ... -6.189400\n", "55 30762 ... -6.795932\n", "56 30763 ... -6.658059\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3lkpbgj0 \n", "\n", "wandb: Agent Starting Run: 5v3ml29k with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 5v3ml29k\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5v3ml29k
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.161938413977623\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.9355337241521249\n", "The running loss is:\n", "28.572343215346336\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.1978725550266414\n", "The running loss is:\n", "12.400501441210508\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.9538847262469622\n", "The running loss is:\n", "9.189391441643238\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.7068762647417876\n", "The running loss is:\n", "7.397752322256565\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.5690578709428127\n", "The running loss is:\n", "6.42874202132225\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.4945186170247885\n", "The running loss is:\n", "6.827842012047768\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5252186163113668\n", "The running loss is:\n", "6.1493959575891495\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.4730304582760884\n", "The running loss is:\n", "6.439127545803785\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.4953175035233681\n", "The running loss is:\n", "8.07044368237257\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6208033601825054\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 4.922472\n", "48 30755 ... 8.917814\n", "49 30756 ... 18.689007\n", "50 30757 ... 13.947339\n", "51 30758 ... 11.741467\n", "52 30759 ... 10.111837\n", "53 30760 ... 11.390107\n", "54 30761 ... 8.920159\n", "55 30762 ... 10.996446\n", "56 30763 ... 16.557650\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5v3ml29k \n", "\n", "wandb: Agent Starting Run: unibab00 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: unibab00\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/unibab00
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.454828664660454\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "0.8712357220550379\n", "The running loss is:\n", "29.681454718112946\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.4734545598427453\n", "The running loss is:\n", "10.859991066157818\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.9049992555131515\n", "The running loss is:\n", "10.422705300152302\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8685587750126919\n", "The running loss is:\n", "8.322179265320301\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.6935149387766918\n", "The running loss is:\n", "7.16530604660511\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.5971088372170925\n", "The running loss is:\n", "6.654772460460663\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.5545643717050552\n", "The running loss is:\n", "6.77964261546731\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5649702179556092\n", "The running loss is:\n", "6.088913932442665\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5074094943702221\n", "The running loss is:\n", "6.501669891178608\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.541805824264884\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.519657\n", "48 30755 ... 11.527104\n", "49 30756 ... 14.025534\n", "50 30757 ... 9.028507\n", "51 30758 ... 9.338325\n", "52 30759 ... 9.590857\n", "53 30760 ... 10.613542\n", "54 30761 ... 10.388042\n", "55 30762 ... 10.484270\n", "56 30763 ... 10.389216\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: unibab00 \n", "\n", "wandb: Agent Starting Run: ifp9eb1p with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ifp9eb1p\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ifp9eb1p
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.416129767894745\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.0346774806578953\n", "The running loss is:\n", "24.20527493953705\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.0171062449614205\n", "The running loss is:\n", "11.19543930888176\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.9329532757401466\n", "The running loss is:\n", "10.788735710084438\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8990613091737032\n", "The running loss is:\n", "9.559967994689941\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.7966639995574951\n", "The running loss is:\n", "8.618342891335487\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.718195240944624\n", "The running loss is:\n", "7.969642907381058\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6641369089484215\n", "The running loss is:\n", "7.33133128285408\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6109442735711733\n", "The running loss is:\n", "6.842497617006302\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5702081347505251\n", "The running loss is:\n", "6.608101170510054\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5506750975425044\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.705063\n", "48 30755 ... 9.075434\n", "49 30756 ... 11.673032\n", "50 30757 ... 6.914804\n", "51 30758 ... 6.505346\n", "52 30759 ... 4.965737\n", "53 30760 ... 4.142810\n", "54 30761 ... 3.150626\n", "55 30762 ... 3.350169\n", "56 30763 ... 4.398151\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ifp9eb1p \n", "\n", "wandb: Agent Starting Run: thts7qrs with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: thts7qrs\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/thts7qrs
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.258691161870956\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.0198993201439197\n", "The running loss is:\n", "23.489024937152863\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.8068480720886817\n", "The running loss is:\n", "18.21075715869665\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.4008274737458963\n", "The running loss is:\n", "10.906683094799519\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.8389756226768861\n", "The running loss is:\n", "8.148265436291695\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.6267896489455149\n", "The running loss is:\n", "7.965685077011585\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.6127450059239681\n", "The running loss is:\n", "8.664709061384201\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.6665160816449386\n", "The running loss is:\n", "7.032974503934383\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.5409980387641833\n", "The running loss is:\n", "6.97207360714674\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.5363133543959031\n", "The running loss is:\n", "7.017210938036442\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.5397854567720339\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.510240\n", "48 30755 ... 16.805296\n", "49 30756 ... 21.841839\n", "50 30757 ... 16.963865\n", "51 30758 ... 17.538879\n", "52 30759 ... 19.097288\n", "53 30760 ... 21.089573\n", "54 30761 ... 22.992525\n", "55 30762 ... 22.120745\n", "56 30763 ... 20.562706\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: thts7qrs \n", "\n", "wandb: Agent Starting Run: 47lg0nn6 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 47lg0nn6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/47lg0nn6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.835459772497416\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "0.9029549810414513\n", "The running loss is:\n", "22.96461908519268\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.91371825709939\n", "The running loss is:\n", "15.761415027081966\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.3134512522568305\n", "The running loss is:\n", "10.180416569113731\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8483680474261442\n", "The running loss is:\n", "9.744838282465935\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.8120698568721613\n", "The running loss is:\n", "8.362954512238503\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6969128760198752\n", "The running loss is:\n", "7.482268325984478\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6235223604987065\n", "The running loss is:\n", "7.62644924223423\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6355374368528525\n", "The running loss is:\n", "6.36828438937664\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5306903657813867\n", "The running loss is:\n", "6.734523329883814\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5612102774903178\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.622638\n", "48 30755 ... 13.911704\n", "49 30756 ... 16.839764\n", "50 30757 ... 11.906046\n", "51 30758 ... 12.192764\n", "52 30759 ... 13.010283\n", "53 30760 ... 14.609374\n", "54 30761 ... 13.891782\n", "55 30762 ... 13.932491\n", "56 30763 ... 13.201247\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 47lg0nn6 \n", "\n", "wandb: Agent Starting Run: rf0uogu2 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: rf0uogu2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/rf0uogu2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.08357983827591\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "0.9236316531896591\n", "The running loss is:\n", "22.382230758666992\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.8651858965555828\n", "The running loss is:\n", "15.076354868710041\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.2563629057258368\n", "The running loss is:\n", "10.64572124928236\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8871434374401966\n", "The running loss is:\n", "10.859172463417053\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9049310386180878\n", "The running loss is:\n", "9.866730868816376\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.8222275724013647\n", "The running loss is:\n", "9.314311161637306\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.7761925968031088\n", "The running loss is:\n", "8.16476234793663\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6803968623280525\n", "The running loss is:\n", "7.3978771567344666\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.6164897630612055\n", "The running loss is:\n", "8.245596423745155\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.6871330353120962\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.262431\n", "48 30755 ... 7.172925\n", "49 30756 ... 10.437560\n", "50 30757 ... 8.788393\n", "51 30758 ... 7.332535\n", "52 30759 ... 4.802159\n", "53 30760 ... 2.583888\n", "54 30761 ... -1.306381\n", "55 30762 ... 0.795288\n", "56 30763 ... 2.912030\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: rf0uogu2 \n", "\n", "wandb: Agent Starting Run: qeeauzm6 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: qeeauzm6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qeeauzm6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "83.36189612746239\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "6.412453548266337\n", "The running loss is:\n", "25.860291827470064\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.9892532174976973\n", "The running loss is:\n", "19.907233595848083\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.5313256612190833\n", "The running loss is:\n", "10.90076495707035\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.8385203813131039\n", "The running loss is:\n", "10.626565247774124\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.8174280959826249\n", "The running loss is:\n", "9.881012380123138\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7600778753940876\n", "The running loss is:\n", "11.910851925611496\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.916219378893192\n", "The running loss is:\n", "7.531356927007437\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.5793351482313412\n", "The running loss is:\n", "10.415256395936012\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8011735689181548\n", "The running loss is:\n", "9.927764600142837\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7636742000109874\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.916672\n", "48 30755 ... 12.625881\n", "49 30756 ... 12.626095\n", "50 30757 ... 11.517555\n", "51 30758 ... 11.598584\n", "52 30759 ... 12.085279\n", "53 30760 ... 12.707908\n", "54 30761 ... 12.770116\n", "55 30762 ... 12.778158\n", "56 30763 ... 12.802703\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qeeauzm6 \n", "\n", "wandb: Agent Starting Run: pfx7ru7f with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: pfx7ru7f\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/pfx7ru7f
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "59.03156542778015\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "4.919297118981679\n", "The running loss is:\n", "20.912684738636017\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.7427237282196681\n", "The running loss is:\n", "12.18588924407959\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.0154907703399658\n", "The running loss is:\n", "10.648322485387325\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8873602071156105\n", "The running loss is:\n", "10.730297669768333\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.8941914724806944\n", "The running loss is:\n", "9.87667851895094\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.8230565432459116\n", "The running loss is:\n", "9.237145557999611\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.769762129833301\n", "The running loss is:\n", "8.763213515281677\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.7302677929401398\n", "The running loss is:\n", "9.106015630066395\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.7588346358388662\n", "The running loss is:\n", "8.237487856298685\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.6864573213582238\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.006688\n", "48 30755 ... 10.999264\n", "49 30756 ... 10.443715\n", "50 30757 ... 7.849214\n", "51 30758 ... 7.840856\n", "52 30759 ... 7.540580\n", "53 30760 ... 7.049789\n", "54 30761 ... 6.162581\n", "55 30762 ... 5.630850\n", "56 30763 ... 5.403432\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: pfx7ru7f \n", "\n", "wandb: Agent Starting Run: hf37aby9 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: hf37aby9\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hf37aby9
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "48.265553653240204\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "4.022129471103351\n", "The running loss is:\n", "17.88239400088787\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.4901995000739892\n", "The running loss is:\n", "13.118484437465668\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.0932070364554722\n", "The running loss is:\n", "10.311319708824158\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8592766424020132\n", "The running loss is:\n", "10.934739962220192\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.911228330185016\n", "The running loss is:\n", "10.6557736992836\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.8879811416069666\n", "The running loss is:\n", "10.139354795217514\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.8449462329347929\n", "The running loss is:\n", "8.855517655611038\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.7379598046342531\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Network error resolved after 0:00:11.468286, resuming normal operation.\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "The running loss is:\n", "9.930634662508965\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8275528885424137\n", "The running loss is:\n", "10.618825137615204\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.884902094801267\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.986316\n", "48 30755 ... 12.381465\n", "49 30756 ... 12.193325\n", "50 30757 ... 11.790490\n", "51 30758 ... 11.937226\n", "52 30759 ... 12.096951\n", "53 30760 ... 11.761296\n", "54 30761 ... 12.113394\n", "55 30762 ... 11.901037\n", "56 30763 ... 11.604386\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hf37aby9 \n", "\n", "wandb: Agent Starting Run: u316b39b with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: u316b39b\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u316b39b
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.37902383506298\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.0315853195885818\n", "The running loss is:\n", "24.790918722748756\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.0659098935623965\n", "The running loss is:\n", "8.455985829234123\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.7046654857695103\n", "The running loss is:\n", "7.967825371772051\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.6639854476476709\n", "The running loss is:\n", "7.571539465337992\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.6309616221114993\n", "The running loss is:\n", "7.022769663482904\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.5852308052902421\n", "The running loss is:\n", "6.53892756998539\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.5449106308321158\n", "The running loss is:\n", "6.44024109095335\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5366867575794458\n", "The running loss is:\n", "6.065792869776487\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5054827391480406\n", "The running loss is:\n", "6.28930689394474\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5241089078287283\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.100678\n", "48 30755 ... 9.491867\n", "49 30756 ... 9.838396\n", "50 30757 ... 9.236635\n", "51 30758 ... 6.406833\n", "52 30759 ... 6.267855\n", "53 30760 ... 5.421679\n", "54 30761 ... 4.986398\n", "55 30762 ... 4.994775\n", "56 30763 ... 4.666442\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u316b39b \n", "\n", "wandb: Agent Starting Run: n6k80t2e with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: n6k80t2e\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/n6k80t2e
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.276512056589127\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.1063760047157605\n", "The running loss is:\n", "18.049271062016487\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.5041059218347073\n", "The running loss is:\n", "8.319267615675926\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.6932723013063272\n", "The running loss is:\n", "7.965411841869354\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.6637843201557795\n", "The running loss is:\n", "7.3311899825930595\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.6109324985494217\n", "The running loss is:\n", "6.7873126193881035\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.5656093849490086\n", "The running loss is:\n", "6.498296394944191\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.5415246995786825\n", "The running loss is:\n", "6.533873878419399\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5444894898682833\n", "The running loss is:\n", "6.097821369767189\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5081517808139324\n", "The running loss is:\n", "6.265468001365662\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5221223334471384\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.011338\n", "48 30755 ... 7.283821\n", "49 30756 ... 8.066407\n", "50 30757 ... 8.368803\n", "51 30758 ... 2.633995\n", "52 30759 ... 1.451626\n", "53 30760 ... -2.860904\n", "54 30761 ... -3.623986\n", "55 30762 ... -4.194643\n", "56 30763 ... -4.595941\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: n6k80t2e \n", "\n", "wandb: Agent Starting Run: ynqfy2li with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ynqfy2li\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ynqfy2li
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.121348142623901\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.1767790118853252\n", "The running loss is:\n", "11.962568417191505\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "0.9968807014326254\n", "The running loss is:\n", "8.415272369980812\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.701272697498401\n", "The running loss is:\n", "7.760982871055603\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.6467485725879669\n", "The running loss is:\n", "7.097700580954552\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.5914750484128793\n", "The running loss is:\n", "6.845601633191109\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.5704668027659258\n", "The running loss is:\n", "6.674819730222225\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.5562349775185188\n", "The running loss is:\n", "6.4955049604177475\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5412920800348123\n", "The running loss is:\n", "5.942568197846413\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.49521401648720104\n", "The running loss is:\n", "6.2821846306324005\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5235153858860334\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.118464\n", "48 30755 ... 10.848496\n", "49 30756 ... 11.825148\n", "50 30757 ... 13.083958\n", "51 30758 ... 8.418689\n", "52 30759 ... 8.725552\n", "53 30760 ... 9.016667\n", "54 30761 ... 8.915531\n", "55 30762 ... 8.878509\n", "56 30763 ... 8.781803\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ynqfy2li \n", "\n", "wandb: Agent Starting Run: z3a45bpw with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: z3a45bpw\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/z3a45bpw
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.900953810662031\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "0.825079484221836\n", "The running loss is:\n", "30.638646006584167\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.5532205005486808\n", "The running loss is:\n", "13.565400153398514\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.1304500127832096\n", "The running loss is:\n", "12.18923476524651\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0157695637705426\n", "The running loss is:\n", "9.495965160429478\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.7913304300357898\n", "The running loss is:\n", "8.144568987190723\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6787140822658936\n", "The running loss is:\n", "7.078736245632172\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.5898946871360143\n", "The running loss is:\n", "6.726401956751943\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5605334963959953\n", "The running loss is:\n", "6.241230476647615\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5201025397206346\n", "The running loss is:\n", "6.079278342425823\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5066065285354853\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.471974\n", "48 30755 ... 10.483409\n", "49 30756 ... 10.175096\n", "50 30757 ... 10.090322\n", "51 30758 ... 6.847208\n", "52 30759 ... 6.857956\n", "53 30760 ... 6.441480\n", "54 30761 ... 5.431954\n", "55 30762 ... 5.906725\n", "56 30763 ... 5.729991\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: z3a45bpw \n", "\n", "wandb: Agent Starting Run: sqgiswkh with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: sqgiswkh\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/sqgiswkh
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.352339945733547\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "0.8626949954777956\n", "The running loss is:\n", "27.420582100749016\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.2850485083957515\n", "The running loss is:\n", "11.992324955761433\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.9993604129801194\n", "The running loss is:\n", "11.289713278412819\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.9408094398677349\n", "The running loss is:\n", "8.813286826014519\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.7344405688345432\n", "The running loss is:\n", "7.834414124488831\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6528678437074026\n", "The running loss is:\n", "7.225820302963257\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6021516919136047\n", "The running loss is:\n", "6.88609754294157\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5738414619117975\n", "The running loss is:\n", "6.201435163617134\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5167862636347612\n", "The running loss is:\n", "6.14191147685051\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5118259564042091\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.614470\n", "48 30755 ... 8.827579\n", "49 30756 ... 9.241714\n", "50 30757 ... 10.226584\n", "51 30758 ... 5.223353\n", "52 30759 ... 4.789123\n", "53 30760 ... 2.735260\n", "54 30761 ... 2.197710\n", "55 30762 ... 2.011790\n", "56 30763 ... 2.039282\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: sqgiswkh \n", "\n", "wandb: Agent Starting Run: ihyxflsp with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ihyxflsp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ihyxflsp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.217051550745964\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "0.934754295895497\n", "The running loss is:\n", "23.319495856761932\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.9432913213968277\n", "The running loss is:\n", "10.772423923015594\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.8977019935846329\n", "The running loss is:\n", "10.515882782638073\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8763235652198395\n", "The running loss is:\n", "8.058349311351776\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.6715291092793146\n", "The running loss is:\n", "7.961005441844463\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6634171201537052\n", "The running loss is:\n", "7.059004873037338\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.5882504060864449\n", "The running loss is:\n", "6.685458019375801\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5571215016146501\n", "The running loss is:\n", "6.883459039032459\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5736215865860382\n", "The running loss is:\n", "7.376760378479958\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.6147300315399965\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.814974\n", "48 30755 ... 11.210552\n", "49 30756 ... 11.776529\n", "50 30757 ... 12.432104\n", "51 30758 ... 9.630356\n", "52 30759 ... 9.944347\n", "53 30760 ... 10.629821\n", "54 30761 ... 10.653158\n", "55 30762 ... 11.109354\n", "56 30763 ... 10.805975\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ihyxflsp \n", "\n", "wandb: Agent Starting Run: 3b2n88ri with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 3b2n88ri\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3b2n88ri
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.48319063708186\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.5402658864234884\n", "The running loss is:\n", "18.761643692851067\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.5634703077375889\n", "The running loss is:\n", "21.986995615065098\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.8322496345887582\n", "The running loss is:\n", "9.689714223146439\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8074761852622032\n", "The running loss is:\n", "9.407272886484861\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.7839394072070718\n", "The running loss is:\n", "8.005861973389983\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6671551644491652\n", "The running loss is:\n", "7.884846691042185\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6570705575868487\n", "The running loss is:\n", "7.528995893895626\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6274163244913021\n", "The running loss is:\n", "8.065547659993172\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.6721289716660976\n", "The running loss is:\n", "6.982815816998482\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5819013180832068\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.516898\n", "48 30755 ... 11.084952\n", "49 30756 ... 10.106272\n", "50 30757 ... 10.063417\n", "51 30758 ... 8.037376\n", "52 30759 ... 8.120486\n", "53 30760 ... 8.132099\n", "54 30761 ... 7.003942\n", "55 30762 ... 6.952409\n", "56 30763 ... 6.685895\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3b2n88ri \n", "\n", "wandb: Agent Starting Run: no85t7az with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: no85t7az\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/no85t7az
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.000954568386078\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2500795473655064\n", "The running loss is:\n", "21.221872463822365\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.768489371985197\n", "The running loss is:\n", "19.358168706297874\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.613180725524823\n", "The running loss is:\n", "9.955740116536617\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8296450097113848\n", "The running loss is:\n", "9.47061137482524\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.7892176145687699\n", "The running loss is:\n", "8.324287980794907\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6936906650662422\n", "The running loss is:\n", "7.854575924575329\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6545479937146107\n", "The running loss is:\n", "7.608733028173447\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6340610856811205\n", "The running loss is:\n", "6.9321389347314835\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.577678244560957\n", "The running loss is:\n", "6.323972467333078\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5269977056110898\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.542080\n", "48 30755 ... 8.818997\n", "49 30756 ... 8.390926\n", "50 30757 ... 10.149011\n", "51 30758 ... 5.601892\n", "52 30759 ... 4.554304\n", "53 30760 ... 2.250141\n", "54 30761 ... -1.074027\n", "55 30762 ... 1.474841\n", "56 30763 ... -1.939803\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: no85t7az \n", "\n", "wandb: Agent Starting Run: qrike4wt with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: qrike4wt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qrike4wt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.473877847194672\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "0.9561564872662226\n", "The running loss is:\n", "17.159127980470657\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.429927331705888\n", "The running loss is:\n", "13.055007100105286\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.087917258342107\n", "The running loss is:\n", "9.946389883756638\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8288658236463865\n", "The running loss is:\n", "8.777176484465599\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.7314313737054666\n", "The running loss is:\n", "8.020771831274033\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6683976526061693\n", "The running loss is:\n", "7.233478561043739\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6027898800869783\n", "The running loss is:\n", "6.712913706898689\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5594094755748907\n", "The running loss is:\n", "5.935887351632118\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.4946572793026765\n", "The running loss is:\n", "6.456776849925518\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5380647374937931\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.739307\n", "48 30755 ... 15.164424\n", "49 30756 ... 14.982607\n", "50 30757 ... 12.120775\n", "51 30758 ... 6.994554\n", "52 30759 ... 6.006286\n", "53 30760 ... 5.992099\n", "54 30761 ... 7.558724\n", "55 30762 ... 7.050504\n", "56 30763 ... 6.311695\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qrike4wt \n", "\n", "wandb: Agent Starting Run: p21rcgtl with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: p21rcgtl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/p21rcgtl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "106.6566134095192\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "8.888051117459932\n", "The running loss is:\n", "24.606463849544525\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.0505386541287103\n", "The running loss is:\n", "21.61753984540701\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.8014616537839174\n", "The running loss is:\n", "23.79516276717186\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.982930230597655\n", "The running loss is:\n", "11.609253287315369\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9674377739429474\n", "The running loss is:\n", "11.628214344382286\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9690178620318571\n", "The running loss is:\n", "9.073524564504623\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.7561270470420519\n", "The running loss is:\n", "9.348070994019508\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.7790059161682924\n", "The running loss is:\n", "9.628808468580246\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8024007057150205\n", "The running loss is:\n", "9.66310379654169\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8052586497118076\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.878821\n", "48 30755 ... 14.621321\n", "49 30756 ... 13.972424\n", "50 30757 ... 12.111570\n", "51 30758 ... 10.287642\n", "52 30759 ... 10.387918\n", "53 30760 ... 10.812337\n", "54 30761 ... 9.955990\n", "55 30762 ... 11.362534\n", "56 30763 ... 12.467662\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: p21rcgtl \n", "\n", "wandb: Agent Starting Run: k6byrhpo with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: k6byrhpo\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/k6byrhpo
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "81.6181215941906\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "6.8015101328492165\n", "The running loss is:\n", "22.043223172426224\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.836935264368852\n", "The running loss is:\n", "14.447735771536827\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.2039779809614022\n", "The running loss is:\n", "15.471910580992699\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.2893258817493916\n", "The running loss is:\n", "11.04138045758009\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9201150381316742\n", "The running loss is:\n", "12.106047950685024\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.008837329223752\n", "The running loss is:\n", "10.577641814947128\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.881470151245594\n", "The running loss is:\n", "9.409645445644855\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.7841371204704046\n", "The running loss is:\n", "8.933936536312103\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.744494711359342\n", "The running loss is:\n", "8.221374459564686\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.6851145382970572\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.061282\n", "48 30755 ... 8.249587\n", "49 30756 ... 9.267735\n", "50 30757 ... 11.273976\n", "51 30758 ... 9.497227\n", "52 30759 ... 8.919030\n", "53 30760 ... 7.004339\n", "54 30761 ... 4.377275\n", "55 30762 ... 3.087500\n", "56 30763 ... 4.338648\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: k6byrhpo \n", "\n", "wandb: Agent Starting Run: 52seuqzl with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 52seuqzl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/52seuqzl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "56.113191187381744\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "4.676099265615146\n", "The running loss is:\n", "18.30052262544632\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.5250435521205266\n", "The running loss is:\n", "11.604714661836624\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.967059555153052\n", "The running loss is:\n", "14.872128278017044\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.239344023168087\n", "The running loss is:\n", "10.402111932635307\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.8668426610529423\n", "The running loss is:\n", "10.397299006581306\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.8664415838817755\n", "The running loss is:\n", "9.851659432053566\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.8209716193377972\n", "The running loss is:\n", "9.47095012664795\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.7892458438873291\n", "The running loss is:\n", "8.210800468921661\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.6842333724101385\n", "The running loss is:\n", "8.250100195407867\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.6875083496173223\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.827257\n", "48 30755 ... 13.631978\n", "49 30756 ... 11.137757\n", "50 30757 ... 6.047119\n", "51 30758 ... 6.934722\n", "52 30759 ... 6.921974\n", "53 30760 ... 6.659066\n", "54 30761 ... 6.745699\n", "55 30762 ... 8.320328\n", "56 30763 ... 4.086565\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 52seuqzl \n", "\n", "wandb: Agent Starting Run: 4i7r4tc9 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 4i7r4tc9\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4i7r4tc9
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.96486447751522\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2470720397929351\n", "The running loss is:\n", "12.224298192188144\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.0186915160156786\n", "The running loss is:\n", "8.319845624268055\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.6933204686890045\n", "The running loss is:\n", "7.175463631749153\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.5979553026457628\n", "The running loss is:\n", "6.868135239928961\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.5723446033274134\n", "The running loss is:\n", "6.5902868285775185\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.5491905690481266\n", "The running loss is:\n", "5.774220548570156\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.4811850457141797\n", "The running loss is:\n", "5.966882690787315\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.49724022423227626\n", "The running loss is:\n", "6.034196428954601\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5028497024128834\n", "The running loss is:\n", "5.637171816080809\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.46976431800673407\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.883840\n", "48 30755 ... 11.236866\n", "49 30756 ... 15.306927\n", "50 30757 ... 14.193745\n", "51 30758 ... 10.605540\n", "52 30759 ... 10.219217\n", "53 30760 ... 11.046711\n", "54 30761 ... 10.211071\n", "55 30762 ... 10.935491\n", "56 30763 ... 12.956865\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4i7r4tc9 \n", "\n", "wandb: Agent Starting Run: ik2lbrgv with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ik2lbrgv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ik2lbrgv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.35646590590477\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.3630388254920642\n", "The running loss is:\n", "13.501704521477222\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.1251420434564352\n", "The running loss is:\n", "10.06986141204834\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.839155117670695\n", "The running loss is:\n", "9.339474618434906\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.7782895515362421\n", "The running loss is:\n", "8.55732698738575\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.7131105822821459\n", "The running loss is:\n", "7.9432243257761\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6619353604813417\n", "The running loss is:\n", "7.743864074349403\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6453220061957836\n", "The running loss is:\n", "8.010289520025253\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6675241266687711\n", "The running loss is:\n", "8.142023041844368\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.6785019201536974\n", "The running loss is:\n", "7.777196206152439\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.6480996838460366\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.629007\n", "48 30755 ... 12.902403\n", "49 30756 ... 13.270831\n", "50 30757 ... 14.083817\n", "51 30758 ... 15.179794\n", "52 30759 ... 12.242359\n", "53 30760 ... 13.066635\n", "54 30761 ... 13.783864\n", "55 30762 ... 13.845278\n", "56 30763 ... 13.984291\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ik2lbrgv \n", "\n", "wandb: Agent Starting Run: 7774hcks with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 7774hcks\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/7774hcks
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.757839009165764\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2507126371968875\n", "The running loss is:\n", "12.586623467504978\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.1442384970459072\n", "The running loss is:\n", "7.428445756435394\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.6753132505850359\n", "The running loss is:\n", "7.001081258058548\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.6364619325507771\n", "The running loss is:\n", "6.894729509949684\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.6267935918136076\n", "The running loss is:\n", "6.393982410430908\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.5812711282209917\n", "The running loss is:\n", "6.316303074359894\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.574209370396354\n", "The running loss is:\n", "6.03164541721344\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5483314015648582\n", "The running loss is:\n", "6.234783947467804\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5667985406788912\n", "The running loss is:\n", "5.846083365380764\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.531462124125524\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.596305\n", "48 30755 ... 8.830587\n", "49 30756 ... 10.474157\n", "50 30757 ... 9.988824\n", "51 30758 ... 8.092268\n", "52 30759 ... 5.362512\n", "53 30760 ... 4.972435\n", "54 30761 ... 4.711842\n", "55 30762 ... 4.008645\n", "56 30763 ... 4.052268\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 7774hcks \n", "\n", "wandb: Agent Starting Run: fazaiyk7 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: fazaiyk7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fazaiyk7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.830055439844728\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.0691712866537273\n", "The running loss is:\n", "24.132599594071507\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.0110499661726258\n", "The running loss is:\n", "10.497571967542171\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.8747976639618477\n", "The running loss is:\n", "9.687794238328934\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8073161865274111\n", "The running loss is:\n", "7.763237036764622\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.6469364197303852\n", "The running loss is:\n", "6.961419679224491\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.5801183066020409\n", "The running loss is:\n", "6.35853485763073\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.5298779048025608\n", "The running loss is:\n", "6.827462054789066\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5689551712324222\n", "The running loss is:\n", "6.0002028569579124\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5000169047464927\n", "The running loss is:\n", "5.485427591949701\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.4571189659958084\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.419744\n", "48 30755 ... 10.394965\n", "49 30756 ... 12.905848\n", "50 30757 ... 12.309278\n", "51 30758 ... 10.093750\n", "52 30759 ... 9.698062\n", "53 30760 ... 9.674794\n", "54 30761 ... 9.306669\n", "55 30762 ... 9.657249\n", "56 30763 ... 11.260552\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fazaiyk7 \n", "\n", "wandb: Agent Starting Run: 1n7vdt7z with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 1n7vdt7z\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1n7vdt7z
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.794403530657291\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.1495336275547743\n", "The running loss is:\n", "24.844410978257656\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.0703675815214715\n", "The running loss is:\n", "12.776588022708893\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.0647156685590744\n", "The running loss is:\n", "11.807799771428108\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.9839833142856756\n", "The running loss is:\n", "9.790398374199867\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.8158665311833223\n", "The running loss is:\n", "8.584115162491798\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.7153429302076498\n", "The running loss is:\n", "8.691331028938293\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.7242775857448578\n", "The running loss is:\n", "8.91648381948471\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.7430403182903925\n", "The running loss is:\n", "7.640511985868216\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.6367093321556846\n", "The running loss is:\n", "7.013014301657677\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5844178584714731\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.307647\n", "48 30755 ... 12.129790\n", "49 30756 ... 12.597713\n", "50 30757 ... 13.174250\n", "51 30758 ... 13.365698\n", "52 30759 ... 11.487959\n", "53 30760 ... 11.916497\n", "54 30761 ... 11.573297\n", "55 30762 ... 12.028158\n", "56 30763 ... 12.942216\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1n7vdt7z \n", "\n", "wandb: Agent Starting Run: mxzlg74h with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: mxzlg74h\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mxzlg74h
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.668571203947067\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "0.9698701094497334\n", "The running loss is:\n", "23.13605907559395\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.103278097781268\n", "The running loss is:\n", "9.648351326584816\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.8771228478713469\n", "The running loss is:\n", "8.99851730465889\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.8180470276962627\n", "The running loss is:\n", "7.207675918936729\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.6552432653578845\n", "The running loss is:\n", "6.6272143721580505\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.60247403383255\n", "The running loss is:\n", "6.662739872932434\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6057036248120394\n", "The running loss is:\n", "6.596592366695404\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5996902151541277\n", "The running loss is:\n", "6.8548741936683655\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.6231703812425787\n", "The running loss is:\n", "6.773262917995453\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.615751174363223\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.957825\n", "48 30755 ... 12.084987\n", "49 30756 ... 13.182026\n", "50 30757 ... 12.881509\n", "51 30758 ... 11.651135\n", "52 30759 ... 11.314957\n", "53 30760 ... 11.726182\n", "54 30761 ... 11.451635\n", "55 30762 ... 11.618547\n", "56 30763 ... 12.218330\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mxzlg74h \n", "\n", "wandb: Agent Starting Run: 2n0cdb0f with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 2n0cdb0f\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2n0cdb0f
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.547422602772713\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "0.9622852168977261\n", "The running loss is:\n", "18.635728433728218\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.5529773694773514\n", "The running loss is:\n", "13.359365157783031\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.1132804298152525\n", "The running loss is:\n", "8.741095915436745\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.7284246596197287\n", "The running loss is:\n", "7.996406886726618\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.6663672405605515\n", "The running loss is:\n", "8.061928812414408\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.671827401034534\n", "The running loss is:\n", "7.5982563234865665\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6331880269572139\n", "The running loss is:\n", "9.899934113025665\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8249945094188055\n", "The running loss is:\n", "9.39713741093874\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.783094784244895\n", "The running loss is:\n", "7.772306106984615\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.6476921755820513\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.623840\n", "48 30755 ... 13.129992\n", "49 30756 ... 15.464817\n", "50 30757 ... 14.150119\n", "51 30758 ... 11.621802\n", "52 30759 ... 11.351404\n", "53 30760 ... 11.836058\n", "54 30761 ... 11.804684\n", "55 30762 ... 12.114832\n", "56 30763 ... 12.380978\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2n0cdb0f \n", "\n", "wandb: Agent Starting Run: 2l8cqkpb with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 2l8cqkpb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2l8cqkpb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.721733957529068\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "0.9768111631274223\n", "The running loss is:\n", "20.882812559604645\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.7402343799670537\n", "The running loss is:\n", "15.462991893291473\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.2885826577742894\n", "The running loss is:\n", "10.39606124162674\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8663384368022283\n", "The running loss is:\n", "11.118731543421745\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9265609619518121\n", "The running loss is:\n", "9.71517413854599\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.8095978448788325\n", "The running loss is:\n", "9.132946863770485\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.7610789053142071\n", "The running loss is:\n", "8.82024759054184\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.7350206325451533\n", "The running loss is:\n", "9.627787470817566\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8023156225681305\n", "The running loss is:\n", "9.905424669384956\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8254520557820797\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.262950\n", "48 30755 ... 12.280198\n", "49 30756 ... 12.347271\n", "50 30757 ... 12.375588\n", "51 30758 ... 12.327335\n", "52 30759 ... 11.542714\n", "53 30760 ... 11.688055\n", "54 30761 ... 11.880280\n", "55 30762 ... 11.786964\n", "56 30763 ... 11.815796\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2l8cqkpb \n", "\n", "wandb: Agent Starting Run: gujj856e with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: gujj856e\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gujj856e
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.164023727178574\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.0149112479253248\n", "The running loss is:\n", "17.79230636358261\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.6174823966893284\n", "The running loss is:\n", "17.12361752986908\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.5566925027153709\n", "The running loss is:\n", "9.037766844034195\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.8216151676394723\n", "The running loss is:\n", "8.182956509292126\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.743905137208375\n", "The running loss is:\n", "7.224704436957836\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6567913124507124\n", "The running loss is:\n", "7.649267762899399\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6953879784453999\n", "The running loss is:\n", "8.003631204366684\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.7276028367606077\n", "The running loss is:\n", "6.828029468655586\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.6207299516959623\n", "The running loss is:\n", "6.247038394212723\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.5679125812920657\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.589057\n", "48 30755 ... 8.376153\n", "49 30756 ... 12.800483\n", "50 30757 ... 11.489994\n", "51 30758 ... 6.177326\n", "52 30759 ... 5.413992\n", "53 30760 ... 5.787818\n", "54 30761 ... 3.973889\n", "55 30762 ... 4.382355\n", "56 30763 ... 7.866238\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gujj856e \n", "\n", "wandb: Agent Starting Run: g7si3dxc with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: g7si3dxc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/g7si3dxc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "61.024581253528595\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "5.085381771127383\n", "The running loss is:\n", "19.56476752460003\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.630397293716669\n", "The running loss is:\n", "13.355403766036034\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.1129503138363361\n", "The running loss is:\n", "8.840511664748192\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.7367093053956827\n", "The running loss is:\n", "11.761417895555496\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.980118157962958\n", "The running loss is:\n", "7.811135046184063\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.6509279205153385\n", "The running loss is:\n", "10.606959201395512\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.8839132667829593\n", "The running loss is:\n", "10.005793422460556\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8338161185383797\n", "The running loss is:\n", "10.245696619153023\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8538080515960852\n", "The running loss is:\n", "8.148609265685081\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.6790507721404234\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.476348\n", "48 30755 ... 11.340790\n", "49 30756 ... 10.125632\n", "50 30757 ... 11.163449\n", "51 30758 ... 11.226076\n", "52 30759 ... 9.715280\n", "53 30760 ... 9.543046\n", "54 30761 ... 9.841347\n", "55 30762 ... 8.556845\n", "56 30763 ... 8.463352\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: g7si3dxc \n", "\n", "wandb: Agent Starting Run: v0u99efc with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: v0u99efc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v0u99efc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "51.21212914586067\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "4.267677428821723\n", "The running loss is:\n", "17.462961047887802\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.4552467539906502\n", "The running loss is:\n", "11.688251674175262\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.9740209728479385\n", "The running loss is:\n", "11.13100489974022\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.9275837416450182\n", "The running loss is:\n", "13.137617707252502\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0948014756043751\n", "The running loss is:\n", "11.458725690841675\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9548938075701395\n", "The running loss is:\n", "11.170249596238136\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9308541330198447\n", "The running loss is:\n", "12.042376711964607\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "1.0035313926637173\n", "The running loss is:\n", "11.790812149643898\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9825676791369915\n", "The running loss is:\n", "10.290245652198792\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8575204710165659\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.570718\n", "48 30755 ... 9.376223\n", "49 30756 ... 10.485181\n", "50 30757 ... 9.978682\n", "51 30758 ... 10.126886\n", "52 30759 ... 9.919448\n", "53 30760 ... 9.927864\n", "54 30761 ... 9.905344\n", "55 30762 ... 9.926155\n", "56 30763 ... 9.923842\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v0u99efc \n", "\n", "wandb: Agent Starting Run: 1ly9p6oz with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 1ly9p6oz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1ly9p6oz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "72.31613194942474\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "6.574193813584068\n", "The running loss is:\n", "14.23465946316719\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.2940599511970172\n", "The running loss is:\n", "15.22510826587677\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.3841007514433428\n", "The running loss is:\n", "9.192183136940002\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.8356530124490912\n", "The running loss is:\n", "13.560538858175278\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.232776259834116\n", "The running loss is:\n", "9.145589001476765\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.8314171819524332\n", "The running loss is:\n", "9.26624071598053\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.8423855196345936\n", "The running loss is:\n", "8.879170209169388\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.8071972917426716\n", "The running loss is:\n", "8.084219574928284\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.7349290522662076\n", "The running loss is:\n", "7.389895915985107\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.6718087196350098\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.939209\n", "48 30755 ... 12.250442\n", "49 30756 ... 12.442574\n", "50 30757 ... 12.579393\n", "51 30758 ... 12.585279\n", "52 30759 ... 10.368646\n", "53 30760 ... 10.346539\n", "54 30761 ... 9.573850\n", "55 30762 ... 9.755535\n", "56 30763 ... 10.039600\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1ly9p6oz \n", "\n", "wandb: Agent Starting Run: fpttgkw6 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: fpttgkw6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fpttgkw6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.689834764227271\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2241528970189393\n", "The running loss is:\n", "17.333957076072693\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.4444964230060577\n", "The running loss is:\n", "8.697230853140354\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.7247692377616962\n", "The running loss is:\n", "7.709598541259766\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.6424665451049805\n", "The running loss is:\n", "7.4310178607702255\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.6192514883975188\n", "The running loss is:\n", "7.121323108673096\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.5934435923894247\n", "The running loss is:\n", "7.340858735144138\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6117382279286782\n", "The running loss is:\n", "6.431899104267359\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.5359915920222799\n", "The running loss is:\n", "6.767576105892658\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5639646754910549\n", "The running loss is:\n", "5.908991951495409\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.49241599595795077\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.737906\n", "48 30755 ... 12.948818\n", "49 30756 ... 13.574800\n", "50 30757 ... 15.269091\n", "51 30758 ... 14.614594\n", "52 30759 ... 12.398319\n", "53 30760 ... 10.582185\n", "54 30761 ... 11.137925\n", "55 30762 ... 11.406140\n", "56 30763 ... 11.445395\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fpttgkw6 \n", "\n", "wandb: Agent Starting Run: 8l1gnmez with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 8l1gnmez\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8l1gnmez
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.333956763148308\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.212177887558937\n", "The running loss is:\n", "10.76390040293336\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "0.978536400266669\n", "The running loss is:\n", "7.724426813423634\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.7022206194021485\n", "The running loss is:\n", "6.70024798065424\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.6091134527867491\n", "The running loss is:\n", "6.150171548128128\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.5591065043752844\n", "The running loss is:\n", "5.95460768789053\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.5413279716264118\n", "The running loss is:\n", "5.616045318543911\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.5105495744130828\n", "The running loss is:\n", "5.45828965306282\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.49620815027843823\n", "The running loss is:\n", "5.082308158278465\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.4620280143889514\n", "The running loss is:\n", "5.413075998425484\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.49209781803868036\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.038165\n", "48 30755 ... 10.608909\n", "49 30756 ... 11.677846\n", "50 30757 ... 13.408486\n", "51 30758 ... 12.285883\n", "52 30759 ... 8.894649\n", "53 30760 ... 6.958979\n", "54 30761 ... 7.109767\n", "55 30762 ... 7.204705\n", "56 30763 ... 7.257286\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8l1gnmez \n", "\n", "wandb: Agent Starting Run: r504iyh8 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: r504iyh8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/r504iyh8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.602686673402786\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.0547896975820714\n", "The running loss is:\n", "22.047383695840836\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.004307608712803\n", "The running loss is:\n", "8.506498038768768\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.7733180035244335\n", "The running loss is:\n", "7.987618550658226\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.7261471409689296\n", "The running loss is:\n", "7.208950437605381\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.6553591306913983\n", "The running loss is:\n", "6.687433920800686\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6079485382546078\n", "The running loss is:\n", "6.712285548448563\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6102077771316875\n", "The running loss is:\n", "6.500350695103407\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5909409722821279\n", "The running loss is:\n", "6.381061501801014\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5800965001637285\n", "The running loss is:\n", "6.392539195716381\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.5811399268833074\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.245036\n", "48 30755 ... 8.228024\n", "49 30756 ... 8.517384\n", "50 30757 ... 8.960963\n", "51 30758 ... 8.680799\n", "52 30759 ... 7.213123\n", "53 30760 ... 4.665875\n", "54 30761 ... 4.856624\n", "55 30762 ... 4.900586\n", "56 30763 ... 4.092776\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: r504iyh8 \n", "\n", "wandb: Agent Starting Run: aw63m4rp with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: aw63m4rp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/aw63m4rp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.29787865281105\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.0248232210675876\n", "The running loss is:\n", "19.8064456731081\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.6505371394256751\n", "The running loss is:\n", "11.618107497692108\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.9681756248076757\n", "The running loss is:\n", "8.902291357517242\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.7418576131264368\n", "The running loss is:\n", "7.879129042848945\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.6565940869040787\n", "The running loss is:\n", "6.330558676272631\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.5275465563560525\n", "The running loss is:\n", "7.807648062705994\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6506373385588328\n", "The running loss is:\n", "7.306606873869896\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6088839061558247\n", "The running loss is:\n", "6.763071320950985\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5635892767459154\n", "The running loss is:\n", "6.004747994244099\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5003956661870083\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.441623\n", "48 30755 ... 11.198905\n", "49 30756 ... 13.271868\n", "50 30757 ... 16.523909\n", "51 30758 ... 14.391433\n", "52 30759 ... 9.663706\n", "53 30760 ... 12.368917\n", "54 30761 ... 15.554323\n", "55 30762 ... 13.051601\n", "56 30763 ... 13.088296\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: aw63m4rp \n", "\n", "wandb: Agent Starting Run: bv5gfbfq with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: bv5gfbfq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bv5gfbfq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.102504268288612\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.0093185698444194\n", "The running loss is:\n", "19.026846826076508\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.729713347825137\n", "The running loss is:\n", "9.341200038790703\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.8492000035264275\n", "The running loss is:\n", "8.422987721860409\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.7657261565327644\n", "The running loss is:\n", "6.793850138783455\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.617622739889405\n", "The running loss is:\n", "6.612731076776981\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6011573706160892\n", "The running loss is:\n", "6.01167730987072\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.5465161190791563\n", "The running loss is:\n", "5.346388012170792\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.4860352738337083\n", "The running loss is:\n", "5.20254971832037\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.4729590653018518\n", "The running loss is:\n", "4.780299365520477\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.4345726695927707\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.457406\n", "48 30755 ... 5.955339\n", "49 30756 ... 9.385489\n", "50 30757 ... 12.424001\n", "51 30758 ... 10.319823\n", "52 30759 ... 4.360053\n", "53 30760 ... 3.441776\n", "54 30761 ... 3.458094\n", "55 30762 ... 2.626965\n", "56 30763 ... 2.748477\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bv5gfbfq \n", "\n", "wandb: Agent Starting Run: 4ui25iwt with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 4ui25iwt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4ui25iwt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.894896239042282\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "0.9904451126402075\n", "The running loss is:\n", "24.960272923111916\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.2691157202829015\n", "The running loss is:\n", "14.597070783376694\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.3270064348524266\n", "The running loss is:\n", "10.560084193944931\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.9600076539949938\n", "The running loss is:\n", "8.262078568339348\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.7510980516672134\n", "The running loss is:\n", "7.327546648681164\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6661406044255603\n", "The running loss is:\n", "7.109338231384754\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6463034755804322\n", "The running loss is:\n", "6.8406630009412766\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.6218784546310251\n", "The running loss is:\n", "6.650714844465256\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.6046104404059324\n", "The running loss is:\n", "6.704959943890572\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.609541813080961\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.342838\n", "48 30755 ... 9.787096\n", "49 30756 ... 10.617628\n", "50 30757 ... 11.319128\n", "51 30758 ... 11.079123\n", "52 30759 ... 9.366017\n", "53 30760 ... 7.191575\n", "54 30761 ... 7.245820\n", "55 30762 ... 7.157641\n", "56 30763 ... 6.621591\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4ui25iwt \n", "\n", "wandb: Agent Starting Run: efkau42q with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: efkau42q\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/efkau42q
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.304110929369926\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2753425774474938\n", "The running loss is:\n", "19.57400969415903\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.6311674745132525\n", "The running loss is:\n", "21.51656384766102\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.793046987305085\n", "The running loss is:\n", "8.785913735628128\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.7321594779690107\n", "The running loss is:\n", "9.513798125088215\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.7928165104240179\n", "The running loss is:\n", "9.432423368096352\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.786035280674696\n", "The running loss is:\n", "7.66383171826601\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.6386526431888342\n", "The running loss is:\n", "7.818079452961683\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6515066210801402\n", "The running loss is:\n", "6.671020977199078\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.5559184147665898\n", "The running loss is:\n", "6.739705860614777\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5616421550512314\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.775640\n", "48 30755 ... 12.652183\n", "49 30756 ... 15.949203\n", "50 30757 ... 17.717743\n", "51 30758 ... 16.192871\n", "52 30759 ... 12.983944\n", "53 30760 ... 12.847769\n", "54 30761 ... 15.049444\n", "55 30762 ... 13.526834\n", "56 30763 ... 14.984063\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: efkau42q \n", "\n", "wandb: Agent Starting Run: yxy354fp with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: yxy354fp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yxy354fp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.336272045969963\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "0.9396610950881784\n", "The running loss is:\n", "18.13731163740158\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.6488465124910527\n", "The running loss is:\n", "13.977685883641243\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.2706987166946584\n", "The running loss is:\n", "9.119788710027933\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.8290717009116303\n", "The running loss is:\n", "8.845211759209633\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.8041101599281485\n", "The running loss is:\n", "7.916596710681915\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.7196906100619923\n", "The running loss is:\n", "7.592547062784433\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6902315511622212\n", "The running loss is:\n", "6.01723700016737\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5470215454697609\n", "The running loss is:\n", "6.154241532087326\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5594765029170297\n", "The running loss is:\n", "6.210500963032246\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.564590996639295\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.814771\n", "48 30755 ... 12.536692\n", "49 30756 ... 13.175877\n", "50 30757 ... 12.439815\n", "51 30758 ... 13.010987\n", "52 30759 ... 12.134022\n", "53 30760 ... 11.068122\n", "54 30761 ... 12.273049\n", "55 30762 ... 9.667723\n", "56 30763 ... 8.891700\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yxy354fp \n", "\n", "wandb: Agent Starting Run: x068md6t with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: x068md6t\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/x068md6t
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.163715958595276\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.742155996235934\n", "The running loss is:\n", "15.844000786542892\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.4403637078675358\n", "The running loss is:\n", "27.519839078187943\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "2.5018035525625404\n", "The running loss is:\n", "10.582634881138802\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.9620577164671638\n", "The running loss is:\n", "11.661602854728699\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0601457140662454\n", "The running loss is:\n", "7.782229453325272\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.707475404847752\n", "The running loss is:\n", "7.696709528565407\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6997008662332188\n", "The running loss is:\n", "7.128703862428665\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.648063987493515\n", "The running loss is:\n", "6.206833004951477\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5642575459046797\n", "The running loss is:\n", "6.452411137521267\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.5865828306837515\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.637244\n", "48 30755 ... 10.699240\n", "49 30756 ... 11.454589\n", "50 30757 ... 11.937562\n", "51 30758 ... 11.151837\n", "52 30759 ... 8.948048\n", "53 30760 ... 7.030075\n", "54 30761 ... 7.186663\n", "55 30762 ... 6.990386\n", "56 30763 ... 6.843461\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: x068md6t \n", "\n", "wandb: Agent Starting Run: ya3scy4m with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ya3scy4m\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ya3scy4m
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "88.53303991630673\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "7.377753326358895\n", "The running loss is:\n", "15.117607243359089\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.2598006036132574\n", "The running loss is:\n", "21.78238356113434\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.8151986300945282\n", "The running loss is:\n", "9.938564524054527\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.8282137103378773\n", "The running loss is:\n", "13.54171159863472\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.1284759665528934\n", "The running loss is:\n", "11.289286583662033\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9407738819718361\n", "The running loss is:\n", "10.076805599033833\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.839733799919486\n", "The running loss is:\n", "9.40070765465498\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.7833923045545816\n", "The running loss is:\n", "9.233762472867966\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.7694802060723305\n", "The running loss is:\n", "7.18392214179039\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.5986601784825325\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 18.421427\n", "48 30755 ... 11.026144\n", "49 30756 ... 8.737643\n", "50 30757 ... 17.112108\n", "51 30758 ... 16.133114\n", "52 30759 ... 14.757212\n", "53 30760 ... 12.639726\n", "54 30761 ... 13.369624\n", "55 30762 ... 12.039531\n", "56 30763 ... 11.453431\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ya3scy4m \n", "\n", "wandb: Agent Starting Run: fp8m3p5p with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: fp8m3p5p\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fp8m3p5p
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "56.73506325483322\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "5.1577330231666565\n", "The running loss is:\n", "14.081439599394798\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.2801308726722544\n", "The running loss is:\n", "11.768588274717331\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.069871661337939\n", "The running loss is:\n", "11.529130071401596\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.0481027337637814\n", "The running loss is:\n", "8.909016866236925\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.8099106242033568\n", "The running loss is:\n", "8.021973967552185\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.7292703606865623\n", "The running loss is:\n", "7.132795467972755\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6484359516338869\n", "The running loss is:\n", "6.869528941810131\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.6245026310736482\n", "The running loss is:\n", "7.365066081285477\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.6695514619350433\n", "The running loss is:\n", "7.568959094583988\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.6880871904167262\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.777973\n", "48 30755 ... 10.313013\n", "49 30756 ... 10.664633\n", "50 30757 ... 11.374364\n", "51 30758 ... 11.230084\n", "52 30759 ... 11.073467\n", "53 30760 ... 10.215710\n", "54 30761 ... 10.222840\n", "55 30762 ... 10.195326\n", "56 30763 ... 10.036734\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fp8m3p5p \n", "\n", "wandb: Agent Starting Run: nl9f3zyh with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: nl9f3zyh\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nl9f3zyh
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "119.16718634963036\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "10.833380577239124\n", "The running loss is:\n", "14.289708197116852\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.2990643815560774\n", "The running loss is:\n", "13.934945285320282\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.2668132077563892\n", "The running loss is:\n", "16.21449938416481\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.4740453985604374\n", "The running loss is:\n", "16.993614554405212\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.5448740504004739\n", "The running loss is:\n", "14.635781586170197\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.3305255987427451\n", "The running loss is:\n", "11.63321104645729\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0575646405870265\n", "The running loss is:\n", "8.882433205842972\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.8074939278039065\n", "The running loss is:\n", "7.281253471970558\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.6619321338155053\n", "The running loss is:\n", "7.735475331544876\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.7032250301404432\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.217269\n", "48 30755 ... 8.253767\n", "49 30756 ... 8.526093\n", "50 30757 ... 8.519957\n", "51 30758 ... 8.564201\n", "52 30759 ... 8.558195\n", "53 30760 ... 8.048856\n", "54 30761 ... 7.787209\n", "55 30762 ... 7.811332\n", "56 30763 ... 6.481368\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nl9f3zyh \n", "\n", "wandb: Agent Starting Run: egq37mix with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: egq37mix\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/egq37mix
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.937215354293585\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.267019577663053\n", "The running loss is:\n", "12.927820309996605\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.1752563918178731\n", "The running loss is:\n", "7.380629554390907\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.6709663231264461\n", "The running loss is:\n", "7.143720369786024\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.6494291245260022\n", "The running loss is:\n", "6.624908953905106\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.6022644503550096\n", "The running loss is:\n", "6.404768772423267\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.5822517065839334\n", "The running loss is:\n", "6.25363489612937\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.5685122632844881\n", "The running loss is:\n", "5.978661727160215\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5435147024691105\n", "The running loss is:\n", "5.826105419546366\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5296459472314878\n", "The running loss is:\n", "5.398386839777231\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.4907624399797483\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.602220\n", "48 30755 ... 7.674791\n", "49 30756 ... 9.680432\n", "50 30757 ... 9.432722\n", "51 30758 ... 8.631081\n", "52 30759 ... 8.656858\n", "53 30760 ... 7.497314\n", "54 30761 ... 3.186903\n", "55 30762 ... 3.427803\n", "56 30763 ... 3.806885\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: egq37mix \n", "\n", "wandb: Agent Starting Run: 055yta4y with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 055yta4y\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/055yta4y
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.16464938223362\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.1967863074757836\n", "The running loss is:\n", "14.236513704061508\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.2942285185510463\n", "The running loss is:\n", "7.635823279619217\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.6941657526926561\n", "The running loss is:\n", "6.894759684801102\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.6267963349819183\n", "The running loss is:\n", "6.464241176843643\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.5876582888039675\n", "The running loss is:\n", "6.639204442501068\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6035640402273699\n", "The running loss is:\n", "6.4581106305122375\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.5871009664102034\n", "The running loss is:\n", "5.75249408185482\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5229540074413473\n", "The running loss is:\n", "6.132444128394127\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5574949207631025\n", "The running loss is:\n", "5.399658687412739\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.49087806249206717\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.781346\n", "48 30755 ... 6.443140\n", "49 30756 ... 8.097566\n", "50 30757 ... 7.652623\n", "51 30758 ... 6.561896\n", "52 30759 ... 6.862144\n", "53 30760 ... 6.056333\n", "54 30761 ... 1.668644\n", "55 30762 ... 1.731342\n", "56 30763 ... 1.537274\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 055yta4y \n", "\n", "wandb: Agent Starting Run: iybnn54g with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: iybnn54g\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/iybnn54g
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.125202730298042\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.193200248208913\n", "The running loss is:\n", "12.032076135277748\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.093825103207068\n", "The running loss is:\n", "7.3690506517887115\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.6699136956171556\n", "The running loss is:\n", "6.6424713134765625\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.6038610284978693\n", "The running loss is:\n", "6.352311864495277\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.5774828967722979\n", "The running loss is:\n", "6.089945591986179\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.553631417453289\n", "The running loss is:\n", "6.11835578083992\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.5562141618945382\n", "The running loss is:\n", "6.080555185675621\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5527777441523292\n", "The running loss is:\n", "5.575134560465813\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5068304145878012\n", "The running loss is:\n", "5.911937691271305\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.5374488810246641\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.100501\n", "48 30755 ... 6.447453\n", "49 30756 ... 5.319932\n", "50 30757 ... 5.754395\n", "51 30758 ... 5.810476\n", "52 30759 ... 5.998308\n", "53 30760 ... 5.530815\n", "54 30761 ... 0.845803\n", "55 30762 ... 0.897836\n", "56 30763 ... 0.437532\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: iybnn54g \n", "\n", "wandb: Agent Starting Run: 0c5rtc4t with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 0c5rtc4t\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0c5rtc4t
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.56395823508501\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.0512689304622738\n", "The running loss is:\n", "21.39585980027914\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.94507816366174\n", "The running loss is:\n", "9.437215507030487\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.857928682457317\n", "The running loss is:\n", "8.832013815641403\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.8029103468764912\n", "The running loss is:\n", "7.06958132237196\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.6426892111247237\n", "The running loss is:\n", "6.77753984183073\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6161399856209755\n", "The running loss is:\n", "6.557316467165947\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.5961196788332679\n", "The running loss is:\n", "6.02478714287281\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5477079220793464\n", "The running loss is:\n", "5.408392807468772\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.491672073406252\n", "The running loss is:\n", "4.902979908511043\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.4457254462282766\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.421265\n", "48 30755 ... 7.484463\n", "49 30756 ... 9.594088\n", "50 30757 ... 9.243134\n", "51 30758 ... 7.143751\n", "52 30759 ... 8.632397\n", "53 30760 ... 9.842757\n", "54 30761 ... 5.808178\n", "55 30762 ... 5.270340\n", "56 30763 ... 5.360891\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0c5rtc4t \n", "\n", "wandb: Agent Starting Run: dmof87c1 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: dmof87c1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/dmof87c1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.552351400256157\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.0502137636596507\n", "The running loss is:\n", "22.925799906253815\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.084163627841256\n", "The running loss is:\n", "10.040516801178455\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.9127742546525869\n", "The running loss is:\n", "8.72734984010458\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.7933954400095072\n", "The running loss is:\n", "7.016648806631565\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.6378771642392332\n", "The running loss is:\n", "7.162662923336029\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6511511748487299\n", "The running loss is:\n", "6.340226337313652\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.5763842124830593\n", "The running loss is:\n", "6.102388359606266\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5547625781460241\n", "The running loss is:\n", "6.945028610527515\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.6313662373206832\n", "The running loss is:\n", "6.08937419205904\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.5535794720053673\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.671848\n", "48 30755 ... 9.396304\n", "49 30756 ... 9.288265\n", "50 30757 ... 9.899469\n", "51 30758 ... 9.928300\n", "52 30759 ... 10.266774\n", "53 30760 ... 9.928045\n", "54 30761 ... 7.802100\n", "55 30762 ... 8.361746\n", "56 30763 ... 8.434018\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: dmof87c1 \n", "\n", "wandb: Agent Starting Run: a607o3ai with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: a607o3ai\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/a607o3ai
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.085680603981018\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.0077891458164563\n", "The running loss is:\n", "20.121261298656464\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.829205572605133\n", "The running loss is:\n", "9.134558081626892\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.8304143710569902\n", "The running loss is:\n", "8.571861386299133\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.779260126027194\n", "The running loss is:\n", "7.1886313408613205\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.6535119400783018\n", "The running loss is:\n", "6.905544355511665\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6277767595919695\n", "The running loss is:\n", "6.2731651067733765\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.5702877369793978\n", "The running loss is:\n", "6.410836488008499\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5828033170916818\n", "The running loss is:\n", "5.631247833371162\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5119316212155602\n", "The running loss is:\n", "5.932000920176506\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.5392728109251369\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.579858\n", "48 30755 ... 7.775860\n", "49 30756 ... 6.056839\n", "50 30757 ... 7.616488\n", "51 30758 ... 7.260682\n", "52 30759 ... 7.825396\n", "53 30760 ... 6.902719\n", "54 30761 ... 3.999594\n", "55 30762 ... 3.916414\n", "56 30763 ... 4.020979\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: a607o3ai \n", "\n", "wandb: Agent Starting Run: s2l615c4 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: s2l615c4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/s2l615c4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.919737175107002\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2654306522824548\n", "The running loss is:\n", "14.05555833876133\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.2777780307964846\n", "The running loss is:\n", "15.306061759591103\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.3914601599628276\n", "The running loss is:\n", "8.069633159786463\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.733603014526042\n", "The running loss is:\n", "8.077630437910557\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.7343300398100506\n", "The running loss is:\n", "7.786269728094339\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.7078427025540308\n", "The running loss is:\n", "7.286909453570843\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6624463139609857\n", "The running loss is:\n", "6.560916505753994\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.596446955068545\n", "The running loss is:\n", "6.199817832559347\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5636198029599406\n", "The running loss is:\n", "6.044604599475861\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.54950950904326\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.586776\n", "48 30755 ... 8.372278\n", "49 30756 ... 10.883894\n", "50 30757 ... 11.080786\n", "51 30758 ... 7.882761\n", "52 30759 ... 10.142594\n", "53 30760 ... 11.976085\n", "54 30761 ... 6.001824\n", "55 30762 ... 5.632422\n", "56 30763 ... 5.912739\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: s2l615c4 \n", "\n", "wandb: Agent Starting Run: 684gik0b with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 684gik0b\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/684gik0b
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.285382837057114\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2986711670051923\n", "The running loss is:\n", "15.524043463170528\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.4112766784700481\n", "The running loss is:\n", "25.67881280183792\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "2.334437527439811\n", "The running loss is:\n", "9.272457085549831\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.8429506441408937\n", "The running loss is:\n", "8.30488908290863\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.7549899166280573\n", "The running loss is:\n", "7.985045664012432\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.7259132421829484\n", "The running loss is:\n", "7.957685396075249\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.7234259450977499\n", "The running loss is:\n", "8.26042753458023\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.7509479576891119\n", "The running loss is:\n", "8.252448678016663\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.7502226070924238\n", "The running loss is:\n", "5.690807230770588\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.5173461118882353\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.783648\n", "48 30755 ... 10.360521\n", "49 30756 ... 5.586550\n", "50 30757 ... 10.668744\n", "51 30758 ... 8.042665\n", "52 30759 ... 13.113797\n", "53 30760 ... 9.734967\n", "54 30761 ... 9.209267\n", "55 30762 ... 7.848692\n", "56 30763 ... 10.805669\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 684gik0b \n", "\n", "wandb: Agent Starting Run: e8tpi7lb with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: e8tpi7lb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/e8tpi7lb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.106163665652275\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.100560333241116\n", "The running loss is:\n", "15.11037127673626\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.3736701160669327\n", "The running loss is:\n", "18.565093740820885\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.6877357946200804\n", "The running loss is:\n", "8.801799945533276\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.800163631412116\n", "The running loss is:\n", "8.399221360683441\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.7635655782439492\n", "The running loss is:\n", "8.407545536756516\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.7643223215233196\n", "The running loss is:\n", "6.584027715027332\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.5985479740933939\n", "The running loss is:\n", "7.207642734050751\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.6552402485500682\n", "The running loss is:\n", "6.850147262215614\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.6227406602014195\n", "The running loss is:\n", "7.071139693260193\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.642830881205472\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.616160\n", "48 30755 ... 9.827299\n", "49 30756 ... 3.027868\n", "50 30757 ... 8.111265\n", "51 30758 ... 10.138385\n", "52 30759 ... 10.469387\n", "53 30760 ... 8.697634\n", "54 30761 ... 7.158179\n", "55 30762 ... 7.428538\n", "56 30763 ... 8.332012\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: e8tpi7lb \n", "\n", "wandb: Agent Starting Run: d3o40cfk with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: d3o40cfk\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/d3o40cfk
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "90.30369505286217\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "8.209426822987469\n", "The running loss is:\n", "15.560469098389149\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.414588099853559\n", "The running loss is:\n", "20.279406629502773\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.8435824208638885\n", "The running loss is:\n", "13.721642754971981\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2474220686338164\n", "The running loss is:\n", "9.624975465238094\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.8749977695670995\n", "The running loss is:\n", "9.650864725932479\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.8773513387211345\n", "The running loss is:\n", "9.389308098703623\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.8535734635185112\n", "The running loss is:\n", "8.569266445934772\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.7790242223577066\n", "The running loss is:\n", "7.809198591858149\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.7099271447143771\n", "The running loss is:\n", "9.43609918653965\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.8578271987763318\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.029284\n", "48 30755 ... 11.026073\n", "49 30756 ... 11.041766\n", "50 30757 ... 12.278847\n", "51 30758 ... 12.294883\n", "52 30759 ... 12.624520\n", "53 30760 ... 13.053844\n", "54 30761 ... 12.575034\n", "55 30762 ... 12.675170\n", "56 30763 ... 12.601731\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: d3o40cfk \n", "\n", "wandb: Agent Starting Run: fc1ir6hp with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: fc1ir6hp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fc1ir6hp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "84.87001064419746\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "7.715455513108861\n", "The running loss is:\n", "11.632207192480564\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.0574733811345967\n", "The running loss is:\n", "20.81926593184471\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.8926605392586102\n", "The running loss is:\n", "9.084724470973015\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.8258840428157286\n", "The running loss is:\n", "10.560272850096226\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.9600248045542024\n", "The running loss is:\n", "10.19235224276781\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.9265774766152556\n", "The running loss is:\n", "9.287791468203068\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.8443446789275516\n", "The running loss is:\n", "7.80347640812397\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.7094069461930882\n", "The running loss is:\n", "9.036721609532833\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.8215201463211667\n", "The running loss is:\n", "8.998482886701822\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.8180438987910748\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.811060\n", "48 30755 ... 11.055724\n", "49 30756 ... 7.466121\n", "50 30757 ... 7.228861\n", "51 30758 ... 12.189958\n", "52 30759 ... 11.982655\n", "53 30760 ... 10.075672\n", "54 30761 ... 8.466732\n", "55 30762 ... 9.425452\n", "56 30763 ... 11.071779\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fc1ir6hp \n", "\n", "wandb: Agent Starting Run: f1mlp38o with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: f1mlp38o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/f1mlp38o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "67.69290640950203\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "6.153900582682002\n", "The running loss is:\n", "9.668513655662537\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "0.8789557868784125\n", "The running loss is:\n", "9.981049299240112\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.9073681181127374\n", "The running loss is:\n", "10.219359934329987\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.9290327213027261\n", "The running loss is:\n", "11.357643961906433\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0325130874460393\n", "The running loss is:\n", "8.35865232348442\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.7598774839531292\n", "The running loss is:\n", "7.621890068054199\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6928990970958363\n", "The running loss is:\n", "8.405842632055283\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.7641675120050256\n", "The running loss is:\n", "7.759170785546303\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.7053791623223912\n", "The running loss is:\n", "7.550814151763916\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.686437650160356\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.754035\n", "48 30755 ... 6.363925\n", "49 30756 ... 6.710924\n", "50 30757 ... 8.356108\n", "51 30758 ... 8.733762\n", "52 30759 ... 7.781654\n", "53 30760 ... 7.346811\n", "54 30761 ... 5.208549\n", "55 30762 ... 5.471954\n", "56 30763 ... 5.261775\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: f1mlp38o \n", "\n", "wandb: Agent Starting Run: waidlena with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: waidlena\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/waidlena
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.497929081320763\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.227084461938251\n", "The running loss is:\n", "8.768787369132042\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "0.7971624881029129\n", "The running loss is:\n", "8.496358714997768\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.7723962468179789\n", "The running loss is:\n", "7.1095104441046715\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.6463191312822428\n", "The running loss is:\n", "8.59556758403778\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.7814152349125255\n", "The running loss is:\n", "7.4800353944301605\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6800032176754691\n", "The running loss is:\n", "7.584153085947037\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6894684623588215\n", "The running loss is:\n", "8.128714382648468\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.7389740347862244\n", "The running loss is:\n", "8.35108682513237\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.75918971137567\n", "The running loss is:\n", "8.158496677875519\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.7416815161705017\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.112806\n", "48 30755 ... 11.882335\n", "49 30756 ... 11.945765\n", "50 30757 ... 12.140722\n", "51 30758 ... 12.394543\n", "52 30759 ... 12.674706\n", "53 30760 ... 12.966658\n", "54 30761 ... 12.097885\n", "55 30762 ... 11.875657\n", "56 30763 ... 11.942776\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: waidlena \n", "\n", "wandb: Agent Starting Run: qjfpgo60 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: qjfpgo60\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qjfpgo60
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.39041042327881\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.7627645839344372\n", "The running loss is:\n", "14.094916045665741\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.281356004151431\n", "The running loss is:\n", "13.58062994480133\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.2346027222546665\n", "The running loss is:\n", "13.59209805727005\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2356452779336409\n", "The running loss is:\n", "13.201426059007645\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.2001296417279677\n", "The running loss is:\n", "12.879163593053818\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.1708330539139835\n", "The running loss is:\n", "12.814834147691727\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.1649849225174298\n", "The running loss is:\n", "12.698356926441193\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.1543960842219265\n", "The running loss is:\n", "12.411805510520935\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.128345955501903\n", "The running loss is:\n", "12.614239037036896\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.1467490033669905\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 17.735096\n", "48 30755 ... 21.072258\n", "49 30756 ... 23.510662\n", "50 30757 ... 25.371246\n", "51 30758 ... 26.860338\n", "52 30759 ... 28.110594\n", "53 30760 ... 29.207296\n", "54 30761 ... 28.155012\n", "55 30762 ... 27.771378\n", "56 30763 ... 27.817627\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qjfpgo60 \n", "\n", "wandb: Agent Starting Run: szcbpw5m with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: szcbpw5m\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/szcbpw5m
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.532336503267288\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.6532336503267289\n", "The running loss is:\n", "11.091062128543854\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.1091062128543854\n", "The running loss is:\n", "10.856420874595642\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.0856420874595643\n", "The running loss is:\n", "10.523346066474915\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.0523346066474915\n", "The running loss is:\n", "10.397574484348297\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.0397574484348298\n", "The running loss is:\n", "10.013593643903732\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.0013593643903733\n", "The running loss is:\n", "9.911922216415405\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.9911922216415405\n", "The running loss is:\n", "10.10109493136406\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.0101094931364059\n", "The running loss is:\n", "9.99822461605072\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.999822461605072\n", "The running loss is:\n", "10.047543227672577\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "1.0047543227672577\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.451673\n", "48 30755 ... 4.557664\n", "49 30756 ... 2.783484\n", "50 30757 ... 1.481748\n", "51 30758 ... 0.379330\n", "52 30759 ... -0.638998\n", "53 30760 ... -1.621848\n", "54 30761 ... 1.282873\n", "55 30762 ... 1.955114\n", "56 30763 ... 1.685496\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: szcbpw5m \n", "\n", "wandb: Agent Starting Run: fqtu6656 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: fqtu6656\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fqtu6656
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.279194861650467\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.1162904419682242\n", "The running loss is:\n", "16.839398562908173\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.530854414809834\n", "The running loss is:\n", "8.657114937901497\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.787010448900136\n", "The running loss is:\n", "8.566754624247551\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.7787958749315955\n", "The running loss is:\n", "8.194050922989845\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.7449137202718041\n", "The running loss is:\n", "7.402128949761391\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6729208136146719\n", "The running loss is:\n", "7.638427227735519\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.6944024752486836\n", "The running loss is:\n", "7.960539147257805\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.7236853770234368\n", "The running loss is:\n", "8.493246629834175\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.772113329984925\n", "The running loss is:\n", "7.924744144082069\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.7204312858256426\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.971193\n", "48 30755 ... 11.706475\n", "49 30756 ... 11.781940\n", "50 30757 ... 12.008855\n", "51 30758 ... 12.303199\n", "52 30759 ... 12.627563\n", "53 30760 ... 12.965292\n", "54 30761 ... 11.955740\n", "55 30762 ... 11.699595\n", "56 30763 ... 11.778876\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fqtu6656 \n", "\n", "wandb: Agent Starting Run: 44l5rduh with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 44l5rduh\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/44l5rduh
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.85647228360176\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.7142247530547055\n", "The running loss is:\n", "20.30205523967743\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.845641385425221\n", "The running loss is:\n", "13.520971089601517\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.2291791899637743\n", "The running loss is:\n", "13.447545528411865\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2225041389465332\n", "The running loss is:\n", "12.76877212524414\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.1607974659312854\n", "The running loss is:\n", "12.522136121988297\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.138376011089845\n", "The running loss is:\n", "12.232091456651688\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.1120083142410626\n", "The running loss is:\n", "12.113570183515549\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.101233653046868\n", "The running loss is:\n", "11.928546637296677\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0844133306633343\n", "The running loss is:\n", "11.618478044867516\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.0562252768061378\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 16.801399\n", "48 30755 ... 19.427036\n", "49 30756 ... 21.332169\n", "50 30757 ... 22.795780\n", "51 30758 ... 23.988827\n", "52 30759 ... 25.016071\n", "53 30760 ... 25.941715\n", "54 30761 ... 24.732052\n", "55 30762 ... 24.286921\n", "56 30763 ... 24.310295\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 44l5rduh \n", "\n", "wandb: Agent Starting Run: euxxg89q with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: euxxg89q\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/euxxg89q
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.137496054172516\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.5137496054172517\n", "The running loss is:\n", "19.171320110559464\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.9171320110559464\n", "The running loss is:\n", "10.694960564374924\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.0694960564374925\n", "The running loss is:\n", "10.60001027584076\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.0600010275840759\n", "The running loss is:\n", "10.514416992664337\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.0514416992664337\n", "The running loss is:\n", "9.992541253566742\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.9992541253566742\n", "The running loss is:\n", "10.011631518602371\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.001163151860237\n", "The running loss is:\n", "9.713776409626007\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.9713776409626007\n", "The running loss is:\n", "9.765309482812881\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.9765309482812882\n", "The running loss is:\n", "9.576499074697495\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.9576499074697494\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.637028\n", "48 30755 ... 5.024141\n", "49 30756 ... 3.497705\n", "50 30757 ... 2.400480\n", "51 30758 ... 1.472821\n", "52 30759 ... 0.612151\n", "53 30760 ... -0.222054\n", "54 30761 ... 2.413519\n", "55 30762 ... 2.960541\n", "56 30763 ... 2.682458\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: euxxg89q \n", "\n", "wandb: Agent Starting Run: 1bqhr29t with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 1bqhr29t\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1bqhr29t
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.885171070694923\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "0.9895610064268112\n", "The running loss is:\n", "22.15847496688366\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.0144068151712418\n", "The running loss is:\n", "15.519859187304974\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.4108962897549977\n", "The running loss is:\n", "9.152763716876507\n", "11\n", "The number of items in train is: \n", "The loss for epoch 3\n", "0.8320694288069551\n", "The running loss is:\n", "8.221307665109634\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.7473916059190576\n", "The running loss is:\n", "8.884836662560701\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.8077124238691546\n", "The running loss is:\n", "8.030499786138535\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.7300454351035032\n", "The running loss is:\n", "8.168342098593712\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.7425765544176102\n", "The running loss is:\n", "8.518066614866257\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.7743696922605688\n", "The running loss is:\n", "8.19113241136074\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.7446484010327946\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.825364\n", "48 30755 ... 11.594109\n", "49 30756 ... 11.774220\n", "50 30757 ... 12.133711\n", "51 30758 ... 12.571421\n", "52 30759 ... 13.043240\n", "53 30760 ... 13.529931\n", "54 30761 ... 12.056443\n", "55 30762 ... 11.694873\n", "56 30763 ... 11.818159\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1bqhr29t \n", "\n", "wandb: Agent Starting Run: 2mcqkbzi with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 2mcqkbzi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2mcqkbzi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.28933358192444\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.4808485074476763\n", "The running loss is:\n", "31.518853425979614\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.8653503114526924\n", "The running loss is:\n", "19.339537233114243\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.758139748464931\n", "The running loss is:\n", "13.648087859153748\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2407352599230679\n", "The running loss is:\n", "12.581658080220222\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.1437870982018383\n", "The running loss is:\n", "13.421542048454285\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.2201401862231167\n", "The running loss is:\n", "12.218509554862976\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.1107735958966343\n", "The running loss is:\n", "11.046258971095085\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.004205361008644\n", "The running loss is:\n", "10.9622243642807\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9965658512982455\n", "The running loss is:\n", "10.555041283369064\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9595492075790059\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 16.295586\n", "48 30755 ... 18.512218\n", "49 30756 ... 20.077642\n", "50 30757 ... 21.250025\n", "51 30758 ... 22.185184\n", "52 30759 ... 22.977167\n", "53 30760 ... 23.682737\n", "54 30761 ... 22.743214\n", "55 30762 ... 22.403723\n", "56 30763 ... 22.426382\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2mcqkbzi \n", "\n", "wandb: Agent Starting Run: xv0nyvna with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: xv0nyvna\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xv0nyvna
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.87590116262436\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.1875901162624358\n", "The running loss is:\n", "28.522132337093353\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.8522132337093353\n", "The running loss is:\n", "15.147392272949219\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.5147392272949218\n", "The running loss is:\n", "12.158874988555908\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.2158874988555908\n", "The running loss is:\n", "12.22810235619545\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.222810235619545\n", "The running loss is:\n", "10.145126044750214\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.0145126044750215\n", "The running loss is:\n", "10.802199751138687\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.0802199751138688\n", "The running loss is:\n", "9.540551364421844\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.9540551364421844\n", "The running loss is:\n", "9.32604005932808\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.9326040059328079\n", "The running loss is:\n", "8.828394114971161\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.8828394114971161\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.527145\n", "48 30755 ... 6.231841\n", "49 30756 ... 4.828226\n", "50 30757 ... 3.789749\n", "51 30758 ... 2.900795\n", "52 30759 ... 2.073069\n", "53 30760 ... 1.270414\n", "54 30761 ... 3.723977\n", "55 30762 ... 4.264983\n", "56 30763 ... 4.022814\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xv0nyvna \n", "\n", "wandb: Agent Starting Run: l8weyaf1 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: l8weyaf1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l8weyaf1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "31.63803505897522\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "2.8761850053613838\n", "The running loss is:\n", "18.769451931118965\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.706313811919906\n", "The running loss is:\n", "11.642233811318874\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.0583848919380794\n", "The running loss is:\n", "10.180661663413048\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.9255146966739134\n", "The running loss is:\n", "11.987961947917938\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0898147225379944\n", "The running loss is:\n", "9.060462906956673\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.8236784460869703\n", "The running loss is:\n", "9.576754912734032\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.8706140829758211\n", "The running loss is:\n", "9.787697870284319\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.8897907154803927\n", "The running loss is:\n", "11.934325933456421\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.084938721223311\n", "The running loss is:\n", "9.142074868083\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.8310977152802728\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.001091\n", "48 30755 ... 12.799424\n", "49 30756 ... 12.547743\n", "50 30757 ... 12.283724\n", "51 30758 ... 12.016661\n", "52 30759 ... 11.748848\n", "53 30760 ... 11.480849\n", "54 30761 ... 12.626358\n", "55 30762 ... 12.706987\n", "56 30763 ... 12.524940\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l8weyaf1 \n", "\n", "wandb: Agent Starting Run: b15ovsca with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: b15ovsca\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/b15ovsca
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "31.673054099082947\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "2.879368554462086\n", "The running loss is:\n", "22.425230860710144\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.0386573509736494\n", "The running loss is:\n", "16.475321352481842\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.4977564865892583\n", "The running loss is:\n", "13.716146633028984\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2469224211844532\n", "The running loss is:\n", "14.30988696217537\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.3008988147432154\n", "The running loss is:\n", "10.958332479000092\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.9962120435454629\n", "The running loss is:\n", "10.916476994752884\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9924069995229895\n", "The running loss is:\n", "9.848691046237946\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.895335549657995\n", "The running loss is:\n", "10.236702859401703\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9306093508547003\n", "The running loss is:\n", "9.222264111042023\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.8383876464583657\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.620722\n", "48 30755 ... 13.905069\n", "49 30756 ... 14.085255\n", "50 30757 ... 14.233186\n", "51 30758 ... 14.371129\n", "52 30759 ... 14.505979\n", "53 30760 ... 14.639871\n", "54 30761 ... 14.128526\n", "55 30762 ... 14.062317\n", "56 30763 ... 14.133948\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: b15ovsca \n", "\n", "wandb: Agent Starting Run: 5ly0x251 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 5ly0x251\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5ly0x251
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "32.99864113330841\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "3.299864113330841\n", "The running loss is:\n", "17.60329395532608\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.760329395532608\n", "The running loss is:\n", "11.215231776237488\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.1215231776237489\n", "The running loss is:\n", "12.638816893100739\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.263881689310074\n", "The running loss is:\n", "10.019712716341019\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.0019712716341018\n", "The running loss is:\n", "9.607232719659805\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.9607232719659805\n", "The running loss is:\n", "9.590596705675125\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.9590596705675125\n", "The running loss is:\n", "8.71025364100933\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.8710253641009331\n", "The running loss is:\n", "8.37963554263115\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.837963554263115\n", "The running loss is:\n", "8.494551599025726\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.8494551599025726\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.702608\n", "48 30755 ... 9.330258\n", "49 30756 ... 8.310846\n", "50 30757 ... 7.426092\n", "51 30758 ... 6.592715\n", "52 30759 ... 5.778941\n", "53 30760 ... 4.972645\n", "54 30761 ... 7.639882\n", "55 30762 ... 8.161717\n", "56 30763 ... 7.865005\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5ly0x251 \n", "\n", "wandb: Agent Starting Run: 0atkj0td with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 0atkj0td\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0atkj0td
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.96093699336052\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.3600851812145927\n", "The running loss is:\n", "8.476144537329674\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "0.7705585943026976\n", "The running loss is:\n", "7.245350956916809\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.658668268810619\n", "The running loss is:\n", "6.171432768926024\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.5610393426296386\n", "The running loss is:\n", "6.489634156227112\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.589966741475192\n", "The running loss is:\n", "6.0105889942497015\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.5464171812954274\n", "The running loss is:\n", "6.208764992654324\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.5644331811503931\n", "The running loss is:\n", "6.286208868026733\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5714735334569757\n", "The running loss is:\n", "5.633164703845978\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5121058821678162\n", "The running loss is:\n", "5.67748536169529\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.51613503288139\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 16.709024\n", "48 30755 ... 21.198261\n", "49 30756 ... 23.084475\n", "50 30757 ... 24.721453\n", "51 30758 ... 25.047770\n", "52 30759 ... 24.897585\n", "53 30760 ... 24.002348\n", "54 30761 ... 27.997509\n", "55 30762 ... 29.285919\n", "56 30763 ... 30.621237\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0atkj0td \n", "\n", "wandb: Agent Starting Run: yr3r9v0z with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: yr3r9v0z\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yr3r9v0z
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.673433274030685\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.3673433274030686\n", "The running loss is:\n", "9.724617719650269\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "0.9724617719650268\n", "The running loss is:\n", "8.894245147705078\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.8894245147705078\n", "The running loss is:\n", "8.056756377220154\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.8056756377220153\n", "The running loss is:\n", "7.75899001955986\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.775899001955986\n", "The running loss is:\n", "7.6932626366615295\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.769326263666153\n", "The running loss is:\n", "7.423785865306854\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.7423785865306854\n", "The running loss is:\n", "7.368699312210083\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.7368699312210083\n", "The running loss is:\n", "7.208283305168152\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.7208283305168152\n", "The running loss is:\n", "6.594608038663864\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6594608038663864\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.148539\n", "48 30755 ... 17.949636\n", "49 30756 ... 19.337902\n", "50 30757 ... 21.656553\n", "51 30758 ... 22.667198\n", "52 30759 ... 23.891888\n", "53 30760 ... 24.308977\n", "54 30761 ... 29.522865\n", "55 30762 ... 30.020037\n", "56 30763 ... 33.703957\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yr3r9v0z \n", "\n", "wandb: Agent Starting Run: likqeqie with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: likqeqie\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/likqeqie
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.458408497273922\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.3458408497273922\n", "The running loss is:\n", "8.387499928474426\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "0.8387499928474427\n", "The running loss is:\n", "8.411725208163261\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.8411725208163261\n", "The running loss is:\n", "7.547767452895641\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.7547767452895642\n", "The running loss is:\n", "6.945795342326164\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.6945795342326164\n", "The running loss is:\n", "7.231948897242546\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7231948897242546\n", "The running loss is:\n", "6.890873074531555\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6890873074531555\n", "The running loss is:\n", "6.782497234642506\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6782497234642506\n", "The running loss is:\n", "6.886941395699978\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6886941395699978\n", "The running loss is:\n", "6.84102863073349\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.684102863073349\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.638868\n", "48 30755 ... 15.248178\n", "49 30756 ... 15.990419\n", "50 30757 ... 17.082964\n", "51 30758 ... 17.109074\n", "52 30759 ... 16.817831\n", "53 30760 ... 15.879253\n", "54 30761 ... 19.300089\n", "55 30762 ... 20.734055\n", "56 30763 ... 22.122990\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: likqeqie \n", "\n", "wandb: Agent Starting Run: c3htrmch with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: c3htrmch\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c3htrmch
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.34802322089672\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2134566564451565\n", "The running loss is:\n", "20.381017327308655\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.8528197570280596\n", "The running loss is:\n", "8.48755231499672\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "0.7715956649997018\n", "The running loss is:\n", "7.347847249358892\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.6679861135780811\n", "The running loss is:\n", "6.322733700275421\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.574793972752311\n", "The running loss is:\n", "6.006848055869341\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.5460770959881219\n", "The running loss is:\n", "5.8742464780807495\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.53402240709825\n", "The running loss is:\n", "6.040382400155067\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5491256727413698\n", "The running loss is:\n", "5.12652325630188\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.46604756875471637\n", "The running loss is:\n", "5.545659691095352\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.5041508810086683\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 18.097548\n", "48 30755 ... 21.679401\n", "49 30756 ... 24.068140\n", "50 30757 ... 25.589031\n", "51 30758 ... 26.276314\n", "52 30759 ... 26.265314\n", "53 30760 ... 25.590273\n", "54 30761 ... 30.015490\n", "55 30762 ... 31.138529\n", "56 30763 ... 33.173641\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c3htrmch \n", "\n", "wandb: Agent Starting Run: 8knvdyia with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 8knvdyia\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8knvdyia
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.671709895133972\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.2671709895133971\n", "The running loss is:\n", "15.58467423915863\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.5584674239158631\n", "The running loss is:\n", "8.86621218919754\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.886621218919754\n", "The running loss is:\n", "8.211911827325821\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.8211911827325821\n", "The running loss is:\n", "7.632152855396271\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.763215285539627\n", "The running loss is:\n", "7.735361754894257\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7735361754894257\n", "The running loss is:\n", "7.110246509313583\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.7110246509313584\n", "The running loss is:\n", "6.713372051715851\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6713372051715851\n", "The running loss is:\n", "6.79258930683136\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.679258930683136\n", "The running loss is:\n", "5.895960241556168\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.5895960241556167\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.023550\n", "48 30755 ... 16.671810\n", "49 30756 ... 16.646698\n", "50 30757 ... 19.445019\n", "51 30758 ... 19.573132\n", "52 30759 ... 20.310709\n", "53 30760 ... 19.657120\n", "54 30761 ... 24.828531\n", "55 30762 ... 25.687960\n", "56 30763 ... 29.360603\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8knvdyia \n", "\n", "wandb: Agent Starting Run: tpfyv5ah with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: tpfyv5ah\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/tpfyv5ah
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.119704440236092\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.311970444023609\n", "The running loss is:\n", "15.15892705321312\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.515892705321312\n", "The running loss is:\n", "8.269845277071\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.8269845277071\n", "The running loss is:\n", "7.88303779065609\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.788303779065609\n", "The running loss is:\n", "6.88837806135416\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.688837806135416\n", "The running loss is:\n", "7.245162636041641\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7245162636041641\n", "The running loss is:\n", "6.730993062257767\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6730993062257766\n", "The running loss is:\n", "6.451875098049641\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6451875098049641\n", "The running loss is:\n", "6.440776079893112\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6440776079893112\n", "The running loss is:\n", "6.3287926241755486\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6328792624175549\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.329016\n", "48 30755 ... 18.044563\n", "49 30756 ... 19.793707\n", "50 30757 ... 21.237078\n", "51 30758 ... 21.749710\n", "52 30759 ... 21.817234\n", "53 30760 ... 21.214640\n", "54 30761 ... 26.224243\n", "55 30762 ... 27.728821\n", "56 30763 ... 30.204544\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: tpfyv5ah \n", "\n", "wandb: Agent Starting Run: 069lrx0s with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 069lrx0s\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/069lrx0s
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.412841379642487\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.0375310345129534\n", "The running loss is:\n", "25.99633625149727\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.363303295590661\n", "The running loss is:\n", "16.070277526974678\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.4609343206340617\n", "The running loss is:\n", "9.31078253686428\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.846434776078571\n", "The running loss is:\n", "9.228860840201378\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.8389873491092161\n", "The running loss is:\n", "7.060334699228406\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.6418486090207641\n", "The running loss is:\n", "8.625365018844604\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.7841240926222368\n", "The running loss is:\n", "6.593550542369485\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.5994136856699531\n", "The running loss is:\n", "5.768903240561485\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.5244457491419532\n", "The running loss is:\n", "5.97909389436245\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.5435539903965864\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 17.675484\n", "48 30755 ... 20.721533\n", "49 30756 ... 22.798523\n", "50 30757 ... 24.087915\n", "51 30758 ... 24.757021\n", "52 30759 ... 24.872627\n", "53 30760 ... 24.516352\n", "54 30761 ... 26.986809\n", "55 30762 ... 28.829451\n", "56 30763 ... 29.786718\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 069lrx0s \n", "\n", "wandb: Agent Starting Run: cnt3vzs0 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: cnt3vzs0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cnt3vzs0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.997970461845398\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.0997970461845399\n", "The running loss is:\n", "21.985935747623444\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.198593574762344\n", "The running loss is:\n", "12.202106922864914\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.2202106922864915\n", "The running loss is:\n", "9.17008501291275\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.917008501291275\n", "The running loss is:\n", "8.464543163776398\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.8464543163776398\n", "The running loss is:\n", "8.57983085513115\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.857983085513115\n", "The running loss is:\n", "8.02047947049141\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.802047947049141\n", "The running loss is:\n", "7.290555238723755\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.7290555238723755\n", "The running loss is:\n", "6.692835777997971\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6692835777997971\n", "The running loss is:\n", "6.110147446393967\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6110147446393966\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.224773\n", "48 30755 ... 15.265686\n", "49 30756 ... 15.022220\n", "50 30757 ... 16.957497\n", "51 30758 ... 16.836491\n", "52 30759 ... 16.931461\n", "53 30760 ... 15.981196\n", "54 30761 ... 17.926718\n", "55 30762 ... 19.954655\n", "56 30763 ... 21.096838\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cnt3vzs0 \n", "\n", "wandb: Agent Starting Run: qocq3wae with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: qocq3wae\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qocq3wae
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.904254585504532\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "0.9904254585504532\n", "The running loss is:\n", "25.055099427700043\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.5055099427700043\n", "The running loss is:\n", "12.711764395236969\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.2711764395236969\n", "The running loss is:\n", "10.374877393245697\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.0374877393245696\n", "The running loss is:\n", "8.679088652133942\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.8679088652133942\n", "The running loss is:\n", "7.766414493322372\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7766414493322372\n", "The running loss is:\n", "7.597523421049118\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.7597523421049118\n", "The running loss is:\n", "7.39857842028141\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.739857842028141\n", "The running loss is:\n", "6.676791451871395\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6676791451871396\n", "The running loss is:\n", "6.837151870131493\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6837151870131493\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.726316\n", "48 30755 ... 14.972114\n", "49 30756 ... 16.001463\n", "50 30757 ... 16.900673\n", "51 30758 ... 17.000143\n", "52 30759 ... 16.699017\n", "53 30760 ... 15.903903\n", "54 30761 ... 19.487146\n", "55 30762 ... 20.715403\n", "56 30763 ... 21.923807\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qocq3wae \n", "\n", "wandb: Agent Starting Run: fv3v4uho with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: fv3v4uho\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fv3v4uho
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "40.59835138916969\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "3.690759217197245\n", "The running loss is:\n", "19.944113321602345\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.8131012110547586\n", "The running loss is:\n", "11.857287377119064\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.077935216101733\n", "The running loss is:\n", "12.013430297374725\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.092130027034066\n", "The running loss is:\n", "12.344391658902168\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.1222174235365607\n", "The running loss is:\n", "8.543003568425775\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.7766366880387068\n", "The running loss is:\n", "12.394158691167831\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.1267416991970756\n", "The running loss is:\n", "10.03352677822113\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9121387980201028\n", "The running loss is:\n", "7.597949281334877\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.6907226619395342\n", "The running loss is:\n", "11.681423753499985\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.061947613954544\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 18.578806\n", "48 30755 ... 20.679152\n", "49 30756 ... 23.081081\n", "50 30757 ... 23.915461\n", "51 30758 ... 24.671740\n", "52 30759 ... 24.634520\n", "53 30760 ... 24.390169\n", "54 30761 ... 27.176733\n", "55 30762 ... 27.554413\n", "56 30763 ... 28.308208\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fv3v4uho \n", "\n", "wandb: Agent Starting Run: m9ue8zb4 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: m9ue8zb4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/m9ue8zb4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "26.59406042098999\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "2.659406042098999\n", "The running loss is:\n", "13.403459221124649\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.340345922112465\n", "The running loss is:\n", "9.142663478851318\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.9142663478851318\n", "The running loss is:\n", "11.032457649707794\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.1032457649707794\n", "The running loss is:\n", "9.233210653066635\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.9233210653066635\n", "The running loss is:\n", "11.626732230186462\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.1626732230186463\n", "The running loss is:\n", "13.688178479671478\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.3688178479671478\n", "The running loss is:\n", "9.463880628347397\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.9463880628347396\n", "The running loss is:\n", "9.63527712225914\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.963527712225914\n", "The running loss is:\n", "8.616059482097626\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.8616059482097626\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.567437\n", "48 30755 ... 6.328658\n", "49 30756 ... 5.065443\n", "50 30757 ... 4.457339\n", "51 30758 ... 3.853146\n", "52 30759 ... 3.379244\n", "53 30760 ... 2.938148\n", "54 30761 ... 2.664474\n", "55 30762 ... 3.861934\n", "56 30763 ... 3.986446\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: m9ue8zb4 \n", "\n", "wandb: Agent Starting Run: 8ljn4u6x with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 8ljn4u6x\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8ljn4u6x
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "28.372302889823914\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "2.8372302889823913\n", "The running loss is:\n", "12.347882062196732\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.2347882062196731\n", "The running loss is:\n", "9.684420198202133\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.9684420198202133\n", "The running loss is:\n", "9.461739972233772\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.9461739972233772\n", "The running loss is:\n", "12.423586398363113\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.2423586398363113\n", "The running loss is:\n", "9.940438836812973\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.9940438836812973\n", "The running loss is:\n", "10.14803022146225\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.014803022146225\n", "The running loss is:\n", "10.891903132200241\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.089190313220024\n", "The running loss is:\n", "8.46597534418106\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.846597534418106\n", "The running loss is:\n", "9.821460217237473\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.9821460217237472\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.317070\n", "48 30755 ... 12.904198\n", "49 30756 ... 12.515239\n", "50 30757 ... 12.116361\n", "51 30758 ... 11.319300\n", "52 30759 ... 10.415378\n", "53 30760 ... 9.452648\n", "54 30761 ... 10.703618\n", "55 30762 ... 12.681755\n", "56 30763 ... 12.554018\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8ljn4u6x \n", "\n", "wandb: Agent Starting Run: 9073m7jd with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 9073m7jd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9073m7jd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.627537846565247\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "0.9627537846565246\n", "The running loss is:\n", "17.363112449645996\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.7363112449645997\n", "The running loss is:\n", "6.405838273465633\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.6405838273465634\n", "The running loss is:\n", "5.693458579480648\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.5693458579480648\n", "The running loss is:\n", "5.169158458709717\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.5169158458709717\n", "The running loss is:\n", "5.052080765366554\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.5052080765366554\n", "The running loss is:\n", "4.704639323055744\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.47046393230557443\n", "The running loss is:\n", "4.387305963784456\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.43873059637844564\n", "The running loss is:\n", "4.495713531970978\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.4495713531970978\n", "The running loss is:\n", "4.703176259994507\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.4703176259994507\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.808335\n", "48 30755 ... 6.588649\n", "49 30756 ... 12.238354\n", "50 30757 ... 11.621011\n", "51 30758 ... 10.989270\n", "52 30759 ... 10.464103\n", "53 30760 ... 8.492026\n", "54 30761 ... 8.029394\n", "55 30762 ... 7.711127\n", "56 30763 ... 12.337846\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9073m7jd \n", "\n", "wandb: Agent Starting Run: ak3ddjcm with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ak3ddjcm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ak3ddjcm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.51008079200983\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.351008079200983\n", "The running loss is:\n", "9.150133788585663\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "0.9150133788585663\n", "The running loss is:\n", "8.0506741553545\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.80506741553545\n", "The running loss is:\n", "7.332058683037758\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.7332058683037758\n", "The running loss is:\n", "7.43514696136117\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.743514696136117\n", "The running loss is:\n", "6.992777206003666\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.6992777206003666\n", "The running loss is:\n", "6.710105545818806\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6710105545818805\n", "The running loss is:\n", "7.016908168792725\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.7016908168792725\n", "The running loss is:\n", "6.1487134620547295\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6148713462054729\n", "The running loss is:\n", "6.259711891412735\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6259711891412735\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.518709\n", "48 30755 ... 9.676765\n", "49 30756 ... 14.328287\n", "50 30757 ... 14.434947\n", "51 30758 ... 14.797523\n", "52 30759 ... 15.179770\n", "53 30760 ... 13.908753\n", "54 30761 ... 16.497807\n", "55 30762 ... 18.353893\n", "56 30763 ... 22.759249\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ak3ddjcm \n", "\n", "wandb: Agent Starting Run: gkboykbz with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: gkboykbz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gkboykbz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.057014763355255\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.2057014763355256\n", "The running loss is:\n", "9.196175366640091\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "0.9196175366640091\n", "The running loss is:\n", "7.984934225678444\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.7984934225678444\n", "The running loss is:\n", "7.211847752332687\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.7211847752332687\n", "The running loss is:\n", "6.867999359965324\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.6867999359965324\n", "The running loss is:\n", "6.554838925600052\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.6554838925600052\n", "The running loss is:\n", "6.439648315310478\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6439648315310478\n", "The running loss is:\n", "6.144940108060837\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6144940108060837\n", "The running loss is:\n", "5.929564245045185\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.5929564245045185\n", "The running loss is:\n", "5.835510566830635\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.5835510566830635\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.744005\n", "48 30755 ... 6.455384\n", "49 30756 ... 7.808669\n", "50 30757 ... 6.539020\n", "51 30758 ... 4.805805\n", "52 30759 ... 2.202368\n", "53 30760 ... -1.791144\n", "54 30761 ... -1.477443\n", "55 30762 ... -3.113125\n", "56 30763 ... -5.422577\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gkboykbz \n", "\n", "wandb: Agent Starting Run: fw7dwm15 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: fw7dwm15\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fw7dwm15
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.429576203227043\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "0.8429576203227043\n", "The running loss is:\n", "35.47298264503479\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "3.547298264503479\n", "The running loss is:\n", "11.112188205122948\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.1112188205122948\n", "The running loss is:\n", "13.196346916258335\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.3196346916258335\n", "The running loss is:\n", "6.575393192470074\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.6575393192470074\n", "The running loss is:\n", "5.8676954954862595\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.5867695495486259\n", "The running loss is:\n", "5.116438694298267\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.5116438694298268\n", "The running loss is:\n", "4.6275116093456745\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.4627511609345675\n", "The running loss is:\n", "4.5346789956092834\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.45346789956092837\n", "The running loss is:\n", "4.536572776734829\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.4536572776734829\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.103466\n", "48 30755 ... 6.257463\n", "49 30756 ... 11.562319\n", "50 30757 ... 10.523199\n", "51 30758 ... 9.646112\n", "52 30759 ... 8.691895\n", "53 30760 ... 6.254402\n", "54 30761 ... 6.156374\n", "55 30762 ... 5.828930\n", "56 30763 ... 10.276820\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fw7dwm15 \n", "\n", "wandb: Agent Starting Run: dpi51sw2 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: dpi51sw2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/dpi51sw2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.501193806529045\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.2501193806529045\n", "The running loss is:\n", "20.099119901657104\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.0099119901657105\n", "The running loss is:\n", "8.999961793422699\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.8999961793422699\n", "The running loss is:\n", "8.48761773109436\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.848761773109436\n", "The running loss is:\n", "7.359446678310633\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.7359446678310633\n", "The running loss is:\n", "7.000715114176273\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7000715114176274\n", "The running loss is:\n", "6.593851193785667\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6593851193785667\n", "The running loss is:\n", "6.7040664702653885\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6704066470265388\n", "The running loss is:\n", "5.951735310256481\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.5951735310256481\n", "The running loss is:\n", "5.534311920404434\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.5534311920404434\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.366433\n", "48 30755 ... 9.865753\n", "49 30756 ... 13.617732\n", "50 30757 ... 13.982615\n", "51 30758 ... 14.094790\n", "52 30759 ... 14.050801\n", "53 30760 ... 12.748096\n", "54 30761 ... 14.966385\n", "55 30762 ... 17.125698\n", "56 30763 ... 20.394379\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: dpi51sw2 \n", "\n", "wandb: Agent Starting Run: u80txo66 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: u80txo66\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u80txo66
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.667285114526749\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.0667285114526748\n", "The running loss is:\n", "20.265333622694016\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.0265333622694017\n", "The running loss is:\n", "8.728106766939163\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.8728106766939163\n", "The running loss is:\n", "8.550827756524086\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.8550827756524086\n", "The running loss is:\n", "7.6918254643678665\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.7691825464367866\n", "The running loss is:\n", "7.004032850265503\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7004032850265502\n", "The running loss is:\n", "6.4064972549676895\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6406497254967689\n", "The running loss is:\n", "6.222326099872589\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6222326099872589\n", "The running loss is:\n", "5.876827664673328\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.5876827664673329\n", "The running loss is:\n", "5.46251180768013\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.546251180768013\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.634794\n", "48 30755 ... 5.956108\n", "49 30756 ... 7.695518\n", "50 30757 ... 6.790030\n", "51 30758 ... 5.360010\n", "52 30759 ... 3.331872\n", "53 30760 ... 0.147778\n", "54 30761 ... -0.868146\n", "55 30762 ... -2.107802\n", "56 30763 ... -3.228223\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u80txo66 \n", "\n", "wandb: Agent Starting Run: 4htpl5rr with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 4htpl5rr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4htpl5rr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.714561760425568\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.4714561760425569\n", "The running loss is:\n", "21.01663726568222\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.101663726568222\n", "The running loss is:\n", "15.515894889831543\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.5515894889831543\n", "The running loss is:\n", "7.601687487214804\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.7601687487214803\n", "The running loss is:\n", "6.936983227729797\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.6936983227729797\n", "The running loss is:\n", "6.483203932642937\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.6483203932642937\n", "The running loss is:\n", "5.312639720737934\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.5312639720737934\n", "The running loss is:\n", "5.345114007592201\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.5345114007592201\n", "The running loss is:\n", "5.2790632620453835\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.5279063262045384\n", "The running loss is:\n", "5.034602418541908\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.5034602418541908\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.954473\n", "48 30755 ... 6.272552\n", "49 30756 ... 11.065792\n", "50 30757 ... 10.025171\n", "51 30758 ... 8.285496\n", "52 30759 ... 7.193275\n", "53 30760 ... 4.804574\n", "54 30761 ... 4.655031\n", "55 30762 ... 4.361861\n", "56 30763 ... 8.187953\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4htpl5rr \n", "\n", "wandb: Agent Starting Run: lo2ks8hs with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: lo2ks8hs\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lo2ks8hs
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.384419649839401\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.1384419649839401\n", "The running loss is:\n", "18.25188379921019\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.8251883799210191\n", "The running loss is:\n", "12.829950749874115\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.2829950749874115\n", "The running loss is:\n", "7.982527822256088\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.7982527822256088\n", "The running loss is:\n", "7.810066565871239\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.7810066565871239\n", "The running loss is:\n", "6.684666350483894\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.6684666350483894\n", "The running loss is:\n", "7.643584281206131\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.764358428120613\n", "The running loss is:\n", "8.792829811573029\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.8792829811573029\n", "The running loss is:\n", "6.99271997064352\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6992719970643521\n", "The running loss is:\n", "6.918453752994537\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6918453752994538\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.321559\n", "48 30755 ... 9.187271\n", "49 30756 ... 12.871760\n", "50 30757 ... 12.650419\n", "51 30758 ... 11.597202\n", "52 30759 ... 9.462704\n", "53 30760 ... 6.282671\n", "54 30761 ... 5.563904\n", "55 30762 ... 6.355840\n", "56 30763 ... 9.107053\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lo2ks8hs \n", "\n", "wandb: Agent Starting Run: f7bdxdg5 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: f7bdxdg5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/f7bdxdg5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.466510713100433\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "0.9466510713100433\n", "The running loss is:\n", "19.481352478265762\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.9481352478265763\n", "The running loss is:\n", "12.479926511645317\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.2479926511645316\n", "The running loss is:\n", "8.340172469615936\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.8340172469615936\n", "The running loss is:\n", "8.205783903598785\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.8205783903598786\n", "The running loss is:\n", "7.630669295787811\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7630669295787811\n", "The running loss is:\n", "6.677744090557098\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6677744090557098\n", "The running loss is:\n", "6.896913185715675\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6896913185715675\n", "The running loss is:\n", "6.556647375226021\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6556647375226021\n", "The running loss is:\n", "6.700380817055702\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6700380817055702\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.198957\n", "48 30755 ... 12.617393\n", "49 30756 ... 12.954767\n", "50 30757 ... 12.107231\n", "51 30758 ... 11.026435\n", "52 30759 ... 9.624288\n", "53 30760 ... 7.724436\n", "54 30761 ... 10.234614\n", "55 30762 ... 10.804576\n", "56 30763 ... 10.495942\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: f7bdxdg5 \n", "\n", "wandb: Agent Starting Run: kyfny3j5 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: kyfny3j5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/kyfny3j5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "91.59792420268059\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "9.159792420268058\n", "The running loss is:\n", "23.251791685819626\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.3251791685819625\n", "The running loss is:\n", "11.11307579278946\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.111307579278946\n", "The running loss is:\n", "6.939586728811264\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.6939586728811264\n", "The running loss is:\n", "9.343335047364235\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.9343335047364235\n", "The running loss is:\n", "6.820296868681908\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.6820296868681908\n", "The running loss is:\n", "5.8018301874399185\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.5801830187439918\n", "The running loss is:\n", "5.937199890613556\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.5937199890613556\n", "The running loss is:\n", "6.757883593440056\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6757883593440056\n", "The running loss is:\n", "7.597961753606796\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.7597961753606797\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.007220\n", "48 30755 ... 4.571890\n", "49 30756 ... 4.057703\n", "50 30757 ... 1.964260\n", "51 30758 ... -0.132805\n", "52 30759 ... -2.333437\n", "53 30760 ... -4.619548\n", "54 30761 ... -4.016709\n", "55 30762 ... -4.159013\n", "56 30763 ... -3.811644\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: kyfny3j5 \n", "\n", "wandb: Agent Starting Run: scy00je1 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: scy00je1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/scy00je1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "49.56044429540634\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "4.9560444295406345\n", "The running loss is:\n", "13.70760928094387\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.370760928094387\n", "The running loss is:\n", "17.000253543257713\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.7000253543257713\n", "The running loss is:\n", "13.842572450637817\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.3842572450637818\n", "The running loss is:\n", "15.544250130653381\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.554425013065338\n", "The running loss is:\n", "9.349140167236328\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.9349140167236328\n", "The running loss is:\n", "10.090777337551117\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.0090777337551118\n", "The running loss is:\n", "11.35200434923172\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.135200434923172\n", "The running loss is:\n", "7.790517836809158\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.7790517836809159\n", "The running loss is:\n", "8.42673248052597\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.842673248052597\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.598314\n", "48 30755 ... 7.377418\n", "49 30756 ... 9.713764\n", "50 30757 ... 8.512883\n", "51 30758 ... 6.791293\n", "52 30759 ... 5.252714\n", "53 30760 ... 3.030388\n", "54 30761 ... 3.328702\n", "55 30762 ... 3.037323\n", "56 30763 ... 3.389056\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: scy00je1 \n", "\n", "wandb: Agent Starting Run: iygt4rxi with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: iygt4rxi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/iygt4rxi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "36.11813059449196\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "3.611813059449196\n", "The running loss is:\n", "12.339976996183395\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.2339976996183395\n", "The running loss is:\n", "9.668639838695526\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.9668639838695526\n", "The running loss is:\n", "9.826381415128708\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.9826381415128708\n", "The running loss is:\n", "15.76567393541336\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.576567393541336\n", "The running loss is:\n", "10.812987506389618\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.0812987506389617\n", "The running loss is:\n", "9.61716541647911\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.9617165416479111\n", "The running loss is:\n", "9.290621802210808\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.9290621802210808\n", "The running loss is:\n", "8.212620228528976\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.8212620228528976\n", "The running loss is:\n", "9.537692248821259\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.9537692248821259\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.728024\n", "48 30755 ... 10.327018\n", "49 30756 ... 12.556839\n", "50 30757 ... 11.601530\n", "51 30758 ... 10.465916\n", "52 30759 ... 10.037251\n", "53 30760 ... 8.805302\n", "54 30761 ... 9.777656\n", "55 30762 ... 9.648338\n", "56 30763 ... 11.390595\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: iygt4rxi \n", "\n", "wandb: Agent Starting Run: u4p26qqe with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: u4p26qqe\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u4p26qqe
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.139220284298062\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.3139220284298063\n", "The running loss is:\n", "7.603810682892799\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "0.76038106828928\n", "The running loss is:\n", "6.590954020619392\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.6590954020619393\n", "The running loss is:\n", "5.3788275346159935\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.5378827534615993\n", "The running loss is:\n", "4.933269586414099\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.49332695864140985\n", "The running loss is:\n", "4.663033917546272\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.4663033917546272\n", "The running loss is:\n", "4.390941029414535\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.43909410294145346\n", "The running loss is:\n", "4.794956460595131\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.4794956460595131\n", "The running loss is:\n", "4.561512395739555\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.45615123957395554\n", "The running loss is:\n", "4.312907887622714\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.4312907887622714\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.966106\n", "48 30755 ... 7.026946\n", "49 30756 ... 7.303446\n", "50 30757 ... 6.005102\n", "51 30758 ... 4.476109\n", "52 30759 ... 3.117196\n", "53 30760 ... 1.653447\n", "54 30761 ... 1.438207\n", "55 30762 ... 1.206806\n", "56 30763 ... 1.003915\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u4p26qqe \n", "\n", "wandb: Agent Starting Run: oa112vdp with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: oa112vdp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/oa112vdp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.0843945145607\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.30843945145607\n", "The running loss is:\n", "7.665140315890312\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "0.7665140315890312\n", "The running loss is:\n", "6.743201792240143\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.6743201792240143\n", "The running loss is:\n", "5.883106000721455\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.5883106000721454\n", "The running loss is:\n", "5.515905536711216\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.5515905536711216\n", "The running loss is:\n", "4.997781403362751\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.4997781403362751\n", "The running loss is:\n", "4.992602676153183\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.4992602676153183\n", "The running loss is:\n", "5.128393992781639\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.5128393992781639\n", "The running loss is:\n", "4.745439916849136\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.4745439916849136\n", "The running loss is:\n", "5.019068889319897\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.5019068889319896\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.649288\n", "48 30755 ... 7.107749\n", "49 30756 ... 7.127906\n", "50 30757 ... 5.951869\n", "51 30758 ... 4.860780\n", "52 30759 ... 4.058114\n", "53 30760 ... 3.299357\n", "54 30761 ... 3.037968\n", "55 30762 ... 2.571593\n", "56 30763 ... 1.843937\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: oa112vdp \n", "\n", "wandb: Agent Starting Run: lvob0bbe with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: lvob0bbe\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lvob0bbe
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.67995372414589\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.367995372414589\n", "The running loss is:\n", "8.989439904689789\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "0.8989439904689789\n", "The running loss is:\n", "8.195689350366592\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.8195689350366593\n", "The running loss is:\n", "6.894126743078232\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.6894126743078232\n", "The running loss is:\n", "6.594148024916649\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.6594148024916648\n", "The running loss is:\n", "6.3120845928788185\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.6312084592878818\n", "The running loss is:\n", "6.1284110099077225\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6128411009907723\n", "The running loss is:\n", "6.259409077465534\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6259409077465534\n", "The running loss is:\n", "5.780759200453758\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.5780759200453758\n", "The running loss is:\n", "5.695149905979633\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.5695149905979633\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.292809\n", "48 30755 ... 12.110656\n", "49 30756 ... 13.091563\n", "50 30757 ... 13.885511\n", "51 30758 ... 15.185983\n", "52 30759 ... 17.058050\n", "53 30760 ... 19.260855\n", "54 30761 ... 20.051224\n", "55 30762 ... 20.744509\n", "56 30763 ... 21.911655\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lvob0bbe \n", "\n", "wandb: Agent Starting Run: 35j8rkx7 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 35j8rkx7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/35j8rkx7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.55137413740158\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.155137413740158\n", "The running loss is:\n", "16.014386296272278\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.6014386296272278\n", "The running loss is:\n", "6.75588384270668\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.675588384270668\n", "The running loss is:\n", "6.29716794192791\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.629716794192791\n", "The running loss is:\n", "5.1970526948571205\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.519705269485712\n", "The running loss is:\n", "5.025679625570774\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.5025679625570774\n", "The running loss is:\n", "4.67264661937952\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.467264661937952\n", "The running loss is:\n", "5.31112065166235\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.531112065166235\n", "The running loss is:\n", "4.5775028094649315\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.45775028094649317\n", "The running loss is:\n", "4.067775249481201\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.40677752494812014\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.944151\n", "48 30755 ... 8.560498\n", "49 30756 ... 8.103656\n", "50 30757 ... 6.687842\n", "51 30758 ... 5.952302\n", "52 30759 ... 5.573210\n", "53 30760 ... 5.453351\n", "54 30761 ... 5.476648\n", "55 30762 ... 4.879870\n", "56 30763 ... 4.252527\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 35j8rkx7 \n", "\n", "wandb: Agent Starting Run: sg71mruo with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: sg71mruo\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/sg71mruo
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.126236453652382\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.3126236453652382\n", "The running loss is:\n", "14.40095217525959\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.440095217525959\n", "The running loss is:\n", "7.083043187856674\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.7083043187856675\n", "The running loss is:\n", "6.096744194626808\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.6096744194626809\n", "The running loss is:\n", "5.1841307654976845\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.5184130765497684\n", "The running loss is:\n", "5.177260473370552\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.5177260473370552\n", "The running loss is:\n", "4.819695513695478\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.48196955136954783\n", "The running loss is:\n", "5.148202821612358\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.5148202821612358\n", "The running loss is:\n", "4.959500506520271\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.49595005065202713\n", "The running loss is:\n", "5.563718307763338\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.5563718307763338\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.187324\n", "48 30755 ... 9.934227\n", "49 30756 ... 10.304854\n", "50 30757 ... 9.717361\n", "51 30758 ... 10.074327\n", "52 30759 ... 10.855839\n", "53 30760 ... 11.962115\n", "54 30761 ... 12.211823\n", "55 30762 ... 12.268024\n", "56 30763 ... 12.549157\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: sg71mruo \n", "\n", "wandb: Agent Starting Run: n009dnk2 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: n009dnk2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/n009dnk2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.769485369324684\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.2769485369324685\n", "The running loss is:\n", "18.07359327375889\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.8073593273758888\n", "The running loss is:\n", "8.222085058689117\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.8222085058689117\n", "The running loss is:\n", "7.520764961838722\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.7520764961838722\n", "The running loss is:\n", "6.81798791885376\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.681798791885376\n", "The running loss is:\n", "6.529789224267006\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.6529789224267006\n", "The running loss is:\n", "6.242193579673767\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6242193579673767\n", "The running loss is:\n", "6.023411050438881\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.602341105043888\n", "The running loss is:\n", "5.495791830122471\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.5495791830122471\n", "The running loss is:\n", "5.40959145501256\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.540959145501256\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.513058\n", "48 30755 ... 11.645679\n", "49 30756 ... 13.005260\n", "50 30757 ... 14.087539\n", "51 30758 ... 15.303416\n", "52 30759 ... 16.887409\n", "53 30760 ... 18.930803\n", "54 30761 ... 20.712101\n", "55 30762 ... 21.618250\n", "56 30763 ... 22.668322\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: n009dnk2 \n", "\n", "wandb: Agent Starting Run: bphq6zit with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: bphq6zit\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bphq6zit
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.001862179487944\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "0.9001862179487944\n", "The running loss is:\n", "24.234292328357697\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.42342923283577\n", "The running loss is:\n", "12.146701619029045\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.2146701619029046\n", "The running loss is:\n", "8.325868934392929\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.8325868934392929\n", "The running loss is:\n", "7.485300242900848\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.7485300242900849\n", "The running loss is:\n", "6.788752064108849\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.6788752064108848\n", "The running loss is:\n", "6.220466896891594\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6220466896891594\n", "The running loss is:\n", "5.8215655237436295\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.5821565523743629\n", "The running loss is:\n", "5.489045836031437\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.5489045836031436\n", "The running loss is:\n", "5.328197099268436\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.5328197099268437\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.155974\n", "48 30755 ... 10.577695\n", "49 30756 ... 10.467627\n", "50 30757 ... 11.085591\n", "51 30758 ... 10.823718\n", "52 30759 ... 10.074667\n", "53 30760 ... 9.439847\n", "54 30761 ... 10.096174\n", "55 30762 ... 9.974174\n", "56 30763 ... 10.144117\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bphq6zit \n", "\n", "wandb: Agent Starting Run: 0t6i24cz with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 0t6i24cz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0t6i24cz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.483697727322578\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "0.8483697727322579\n", "The running loss is:\n", "21.93063649535179\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.193063649535179\n", "The running loss is:\n", "10.534606114029884\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.0534606114029885\n", "The running loss is:\n", "9.683033972978592\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.9683033972978592\n", "The running loss is:\n", "8.544187188148499\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.8544187188148499\n", "The running loss is:\n", "7.527521088719368\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7527521088719368\n", "The running loss is:\n", "6.968377232551575\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.6968377232551575\n", "The running loss is:\n", "6.07134684920311\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.607134684920311\n", "The running loss is:\n", "5.064359068870544\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.5064359068870544\n", "The running loss is:\n", "6.055943515151739\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6055943515151739\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.822945\n", "48 30755 ... 6.611187\n", "49 30756 ... 6.530975\n", "50 30757 ... 4.915924\n", "51 30758 ... 3.429251\n", "52 30759 ... 2.679210\n", "53 30760 ... 2.441298\n", "54 30761 ... -1.963033\n", "55 30762 ... -0.440692\n", "56 30763 ... -0.592469\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0t6i24cz \n", "\n", "wandb: Agent Starting Run: u56nih5a with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: u56nih5a\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u56nih5a
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "7.976818040013313\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "0.7976818040013314\n", "The running loss is:\n", "33.770317524671555\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "3.3770317524671554\n", "The running loss is:\n", "11.967144101858139\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.1967144101858138\n", "The running loss is:\n", "9.863078862428665\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.9863078862428665\n", "The running loss is:\n", "8.59804680943489\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.859804680943489\n", "The running loss is:\n", "7.818701654672623\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7818701654672623\n", "The running loss is:\n", "7.778759300708771\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.7778759300708771\n", "The running loss is:\n", "7.312741860747337\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.7312741860747337\n", "The running loss is:\n", "6.312692016363144\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6312692016363144\n", "The running loss is:\n", "6.413540616631508\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6413540616631508\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.117382\n", "48 30755 ... 10.954368\n", "49 30756 ... 12.910322\n", "50 30757 ... 12.665748\n", "51 30758 ... 13.424576\n", "52 30759 ... 14.412344\n", "53 30760 ... 15.858442\n", "54 30761 ... 12.063550\n", "55 30762 ... 15.121051\n", "56 30763 ... 15.554323\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u56nih5a \n", "\n", "wandb: Agent Starting Run: mxi4wxbt with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: mxi4wxbt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mxi4wxbt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "39.859717562794685\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "3.9859717562794685\n", "The running loss is:\n", "13.916883394122124\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.3916883394122124\n", "The running loss is:\n", "14.028552146628499\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.40285521466285\n", "The running loss is:\n", "12.02799230068922\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.202799230068922\n", "The running loss is:\n", "9.812308438122272\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.9812308438122272\n", "The running loss is:\n", "9.249479830265045\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.9249479830265045\n", "The running loss is:\n", "8.068130537867546\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.8068130537867546\n", "The running loss is:\n", "8.860792085528374\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.8860792085528374\n", "The running loss is:\n", "7.412374511361122\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.7412374511361122\n", "The running loss is:\n", "7.8305803835392\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.78305803835392\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.818081\n", "48 30755 ... 9.417191\n", "49 30756 ... 9.138782\n", "50 30757 ... 9.442849\n", "51 30758 ... 8.466863\n", "52 30759 ... 8.141625\n", "53 30760 ... 8.005954\n", "54 30761 ... 8.691431\n", "55 30762 ... 7.704202\n", "56 30763 ... 7.805756\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mxi4wxbt \n", "\n", "wandb: Agent Starting Run: fp70pn3z with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: fp70pn3z\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fp70pn3z
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "31.45028382539749\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "3.145028382539749\n", "The running loss is:\n", "12.89564847946167\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.289564847946167\n", "The running loss is:\n", "11.893807530403137\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.1893807530403138\n", "The running loss is:\n", "8.323095485568047\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.8323095485568046\n", "The running loss is:\n", "8.408325374126434\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.8408325374126434\n", "The running loss is:\n", "7.324984163045883\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7324984163045883\n", "The running loss is:\n", "8.863726764917374\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.8863726764917373\n", "The running loss is:\n", "8.59510800242424\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.859510800242424\n", "The running loss is:\n", "7.816119492053986\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.7816119492053986\n", "The running loss is:\n", "6.991639479994774\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6991639479994773\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.604881\n", "48 30755 ... 10.088811\n", "49 30756 ... 10.282960\n", "50 30757 ... 10.789194\n", "51 30758 ... 9.315967\n", "52 30759 ... 8.543083\n", "53 30760 ... 7.887885\n", "54 30761 ... 9.119453\n", "55 30762 ... 9.185229\n", "56 30763 ... 9.172606\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fp70pn3z \n", "\n", "wandb: Agent Starting Run: n3wt2y70 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: n3wt2y70\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/n3wt2y70
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "34.098082691431046\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "3.4098082691431046\n", "The running loss is:\n", "14.255046874284744\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.4255046874284745\n", "The running loss is:\n", "14.010826796293259\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.4010826796293259\n", "The running loss is:\n", "8.812499105930328\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.8812499105930328\n", "The running loss is:\n", "10.274688363075256\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.0274688363075257\n", "The running loss is:\n", "8.562583446502686\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.8562583446502685\n", "The running loss is:\n", "7.185037016868591\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.7185037016868592\n", "The running loss is:\n", "6.902286410331726\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6902286410331726\n", "The running loss is:\n", "6.14476877823472\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.614476877823472\n", "The running loss is:\n", "6.940630495548248\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6940630495548248\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 15.987806\n", "48 30755 ... 14.906799\n", "49 30756 ... 14.925628\n", "50 30757 ... 15.739111\n", "51 30758 ... 17.029638\n", "52 30759 ... 17.821407\n", "53 30760 ... 18.541513\n", "54 30761 ... 21.510548\n", "55 30762 ... 21.508347\n", "56 30763 ... 21.507570\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: n3wt2y70 \n", "\n", "wandb: Agent Starting Run: bcc38ycr with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: bcc38ycr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bcc38ycr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.850830286741257\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.2850830286741257\n", "The running loss is:\n", "7.531756274402142\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "0.7531756274402142\n", "The running loss is:\n", "7.164153054356575\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.7164153054356575\n", "The running loss is:\n", "6.104249902069569\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.6104249902069568\n", "The running loss is:\n", "5.67718306183815\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.567718306183815\n", "The running loss is:\n", "5.363151956349611\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.5363151956349611\n", "The running loss is:\n", "5.421984151005745\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.5421984151005745\n", "The running loss is:\n", "5.277610749006271\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.5277610749006272\n", "The running loss is:\n", "5.469041176140308\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.5469041176140308\n", "The running loss is:\n", "5.041734091937542\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.5041734091937542\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.612688\n", "48 30755 ... 9.810590\n", "49 30756 ... 9.924997\n", "50 30757 ... 10.803505\n", "51 30758 ... 12.177807\n", "52 30759 ... 12.428595\n", "53 30760 ... 13.000287\n", "54 30761 ... 12.871050\n", "55 30762 ... 12.918545\n", "56 30763 ... 13.982430\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bcc38ycr \n", "\n", "wandb: Agent Starting Run: gebuyenr with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: gebuyenr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gebuyenr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.784172236919403\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.3784172236919403\n", "The running loss is:\n", "8.965025827288628\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "0.8965025827288627\n", "The running loss is:\n", "7.920389890670776\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.7920389890670776\n", "The running loss is:\n", "6.930768981575966\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.6930768981575965\n", "The running loss is:\n", "6.458241403102875\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.6458241403102875\n", "The running loss is:\n", "5.874626487493515\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.5874626487493515\n", "The running loss is:\n", "5.821754619479179\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.5821754619479179\n", "The running loss is:\n", "5.629227995872498\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.5629227995872498\n", "The running loss is:\n", "5.769639223814011\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.576963922381401\n", "The running loss is:\n", "5.803562685847282\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.5803562685847282\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.040811\n", "48 30755 ... 12.388928\n", "49 30756 ... 11.988900\n", "50 30757 ... 13.375152\n", "51 30758 ... 15.614386\n", "52 30759 ... 17.559206\n", "53 30760 ... 19.836933\n", "54 30761 ... 20.253407\n", "55 30762 ... 20.165487\n", "56 30763 ... 21.959352\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gebuyenr \n", "\n", "wandb: Agent Starting Run: ifvuwc4s with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ifvuwc4s\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ifvuwc4s
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.077335000038147\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.3419261111153498\n", "The running loss is:\n", "7.720571994781494\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.8578413327534994\n", "The running loss is:\n", "7.231207340955734\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.8034674823284149\n", "The running loss is:\n", "6.3102400451898575\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.7011377827988731\n", "The running loss is:\n", "5.723727948963642\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6359697721070714\n", "The running loss is:\n", "5.507725924253464\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6119695471392738\n", "The running loss is:\n", "5.226244807243347\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.580693867471483\n", "The running loss is:\n", "5.0174964517354965\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5574996057483885\n", "The running loss is:\n", "5.04413865506649\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5604598505629433\n", "The running loss is:\n", "4.887636784464121\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5430707538293468\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.133517\n", "48 30755 ... 14.204868\n", "49 30756 ... 8.201635\n", "50 30757 ... 8.487048\n", "51 30758 ... 8.313649\n", "52 30759 ... 8.158344\n", "53 30760 ... 8.212668\n", "54 30761 ... 7.956340\n", "55 30762 ... 7.777701\n", "56 30763 ... 7.756563\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ifvuwc4s \n", "\n", "wandb: Agent Starting Run: gfkj4xmn with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: gfkj4xmn\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gfkj4xmn
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.208374172449112\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.320837417244911\n", "The running loss is:\n", "14.000371232628822\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.4000371232628823\n", "The running loss is:\n", "7.599640764296055\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.7599640764296055\n", "The running loss is:\n", "6.7018884010612965\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.6701888401061297\n", "The running loss is:\n", "5.82843029871583\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.582843029871583\n", "The running loss is:\n", "5.561043694615364\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.5561043694615364\n", "The running loss is:\n", "5.080736458301544\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.5080736458301545\n", "The running loss is:\n", "4.953924670815468\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.4953924670815468\n", "The running loss is:\n", "5.481087975203991\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.5481087975203991\n", "The running loss is:\n", "4.529741728678346\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.4529741728678346\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.652000\n", "48 30755 ... 12.953487\n", "49 30756 ... 12.495256\n", "50 30757 ... 14.109031\n", "51 30758 ... 15.218346\n", "52 30759 ... 16.241440\n", "53 30760 ... 17.719902\n", "54 30761 ... 17.692379\n", "55 30762 ... 16.954758\n", "56 30763 ... 18.674665\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gfkj4xmn \n", "\n", "wandb: Agent Starting Run: p48n5h27 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: p48n5h27\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/p48n5h27
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.969248041510582\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.2969248041510582\n", "The running loss is:\n", "18.971767611801624\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.8971767611801624\n", "The running loss is:\n", "7.910560250282288\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.7910560250282288\n", "The running loss is:\n", "8.072082966566086\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.8072082966566085\n", "The running loss is:\n", "7.181809782981873\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.7181809782981873\n", "The running loss is:\n", "5.9828749895095825\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.5982874989509582\n", "The running loss is:\n", "5.653284996747971\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.565328499674797\n", "The running loss is:\n", "5.712180733680725\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.5712180733680725\n", "The running loss is:\n", "4.802202343940735\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.48022023439407346\n", "The running loss is:\n", "4.912356749176979\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.49123567491769793\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.621552\n", "48 30755 ... 10.974742\n", "49 30756 ... 12.895342\n", "50 30757 ... 16.525156\n", "51 30758 ... 19.239813\n", "52 30759 ... 20.686008\n", "53 30760 ... 22.838928\n", "54 30761 ... 23.955635\n", "55 30762 ... 23.857677\n", "56 30763 ... 28.428850\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: p48n5h27 \n", "\n", "wandb: Agent Starting Run: 8nyyzakm with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 8nyyzakm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8nyyzakm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.066332712769508\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.3407036347521677\n", "The running loss is:\n", "13.345939487218857\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.4828821652465396\n", "The running loss is:\n", "7.0621998608112335\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7846888734234704\n", "The running loss is:\n", "6.6326291263103485\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.736958791812261\n", "The running loss is:\n", "6.007634565234184\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6675149516926872\n", "The running loss is:\n", "5.633084714412689\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6258983016014099\n", "The running loss is:\n", "5.117097146809101\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5685663496454557\n", "The running loss is:\n", "4.964767277240753\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5516408085823059\n", "The running loss is:\n", "4.961631417274475\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5512923796971639\n", "The running loss is:\n", "4.953397177159786\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5503774641288651\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.383920\n", "48 30755 ... 15.534488\n", "49 30756 ... 9.711837\n", "50 30757 ... 9.893675\n", "51 30758 ... 10.529510\n", "52 30759 ... 11.202310\n", "53 30760 ... 12.237284\n", "54 30761 ... 12.017599\n", "55 30762 ... 12.478189\n", "56 30763 ... 12.300585\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8nyyzakm \n", "\n", "wandb: Agent Starting Run: ucaltidj with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ucaltidj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ucaltidj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.098492935299873\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "0.8098492935299874\n", "The running loss is:\n", "23.566280841827393\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.356628084182739\n", "The running loss is:\n", "11.333626061677933\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.1333626061677933\n", "The running loss is:\n", "9.972441203892231\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.997244120389223\n", "The running loss is:\n", "8.263748623430729\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.8263748623430729\n", "The running loss is:\n", "7.430231392383575\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7430231392383575\n", "The running loss is:\n", "7.192676857113838\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.7192676857113838\n", "The running loss is:\n", "6.158903509378433\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6158903509378433\n", "The running loss is:\n", "6.380030982196331\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6380030982196331\n", "The running loss is:\n", "6.256686411798\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6256686411798\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.842103\n", "48 30755 ... 9.856387\n", "49 30756 ... 11.671286\n", "50 30757 ... 11.879260\n", "51 30758 ... 11.551217\n", "52 30759 ... 12.265154\n", "53 30760 ... 12.465170\n", "54 30761 ... 12.783993\n", "55 30762 ... 12.274730\n", "56 30763 ... 13.479129\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ucaltidj \n", "\n", "wandb: Agent Starting Run: lch9dwmf with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: lch9dwmf\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lch9dwmf
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.695682540535927\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "0.8695682540535927\n", "The running loss is:\n", "24.36949035525322\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.436949035525322\n", "The running loss is:\n", "11.298262119293213\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.1298262119293212\n", "The running loss is:\n", "10.062248289585114\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.0062248289585114\n", "The running loss is:\n", "8.349945664405823\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.8349945664405822\n", "The running loss is:\n", "7.397077739238739\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7397077739238739\n", "The running loss is:\n", "7.06380096077919\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.706380096077919\n", "The running loss is:\n", "5.405614405870438\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.5405614405870438\n", "The running loss is:\n", "6.062748953700066\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.6062748953700066\n", "The running loss is:\n", "6.174377530813217\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6174377530813218\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 15.031854\n", "48 30755 ... 10.359957\n", "49 30756 ... 8.908915\n", "50 30757 ... 11.616050\n", "51 30758 ... 14.293598\n", "52 30759 ... 13.883785\n", "53 30760 ... 14.726389\n", "54 30761 ... 14.138464\n", "55 30762 ... 10.921678\n", "56 30763 ... 14.764153\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lch9dwmf \n", "\n", "wandb: Agent Starting Run: hw10t2mp with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: hw10t2mp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hw10t2mp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.075239360332489\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "0.897248817814721\n", "The running loss is:\n", "21.2212555706501\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.357917285627789\n", "The running loss is:\n", "9.465078294277191\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.051675366030799\n", "The running loss is:\n", "9.448686242103577\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.0498540269003973\n", "The running loss is:\n", "7.564092457294464\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.8404547174771627\n", "The running loss is:\n", "6.826194107532501\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.7584660119480557\n", "The running loss is:\n", "6.084612876176834\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.6760680973529816\n", "The running loss is:\n", "5.682695642113686\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6314106269015206\n", "The running loss is:\n", "5.182469367980957\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5758299297756619\n", "The running loss is:\n", "5.210104294121265\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.578900477124585\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.247068\n", "48 30755 ... 14.380191\n", "49 30756 ... 7.810470\n", "50 30757 ... 7.876924\n", "51 30758 ... 7.553281\n", "52 30759 ... 8.155678\n", "53 30760 ... 9.258459\n", "54 30761 ... 6.550736\n", "55 30762 ... 7.366041\n", "56 30763 ... 6.780664\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hw10t2mp \n", "\n", "wandb: Agent Starting Run: lg5ngbrv with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: lg5ngbrv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lg5ngbrv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "29.403677381575108\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "2.940367738157511\n", "The running loss is:\n", "14.427762001752853\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.4427762001752853\n", "The running loss is:\n", "9.362008228898048\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.9362008228898049\n", "The running loss is:\n", "9.065472334623337\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.9065472334623337\n", "The running loss is:\n", "8.686813779175282\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.8686813779175282\n", "The running loss is:\n", "7.925582256168127\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.7925582256168127\n", "The running loss is:\n", "8.436862831935287\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.8436862831935287\n", "The running loss is:\n", "8.473329044878483\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.8473329044878483\n", "The running loss is:\n", "8.727103762328625\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.8727103762328625\n", "The running loss is:\n", "6.296208456158638\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6296208456158638\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.326419\n", "48 30755 ... 9.670631\n", "49 30756 ... 11.336937\n", "50 30757 ... 16.110525\n", "51 30758 ... 15.503344\n", "52 30759 ... 14.850665\n", "53 30760 ... 13.109945\n", "54 30761 ... 13.666155\n", "55 30762 ... 12.507251\n", "56 30763 ... 13.980711\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lg5ngbrv \n", "\n", "wandb: Agent Starting Run: 3lup5gl4 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 3lup5gl4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3lup5gl4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "39.57245537638664\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "3.957245537638664\n", "The running loss is:\n", "10.280797213315964\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.0280797213315964\n", "The running loss is:\n", "8.693240597844124\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.8693240597844124\n", "The running loss is:\n", "7.663233906030655\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.7663233906030655\n", "The running loss is:\n", "10.1103096306324\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.0110309630632401\n", "The running loss is:\n", "18.52347093820572\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.852347093820572\n", "The running loss is:\n", "10.631574869155884\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.0631574869155884\n", "The running loss is:\n", "9.706002175807953\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.9706002175807953\n", "The running loss is:\n", "8.629770785570145\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.8629770785570144\n", "The running loss is:\n", "10.745264112949371\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "1.074526411294937\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.510293\n", "48 30755 ... 10.594899\n", "49 30756 ... 10.696557\n", "50 30757 ... 10.699605\n", "51 30758 ... 10.587273\n", "52 30759 ... 10.662291\n", "53 30760 ... 10.781241\n", "54 30761 ... 10.739531\n", "55 30762 ... 10.732348\n", "56 30763 ... 10.744804\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3lup5gl4 \n", "\n", "wandb: Agent Starting Run: jm38otv8 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: jm38otv8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/jm38otv8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "30.17451411485672\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "3.3527237905396357\n", "The running loss is:\n", "10.276994824409485\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.141888313823276\n", "The running loss is:\n", "11.995807766914368\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.332867529657152\n", "The running loss is:\n", "9.06753146648407\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.0075034962760077\n", "The running loss is:\n", "8.199181139469147\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.911020126607683\n", "The running loss is:\n", "6.896306037902832\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.766256226433648\n", "The running loss is:\n", "6.741923570632935\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.7491026189592149\n", "The running loss is:\n", "6.182898551225662\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6869887279139625\n", "The running loss is:\n", "7.065683364868164\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.785075929429796\n", "The running loss is:\n", "6.285583019256592\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.6983981132507324\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.558565\n", "48 30755 ... 14.500316\n", "49 30756 ... 11.803816\n", "50 30757 ... 11.264889\n", "51 30758 ... 11.637167\n", "52 30759 ... 12.255816\n", "53 30760 ... 13.166669\n", "54 30761 ... 13.725646\n", "55 30762 ... 13.694263\n", "56 30763 ... 13.723823\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: jm38otv8 \n", "\n", "wandb: Agent Starting Run: qz68dg80 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: qz68dg80\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qz68dg80
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.469213277101517\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.3469213277101517\n", "The running loss is:\n", "8.658868372440338\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "0.8658868372440338\n", "The running loss is:\n", "6.475258469581604\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.6475258469581604\n", "The running loss is:\n", "5.690110743045807\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.5690110743045806\n", "The running loss is:\n", "5.235761940479279\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.5235761940479279\n", "The running loss is:\n", "4.875370755791664\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.4875370755791664\n", "The running loss is:\n", "4.801120638847351\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.4801120638847351\n", "The running loss is:\n", "4.296569600701332\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.4296569600701332\n", "The running loss is:\n", "3.9086484387516975\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.39086484387516973\n", "The running loss is:\n", "4.612558275461197\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.4612558275461197\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.746770\n", "48 30755 ... 17.278393\n", "49 30756 ... 20.268206\n", "50 30757 ... 16.799969\n", "51 30758 ... 18.261110\n", "52 30759 ... 21.016077\n", "53 30760 ... 25.866169\n", "54 30761 ... 26.150158\n", "55 30762 ... 27.741076\n", "56 30763 ... 29.664261\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qz68dg80 \n", "\n", "wandb: Agent Starting Run: yc8vzk15 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: yc8vzk15\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yc8vzk15
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.648816645145416\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.294312960571713\n", "The running loss is:\n", "7.589744657278061\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.8433049619197845\n", "The running loss is:\n", "6.459843933582306\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7177604370647006\n", "The running loss is:\n", "5.186166860163212\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.5762407622403569\n", "The running loss is:\n", "4.682988181710243\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.520332020190027\n", "The running loss is:\n", "4.529887855052948\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5033208727836609\n", "The running loss is:\n", "4.174439802765846\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.4638266447517607\n", "The running loss is:\n", "4.335402585566044\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.4817113983962271\n", "The running loss is:\n", "4.026810601353645\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.44742340015040505\n", "The running loss is:\n", "3.961600847542286\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.4401778719491429\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.441639\n", "48 30755 ... 10.630715\n", "49 30756 ... 11.287188\n", "50 30757 ... 6.068464\n", "51 30758 ... 5.964826\n", "52 30759 ... 4.343362\n", "53 30760 ... 2.792007\n", "54 30761 ... 2.465134\n", "55 30762 ... 1.961774\n", "56 30763 ... 1.201431\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yc8vzk15 \n", "\n", "wandb: Agent Starting Run: gb5pbrx8 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: gb5pbrx8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gb5pbrx8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.373695477843285\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.263743941982587\n", "The running loss is:\n", "7.596046328544617\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.8440051476160685\n", "The running loss is:\n", "7.026428073644638\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7807142304049598\n", "The running loss is:\n", "5.834165081381798\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.6482405645979775\n", "The running loss is:\n", "5.792373478412628\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6435970531569587\n", "The running loss is:\n", "5.450645856559277\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6056273173954752\n", "The running loss is:\n", "5.28040973842144\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5867121931579378\n", "The running loss is:\n", "5.260490275919437\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5844989195466042\n", "The running loss is:\n", "5.06695993989706\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5629955488774512\n", "The running loss is:\n", "5.005925253033638\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5562139170037376\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.719934\n", "48 30755 ... 10.537707\n", "49 30756 ... 12.890726\n", "50 30757 ... 5.602832\n", "51 30758 ... 5.312798\n", "52 30759 ... 3.378870\n", "53 30760 ... 1.443442\n", "54 30761 ... 0.235049\n", "55 30762 ... -0.287667\n", "56 30763 ... -0.960572\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gb5pbrx8 \n", "\n", "wandb: Agent Starting Run: 2ii41qnn with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 2ii41qnn\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2ii41qnn
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.847636476159096\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.1847636476159096\n", "The running loss is:\n", "19.28851977735758\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.9288519777357578\n", "The running loss is:\n", "6.863035127520561\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.6863035127520561\n", "The running loss is:\n", "6.861020892858505\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.6861020892858505\n", "The running loss is:\n", "5.373749539256096\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.5373749539256096\n", "The running loss is:\n", "4.984086461365223\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.4984086461365223\n", "The running loss is:\n", "4.53009369969368\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.45300936996936797\n", "The running loss is:\n", "4.434199392795563\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.44341993927955625\n", "The running loss is:\n", "4.03824046254158\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.403824046254158\n", "The running loss is:\n", "4.690671548247337\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.4690671548247337\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.863157\n", "48 30755 ... 16.795988\n", "49 30756 ... 20.582083\n", "50 30757 ... 17.093380\n", "51 30758 ... 17.988306\n", "52 30759 ... 20.010696\n", "53 30760 ... 24.001680\n", "54 30761 ... 24.718653\n", "55 30762 ... 26.494963\n", "56 30763 ... 28.380241\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2ii41qnn \n", "\n", "wandb: Agent Starting Run: 1wctf3h1 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 1wctf3h1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1wctf3h1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.46183493733406\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.162426104148229\n", "The running loss is:\n", "17.30639934539795\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.9229332605997722\n", "The running loss is:\n", "6.3309420347213745\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7034380038579305\n", "The running loss is:\n", "6.377431869506836\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.7086035410563151\n", "The running loss is:\n", "5.5489144921302795\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6165460546811422\n", "The running loss is:\n", "4.946435913443565\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5496039903826184\n", "The running loss is:\n", "4.314482182264328\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.4793869091404809\n", "The running loss is:\n", "4.079594299197197\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.4532882554663552\n", "The running loss is:\n", "4.3184704929590225\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.4798300547732247\n", "The running loss is:\n", "3.7194052562117577\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.4132672506901953\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.938203\n", "48 30755 ... 10.590812\n", "49 30756 ... 11.731659\n", "50 30757 ... 7.816141\n", "51 30758 ... 7.934283\n", "52 30759 ... 7.898247\n", "53 30760 ... 7.827030\n", "54 30761 ... 7.770433\n", "55 30762 ... 7.636737\n", "56 30763 ... 7.446535\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1wctf3h1 \n", "\n", "wandb: Agent Starting Run: lnptcntk with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: lnptcntk\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lnptcntk
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.301906615495682\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2557674017217424\n", "The running loss is:\n", "13.34939444065094\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.4832660489612155\n", "The running loss is:\n", "7.083951860666275\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7871057622962527\n", "The running loss is:\n", "6.721273362636566\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.7468081514040629\n", "The running loss is:\n", "6.33242367208004\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.7036026302311156\n", "The running loss is:\n", "5.559299543499947\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6176999492777718\n", "The running loss is:\n", "5.3248555809259415\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5916506201028824\n", "The running loss is:\n", "5.212460063397884\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5791622292664316\n", "The running loss is:\n", "5.161771774291992\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5735301971435547\n", "The running loss is:\n", "5.854519993066788\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.6505022214518653\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.666964\n", "48 30755 ... 7.844455\n", "49 30756 ... 10.758030\n", "50 30757 ... 4.357377\n", "51 30758 ... 3.401670\n", "52 30759 ... 0.159843\n", "53 30760 ... -3.441156\n", "54 30761 ... -5.457528\n", "55 30762 ... -5.833113\n", "56 30763 ... -5.806427\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lnptcntk \n", "\n", "wandb: Agent Starting Run: vt9wfc3i with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: vt9wfc3i\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vt9wfc3i
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.370520025491714\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "0.9370520025491714\n", "The running loss is:\n", "24.28932160139084\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.428932160139084\n", "The running loss is:\n", "11.215482264757156\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.1215482264757157\n", "The running loss is:\n", "8.304980039596558\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "0.8304980039596558\n", "The running loss is:\n", "5.969888746738434\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.5969888746738434\n", "The running loss is:\n", "5.667651101946831\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "0.5667651101946831\n", "The running loss is:\n", "5.531609956175089\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.5531609956175089\n", "The running loss is:\n", "4.260201007127762\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.4260201007127762\n", "The running loss is:\n", "4.308543294668198\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.4308543294668198\n", "The running loss is:\n", "4.031116555444896\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.40311165554448963\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.514585\n", "48 30755 ... 13.957551\n", "49 30756 ... 22.536795\n", "50 30757 ... 19.147823\n", "51 30758 ... 18.851774\n", "52 30759 ... 16.785509\n", "53 30760 ... 16.631109\n", "54 30761 ... 14.371087\n", "55 30762 ... 17.450026\n", "56 30763 ... 23.144482\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vt9wfc3i \n", "\n", "wandb: Agent Starting Run: 79g5c2ih with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 79g5c2ih\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/79g5c2ih
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.218592584133148\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "0.913176953792572\n", "The running loss is:\n", "22.594658076763153\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.510517564084795\n", "The running loss is:\n", "8.755667477846146\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.972851941982905\n", "The running loss is:\n", "7.895386904478073\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.8772652116086748\n", "The running loss is:\n", "5.952311813831329\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6613679793145921\n", "The running loss is:\n", "5.395892843604088\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5995436492893431\n", "The running loss is:\n", "5.016872830688953\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5574303145209948\n", "The running loss is:\n", "4.522265180945396\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.502473908993933\n", "The running loss is:\n", "4.903088375926018\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5447875973251131\n", "The running loss is:\n", "4.967217639088631\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5519130710098479\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.197464\n", "48 30755 ... 14.589086\n", "49 30756 ... 15.102975\n", "50 30757 ... 11.490273\n", "51 30758 ... 11.686521\n", "52 30759 ... 12.958370\n", "53 30760 ... 14.398232\n", "54 30761 ... 14.449973\n", "55 30762 ... 13.878452\n", "56 30763 ... 13.028694\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 79g5c2ih \n", "\n", "wandb: Agent Starting Run: hun860ha with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: hun860ha\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hun860ha
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.466349959373474\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "0.9407055510414971\n", "The running loss is:\n", "20.51015877723694\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.2789065308041043\n", "The running loss is:\n", "9.455008566379547\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.0505565073755052\n", "The running loss is:\n", "8.632069051265717\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.9591187834739685\n", "The running loss is:\n", "7.387580871582031\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.8208423190646701\n", "The running loss is:\n", "6.931646406650543\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.7701829340722826\n", "The running loss is:\n", "6.353820636868477\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.705980070763164\n", "The running loss is:\n", "6.147080808877945\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6830089787642161\n", "The running loss is:\n", "6.059936374425888\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.6733262638250986\n", "The running loss is:\n", "5.553804494440556\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.6170893882711729\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.846986\n", "48 30755 ... 13.832122\n", "49 30756 ... 14.052855\n", "50 30757 ... 9.490732\n", "51 30758 ... 9.761359\n", "52 30759 ... 10.063552\n", "53 30760 ... 10.918784\n", "54 30761 ... 10.505589\n", "55 30762 ... 10.037671\n", "56 30763 ... 8.904584\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hun860ha \n", "\n", "wandb: Agent Starting Run: 56xnjmqw with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 56xnjmqw\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/56xnjmqw
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "63.19029159843922\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "6.319029159843922\n", "The running loss is:\n", "15.668059527873993\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.5668059527873992\n", "The running loss is:\n", "6.7668338268995285\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "0.6766833826899529\n", "The running loss is:\n", "10.653816670179367\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.0653816670179368\n", "The running loss is:\n", "6.2057484947144985\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "0.6205748494714498\n", "The running loss is:\n", "12.597524106502533\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.2597524106502533\n", "The running loss is:\n", "8.133643388748169\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "0.8133643388748169\n", "The running loss is:\n", "6.504064813256264\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "0.6504064813256264\n", "The running loss is:\n", "7.600483626127243\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.7600483626127243\n", "The running loss is:\n", "6.0942140482366085\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.6094214048236608\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 17.412844\n", "48 30755 ... 16.113131\n", "49 30756 ... 17.652231\n", "50 30757 ... 17.093540\n", "51 30758 ... 17.538973\n", "52 30759 ... 18.912992\n", "53 30760 ... 22.012920\n", "54 30761 ... 22.796741\n", "55 30762 ... 23.825220\n", "56 30763 ... 24.379248\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 56xnjmqw \n", "\n", "wandb: Agent Starting Run: rjlb3x25 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: rjlb3x25\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/rjlb3x25
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "47.18400213122368\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "5.242666903469297\n", "The running loss is:\n", "7.782240986824036\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.8646934429804484\n", "The running loss is:\n", "13.350460350513458\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.4833844833903842\n", "The running loss is:\n", "10.830940991640091\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.20343788796001\n", "The running loss is:\n", "8.378268256783485\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.9309186951981651\n", "The running loss is:\n", "7.522539705038071\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.83583774500423\n", "The running loss is:\n", "7.092203080654144\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.7880225645171272\n", "The running loss is:\n", "5.928473547101021\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6587192830112245\n", "The running loss is:\n", "5.759520620107651\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.6399467355675168\n", "The running loss is:\n", "5.335961684584618\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5928846316205131\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.474265\n", "48 30755 ... 14.597093\n", "49 30756 ... 14.583648\n", "50 30757 ... 10.177814\n", "51 30758 ... 10.120189\n", "52 30759 ... 9.762475\n", "53 30760 ... 9.834273\n", "54 30761 ... 9.889601\n", "55 30762 ... 10.552725\n", "56 30763 ... 8.368625\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: rjlb3x25 \n", "\n", "wandb: Agent Starting Run: r1hloomg with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: r1hloomg\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/r1hloomg
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "35.278807163238525\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "3.9198674625820584\n", "The running loss is:\n", "9.09990394115448\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.0111004379060533\n", "The running loss is:\n", "8.631413072347641\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.9590458969275156\n", "The running loss is:\n", "13.801436424255371\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.5334929360283747\n", "The running loss is:\n", "11.059120297431946\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.228791144159105\n", "The running loss is:\n", "12.807693928480148\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "1.423077103164461\n", "The running loss is:\n", "8.163722217082977\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.907080246342553\n", "The running loss is:\n", "8.258003741502762\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.9175559712780846\n", "The running loss is:\n", "7.6043756902217865\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.8449306322468652\n", "The running loss is:\n", "7.030919551849365\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7812132835388184\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.151881\n", "48 30755 ... 11.383740\n", "49 30756 ... 11.417962\n", "50 30757 ... 11.303598\n", "51 30758 ... 11.302509\n", "52 30759 ... 11.487692\n", "53 30760 ... 11.680331\n", "54 30761 ... 11.406602\n", "55 30762 ... 11.407322\n", "56 30763 ... 11.404839\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: r1hloomg \n", "\n", "wandb: Agent Starting Run: y0bnlpuy with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: y0bnlpuy\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/y0bnlpuy
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.633945550769567\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.181549505641063\n", "The running loss is:\n", "12.043411642313004\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.3381568491458893\n", "The running loss is:\n", "5.877998441457748\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.6531109379397498\n", "The running loss is:\n", "5.546243727207184\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.6162493030230204\n", "The running loss is:\n", "5.403127163648605\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6003474626276228\n", "The running loss is:\n", "4.643219918012619\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5159133242236243\n", "The running loss is:\n", "4.852768741548061\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5391965268386735\n", "The running loss is:\n", "4.382803924381733\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.4869782138201926\n", "The running loss is:\n", "4.16484721750021\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.4627608019444678\n", "The running loss is:\n", "4.4322224371135235\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.4924691596792804\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.033802\n", "48 30755 ... 9.551357\n", "49 30756 ... 10.077868\n", "50 30757 ... 9.963331\n", "51 30758 ... 6.366199\n", "52 30759 ... 6.216858\n", "53 30760 ... 5.372510\n", "54 30761 ... 4.884486\n", "55 30762 ... 4.517594\n", "56 30763 ... 4.314028\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: y0bnlpuy \n", "\n", "wandb: Agent Starting Run: owmfh421 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: owmfh421\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/owmfh421
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.215542949736118\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2461714388595686\n", "The running loss is:\n", "9.463058114051819\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.0514509015613132\n", "The running loss is:\n", "6.107879787683487\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.6786533097426096\n", "The running loss is:\n", "5.39974407851696\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.5999715642796623\n", "The running loss is:\n", "5.072701074182987\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.5636334526869986\n", "The running loss is:\n", "4.804857462644577\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.533873051404953\n", "The running loss is:\n", "4.5060970187187195\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5006774465243021\n", "The running loss is:\n", "4.700375184416771\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5222639093796412\n", "The running loss is:\n", "4.428327962756157\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.49203644030623966\n", "The running loss is:\n", "4.5398461520671844\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5044273502296872\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.511998\n", "48 30755 ... 5.250092\n", "49 30756 ... 5.816338\n", "50 30757 ... 5.612596\n", "51 30758 ... 0.421234\n", "52 30759 ... -1.497605\n", "53 30760 ... -7.030499\n", "54 30761 ... -8.206348\n", "55 30762 ... -9.200907\n", "56 30763 ... -9.880840\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: owmfh421 \n", "\n", "wandb: Agent Starting Run: 9gl4dblh with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 9gl4dblh\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9gl4dblh
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.968374609947205\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.218708289994134\n", "The running loss is:\n", "7.037350654602051\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.781927850511339\n", "The running loss is:\n", "6.37801668047905\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7086685200532278\n", "The running loss is:\n", "5.6258958876132965\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.6250995430681441\n", "The running loss is:\n", "5.45712573826313\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6063473042514589\n", "The running loss is:\n", "5.067378714680672\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5630420794089636\n", "The running loss is:\n", "4.6998710706830025\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5222078967425559\n", "The running loss is:\n", "4.821414604783058\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5357127338647842\n", "The running loss is:\n", "4.696104887872934\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5217894319858816\n", "The running loss is:\n", "4.9355600625276566\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.548395562503073\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 4.753484\n", "48 30755 ... 5.158859\n", "49 30756 ... 5.436313\n", "50 30757 ... 5.256255\n", "51 30758 ... -0.213982\n", "52 30759 ... -2.439097\n", "53 30760 ... -8.436878\n", "54 30761 ... -9.941109\n", "55 30762 ... -11.239862\n", "56 30763 ... -12.347157\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9gl4dblh \n", "\n", "wandb: Agent Starting Run: k8zdpd46 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: k8zdpd46\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/k8zdpd46
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.622326582670212\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.069147398074468\n", "The running loss is:\n", "27.29498302936554\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "3.0327758921517267\n", "The running loss is:\n", "7.484041184186935\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.8315601315763261\n", "The running loss is:\n", "8.233914986252785\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.9148794429169761\n", "The running loss is:\n", "5.771057903766632\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6412286559740702\n", "The running loss is:\n", "5.484783336520195\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6094203707244661\n", "The running loss is:\n", "5.26647499576211\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5851638884180121\n", "The running loss is:\n", "4.466490536928177\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.49627672632535297\n", "The running loss is:\n", "4.091578543186188\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.4546198381317986\n", "The running loss is:\n", "4.385637752711773\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.4872930836346414\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.332860\n", "48 30755 ... 10.200597\n", "49 30756 ... 10.226647\n", "50 30757 ... 9.453783\n", "51 30758 ... 7.146721\n", "52 30759 ... 6.883693\n", "53 30760 ... 6.543474\n", "54 30761 ... 5.816170\n", "55 30762 ... 5.922008\n", "56 30763 ... 5.386109\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: k8zdpd46 \n", "\n", "wandb: Agent Starting Run: l1ctof91 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: l1ctof91\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l1ctof91
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.580014735460281\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.064446081717809\n", "The running loss is:\n", "21.697373241186142\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.4108192490206823\n", "The running loss is:\n", "6.6545195281505585\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7393910586833954\n", "The running loss is:\n", "7.011622667312622\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.779069185256958\n", "The running loss is:\n", "6.083614349365234\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6759571499294705\n", "The running loss is:\n", "5.649204224348068\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6276893582608964\n", "The running loss is:\n", "5.127370245754719\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5697078050838577\n", "The running loss is:\n", "4.944306641817093\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5493674046463437\n", "The running loss is:\n", "4.8338189907372\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5370909989707999\n", "The running loss is:\n", "4.484746187925339\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.4983051319917043\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 4.635915\n", "48 30755 ... 5.037758\n", "49 30756 ... 5.179454\n", "50 30757 ... 5.334713\n", "51 30758 ... 1.140849\n", "52 30759 ... -0.616794\n", "53 30760 ... -5.523585\n", "54 30761 ... -6.937500\n", "55 30762 ... -7.549229\n", "56 30763 ... -7.830435\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l1ctof91 \n", "\n", "wandb: Agent Starting Run: u10rjkpr with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: u10rjkpr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u10rjkpr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.579345598816872\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.1754828443129857\n", "The running loss is:\n", "13.758408069610596\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.5287120077345107\n", "The running loss is:\n", "6.689704149961472\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7433004611068301\n", "The running loss is:\n", "6.441909082233906\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.7157676758037673\n", "The running loss is:\n", "5.889819331467152\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6544243701630168\n", "The running loss is:\n", "5.225266307592392\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5805851452880435\n", "The running loss is:\n", "4.707424312829971\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5230471458699968\n", "The running loss is:\n", "4.644587963819504\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5160653293132782\n", "The running loss is:\n", "4.423424337059259\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.4914915930065844\n", "The running loss is:\n", "4.801369518041611\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5334855020046234\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.572619\n", "48 30755 ... 5.447958\n", "49 30756 ... 5.573647\n", "50 30757 ... 5.955884\n", "51 30758 ... 1.513768\n", "52 30759 ... -0.038620\n", "53 30760 ... -4.731401\n", "54 30761 ... -5.841568\n", "55 30762 ... -6.382008\n", "56 30763 ... -6.736419\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u10rjkpr \n", "\n", "wandb: Agent Starting Run: mhp5jf5e with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: mhp5jf5e\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mhp5jf5e
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.49449360370636\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.6104992893007066\n", "The running loss is:\n", "19.521971058100462\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.1691078953444958\n", "The running loss is:\n", "28.291439056396484\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "3.143493228488498\n", "The running loss is:\n", "8.388818830251694\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.9320909811390771\n", "The running loss is:\n", "8.282284513115883\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.9202538347906537\n", "The running loss is:\n", "6.225587673485279\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6917319637205865\n", "The running loss is:\n", "5.497670985758305\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.6108523317509227\n", "The running loss is:\n", "4.806649524718523\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5340721694131693\n", "The running loss is:\n", "4.585236996412277\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5094707773791419\n", "The running loss is:\n", "4.70761264488101\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5230680716534456\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.213211\n", "48 30755 ... 6.962625\n", "49 30756 ... 7.404693\n", "50 30757 ... 8.399524\n", "51 30758 ... 1.793925\n", "52 30759 ... 0.937240\n", "53 30760 ... -3.075130\n", "54 30761 ... -4.972503\n", "55 30762 ... -4.848470\n", "56 30763 ... -5.870366\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mhp5jf5e \n", "\n", "wandb: Agent Starting Run: l26ko7a1 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: l26ko7a1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l26ko7a1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.378090545535088\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2642322828372319\n", "The running loss is:\n", "20.013391137123108\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.223710126347012\n", "The running loss is:\n", "19.87523329257965\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "2.2083592547310724\n", "The running loss is:\n", "8.844613701105118\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.9827348556783464\n", "The running loss is:\n", "7.205383747816086\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.8005981942017873\n", "The running loss is:\n", "6.940165609121323\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.7711295121245914\n", "The running loss is:\n", "6.24945005774498\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.6943833397494422\n", "The running loss is:\n", "5.91395029425621\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.65710558825069\n", "The running loss is:\n", "5.396865144371986\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5996516827079985\n", "The running loss is:\n", "5.062415450811386\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5624906056457095\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.514519\n", "48 30755 ... 9.442804\n", "49 30756 ... 8.812165\n", "50 30757 ... 9.532930\n", "51 30758 ... 6.297042\n", "52 30759 ... 6.181820\n", "53 30760 ... 5.386303\n", "54 30761 ... 3.235852\n", "55 30762 ... 3.117307\n", "56 30763 ... 3.085574\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l26ko7a1 \n", "\n", "wandb: Agent Starting Run: zotbismr with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: zotbismr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/zotbismr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.956711173057556\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "0.9951901303397285\n", "The running loss is:\n", "20.03506526350975\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.2261183626121945\n", "The running loss is:\n", "10.61062902212143\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.1789587802357144\n", "The running loss is:\n", "7.9828891307115555\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.8869876811901728\n", "The running loss is:\n", "7.088197961449623\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.7875775512721803\n", "The running loss is:\n", "6.779843673110008\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.7533159636788898\n", "The running loss is:\n", "6.002784684300423\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.6669760760333803\n", "The running loss is:\n", "5.491729207336903\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6101921341485448\n", "The running loss is:\n", "5.527640491724014\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.6141822768582238\n", "The running loss is:\n", "6.085138563066721\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.6761265070074134\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.490681\n", "48 30755 ... 13.582205\n", "49 30756 ... 13.004211\n", "50 30757 ... 12.755482\n", "51 30758 ... 12.320765\n", "52 30759 ... 12.612151\n", "53 30760 ... 13.293688\n", "54 30761 ... 13.494370\n", "55 30762 ... 13.886261\n", "56 30763 ... 13.653646\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: zotbismr \n", "\n", "wandb: Agent Starting Run: dvll38mr with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: dvll38mr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/dvll38mr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "98.88792389631271\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "10.987547099590302\n", "The running loss is:\n", "8.609584867954254\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.956620540883806\n", "The running loss is:\n", "9.498519219458103\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.0553910243842337\n", "The running loss is:\n", "49.756335735321045\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "5.528481748369005\n", "The running loss is:\n", "15.944260041695088\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.7715844490772321\n", "The running loss is:\n", "18.559796810150146\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "2.0621996455722384\n", "The running loss is:\n", "7.868879586458206\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.8743199540509118\n", "The running loss is:\n", "6.104154862463474\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6782394291626083\n", "The running loss is:\n", "7.538334250450134\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.8375926944944594\n", "The running loss is:\n", "6.918812483549118\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7687569426165687\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.731135\n", "48 30755 ... 9.728546\n", "49 30756 ... 10.310928\n", "50 30757 ... 10.316441\n", "51 30758 ... 7.959233\n", "52 30759 ... 7.956962\n", "53 30760 ... 7.942179\n", "54 30761 ... 6.841368\n", "55 30762 ... 6.677052\n", "56 30763 ... 6.692796\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: dvll38mr \n", "\n", "wandb: Agent Starting Run: rya2yy5p with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: rya2yy5p\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/rya2yy5p
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "67.89308589696884\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "7.543676210774316\n", "The running loss is:\n", "9.431407779455185\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.0479341977172427\n", "The running loss is:\n", "21.126766741275787\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "2.3474185268084207\n", "The running loss is:\n", "14.993719905614853\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.6659688784016504\n", "The running loss is:\n", "7.41693702340126\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.8241041137112511\n", "The running loss is:\n", "8.626804292201996\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.9585338102446662\n", "The running loss is:\n", "7.170477196574211\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.7967196885082457\n", "The running loss is:\n", "7.380770206451416\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.8200855784946017\n", "The running loss is:\n", "6.92872542142868\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.7698583801587423\n", "The running loss is:\n", "6.632938742637634\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7369931936264038\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.066799\n", "48 30755 ... 11.078013\n", "49 30756 ... 11.082559\n", "50 30757 ... 11.086118\n", "51 30758 ... 10.130918\n", "52 30759 ... 10.135627\n", "53 30760 ... 10.872349\n", "54 30761 ... 9.913726\n", "55 30762 ... 9.913918\n", "56 30763 ... 9.914637\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: rya2yy5p \n", "\n", "wandb: Agent Starting Run: 8oqgctmv with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 8oqgctmv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8oqgctmv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "46.47122222185135\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "5.163469135761261\n", "The running loss is:\n", "8.845713376998901\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.9828570418887668\n", "The running loss is:\n", "13.030948475003242\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.447883163889249\n", "The running loss is:\n", "10.48940259218216\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.165489176909129\n", "The running loss is:\n", "9.511059552431107\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.0567843947145674\n", "The running loss is:\n", "8.09024153649807\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.8989157262775633\n", "The running loss is:\n", "6.7674222737550735\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.7519358081950082\n", "The running loss is:\n", "6.153109893202782\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6836788770225313\n", "The running loss is:\n", "6.054163038730621\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.6726847820811801\n", "The running loss is:\n", "5.372741438448429\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5969712709387144\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.541071\n", "48 30755 ... 12.220772\n", "49 30756 ... 11.060917\n", "50 30757 ... 10.666188\n", "51 30758 ... 3.418077\n", "52 30759 ... 3.772269\n", "53 30760 ... 0.733020\n", "54 30761 ... 1.369237\n", "55 30762 ... 1.944399\n", "56 30763 ... 1.421969\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8oqgctmv \n", "\n", "wandb: Agent Starting Run: vtgyuhtf with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: vtgyuhtf\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vtgyuhtf
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.348638638854027\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2609598487615585\n", "The running loss is:\n", "6.918910779058933\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.7687678643398814\n", "The running loss is:\n", "5.745432838797569\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.6383814265330633\n", "The running loss is:\n", "4.999900542199612\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.5555445046888458\n", "The running loss is:\n", "4.773765811696649\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.5304184235218499\n", "The running loss is:\n", "4.680868253111839\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5200964725679822\n", "The running loss is:\n", "4.301170352846384\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.47790781698293155\n", "The running loss is:\n", "4.601465173065662\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5112739081184069\n", "The running loss is:\n", "4.934664955362678\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5482961061514087\n", "The running loss is:\n", "4.621857643127441\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5135397381252713\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.836509\n", "48 30755 ... 8.574735\n", "49 30756 ... 11.337667\n", "50 30757 ... 10.399076\n", "51 30758 ... 6.875823\n", "52 30759 ... 5.910570\n", "53 30760 ... 5.708830\n", "54 30761 ... 4.988645\n", "55 30762 ... 4.351829\n", "56 30763 ... 4.867961\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vtgyuhtf \n", "\n", "wandb: Agent Starting Run: qthc3jrw with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: qthc3jrw\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qthc3jrw
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.358599215745926\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.3731776906384363\n", "The running loss is:\n", "8.195348471403122\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.9105942746003469\n", "The running loss is:\n", "7.318853735923767\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.8132059706581963\n", "The running loss is:\n", "6.295140668749809\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.6994600743055344\n", "The running loss is:\n", "6.144186645746231\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6826874050829146\n", "The running loss is:\n", "5.869756370782852\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6521951523092058\n", "The running loss is:\n", "5.804843842983246\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.6449826492203606\n", "The running loss is:\n", "5.551393002271652\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6168214446968503\n", "The running loss is:\n", "5.521760046482086\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.6135288940535651\n", "The running loss is:\n", "5.504636391997337\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.6116262657774819\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.424033\n", "48 30755 ... 11.064072\n", "49 30756 ... 11.643181\n", "50 30757 ... 12.372051\n", "51 30758 ... 12.407243\n", "52 30759 ... 8.644774\n", "53 30760 ... 8.674614\n", "54 30761 ... 9.206502\n", "55 30762 ... 8.878454\n", "56 30763 ... 8.787256\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qthc3jrw \n", "\n", "wandb: Agent Starting Run: nudj0ttj with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: nudj0ttj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nudj0ttj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.974797561764717\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.3305330624183018\n", "The running loss is:\n", "7.871524661779404\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.8746138513088226\n", "The running loss is:\n", "6.378603428602219\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7087337142891355\n", "The running loss is:\n", "5.855801060795784\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.6506445623106427\n", "The running loss is:\n", "5.593401655554771\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.621489072839419\n", "The running loss is:\n", "5.430000275373459\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6033333639303843\n", "The running loss is:\n", "5.198335066437721\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5775927851597468\n", "The running loss is:\n", "5.2052818685770035\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5783646520641115\n", "The running loss is:\n", "5.29455591738224\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.588283990820249\n", "The running loss is:\n", "5.005378872156143\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5561532080173492\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.795309\n", "48 30755 ... 9.963115\n", "49 30756 ... 11.581796\n", "50 30757 ... 11.518932\n", "51 30758 ... 10.245250\n", "52 30759 ... 8.156085\n", "53 30760 ... 8.071309\n", "54 30761 ... 8.587109\n", "55 30762 ... 8.115870\n", "56 30763 ... 8.071095\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nudj0ttj \n", "\n", "wandb: Agent Starting Run: pqquxpyi with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: pqquxpyi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/pqquxpyi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.936804950237274\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.326311661137475\n", "The running loss is:\n", "13.103957504034042\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.4559952782260046\n", "The running loss is:\n", "6.130839288234711\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.6812043653594123\n", "The running loss is:\n", "5.423560082912445\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.6026177869902717\n", "The running loss is:\n", "5.0311368107795715\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.5590152011977302\n", "The running loss is:\n", "4.549448646605015\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5054942940672239\n", "The running loss is:\n", "4.158376228064299\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.4620418031182554\n", "The running loss is:\n", "5.161359757184982\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.573484417464998\n", "The running loss is:\n", "5.153440713882446\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5726045237647163\n", "The running loss is:\n", "3.981059141457081\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.4423399046063423\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.477754\n", "48 30755 ... 8.494497\n", "49 30756 ... 12.196461\n", "50 30757 ... 10.884727\n", "51 30758 ... 7.412595\n", "52 30759 ... 7.065908\n", "53 30760 ... 7.101405\n", "54 30761 ... 6.012889\n", "55 30762 ... 5.877822\n", "56 30763 ... 7.438658\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: pqquxpyi \n", "\n", "wandb: Agent Starting Run: 68xo9ypq with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 68xo9ypq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/68xo9ypq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.190880864858627\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.3545423183176253\n", "The running loss is:\n", "13.892218500375748\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.543579833375083\n", "The running loss is:\n", "6.900015220046043\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7666683577828937\n", "The running loss is:\n", "6.897568985819817\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.7663965539799796\n", "The running loss is:\n", "6.506961166858673\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.7229956852065192\n", "The running loss is:\n", "6.165369838476181\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6850410931640201\n", "The running loss is:\n", "5.86061418056488\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.6511793533960978\n", "The running loss is:\n", "5.5902515053749084\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6211390561527677\n", "The running loss is:\n", "5.628728866577148\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.6254143185085721\n", "The running loss is:\n", "5.315730541944504\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5906367268827226\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.205215\n", "48 30755 ... 10.191205\n", "49 30756 ... 10.337317\n", "50 30757 ... 10.732488\n", "51 30758 ... 11.198917\n", "52 30759 ... 8.658087\n", "53 30760 ... 8.819209\n", "54 30761 ... 8.749974\n", "55 30762 ... 8.259215\n", "56 30763 ... 8.356953\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 68xo9ypq \n", "\n", "wandb: Agent Starting Run: fy82xr6x with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: fy82xr6x\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fy82xr6x
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.067734479904175\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2297482755449083\n", "The running loss is:\n", "15.965270072221756\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.7739188969135284\n", "The running loss is:\n", "6.704161122441292\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7449067913823657\n", "The running loss is:\n", "6.657948046922684\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.7397720052136315\n", "The running loss is:\n", "6.264713495969772\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6960792773299747\n", "The running loss is:\n", "5.739080086350441\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.637675565150049\n", "The running loss is:\n", "5.670556038618088\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.6300617820686765\n", "The running loss is:\n", "5.386943072080612\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5985492302311791\n", "The running loss is:\n", "5.308087810873985\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.589787534541554\n", "The running loss is:\n", "4.992166683077812\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5546851870086458\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.993382\n", "48 30755 ... 10.131286\n", "49 30756 ... 11.634473\n", "50 30757 ... 11.604493\n", "51 30758 ... 10.855100\n", "52 30759 ... 9.658119\n", "53 30760 ... 9.685330\n", "54 30761 ... 9.968962\n", "55 30762 ... 9.553234\n", "56 30763 ... 9.550599\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fy82xr6x \n", "\n", "wandb: Agent Starting Run: 83h0wkh0 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 83h0wkh0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/83h0wkh0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.505407392978668\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.0561563769976299\n", "The running loss is:\n", "21.379353791475296\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.375483754608366\n", "The running loss is:\n", "8.969172284007072\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.996574698223008\n", "The running loss is:\n", "8.166614294052124\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.9074015882280138\n", "The running loss is:\n", "6.223415791988373\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6914906435542636\n", "The running loss is:\n", "6.225053533911705\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6916726148790784\n", "The running loss is:\n", "4.850820034742355\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5389800038602617\n", "The running loss is:\n", "6.047254383563995\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6719171537293328\n", "The running loss is:\n", "5.450169747695327\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.6055744164105918\n", "The running loss is:\n", "5.5230641812086105\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.6136737979120679\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 2.551796\n", "48 30755 ... 9.289855\n", "49 30756 ... 13.825897\n", "50 30757 ... 10.026182\n", "51 30758 ... 6.181005\n", "52 30759 ... 6.497049\n", "53 30760 ... 4.788657\n", "54 30761 ... 3.555442\n", "55 30762 ... 3.971375\n", "56 30763 ... 6.380777\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 83h0wkh0 \n", "\n", "wandb: Agent Starting Run: lkat3a3t with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: lkat3a3t\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lkat3a3t
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.228183835744858\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.1364648706383176\n", "The running loss is:\n", "22.093879207968712\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.454875467552079\n", "The running loss is:\n", "11.21305176615715\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.2458946406841278\n", "The running loss is:\n", "8.938593842089176\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.993177093565464\n", "The running loss is:\n", "7.865151785314083\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.873905753923787\n", "The running loss is:\n", "7.342009246349335\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.8157788051499261\n", "The running loss is:\n", "6.836678400635719\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.7596309334039688\n", "The running loss is:\n", "6.812281683087349\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.7569201870097054\n", "The running loss is:\n", "6.919483810663223\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.7688315345181359\n", "The running loss is:\n", "6.063464671373367\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.673718296819263\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.149070\n", "48 30755 ... 12.772628\n", "49 30756 ... 10.170836\n", "50 30757 ... 12.094771\n", "51 30758 ... 12.898168\n", "52 30759 ... 11.223684\n", "53 30760 ... 11.328439\n", "54 30761 ... 11.660076\n", "55 30762 ... 11.364662\n", "56 30763 ... 11.240909\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lkat3a3t \n", "\n", "wandb: Agent Starting Run: 83qumktt with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 83qumktt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/83qumktt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.269839070737362\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2522043411930401\n", "The running loss is:\n", "18.2245534658432\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.024950385093689\n", "The running loss is:\n", "11.093135692179203\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.232570632464356\n", "The running loss is:\n", "7.84151503443718\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.8712794482707977\n", "The running loss is:\n", "7.130702927708626\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.7923003253009584\n", "The running loss is:\n", "6.894553929567337\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.7660615477297041\n", "The running loss is:\n", "6.550070330500603\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.7277855922778448\n", "The running loss is:\n", "5.66788774728775\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6297653052541945\n", "The running loss is:\n", "5.8400644809007645\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.6488960534334183\n", "The running loss is:\n", "5.484764613211155\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.609418290356795\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.282831\n", "48 30755 ... 10.786951\n", "49 30756 ... 11.856423\n", "50 30757 ... 11.354153\n", "51 30758 ... 11.202002\n", "52 30759 ... 11.278160\n", "53 30760 ... 11.181666\n", "54 30761 ... 11.049433\n", "55 30762 ... 10.850035\n", "56 30763 ... 11.016407\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 83qumktt \n", "\n", "wandb: Agent Starting Run: eaehlwpi with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: eaehlwpi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/eaehlwpi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "50.12921614944935\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "5.569912905494372\n", "The running loss is:\n", "8.785686165094376\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.9761873516771529\n", "The running loss is:\n", "12.605510175228119\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.4006122416920133\n", "The running loss is:\n", "21.619386926293373\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "2.402154102921486\n", "The running loss is:\n", "8.039730727672577\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.8933034141858419\n", "The running loss is:\n", "8.46184479445219\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.9402049771613545\n", "The running loss is:\n", "8.858764350414276\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.9843071500460306\n", "The running loss is:\n", "8.675993755459785\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.9639993061621984\n", "The running loss is:\n", "10.160760685801506\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "1.1289734095335007\n", "The running loss is:\n", "9.34771716594696\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "1.0386352406607733\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.515077\n", "48 30755 ... 10.698237\n", "49 30756 ... 11.456429\n", "50 30757 ... 11.007051\n", "51 30758 ... 11.129147\n", "52 30759 ... 10.843229\n", "53 30760 ... 10.730742\n", "54 30761 ... 11.280998\n", "55 30762 ... 11.350057\n", "56 30763 ... 10.585619\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: eaehlwpi \n", "\n", "wandb: Agent Starting Run: clw96b2s with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: clw96b2s\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/clw96b2s
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "45.258555337786674\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "5.028728370865186\n", "The running loss is:\n", "9.887949824333191\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.0986610915925767\n", "The running loss is:\n", "14.993930101394653\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.6659922334882948\n", "The running loss is:\n", "8.667252570390701\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.9630280633767446\n", "The running loss is:\n", "9.43253342807293\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.048059269785881\n", "The running loss is:\n", "8.472909659147263\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.941434406571918\n", "The running loss is:\n", "8.426761694252491\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.9363068549169434\n", "The running loss is:\n", "7.336565665900707\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.8151739628778564\n", "The running loss is:\n", "7.057315722107887\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.7841461913453208\n", "The running loss is:\n", "7.008694067597389\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7787437852885988\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.018428\n", "48 30755 ... 11.246632\n", "49 30756 ... 10.371849\n", "50 30757 ... 11.048549\n", "51 30758 ... 12.152980\n", "52 30759 ... 10.506842\n", "53 30760 ... 10.698140\n", "54 30761 ... 11.106715\n", "55 30762 ... 9.964753\n", "56 30763 ... 9.393328\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: clw96b2s \n", "\n", "wandb: Agent Starting Run: cbu0v3vm with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: cbu0v3vm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cbu0v3vm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "55.83113503456116\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "6.203459448284573\n", "The running loss is:\n", "7.615257233381271\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.846139692597919\n", "The running loss is:\n", "13.260914385318756\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.473434931702084\n", "The running loss is:\n", "18.711096964776516\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "2.0790107738640575\n", "The running loss is:\n", "9.84968450665474\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.0944093896283045\n", "The running loss is:\n", "8.82070518285036\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.9800783536500401\n", "The running loss is:\n", "7.753073289990425\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.8614525877767139\n", "The running loss is:\n", "7.464309379458427\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.8293677088287141\n", "The running loss is:\n", "7.830278053879738\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.8700308948755264\n", "The running loss is:\n", "7.0657903999090195\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7850878222121133\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.494602\n", "48 30755 ... 10.482347\n", "49 30756 ... 10.473118\n", "50 30757 ... 10.541009\n", "51 30758 ... 10.541041\n", "52 30759 ... 9.136126\n", "53 30760 ... 8.867601\n", "54 30761 ... 9.107225\n", "55 30762 ... 8.831312\n", "56 30763 ... 8.666946\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cbu0v3vm \n", "\n", "wandb: Agent Starting Run: p6pyaclx with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: p6pyaclx\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/p6pyaclx
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.472531259059906\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2747256954511006\n", "The running loss is:\n", "9.711678888648748\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.0790754320720832\n", "The running loss is:\n", "6.233100436627865\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.6925667151808739\n", "The running loss is:\n", "5.8241632133722305\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.6471292459302478\n", "The running loss is:\n", "5.290510561317205\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.5878345068130229\n", "The running loss is:\n", "5.006042655557394\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5562269617285993\n", "The running loss is:\n", "4.981331991031766\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5534813323368629\n", "The running loss is:\n", "4.4758083410561085\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.4973120378951232\n", "The running loss is:\n", "4.3199992924928665\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.4799999213880963\n", "The running loss is:\n", "4.310908626765013\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.4789898474183347\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.323457\n", "48 30755 ... 7.979432\n", "49 30756 ... 8.822479\n", "50 30757 ... 10.618973\n", "51 30758 ... 10.024648\n", "52 30759 ... 7.265971\n", "53 30760 ... 5.206593\n", "54 30761 ... 4.850113\n", "55 30762 ... 4.195802\n", "56 30763 ... 4.077375\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: p6pyaclx \n", "\n", "wandb: Agent Starting Run: q4e69gzs with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: q4e69gzs\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/q4e69gzs
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.337343990802765\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2597048878669739\n", "The running loss is:\n", "7.484142437577248\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.8315713819530275\n", "The running loss is:\n", "6.609706312417984\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7344118124908872\n", "The running loss is:\n", "5.361370384693146\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.5957078205214607\n", "The running loss is:\n", "5.242933452129364\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.5825481613477071\n", "The running loss is:\n", "5.025114297866821\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5583460330963135\n", "The running loss is:\n", "4.582142144441605\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5091269049379561\n", "The running loss is:\n", "4.44568158686161\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.49396462076240116\n", "The running loss is:\n", "4.307258158922195\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.47858423988024396\n", "The running loss is:\n", "4.187428444623947\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.4652698271804386\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.117650\n", "48 30755 ... 7.928844\n", "49 30756 ... 9.761184\n", "50 30757 ... 13.123506\n", "51 30758 ... 11.381822\n", "52 30759 ... 6.784797\n", "53 30760 ... 5.429676\n", "54 30761 ... 5.440561\n", "55 30762 ... 4.422199\n", "56 30763 ... 4.445116\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: q4e69gzs \n", "\n", "wandb: Agent Starting Run: ji2nr6u1 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ji2nr6u1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ji2nr6u1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.389308661222458\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.1736635826528072\n", "The running loss is:\n", "11.884019121527672\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.485502390190959\n", "The running loss is:\n", "6.111610025167465\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7639512531459332\n", "The running loss is:\n", "5.661065757274628\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7076332196593285\n", "The running loss is:\n", "5.221550419926643\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6526938024908304\n", "The running loss is:\n", "4.935086935758591\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6168858669698238\n", "The running loss is:\n", "4.89002551138401\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6112531889230013\n", "The running loss is:\n", "4.821478247642517\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6026847809553146\n", "The running loss is:\n", "4.719222843647003\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5899028554558754\n", "The running loss is:\n", "4.442844241857529\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5553555302321911\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.830432\n", "48 30755 ... 7.491436\n", "49 30756 ... 7.830326\n", "50 30757 ... 8.473710\n", "51 30758 ... 8.261139\n", "52 30759 ... 6.579417\n", "53 30760 ... 4.488674\n", "54 30761 ... 4.710826\n", "55 30762 ... 4.869449\n", "56 30763 ... 3.949037\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ji2nr6u1 \n", "\n", "wandb: Agent Starting Run: 4tgn3n63 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 4tgn3n63\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4tgn3n63
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.71286141872406\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.1903179354137845\n", "The running loss is:\n", "21.590499818325043\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.398944424258338\n", "The running loss is:\n", "7.400251135230064\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.8222501261366738\n", "The running loss is:\n", "7.180257387459278\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.7978063763843642\n", "The running loss is:\n", "5.999096572399139\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6665662858221266\n", "The running loss is:\n", "5.3636345863342285\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.595959398481581\n", "The running loss is:\n", "4.844901656731963\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.5383224063035514\n", "The running loss is:\n", "4.299406096339226\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.4777117884821362\n", "The running loss is:\n", "3.937914729118347\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.4375460810131497\n", "The running loss is:\n", "3.964134406298399\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.44045937847759986\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.955766\n", "48 30755 ... 9.095902\n", "49 30756 ... 9.801540\n", "50 30757 ... 12.133164\n", "51 30758 ... 10.810966\n", "52 30759 ... 8.204831\n", "53 30760 ... 8.553889\n", "54 30761 ... 7.950711\n", "55 30762 ... 7.240780\n", "56 30763 ... 6.987817\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4tgn3n63 \n", "\n", "wandb: Agent Starting Run: 19iqie21 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 19iqie21\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/19iqie21
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.870292961597443\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2078103290663824\n", "The running loss is:\n", "13.46465790271759\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.4960731003019545\n", "The running loss is:\n", "7.045529410243034\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7828366011381149\n", "The running loss is:\n", "6.129437237977982\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.6810485819975535\n", "The running loss is:\n", "5.570417806506157\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6189353118340174\n", "The running loss is:\n", "5.336072877049446\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5928969863388274\n", "The running loss is:\n", "4.585846528410912\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.509538503156768\n", "The running loss is:\n", "4.421219557523727\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.4912466175026364\n", "The running loss is:\n", "4.118749655783176\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.45763885064257515\n", "The running loss is:\n", "4.141455993056297\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.46016177700625527\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.972950\n", "48 30755 ... 8.010669\n", "49 30756 ... 10.162770\n", "50 30757 ... 13.685595\n", "51 30758 ... 11.899075\n", "52 30759 ... 7.380159\n", "53 30760 ... 6.770110\n", "54 30761 ... 6.820722\n", "55 30762 ... 5.682702\n", "56 30763 ... 5.836186\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 19iqie21 \n", "\n", "wandb: Agent Starting Run: 2wjn71cw with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 2wjn71cw\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2wjn71cw
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.224892944097519\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.4031116180121899\n", "The running loss is:\n", "22.453463792800903\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.806682974100113\n", "The running loss is:\n", "6.1356241554021835\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7669530194252729\n", "The running loss is:\n", "6.19755494594574\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7746943682432175\n", "The running loss is:\n", "5.850357830524445\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7312947288155556\n", "The running loss is:\n", "5.245521053671837\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6556901317089796\n", "The running loss is:\n", "5.032821208238602\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6291026510298252\n", "The running loss is:\n", "4.9136738032102585\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6142092254012823\n", "The running loss is:\n", "4.7698249369859695\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5962281171232462\n", "The running loss is:\n", "4.3794238567352295\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5474279820919037\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.586073\n", "48 30755 ... 7.948225\n", "49 30756 ... 8.597462\n", "50 30757 ... 9.739484\n", "51 30758 ... 9.282975\n", "52 30759 ... 7.467255\n", "53 30760 ... 6.273127\n", "54 30761 ... 6.356297\n", "55 30762 ... 6.291785\n", "56 30763 ... 5.424063\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2wjn71cw \n", "\n", "wandb: Agent Starting Run: 00kr9sl0 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 00kr9sl0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/00kr9sl0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.727948267012835\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.5253275852236483\n", "The running loss is:\n", "21.50830540060997\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.3898117111788855\n", "The running loss is:\n", "16.788552042096853\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.8653946713440948\n", "The running loss is:\n", "7.9370488822460175\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.8818943202495575\n", "The running loss is:\n", "6.910562638193369\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.7678402931325965\n", "The running loss is:\n", "6.337854765355587\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.7042060850395097\n", "The running loss is:\n", "5.4855453334748745\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.6095050370527638\n", "The running loss is:\n", "5.8733771443367\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6525974604818556\n", "The running loss is:\n", "6.408730834722519\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.7120812038580576\n", "The running loss is:\n", "6.403976768255234\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7115529742505815\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.310756\n", "48 30755 ... 7.642404\n", "49 30756 ... 9.885168\n", "50 30757 ... 12.911268\n", "51 30758 ... 11.841020\n", "52 30759 ... 8.110412\n", "53 30760 ... 7.384973\n", "54 30761 ... 10.239965\n", "55 30762 ... 7.918401\n", "56 30763 ... 7.714108\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 00kr9sl0 \n", "\n", "wandb: Agent Starting Run: sowhvjl7 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: sowhvjl7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/sowhvjl7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.251713529229164\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.1390792810254626\n", "The running loss is:\n", "19.286679983139038\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.1429644425710044\n", "The running loss is:\n", "11.851648703217506\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.3168498559130564\n", "The running loss is:\n", "8.593457102775574\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.9548285669750638\n", "The running loss is:\n", "7.537827163934708\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.8375363515483009\n", "The running loss is:\n", "7.457647129893303\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.8286274588770337\n", "The running loss is:\n", "7.16678649187088\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.7963096102078756\n", "The running loss is:\n", "6.750422567129135\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.7500469519032372\n", "The running loss is:\n", "6.237434804439545\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.6930483116043938\n", "The running loss is:\n", "6.342507421970367\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7047230468855964\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.323541\n", "48 30755 ... 8.063728\n", "49 30756 ... 10.272192\n", "50 30757 ... 15.522292\n", "51 30758 ... 12.543692\n", "52 30759 ... 7.162727\n", "53 30760 ... 10.342567\n", "54 30761 ... 11.479841\n", "55 30762 ... 9.222147\n", "56 30763 ... 10.127317\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: sowhvjl7 \n", "\n", "wandb: Agent Starting Run: mtxkvdqw with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: mtxkvdqw\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mtxkvdqw
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.705665796995163\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "2.3382082246243954\n", "The running loss is:\n", "18.839629769325256\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.354953721165657\n", "The running loss is:\n", "23.626360967755318\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "2.9532951209694147\n", "The running loss is:\n", "8.420704454183578\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.0525880567729473\n", "The running loss is:\n", "7.341050535440445\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.9176313169300556\n", "The running loss is:\n", "6.895925462245941\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8619906827807426\n", "The running loss is:\n", "6.075425148010254\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7594281435012817\n", "The running loss is:\n", "5.39270444214344\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.67408805526793\n", "The running loss is:\n", "5.2611357271671295\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6576419658958912\n", "The running loss is:\n", "4.8258286118507385\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6032285764813423\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.815147\n", "48 30755 ... 9.209466\n", "49 30756 ... 9.237023\n", "50 30757 ... 10.296669\n", "51 30758 ... 9.815141\n", "52 30759 ... 8.073587\n", "53 30760 ... 7.225603\n", "54 30761 ... 7.534699\n", "55 30762 ... 7.330389\n", "56 30763 ... 6.658091\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mtxkvdqw \n", "\n", "wandb: Agent Starting Run: l4rdkk5i with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: l4rdkk5i\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l4rdkk5i
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "81.38286215811968\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "9.042540239791075\n", "The running loss is:\n", "6.7282320857048035\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.7475813428560892\n", "The running loss is:\n", "17.271905541419983\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.9191006157133315\n", "The running loss is:\n", "22.52288556098938\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "2.502542840109931\n", "The running loss is:\n", "13.139688491821289\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.4599653879801433\n", "The running loss is:\n", "12.133773386478424\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "1.3481970429420471\n", "The running loss is:\n", "8.478021509945393\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.9420023899939325\n", "The running loss is:\n", "8.083688005805016\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.8981875562005572\n", "The running loss is:\n", "6.952758699655533\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.7725287444061704\n", "The running loss is:\n", "6.886708460748196\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7651898289720217\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.982682\n", "48 30755 ... 9.206006\n", "49 30756 ... 9.838526\n", "50 30757 ... 11.931196\n", "51 30758 ... 10.667216\n", "52 30759 ... 9.140854\n", "53 30760 ... 8.847374\n", "54 30761 ... 9.114708\n", "55 30762 ... 8.678926\n", "56 30763 ... 8.438699\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l4rdkk5i \n", "\n", "wandb: Agent Starting Run: iatf6fgg with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: iatf6fgg\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/iatf6fgg
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "51.24754601716995\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "5.694171779685551\n", "The running loss is:\n", "8.4677115380764\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.9408568375640445\n", "The running loss is:\n", "15.262419521808624\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.6958243913120694\n", "The running loss is:\n", "9.589929044246674\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.0655476715829637\n", "The running loss is:\n", "9.376197457313538\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.041799717479282\n", "The running loss is:\n", "8.084025770425797\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.8982250856028663\n", "The running loss is:\n", "7.947470888495445\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.8830523209439384\n", "The running loss is:\n", "7.507450953125954\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.8341612170139948\n", "The running loss is:\n", "7.8752095103263855\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.875023278925154\n", "The running loss is:\n", "7.515006110072136\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.835000678896904\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.094513\n", "48 30755 ... 11.177944\n", "49 30756 ... 12.555366\n", "50 30757 ... 10.339748\n", "51 30758 ... 10.501686\n", "52 30759 ... 9.739458\n", "53 30760 ... 9.221687\n", "54 30761 ... 9.388515\n", "55 30762 ... 9.439221\n", "56 30763 ... 9.129675\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: iatf6fgg \n", "\n", "wandb: Agent Starting Run: u46ofsht with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: u46ofsht\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u46ofsht
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "100.43890479207039\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "12.554863099008799\n", "The running loss is:\n", "6.304996594786644\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.7881245743483305\n", "The running loss is:\n", "17.867437183856964\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "2.2334296479821205\n", "The running loss is:\n", "15.657972991466522\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.9572466239333153\n", "The running loss is:\n", "14.777969121932983\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.847246140241623\n", "The running loss is:\n", "11.4342300593853\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "1.4292787574231625\n", "The running loss is:\n", "14.000842481851578\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "1.7501053102314472\n", "The running loss is:\n", "7.894358307123184\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.986794788390398\n", "The running loss is:\n", "7.187334030866623\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.8984167538583279\n", "The running loss is:\n", "6.727936089038849\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.8409920111298561\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.339002\n", "48 30755 ... 8.151986\n", "49 30756 ... 8.261250\n", "50 30757 ... 8.263336\n", "51 30758 ... 9.959813\n", "52 30759 ... 9.977565\n", "53 30760 ... 8.724285\n", "54 30761 ... 8.880425\n", "55 30762 ... 8.432564\n", "56 30763 ... 8.202187\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u46ofsht \n", "\n", "wandb: Agent Starting Run: 2ar2l5wu with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 2ar2l5wu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2ar2l5wu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.240214586257935\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2489127318064372\n", "The running loss is:\n", "8.247485101222992\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.9163872334692214\n", "The running loss is:\n", "5.765671074390411\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.6406301193767123\n", "The running loss is:\n", "5.146143764257431\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.571793751584159\n", "The running loss is:\n", "4.820492431521416\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.5356102701690462\n", "The running loss is:\n", "4.526142358779907\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5029047065311008\n", "The running loss is:\n", "4.435101807117462\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.492789089679718\n", "The running loss is:\n", "4.415074750781059\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.49056386119789547\n", "The running loss is:\n", "3.871296752244234\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.4301440835826927\n", "The running loss is:\n", "3.9733955711126328\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.4414883967902925\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.965207\n", "48 30755 ... 14.476615\n", "49 30756 ... 16.937613\n", "50 30757 ... 17.153940\n", "51 30758 ... 16.729450\n", "52 30759 ... 17.081961\n", "53 30760 ... 16.339411\n", "54 30761 ... 15.521223\n", "55 30762 ... 16.540747\n", "56 30763 ... 17.925924\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2ar2l5wu \n", "\n", "wandb: Agent Starting Run: mv48xg3w with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: mv48xg3w\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mv48xg3w
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.515716254711151\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.189464531838894\n", "The running loss is:\n", "7.534291982650757\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9417864978313446\n", "The running loss is:\n", "5.5912118554115295\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.6989014819264412\n", "The running loss is:\n", "4.792952626943588\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.5991190783679485\n", "The running loss is:\n", "4.525293126702309\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.5656616408377886\n", "The running loss is:\n", "4.299796998500824\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.537474624812603\n", "The running loss is:\n", "4.276003211736679\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5345004014670849\n", "The running loss is:\n", "4.01696603000164\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.502120753750205\n", "The running loss is:\n", "3.905553936958313\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.4881942421197891\n", "The running loss is:\n", "3.9828645288944244\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.49785806611180305\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.893699\n", "48 30755 ... 6.638311\n", "49 30756 ... 7.527349\n", "50 30757 ... 7.468067\n", "51 30758 ... 6.686835\n", "52 30759 ... 6.755731\n", "53 30760 ... 6.032629\n", "54 30761 ... 1.660941\n", "55 30762 ... 1.834283\n", "56 30763 ... 2.062750\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mv48xg3w \n", "\n", "wandb: Agent Starting Run: hs9lsvq5 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: hs9lsvq5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hs9lsvq5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.516059219837189\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.1895074024796486\n", "The running loss is:\n", "6.715246796607971\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.8394058495759964\n", "The running loss is:\n", "5.639530926942825\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7049413658678532\n", "The running loss is:\n", "4.6814810037612915\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.5851851254701614\n", "The running loss is:\n", "4.4828057289123535\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.5603507161140442\n", "The running loss is:\n", "4.376252077519894\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5470315096899867\n", "The running loss is:\n", "4.29168626666069\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5364607833325863\n", "The running loss is:\n", "4.129114165902138\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5161392707377672\n", "The running loss is:\n", "3.896572157740593\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.4870715197175741\n", "The running loss is:\n", "3.9742572754621506\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.4967821594327688\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.151683\n", "48 30755 ... 6.115150\n", "49 30756 ... 5.120647\n", "50 30757 ... 5.428493\n", "51 30758 ... 5.418796\n", "52 30759 ... 5.150074\n", "53 30760 ... 3.822505\n", "54 30761 ... 0.330210\n", "55 30762 ... 0.349950\n", "56 30763 ... 0.434411\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hs9lsvq5 \n", "\n", "wandb: Agent Starting Run: y0msl3ra with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: y0msl3ra\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/y0msl3ra
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.602681040763855\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.1780756711959839\n", "The running loss is:\n", "13.631228134036064\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.514580903781785\n", "The running loss is:\n", "6.118208613246679\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.6798009570274088\n", "The running loss is:\n", "5.688015699386597\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.6320017443762885\n", "The running loss is:\n", "5.0169960260391235\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.5574440028932359\n", "The running loss is:\n", "4.685733154416084\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5206370171573427\n", "The running loss is:\n", "4.271254613995552\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.47458384599950576\n", "The running loss is:\n", "4.182044744491577\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.4646716382768419\n", "The running loss is:\n", "3.620811596279964\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.40231239958666265\n", "The running loss is:\n", "3.491945043206215\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.3879938936895794\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.298182\n", "48 30755 ... 13.530397\n", "49 30756 ... 17.241079\n", "50 30757 ... 17.800289\n", "51 30758 ... 16.026747\n", "52 30759 ... 16.836815\n", "53 30760 ... 16.701458\n", "54 30761 ... 15.817758\n", "55 30762 ... 16.637817\n", "56 30763 ... 17.145372\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: y0msl3ra \n", "\n", "wandb: Agent Starting Run: 48gcksh1 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 48gcksh1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/48gcksh1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.860792398452759\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.2325990498065948\n", "The running loss is:\n", "14.10496175289154\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.7631202191114426\n", "The running loss is:\n", "5.463801130652428\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.6829751413315535\n", "The running loss is:\n", "5.403226584196091\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6754033230245113\n", "The running loss is:\n", "5.051839262247086\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6314799077808857\n", "The running loss is:\n", "4.48129203915596\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.560161504894495\n", "The running loss is:\n", "4.7035655826330185\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5879456978291273\n", "The running loss is:\n", "4.368928179144859\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5461160223931074\n", "The running loss is:\n", "3.841419756412506\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.48017746955156326\n", "The running loss is:\n", "4.101872503757477\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5127340629696846\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.275268\n", "48 30755 ... 6.410582\n", "49 30756 ... 7.161199\n", "50 30757 ... 7.300799\n", "51 30758 ... 6.098117\n", "52 30759 ... 6.650946\n", "53 30760 ... 7.211934\n", "54 30761 ... 2.103153\n", "55 30762 ... 2.071001\n", "56 30763 ... 1.847907\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 48gcksh1 \n", "\n", "wandb: Agent Starting Run: 3rt84xz2 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 3rt84xz2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3rt84xz2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.657917499542236\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.2072396874427795\n", "The running loss is:\n", "11.63252505660057\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.4540656320750713\n", "The running loss is:\n", "5.313596427440643\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.6641995534300804\n", "The running loss is:\n", "5.196029812097549\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6495037265121937\n", "The running loss is:\n", "4.855725049972534\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6069656312465668\n", "The running loss is:\n", "4.514636904001236\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5643296130001545\n", "The running loss is:\n", "4.483666583895683\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5604583229869604\n", "The running loss is:\n", "4.368599742650986\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5460749678313732\n", "The running loss is:\n", "3.887495845556259\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.4859369806945324\n", "The running loss is:\n", "3.9840978533029556\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.49801223166286945\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.280387\n", "48 30755 ... 6.253471\n", "49 30756 ... 3.794707\n", "50 30757 ... 4.741993\n", "51 30758 ... 5.272310\n", "52 30759 ... 5.426122\n", "53 30760 ... 5.281884\n", "54 30761 ... 1.368745\n", "55 30762 ... 1.047200\n", "56 30763 ... 0.864929\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3rt84xz2 \n", "\n", "wandb: Agent Starting Run: 4l6ynrgv with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 4l6ynrgv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4l6ynrgv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.533425658941269\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.7259361843268077\n", "The running loss is:\n", "12.174829576164484\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.3527588417960539\n", "The running loss is:\n", "11.701843023300171\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.3002047803666856\n", "The running loss is:\n", "6.7660181522369385\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.7517797946929932\n", "The running loss is:\n", "5.420725777745247\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6023028641939163\n", "The running loss is:\n", "5.102972134947777\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.5669969038830863\n", "The running loss is:\n", "4.493372078268294\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.49926356425203267\n", "The running loss is:\n", "4.5250896736979485\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5027877415219942\n", "The running loss is:\n", "3.6071000695228577\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.40078889661365086\n", "The running loss is:\n", "4.666622310876846\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5185135900974274\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.809757\n", "48 30755 ... 13.937504\n", "49 30756 ... 15.696578\n", "50 30757 ... 15.797330\n", "51 30758 ... 14.323220\n", "52 30759 ... 15.466822\n", "53 30760 ... 16.896070\n", "54 30761 ... 16.546282\n", "55 30762 ... 16.577997\n", "56 30763 ... 17.435064\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4l6ynrgv \n", "\n", "wandb: Agent Starting Run: ydoutypm with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ydoutypm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ydoutypm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.363870769739151\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.7954838462173939\n", "The running loss is:\n", "19.697499066591263\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.462187383323908\n", "The running loss is:\n", "11.393310114741325\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.4241637643426657\n", "The running loss is:\n", "8.402333736419678\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.0502917170524597\n", "The running loss is:\n", "5.944117605686188\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7430147007107735\n", "The running loss is:\n", "5.597024708986282\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6996280886232853\n", "The running loss is:\n", "5.168054163455963\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6460067704319954\n", "The running loss is:\n", "4.947095543146133\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6183869428932667\n", "The running loss is:\n", "4.267922282218933\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5334902852773666\n", "The running loss is:\n", "4.8770816922187805\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6096352115273476\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.681001\n", "48 30755 ... 8.239495\n", "49 30756 ... 5.559090\n", "50 30757 ... 7.716256\n", "51 30758 ... 7.096302\n", "52 30759 ... 8.370895\n", "53 30760 ... 8.647257\n", "54 30761 ... 5.265896\n", "55 30762 ... 5.894797\n", "56 30763 ... 5.552207\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ydoutypm \n", "\n", "wandb: Agent Starting Run: c644kaet with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: c644kaet\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c644kaet
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.808787852525711\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.6010984815657139\n", "The running loss is:\n", "18.55983731150627\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.319979663938284\n", "The running loss is:\n", "9.308479636907578\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.1635599546134472\n", "The running loss is:\n", "7.871344238519669\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.9839180298149586\n", "The running loss is:\n", "6.256579011678696\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.782072376459837\n", "The running loss is:\n", "6.102777987718582\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7628472484648228\n", "The running loss is:\n", "6.1117411851882935\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7639676481485367\n", "The running loss is:\n", "5.467746406793594\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6834683008491993\n", "The running loss is:\n", "5.107202380895615\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6384002976119518\n", "The running loss is:\n", "4.626663476228714\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5783329345285892\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.824013\n", "48 30755 ... 10.360836\n", "49 30756 ... 1.159604\n", "50 30757 ... 4.956064\n", "51 30758 ... 10.496676\n", "52 30759 ... 9.896183\n", "53 30760 ... 8.568040\n", "54 30761 ... 4.366958\n", "55 30762 ... 8.373426\n", "56 30763 ... 12.185763\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c644kaet \n", "\n", "wandb: Agent Starting Run: 08iry1zu with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 08iry1zu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/08iry1zu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "75.98427636921406\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "8.442697374357117\n", "The running loss is:\n", "7.671401828527451\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.8523779809474945\n", "The running loss is:\n", "7.74273831769824\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.8603042575220267\n", "The running loss is:\n", "20.43498346209526\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "2.2705537180105844\n", "The running loss is:\n", "9.485761232674122\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.0539734702971246\n", "The running loss is:\n", "7.028515428304672\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.7809461587005191\n", "The running loss is:\n", "9.961183845996857\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "1.1067982051107619\n", "The running loss is:\n", "8.72087475657463\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.9689860840638479\n", "The running loss is:\n", "6.958840258419514\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.7732044731577238\n", "The running loss is:\n", "6.960021182894707\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7733356869883008\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.854007\n", "48 30755 ... 10.343146\n", "49 30756 ... 10.939295\n", "50 30757 ... 10.770342\n", "51 30758 ... 10.956257\n", "52 30759 ... 10.479692\n", "53 30760 ... 10.429470\n", "54 30761 ... 10.492990\n", "55 30762 ... 9.486902\n", "56 30763 ... 10.307619\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 08iry1zu \n", "\n", "wandb: Agent Starting Run: lex8ifnr with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: lex8ifnr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lex8ifnr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "74.78043869137764\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "9.347554836422205\n", "The running loss is:\n", "7.614499539136887\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9518124423921108\n", "The running loss is:\n", "15.35375702381134\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.9192196279764175\n", "The running loss is:\n", "8.587577134370804\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.0734471417963505\n", "The running loss is:\n", "9.464078083634377\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.183009760454297\n", "The running loss is:\n", "6.2125754952430725\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7765719369053841\n", "The running loss is:\n", "6.502643406391144\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.812830425798893\n", "The running loss is:\n", "6.101149320602417\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.7626436650753021\n", "The running loss is:\n", "5.572430431842804\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6965538039803505\n", "The running loss is:\n", "5.655242145061493\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.7069052681326866\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.959207\n", "48 30755 ... 9.834291\n", "49 30756 ... 9.036126\n", "50 30757 ... 9.565654\n", "51 30758 ... 10.552333\n", "52 30759 ... 8.679264\n", "53 30760 ... 9.437155\n", "54 30761 ... 8.514996\n", "55 30762 ... 8.533216\n", "56 30763 ... 8.519036\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lex8ifnr \n", "\n", "wandb: Agent Starting Run: cw2pk8sa with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: cw2pk8sa\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cw2pk8sa
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "59.434263706207275\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "7.429282963275909\n", "The running loss is:\n", "7.967703193426132\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9959628991782665\n", "The running loss is:\n", "12.137783110141754\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.5172228887677193\n", "The running loss is:\n", "6.155479699373245\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7694349624216557\n", "The running loss is:\n", "8.069218963384628\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.0086523704230785\n", "The running loss is:\n", "6.376190662384033\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7970238327980042\n", "The running loss is:\n", "6.5400115847587585\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.8175014480948448\n", "The running loss is:\n", "6.4503806829452515\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.8062975853681564\n", "The running loss is:\n", "5.695991367101669\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.7119989208877087\n", "The running loss is:\n", "5.114424854516983\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6393031068146229\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.761915\n", "48 30755 ... 8.762178\n", "49 30756 ... 9.847136\n", "50 30757 ... 10.490384\n", "51 30758 ... 10.029481\n", "52 30759 ... 9.967039\n", "53 30760 ... 9.756455\n", "54 30761 ... 9.366921\n", "55 30762 ... 9.376884\n", "56 30763 ... 9.368626\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cw2pk8sa \n", "\n", "wandb: Agent Starting Run: j4pjd9fg with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: j4pjd9fg\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/j4pjd9fg
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.533234931528568\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2814705479476187\n", "The running loss is:\n", "6.274889692664146\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.6972099658515718\n", "The running loss is:\n", "6.580070376396179\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7311189307106866\n", "The running loss is:\n", "6.824178397655487\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.758242044183943\n", "The running loss is:\n", "6.764967136085033\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.7516630151205592\n", "The running loss is:\n", "6.578010678291321\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.7308900753657023\n", "The running loss is:\n", "6.553186744451523\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.7281318604946136\n", "The running loss is:\n", "6.889299750328064\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.7654777500364516\n", "The running loss is:\n", "6.328777223825455\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.7031974693139394\n", "The running loss is:\n", "7.134986996650696\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7927763329611884\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.560451\n", "48 30755 ... 9.577876\n", "49 30756 ... 9.191813\n", "50 30757 ... 9.049974\n", "51 30758 ... 9.008125\n", "52 30759 ... 9.007214\n", "53 30760 ... 9.023063\n", "54 30761 ... 8.932218\n", "55 30762 ... 8.911247\n", "56 30763 ... 8.918882\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: j4pjd9fg \n", "\n", "wandb: Agent Starting Run: a36qa9p5 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: a36qa9p5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/a36qa9p5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.704378187656403\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.7449309097396002\n", "The running loss is:\n", "11.479490011930466\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.2754988902144961\n", "The running loss is:\n", "11.382507085800171\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.2647230095333524\n", "The running loss is:\n", "11.495850086212158\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.2773166762457953\n", "The running loss is:\n", "11.004574656486511\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.2227305173873901\n", "The running loss is:\n", "10.956842869520187\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "1.217426985502243\n", "The running loss is:\n", "10.731719583272934\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "1.192413287030326\n", "The running loss is:\n", "10.264773041009903\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "1.1405303378899891\n", "The running loss is:\n", "10.230035275220871\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "1.1366705861356523\n", "The running loss is:\n", "10.418312817811966\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "1.1575903130902185\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 16.478621\n", "48 30755 ... 18.715132\n", "49 30756 ... 20.084146\n", "50 30757 ... 20.847290\n", "51 30758 ... 21.187290\n", "52 30759 ... 21.231760\n", "53 30760 ... 21.069832\n", "54 30761 ... 22.114664\n", "55 30762 ... 22.651400\n", "56 30763 ... 22.833271\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: a36qa9p5 \n", "\n", "wandb: Agent Starting Run: tlrhr9xu with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: tlrhr9xu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/tlrhr9xu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.656018763780594\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.5820023454725742\n", "The running loss is:\n", "8.512771248817444\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.0640964061021805\n", "The running loss is:\n", "8.516142398118973\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.0645177997648716\n", "The running loss is:\n", "8.601598471403122\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.0751998089253902\n", "The running loss is:\n", "8.647248148918152\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.080906018614769\n", "The running loss is:\n", "7.904319673776627\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.9880399592220783\n", "The running loss is:\n", "8.513316988945007\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "1.064164623618126\n", "The running loss is:\n", "8.36613380908966\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "1.0457667261362076\n", "The running loss is:\n", "7.99756520986557\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.9996956512331963\n", "The running loss is:\n", "8.158995658159256\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "1.019874457269907\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.005669\n", "48 30755 ... 1.284676\n", "49 30756 ... -0.648910\n", "50 30757 ... -1.834878\n", "51 30758 ... -2.708139\n", "52 30759 ... -3.450607\n", "53 30760 ... -4.138366\n", "54 30761 ... -2.162786\n", "55 30762 ... -1.713670\n", "56 30763 ... -1.903026\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: tlrhr9xu \n", "\n", "wandb: Agent Starting Run: 5sh0r9aa with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 5sh0r9aa\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5sh0r9aa
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.186528503894806\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.3540587226549785\n", "The running loss is:\n", "9.87041188776493\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.0967124319738812\n", "The running loss is:\n", "6.568782415241003\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7298647128045559\n", "The running loss is:\n", "6.8365867882966995\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.7596207542551888\n", "The running loss is:\n", "7.052983522415161\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.7836648358239068\n", "The running loss is:\n", "6.735688462853432\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.7484098292059369\n", "The running loss is:\n", "6.670852228999138\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.7412058032221265\n", "The running loss is:\n", "6.929626300930977\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.7699584778812196\n", "The running loss is:\n", "6.557141110301018\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.7285712344778909\n", "The running loss is:\n", "7.013601660728455\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7792890734142728\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.546264\n", "48 30755 ... 9.607576\n", "49 30756 ... 9.256057\n", "50 30757 ... 9.132097\n", "51 30758 ... 9.096332\n", "52 30759 ... 9.094746\n", "53 30760 ... 9.106406\n", "54 30761 ... 9.037273\n", "55 30762 ... 9.022756\n", "56 30763 ... 9.029405\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5sh0r9aa \n", "\n", "wandb: Agent Starting Run: jwrpyn6n with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: jwrpyn6n\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/jwrpyn6n
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.897263944149017\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.877473771572113\n", "The running loss is:\n", "13.586029052734375\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.5095587836371527\n", "The running loss is:\n", "11.505275323987007\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.2783639248874452\n", "The running loss is:\n", "10.849119901657104\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.2054577668507893\n", "The running loss is:\n", "10.990880310535431\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.2212089233928256\n", "The running loss is:\n", "10.673891842365265\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "1.1859879824850295\n", "The running loss is:\n", "10.410960853099823\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "1.1567734281222026\n", "The running loss is:\n", "9.912422180175781\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "1.1013802422417536\n", "The running loss is:\n", "9.722930133342743\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "1.0803255703714159\n", "The running loss is:\n", "9.893279522657394\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "1.0992532802952661\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 16.081408\n", "48 30755 ... 18.041018\n", "49 30756 ... 19.219566\n", "50 30757 ... 19.854288\n", "51 30758 ... 20.110369\n", "52 30759 ... 20.102816\n", "53 30760 ... 19.911705\n", "54 30761 ... 20.893753\n", "55 30762 ... 21.391663\n", "56 30763 ... 21.552485\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: jwrpyn6n \n", "\n", "wandb: Agent Starting Run: 61yhxkr5 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 61yhxkr5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/61yhxkr5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.252773106098175\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.6565966382622719\n", "The running loss is:\n", "11.093029141426086\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.3866286426782608\n", "The running loss is:\n", "8.942153513431549\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.1177691891789436\n", "The running loss is:\n", "8.300474107265472\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.037559263408184\n", "The running loss is:\n", "8.66373461484909\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.0829668268561363\n", "The running loss is:\n", "8.129843354225159\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "1.0162304192781448\n", "The running loss is:\n", "8.375961810350418\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "1.0469952262938023\n", "The running loss is:\n", "8.051367044448853\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "1.0064208805561066\n", "The running loss is:\n", "7.816939502954483\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.9771174378693104\n", "The running loss is:\n", "7.919642895460129\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.9899553619325161\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.484890\n", "48 30755 ... 1.870857\n", "49 30756 ... -0.053274\n", "50 30757 ... -1.245361\n", "51 30758 ... -2.120337\n", "52 30759 ... -2.857944\n", "53 30760 ... -3.536042\n", "54 30761 ... -1.678325\n", "55 30762 ... -1.232160\n", "56 30763 ... -1.397465\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 61yhxkr5 \n", "\n", "wandb: Agent Starting Run: 9gucol9n with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 9gucol9n\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9gucol9n
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.346777260303497\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.2607530289226108\n", "The running loss is:\n", "27.95102945715189\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "3.105669939683543\n", "The running loss is:\n", "10.551504634320736\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.172389403813415\n", "The running loss is:\n", "13.874582648277283\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.5416202942530315\n", "The running loss is:\n", "7.543052405118942\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.8381169339021047\n", "The running loss is:\n", "6.931498184800148\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.7701664649777942\n", "The running loss is:\n", "6.799338757991791\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.7554820842213101\n", "The running loss is:\n", "6.961371675133705\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.7734857416815228\n", "The running loss is:\n", "6.578679084777832\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.7309643427530924\n", "The running loss is:\n", "6.714740738272667\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7460823042525185\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.563630\n", "48 30755 ... 11.000370\n", "49 30756 ... 10.793115\n", "50 30757 ... 10.731018\n", "51 30758 ... 10.728108\n", "52 30759 ... 10.749331\n", "53 30760 ... 10.780396\n", "54 30761 ... 10.658602\n", "55 30762 ... 10.631351\n", "56 30763 ... 10.642650\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9gucol9n \n", "\n", "wandb: Agent Starting Run: 559j47n1 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 559j47n1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/559j47n1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.399379521608353\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.7110421690675948\n", "The running loss is:\n", "28.239181756973267\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "3.1376868618859186\n", "The running loss is:\n", "13.408493876457214\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.4898326529396906\n", "The running loss is:\n", "15.628408044576645\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.7364897827307384\n", "The running loss is:\n", "10.764084279537201\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.1960093643930223\n", "The running loss is:\n", "10.060381978750229\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "1.1178202198611364\n", "The running loss is:\n", "9.791651472449303\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "1.0879612747165892\n", "The running loss is:\n", "9.179567664861679\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "1.0199519627624087\n", "The running loss is:\n", "8.98176957666874\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.9979743974076377\n", "The running loss is:\n", "8.864021956920624\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.984891328546736\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.776108\n", "48 30755 ... 15.912499\n", "49 30756 ... 16.591112\n", "50 30757 ... 16.942139\n", "51 30758 ... 17.058744\n", "52 30759 ... 17.007603\n", "53 30760 ... 16.836418\n", "54 30761 ... 17.521439\n", "55 30762 ... 17.877050\n", "56 30763 ... 17.996941\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 559j47n1 \n", "\n", "wandb: Agent Starting Run: nf7t2ie9 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: nf7t2ie9\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nf7t2ie9
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.581223011016846\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.1976528763771057\n", "The running loss is:\n", "35.83604419231415\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "4.4795055240392685\n", "The running loss is:\n", "11.085575520992279\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.3856969401240349\n", "The running loss is:\n", "14.026957333087921\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.7533696666359901\n", "The running loss is:\n", "8.350571095943451\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.0438213869929314\n", "The running loss is:\n", "8.114606499671936\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "1.014325812458992\n", "The running loss is:\n", "8.154320061206818\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "1.0192900076508522\n", "The running loss is:\n", "7.604051381349564\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.9505064226686954\n", "The running loss is:\n", "7.602997928857803\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.9503747411072254\n", "The running loss is:\n", "7.65183824300766\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.9564797803759575\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.058468\n", "48 30755 ... 2.848610\n", "49 30756 ... 1.165785\n", "50 30757 ... 0.107837\n", "51 30758 ... -0.694407\n", "52 30759 ... -1.392015\n", "53 30760 ... -2.046804\n", "54 30761 ... -0.098818\n", "55 30762 ... 0.328994\n", "56 30763 ... 0.134736\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nf7t2ie9 \n", "\n", "wandb: Agent Starting Run: cl1kzlwf with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: cl1kzlwf\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cl1kzlwf
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "29.115166932344437\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "3.235018548038271\n", "The running loss is:\n", "10.516705513000488\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.168522834777832\n", "The running loss is:\n", "8.51107770204544\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.9456753002272712\n", "The running loss is:\n", "8.960445433855057\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.9956050482061174\n", "The running loss is:\n", "13.343494325876236\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.482610480652915\n", "The running loss is:\n", "8.549514725804329\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.9499460806449255\n", "The running loss is:\n", "12.743834301829338\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "1.4159815890921488\n", "The running loss is:\n", "11.443218156695366\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "1.2714686840772629\n", "The running loss is:\n", "7.235250249505043\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.8039166943894492\n", "The running loss is:\n", "8.449952185153961\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.9388835761282179\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.708012\n", "48 30755 ... 8.497513\n", "49 30756 ... 8.352589\n", "50 30757 ... 8.753163\n", "51 30758 ... 9.432993\n", "52 30759 ... 10.255782\n", "53 30760 ... 11.151757\n", "54 30761 ... 8.761843\n", "55 30762 ... 8.013142\n", "56 30763 ... 8.104626\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cl1kzlwf \n", "\n", "wandb: Agent Starting Run: pdmnlk1y with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: pdmnlk1y\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/pdmnlk1y
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "26.819443345069885\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "2.9799381494522095\n", "The running loss is:\n", "14.902421951293945\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.6558246612548828\n", "The running loss is:\n", "17.069870591163635\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.8966522879070706\n", "The running loss is:\n", "11.382362842559814\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.2647069825066461\n", "The running loss is:\n", "11.657361149787903\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.2952623499764337\n", "The running loss is:\n", "13.20745787024498\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "1.4674953189161088\n", "The running loss is:\n", "9.443842113018036\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "1.0493157903353374\n", "The running loss is:\n", "11.438809677958488\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "1.2709788531064987\n", "The running loss is:\n", "8.55271452665329\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.9503016140725877\n", "The running loss is:\n", "10.242311969399452\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "1.1380346632666059\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 16.249252\n", "48 30755 ... 17.867855\n", "49 30756 ... 18.567770\n", "50 30757 ... 18.750107\n", "51 30758 ... 18.640844\n", "52 30759 ... 18.367302\n", "53 30760 ... 18.001202\n", "54 30761 ... 19.066870\n", "55 30762 ... 19.455267\n", "56 30763 ... 19.462097\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: pdmnlk1y \n", "\n", "wandb: Agent Starting Run: v4p1w5d6 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: v4p1w5d6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v4p1w5d6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "29.159477710723877\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "3.6449347138404846\n", "The running loss is:\n", "10.356956481933594\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.2946195602416992\n", "The running loss is:\n", "17.295407086610794\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "2.1619258858263493\n", "The running loss is:\n", "10.114732325077057\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.264341540634632\n", "The running loss is:\n", "9.823338657617569\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.2279173322021961\n", "The running loss is:\n", "8.202937006950378\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "1.0253671258687973\n", "The running loss is:\n", "8.357675984501839\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "1.0447094980627298\n", "The running loss is:\n", "7.424637317657471\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.9280796647071838\n", "The running loss is:\n", "7.2614090740680695\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.9076761342585087\n", "The running loss is:\n", "7.0375045388937\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.8796880673617125\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.158503\n", "48 30755 ... 4.625562\n", "49 30756 ... 3.375854\n", "50 30757 ... 2.623850\n", "51 30758 ... 2.064883\n", "52 30759 ... 1.580785\n", "53 30760 ... 1.125725\n", "54 30761 ... 2.553036\n", "55 30762 ... 2.839321\n", "56 30763 ... 2.683055\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v4p1w5d6 \n", "\n", "wandb: Agent Starting Run: xx7hdryc with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: xx7hdryc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xx7hdryc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.653952911496162\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.294883656832907\n", "The running loss is:\n", "6.35406494140625\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "0.7060072157118056\n", "The running loss is:\n", "6.448800578713417\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7165333976348242\n", "The running loss is:\n", "6.175214782357216\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.6861349758174684\n", "The running loss is:\n", "6.013192266225815\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6681324740250906\n", "The running loss is:\n", "6.216562658548355\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6907291842831506\n", "The running loss is:\n", "5.737043023109436\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.6374492247899374\n", "The running loss is:\n", "5.503724917769432\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6115249908632703\n", "The running loss is:\n", "4.904528111219406\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5449475679132674\n", "The running loss is:\n", "5.226170241832733\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5806855824258592\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.194837\n", "48 30755 ... 16.856466\n", "49 30756 ... 16.424501\n", "50 30757 ... 17.301683\n", "51 30758 ... 16.259554\n", "52 30759 ... 15.276786\n", "53 30760 ... 13.607736\n", "54 30761 ... 13.129473\n", "55 30762 ... 17.536375\n", "56 30763 ... 17.261248\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xx7hdryc \n", "\n", "wandb: Agent Starting Run: 5gp21eq4 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 5gp21eq4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5gp21eq4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.606136918067932\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.3257671147584915\n", "The running loss is:\n", "7.5615354180336\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9451919272542\n", "The running loss is:\n", "7.4385921359062195\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.9298240169882774\n", "The running loss is:\n", "7.043540298938751\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.8804425373673439\n", "The running loss is:\n", "6.746666252613068\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.8433332815766335\n", "The running loss is:\n", "6.270362347364426\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7837952934205532\n", "The running loss is:\n", "6.0092626214027405\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7511578276753426\n", "The running loss is:\n", "6.145449280738831\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.7681811600923538\n", "The running loss is:\n", "5.825879514217377\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.7282349392771721\n", "The running loss is:\n", "5.999978452920914\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.7499973066151142\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.111321\n", "48 30755 ... 6.885062\n", "49 30756 ... 3.949093\n", "50 30757 ... 1.974898\n", "51 30758 ... -1.738332\n", "52 30759 ... -5.849308\n", "53 30760 ... -11.026432\n", "54 30761 ... -15.751204\n", "55 30762 ... -15.569290\n", "56 30763 ... -18.938940\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5gp21eq4 \n", "\n", "wandb: Agent Starting Run: v7w14fvq with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: v7w14fvq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v7w14fvq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.157624810934067\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.2697031013667583\n", "The running loss is:\n", "6.297411605715752\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.787176450714469\n", "The running loss is:\n", "6.1504600048065186\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7688075006008148\n", "The running loss is:\n", "6.285173416137695\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7856466770172119\n", "The running loss is:\n", "5.583762004971504\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.697970250621438\n", "The running loss is:\n", "5.8202831000089645\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7275353875011206\n", "The running loss is:\n", "5.58960173279047\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6987002165988088\n", "The running loss is:\n", "5.187306389212608\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.648413298651576\n", "The running loss is:\n", "5.519324317574501\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6899155396968126\n", "The running loss is:\n", "5.479003980755806\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6848754975944757\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.505090\n", "48 30755 ... 8.611543\n", "49 30756 ... 7.433668\n", "50 30757 ... 6.379976\n", "51 30758 ... 4.317859\n", "52 30759 ... 1.654876\n", "53 30760 ... -1.738726\n", "54 30761 ... -2.300702\n", "55 30762 ... -1.567690\n", "56 30763 ... -2.170553\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v7w14fvq \n", "\n", "wandb: Agent Starting Run: ukec4csi with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ukec4csi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ukec4csi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.871211767196655\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.3190235296885173\n", "The running loss is:\n", "11.86011016368866\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.3177900181876288\n", "The running loss is:\n", "6.418770670890808\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "0.7131967412100898\n", "The running loss is:\n", "6.4102838188409805\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.7122537576489978\n", "The running loss is:\n", "6.108351901173592\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.6787057667970657\n", "The running loss is:\n", "5.973604336380959\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.6637338151534399\n", "The running loss is:\n", "5.5479738265275955\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.616441536280844\n", "The running loss is:\n", "5.1741392612457275\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.5749043623606364\n", "The running loss is:\n", "4.4630467891693115\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.49589408768547905\n", "The running loss is:\n", "4.964875191450119\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.5516527990500132\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.930080\n", "48 30755 ... 16.040146\n", "49 30756 ... 15.320904\n", "50 30757 ... 15.965147\n", "51 30758 ... 14.722304\n", "52 30759 ... 13.738050\n", "53 30760 ... 11.988651\n", "54 30761 ... 10.827065\n", "55 30762 ... 15.583311\n", "56 30763 ... 15.162140\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ukec4csi \n", "\n", "wandb: Agent Starting Run: ft4g04qn with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ft4g04qn\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ft4g04qn
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.880632519721985\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.360079064965248\n", "The running loss is:\n", "9.620780944824219\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.2025976181030273\n", "The running loss is:\n", "7.736795485019684\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.9670994356274605\n", "The running loss is:\n", "6.95757669210434\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.8696970865130424\n", "The running loss is:\n", "6.781202018260956\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.8476502522826195\n", "The running loss is:\n", "6.057494938373566\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7571868672966957\n", "The running loss is:\n", "5.54942125082016\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.69367765635252\n", "The running loss is:\n", "5.526401251554489\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6908001564443111\n", "The running loss is:\n", "5.341130912303925\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6676413640379906\n", "The running loss is:\n", "5.290408372879028\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6613010466098785\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.421013\n", "48 30755 ... 7.693488\n", "49 30756 ... 4.838378\n", "50 30757 ... 2.830646\n", "51 30758 ... -1.172961\n", "52 30759 ... -5.462883\n", "53 30760 ... -11.114449\n", "54 30761 ... -16.412426\n", "55 30762 ... -16.639225\n", "56 30763 ... -20.939789\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ft4g04qn \n", "\n", "wandb: Agent Starting Run: u1wlcs5o with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: u1wlcs5o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u1wlcs5o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.196498736739159\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.3995623420923948\n", "The running loss is:\n", "8.67428719997406\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.0842858999967575\n", "The running loss is:\n", "6.3885288536548615\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7985661067068577\n", "The running loss is:\n", "6.005099095404148\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7506373869255185\n", "The running loss is:\n", "5.570761099457741\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6963451374322176\n", "The running loss is:\n", "5.671713694930077\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7089642118662596\n", "The running loss is:\n", "5.326850637793541\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6658563297241926\n", "The running loss is:\n", "4.999603778123856\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.624950472265482\n", "The running loss is:\n", "5.124610349535942\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6405762936919928\n", "The running loss is:\n", "5.118088111281395\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6397610139101744\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.308200\n", "48 30755 ... 5.241625\n", "49 30756 ... 3.383986\n", "50 30757 ... 0.737024\n", "51 30758 ... -2.849844\n", "52 30759 ... -7.332001\n", "53 30760 ... -12.688560\n", "54 30761 ... -12.326498\n", "55 30762 ... -14.071939\n", "56 30763 ... -16.703213\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u1wlcs5o \n", "\n", "wandb: Agent Starting Run: pi8csar3 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: pi8csar3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/pi8csar3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.041293114423752\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "1.1156992349359725\n", "The running loss is:\n", "24.0467449426651\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "2.671860549185011\n", "The running loss is:\n", "11.829259186983109\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.314362131887012\n", "The running loss is:\n", "8.914239928126335\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "0.9904711031251483\n", "The running loss is:\n", "6.624034374952316\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "0.7360038194391463\n", "The running loss is:\n", "6.917576104402542\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "0.768619567155838\n", "The running loss is:\n", "5.983533605933189\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "0.66483706732591\n", "The running loss is:\n", "5.81503838300705\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.6461153758896722\n", "The running loss is:\n", "5.106647074222565\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.5674052304691739\n", "The running loss is:\n", "5.564130909740925\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.6182367677489916\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 15.471273\n", "48 30755 ... 17.168171\n", "49 30756 ... 17.622458\n", "50 30757 ... 17.658239\n", "51 30758 ... 17.125072\n", "52 30759 ... 16.369062\n", "53 30760 ... 15.348657\n", "54 30761 ... 16.736712\n", "55 30762 ... 18.282732\n", "56 30763 ... 18.265202\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: pi8csar3 \n", "\n", "wandb: Agent Starting Run: 4hehj93f with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 4hehj93f\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4hehj93f
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.713887721300125\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.0892359651625156\n", "The running loss is:\n", "22.801980674266815\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.850247584283352\n", "The running loss is:\n", "8.347535133361816\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.043441891670227\n", "The running loss is:\n", "9.818920910358429\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.2273651137948036\n", "The running loss is:\n", "7.308171451091766\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.9135214313864708\n", "The running loss is:\n", "6.845404148101807\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8556755185127258\n", "The running loss is:\n", "6.43958380818367\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.8049479760229588\n", "The running loss is:\n", "6.40879088640213\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.8010988608002663\n", "The running loss is:\n", "6.1408664882183075\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.7676083110272884\n", "The running loss is:\n", "5.660664469003677\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.7075830586254597\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.766214\n", "48 30755 ... 6.847561\n", "49 30756 ... 3.781909\n", "50 30757 ... 2.416294\n", "51 30758 ... 0.047228\n", "52 30759 ... -1.721929\n", "53 30760 ... -3.810858\n", "54 30761 ... -6.423064\n", "55 30762 ... -5.039513\n", "56 30763 ... -5.555659\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4hehj93f \n", "\n", "wandb: Agent Starting Run: 6cko91sl with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 6cko91sl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6cko91sl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.506135255098343\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.0632669068872929\n", "The running loss is:\n", "24.01819033920765\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "3.002273792400956\n", "The running loss is:\n", "10.206629455089569\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.2758286818861961\n", "The running loss is:\n", "9.913901567459106\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.2392376959323883\n", "The running loss is:\n", "6.586266487836838\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.8232833109796047\n", "The running loss is:\n", "6.10785585641861\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7634819820523262\n", "The running loss is:\n", "5.772560715675354\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7215700894594193\n", "The running loss is:\n", "5.264330431818962\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6580413039773703\n", "The running loss is:\n", "5.442826643586159\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6803533304482698\n", "The running loss is:\n", "4.980601117014885\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6225751396268606\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.926193\n", "48 30755 ... 9.950300\n", "49 30756 ... 9.398391\n", "50 30757 ... 8.685193\n", "51 30758 ... 7.131873\n", "52 30759 ... 4.907981\n", "53 30760 ... 1.956089\n", "54 30761 ... 1.788214\n", "55 30762 ... 2.207295\n", "56 30763 ... 1.670653\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6cko91sl \n", "\n", "wandb: Agent Starting Run: 1y5z9zl3 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 1y5z9zl3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1y5z9zl3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "34.98532968759537\n", "The number of items in train is: \n", "9\n", "The loss for epoch 0\n", "3.8872588541772632\n", "The running loss is:\n", "12.941614404320717\n", "The number of items in train is: \n", "9\n", "The loss for epoch 1\n", "1.4379571560356352\n", "The running loss is:\n", "11.81175396591425\n", "The number of items in train is: \n", "9\n", "The loss for epoch 2\n", "1.3124171073238056\n", "The running loss is:\n", "13.589459389448166\n", "The number of items in train is: \n", "9\n", "The loss for epoch 3\n", "1.5099399321609073\n", "The running loss is:\n", "10.549855262041092\n", "The number of items in train is: \n", "9\n", "The loss for epoch 4\n", "1.172206140226788\n", "The running loss is:\n", "12.399509191513062\n", "The number of items in train is: \n", "9\n", "The loss for epoch 5\n", "1.3777232435014513\n", "The running loss is:\n", "13.321157723665237\n", "The number of items in train is: \n", "9\n", "The loss for epoch 6\n", "1.480128635962804\n", "The running loss is:\n", "8.162745237350464\n", "The number of items in train is: \n", "9\n", "The loss for epoch 7\n", "0.9069716930389404\n", "The running loss is:\n", "8.067213207483292\n", "The number of items in train is: \n", "9\n", "The loss for epoch 8\n", "0.896357023053699\n", "The running loss is:\n", "7.0703848749399185\n", "The number of items in train is: \n", "9\n", "The loss for epoch 9\n", "0.7855983194377687\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.806156\n", "48 30755 ... 14.069129\n", "49 30756 ... 13.659444\n", "50 30757 ... 13.352436\n", "51 30758 ... 12.880804\n", "52 30759 ... 12.412155\n", "53 30760 ... 11.924775\n", "54 30761 ... 12.530951\n", "55 30762 ... 13.979243\n", "56 30763 ... 13.637586\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1y5z9zl3 \n", "\n", "wandb: Agent Starting Run: bv342o38 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: bv342o38\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bv342o38
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "23.1297847032547\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "2.8912230879068375\n", "The running loss is:\n", "9.419984936714172\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.1774981170892715\n", "The running loss is:\n", "15.98174238204956\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.997717797756195\n", "The running loss is:\n", "9.02855908870697\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.1285698860883713\n", "The running loss is:\n", "7.561536103487015\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.9451920129358768\n", "The running loss is:\n", "6.622726082801819\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8278407603502274\n", "The running loss is:\n", "6.519628286361694\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.8149535357952118\n", "The running loss is:\n", "5.425025045871735\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6781281307339668\n", "The running loss is:\n", "7.119292467832565\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.8899115584790707\n", "The running loss is:\n", "6.246462732553482\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.7808078415691853\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.322372\n", "48 30755 ... 6.233348\n", "49 30756 ... 5.780288\n", "50 30757 ... 5.569169\n", "51 30758 ... 5.308512\n", "52 30759 ... 5.067289\n", "53 30760 ... 4.781678\n", "54 30761 ... 2.610401\n", "55 30762 ... 4.669430\n", "56 30763 ... 4.904677\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bv342o38 \n", "\n", "wandb: Agent Starting Run: v6al9cws with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: v6al9cws\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v6al9cws
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.912554055452347\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "2.8640692569315434\n", "The running loss is:\n", "7.984839051961899\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9981048814952374\n", "The running loss is:\n", "8.602033376693726\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.0752541720867157\n", "The running loss is:\n", "9.541735291481018\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.1927169114351273\n", "The running loss is:\n", "6.243432849645615\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7804291062057018\n", "The running loss is:\n", "7.455722868442535\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.9319653585553169\n", "The running loss is:\n", "6.309693947434425\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7887117434293032\n", "The running loss is:\n", "6.356328025460243\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.7945410031825304\n", "The running loss is:\n", "6.21287739276886\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.7766096740961075\n", "The running loss is:\n", "5.354219913482666\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6692774891853333\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.646266\n", "48 30755 ... 10.808380\n", "49 30756 ... 10.536748\n", "50 30757 ... 10.119283\n", "51 30758 ... 9.140769\n", "52 30759 ... 7.776768\n", "53 30760 ... 6.020148\n", "54 30761 ... 6.451089\n", "55 30762 ... 7.264283\n", "56 30763 ... 7.389930\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v6al9cws \n", "\n", "wandb: Agent Starting Run: o3oq5f4z with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: o3oq5f4z\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/o3oq5f4z
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.30842438340187\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.1635530479252338\n", "The running loss is:\n", "9.48618969321251\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.1857737116515636\n", "The running loss is:\n", "5.621234282851219\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7026542853564024\n", "The running loss is:\n", "4.817091893404722\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6021364866755903\n", "The running loss is:\n", "4.489563524723053\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.5611954405903816\n", "The running loss is:\n", "4.262367948889732\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5327959936112165\n", "The running loss is:\n", "4.1890451312065125\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5236306414008141\n", "The running loss is:\n", "4.206894904375076\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5258618630468845\n", "The running loss is:\n", "4.1976680383086205\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5247085047885776\n", "The running loss is:\n", "3.844587281346321\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.48057341016829014\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.245362\n", "48 30755 ... 7.406672\n", "49 30756 ... 13.971702\n", "50 30757 ... 13.071504\n", "51 30758 ... 12.476460\n", "52 30759 ... 12.218643\n", "53 30760 ... 10.048891\n", "54 30761 ... 9.944292\n", "55 30762 ... 10.011600\n", "56 30763 ... 15.057905\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: o3oq5f4z \n", "\n", "wandb: Agent Starting Run: l7gk8jk5 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: l7gk8jk5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l7gk8jk5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.721231788396835\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.3401539735496044\n", "The running loss is:\n", "6.999983549118042\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.8749979436397552\n", "The running loss is:\n", "6.762904524803162\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.8453630656003952\n", "The running loss is:\n", "6.13987572491169\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7674844656139612\n", "The running loss is:\n", "5.951361909508705\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7439202386885881\n", "The running loss is:\n", "5.882794544100761\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7353493180125952\n", "The running loss is:\n", "5.625875897705555\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7032344872131944\n", "The running loss is:\n", "5.734223559498787\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.7167779449373484\n", "The running loss is:\n", "5.470184274017811\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6837730342522264\n", "The running loss is:\n", "4.977894231677055\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6222367789596319\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.194105\n", "48 30755 ... 6.603125\n", "49 30756 ... 11.639103\n", "50 30757 ... 11.402129\n", "51 30758 ... 11.610652\n", "52 30759 ... 11.500878\n", "53 30760 ... 9.903611\n", "54 30761 ... 9.999037\n", "55 30762 ... 10.313538\n", "56 30763 ... 14.491574\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l7gk8jk5 \n", "\n", "wandb: Agent Starting Run: n40k40ot with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: n40k40ot\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/n40k40ot
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.84519910812378\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.2306498885154724\n", "The running loss is:\n", "6.748609364032745\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.8435761705040932\n", "The running loss is:\n", "6.234087198972702\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7792608998715878\n", "The running loss is:\n", "5.676519811153412\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7095649763941765\n", "The running loss is:\n", "5.602851450443268\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7003564313054085\n", "The running loss is:\n", "5.303595423698425\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6629494279623032\n", "The running loss is:\n", "5.084870457649231\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6356088072061539\n", "The running loss is:\n", "5.002656936645508\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6253321170806885\n", "The running loss is:\n", "4.769860535860062\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5962325669825077\n", "The running loss is:\n", "4.391438692808151\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5489298366010189\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.658195\n", "48 30755 ... 10.081340\n", "49 30756 ... 15.058569\n", "50 30757 ... 15.923815\n", "51 30758 ... 16.395542\n", "52 30759 ... 17.664595\n", "53 30760 ... 17.107052\n", "54 30761 ... 22.228762\n", "55 30762 ... 23.952763\n", "56 30763 ... 29.323387\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: n40k40ot \n", "\n", "wandb: Agent Starting Run: 9tt63aws with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 9tt63aws\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9tt63aws
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.10678744316101\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.0133484303951263\n", "The running loss is:\n", "27.54156595468521\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "3.4426957443356514\n", "The running loss is:\n", "6.247965717688203\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7809957147110254\n", "The running loss is:\n", "6.217851877212524\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7772314846515656\n", "The running loss is:\n", "5.920749947428703\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7400937434285879\n", "The running loss is:\n", "4.904174625873566\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6130218282341957\n", "The running loss is:\n", "4.424663543701172\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5530829429626465\n", "The running loss is:\n", "4.41470830142498\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5518385376781225\n", "The running loss is:\n", "4.161341153085232\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.520167644135654\n", "The running loss is:\n", "3.9557350426912308\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.49446688033640385\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.901354\n", "48 30755 ... 7.838363\n", "49 30756 ... 13.712195\n", "50 30757 ... 12.818233\n", "51 30758 ... 12.069808\n", "52 30759 ... 11.796654\n", "53 30760 ... 9.732699\n", "54 30761 ... 9.699532\n", "55 30762 ... 9.651850\n", "56 30763 ... 14.155675\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9tt63aws \n", "\n", "wandb: Agent Starting Run: dzxow86q with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: dzxow86q\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/dzxow86q
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.758483454585075\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.3448104318231344\n", "The running loss is:\n", "11.171189188957214\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.3963986486196518\n", "The running loss is:\n", "6.5673965737223625\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.8209245717152953\n", "The running loss is:\n", "6.287336528301239\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7859170660376549\n", "The running loss is:\n", "5.87205146253109\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7340064328163862\n", "The running loss is:\n", "5.778154879808426\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7222693599760532\n", "The running loss is:\n", "5.273692026734352\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.659211503341794\n", "The running loss is:\n", "5.136383637785912\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.642047954723239\n", "The running loss is:\n", "4.941792532801628\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6177240666002035\n", "The running loss is:\n", "4.391803033649921\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5489753792062402\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.843055\n", "48 30755 ... 8.735225\n", "49 30756 ... 11.784624\n", "50 30757 ... 11.745650\n", "51 30758 ... 11.402711\n", "52 30759 ... 10.388110\n", "53 30760 ... 8.058597\n", "54 30761 ... 9.430935\n", "55 30762 ... 10.906927\n", "56 30763 ... 13.199764\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: dzxow86q \n", "\n", "wandb: Agent Starting Run: oyieacp4 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: oyieacp4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/oyieacp4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.876974672079086\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.2346218340098858\n", "The running loss is:\n", "10.934117525815964\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.3667646907269955\n", "The running loss is:\n", "6.11262384057045\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7640779800713062\n", "The running loss is:\n", "5.829475224018097\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7286844030022621\n", "The running loss is:\n", "5.622194975614548\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7027743719518185\n", "The running loss is:\n", "5.299667567014694\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6624584458768368\n", "The running loss is:\n", "4.95116651058197\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6188958138227463\n", "The running loss is:\n", "4.8218607902526855\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6027325987815857\n", "The running loss is:\n", "4.772080212831497\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5965100266039371\n", "The running loss is:\n", "3.9954182356595993\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.4994272794574499\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.704037\n", "48 30755 ... 7.192714\n", "49 30756 ... 10.031803\n", "50 30757 ... 10.899514\n", "51 30758 ... 11.257930\n", "52 30759 ... 11.452247\n", "53 30760 ... 10.973282\n", "54 30761 ... 12.872341\n", "55 30762 ... 12.492766\n", "56 30763 ... 16.084013\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: oyieacp4 \n", "\n", "wandb: Agent Starting Run: caveqhc6 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: caveqhc6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/caveqhc6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.880411952733994\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.3600514940917492\n", "The running loss is:\n", "43.80143243074417\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "5.475179053843021\n", "The running loss is:\n", "15.616842031478882\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.9521052539348602\n", "The running loss is:\n", "9.589914422482252\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.1987393028102815\n", "The running loss is:\n", "6.671413034200668\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.8339266292750835\n", "The running loss is:\n", "7.4757488667964935\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.9344686083495617\n", "The running loss is:\n", "4.646433234214783\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5808041542768478\n", "The running loss is:\n", "5.482744470238686\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6853430587798357\n", "The running loss is:\n", "4.8297248259186745\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6037156032398343\n", "The running loss is:\n", "4.43698213994503\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5546227674931288\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.569696\n", "48 30755 ... 9.416870\n", "49 30756 ... 13.286760\n", "50 30757 ... 12.562493\n", "51 30758 ... 11.830906\n", "52 30759 ... 11.178302\n", "53 30760 ... 9.640971\n", "54 30761 ... 9.453139\n", "55 30762 ... 9.259923\n", "56 30763 ... 12.173406\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: caveqhc6 \n", "\n", "wandb: Agent Starting Run: nceedklu with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: nceedklu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nceedklu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.912759125232697\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.114094890654087\n", "The running loss is:\n", "25.029663145542145\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "3.128707893192768\n", "The running loss is:\n", "10.025477290153503\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.253184661269188\n", "The running loss is:\n", "14.02464845776558\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.7530810572206974\n", "The running loss is:\n", "7.915584564208984\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.989448070526123\n", "The running loss is:\n", "6.710186213254929\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8387732766568661\n", "The running loss is:\n", "6.474571600556374\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.8093214500695467\n", "The running loss is:\n", "6.211176082491875\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.7763970103114843\n", "The running loss is:\n", "6.195676773786545\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.7744595967233181\n", "The running loss is:\n", "5.697741895914078\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.7122177369892597\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.836226\n", "48 30755 ... 10.511021\n", "49 30756 ... 14.086117\n", "50 30757 ... 13.573318\n", "51 30758 ... 13.186073\n", "52 30759 ... 13.511204\n", "53 30760 ... 12.587166\n", "54 30761 ... 13.003458\n", "55 30762 ... 13.056839\n", "56 30763 ... 15.238908\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nceedklu \n", "\n", "wandb: Agent Starting Run: 0eqou6e5 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 0eqou6e5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0eqou6e5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "7.586898952722549\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "0.9483623690903187\n", "The running loss is:\n", "25.946052193641663\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "3.243256524205208\n", "The running loss is:\n", "7.6804980635643005\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.9600622579455376\n", "The running loss is:\n", "9.825101613998413\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.2281377017498016\n", "The running loss is:\n", "7.51312929391861\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.9391411617398262\n", "The running loss is:\n", "6.463720321655273\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8079650402069092\n", "The running loss is:\n", "6.129735618829727\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7662169523537159\n", "The running loss is:\n", "5.783123850822449\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.7228904813528061\n", "The running loss is:\n", "5.273890644311905\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6592363305389881\n", "The running loss is:\n", "4.53999987244606\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5674999840557575\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.657432\n", "48 30755 ... 8.412302\n", "49 30756 ... 10.765085\n", "50 30757 ... 11.026249\n", "51 30758 ... 10.217522\n", "52 30759 ... 8.858908\n", "53 30760 ... 6.510315\n", "54 30761 ... 9.282034\n", "55 30762 ... 8.430615\n", "56 30763 ... 10.268279\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0eqou6e5 \n", "\n", "wandb: Agent Starting Run: 5pne6ual with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 5pne6ual\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5pne6ual
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "77.71084105968475\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "9.713855132460594\n", "The running loss is:\n", "5.338430866599083\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.6673038583248854\n", "The running loss is:\n", "27.426336839795113\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "3.428292104974389\n", "The running loss is:\n", "74.70189869403839\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "9.337737336754799\n", "The running loss is:\n", "16.624776780605316\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "2.0780970975756645\n", "The running loss is:\n", "22.714191049337387\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "2.8392738811671734\n", "The running loss is:\n", "8.933165550231934\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "1.1166456937789917\n", "The running loss is:\n", "10.674087047576904\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "1.334260880947113\n", "The running loss is:\n", "7.016788870096207\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.8770986087620258\n", "The running loss is:\n", "5.2304157465696335\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6538019683212042\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.728264\n", "48 30755 ... 12.739908\n", "49 30756 ... 15.023680\n", "50 30757 ... 15.135052\n", "51 30758 ... 14.314179\n", "52 30759 ... 13.451766\n", "53 30760 ... 12.209122\n", "54 30761 ... 15.023045\n", "55 30762 ... 15.040199\n", "56 30763 ... 15.918568\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5pne6ual \n", "\n", "wandb: Agent Starting Run: uwmkpwjd with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: uwmkpwjd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/uwmkpwjd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "40.486722499132156\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "5.0608403123915195\n", "The running loss is:\n", "7.990162819623947\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9987703524529934\n", "The running loss is:\n", "16.418078929185867\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "2.0522598661482334\n", "The running loss is:\n", "37.9519681930542\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "4.743996024131775\n", "The running loss is:\n", "15.55551365017891\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.9444392062723637\n", "The running loss is:\n", "8.367789804935455\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "1.045973725616932\n", "The running loss is:\n", "11.206081509590149\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "1.4007601886987686\n", "The running loss is:\n", "9.642450213432312\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "1.205306276679039\n", "The running loss is:\n", "9.567102372646332\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "1.1958877965807915\n", "The running loss is:\n", "6.858975321054459\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.8573719151318073\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.748694\n", "48 30755 ... 8.776375\n", "49 30756 ... 8.766631\n", "50 30757 ... 8.860359\n", "51 30758 ... 9.283177\n", "52 30759 ... 9.806849\n", "53 30760 ... 10.339288\n", "54 30761 ... 8.879484\n", "55 30762 ... 8.919710\n", "56 30763 ... 8.532740\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: uwmkpwjd \n", "\n", "wandb: Agent Starting Run: nqs19zfh with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: nqs19zfh\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nqs19zfh
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "30.585171580314636\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "3.8231464475393295\n", "The running loss is:\n", "7.479733049869537\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9349666312336922\n", "The running loss is:\n", "14.812964379787445\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.8516205474734306\n", "The running loss is:\n", "23.101281613111496\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "2.887660201638937\n", "The running loss is:\n", "8.297429740428925\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.0371787175536156\n", "The running loss is:\n", "11.319238305091858\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "1.4149047881364822\n", "The running loss is:\n", "15.387986540794373\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "1.9234983175992966\n", "The running loss is:\n", "7.361476421356201\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.9201845526695251\n", "The running loss is:\n", "7.971918612718582\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.9964898265898228\n", "The running loss is:\n", "7.466582655906677\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.9333228319883347\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.595874\n", "48 30755 ... 7.394851\n", "49 30756 ... 9.121369\n", "50 30757 ... 8.088429\n", "51 30758 ... 7.770226\n", "52 30759 ... 7.506985\n", "53 30760 ... 7.117284\n", "54 30761 ... 6.944593\n", "55 30762 ... 6.501761\n", "56 30763 ... 8.242576\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nqs19zfh \n", "\n", "wandb: Agent Starting Run: bvh1t9d2 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: bvh1t9d2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bvh1t9d2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.538057163357735\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.1922571454197168\n", "The running loss is:\n", "5.761137902736664\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.720142237842083\n", "The running loss is:\n", "5.462558537721634\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.6828198172152042\n", "The running loss is:\n", "4.668862268328667\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.5836077835410833\n", "The running loss is:\n", "4.292478419840336\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.536559802480042\n", "The running loss is:\n", "4.50324796885252\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.562905996106565\n", "The running loss is:\n", "4.087679527699947\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5109599409624934\n", "The running loss is:\n", "4.086334981024265\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5107918726280332\n", "The running loss is:\n", "3.8916722163558006\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.4864590270444751\n", "The running loss is:\n", "3.467552863061428\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.4334441078826785\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.701126\n", "48 30755 ... 10.617829\n", "49 30756 ... 12.164164\n", "50 30757 ... 13.254706\n", "51 30758 ... 13.646997\n", "52 30759 ... 14.125133\n", "53 30760 ... 14.707135\n", "54 30761 ... 15.274608\n", "55 30762 ... 16.445068\n", "56 30763 ... 17.851898\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bvh1t9d2 \n", "\n", "wandb: Agent Starting Run: 9s62j1js with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 9s62j1js\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9s62j1js
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.855386734008789\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.2319233417510986\n", "The running loss is:\n", "6.053606033325195\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.7567007541656494\n", "The running loss is:\n", "5.227531760931015\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.6534414701163769\n", "The running loss is:\n", "4.913850545883179\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6142313182353973\n", "The running loss is:\n", "4.2742534428834915\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.5342816803604364\n", "The running loss is:\n", "4.127818286418915\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5159772858023643\n", "The running loss is:\n", "3.93484203517437\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.4918552543967962\n", "The running loss is:\n", "3.8864687383174896\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.4858085922896862\n", "The running loss is:\n", "3.5512097850441933\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.44390122313052416\n", "The running loss is:\n", "3.7246112003922462\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.4655764000490308\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.418179\n", "48 30755 ... 11.002016\n", "49 30756 ... 12.337150\n", "50 30757 ... 14.577664\n", "51 30758 ... 16.363276\n", "52 30759 ... 18.793327\n", "53 30760 ... 21.699623\n", "54 30761 ... 22.705818\n", "55 30762 ... 23.938343\n", "56 30763 ... 26.309530\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9s62j1js \n", "\n", "wandb: Agent Starting Run: cgoy7ndt with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: cgoy7ndt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cgoy7ndt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.800299257040024\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.350037407130003\n", "The running loss is:\n", "6.719909101724625\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.8399886377155781\n", "The running loss is:\n", "6.147316336631775\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7684145420789719\n", "The running loss is:\n", "5.55186402797699\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6939830034971237\n", "The running loss is:\n", "5.256973952054977\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6571217440068722\n", "The running loss is:\n", "4.77255941927433\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5965699274092913\n", "The running loss is:\n", "4.5062213987112045\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5632776748389006\n", "The running loss is:\n", "4.393381476402283\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5491726845502853\n", "The running loss is:\n", "4.38474141061306\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5480926763266325\n", "The running loss is:\n", "4.287996828556061\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5359996035695076\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.864444\n", "48 30755 ... 11.327341\n", "49 30756 ... 12.577684\n", "50 30757 ... 14.237209\n", "51 30758 ... 15.412471\n", "52 30759 ... 17.135647\n", "53 30760 ... 19.146513\n", "54 30761 ... 20.154495\n", "55 30762 ... 21.093636\n", "56 30763 ... 22.628614\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cgoy7ndt \n", "\n", "wandb: Agent Starting Run: rtci6z3m with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: rtci6z3m\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/rtci6z3m
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.546842649579048\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.193355331197381\n", "The running loss is:\n", "8.43789367377758\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.0547367092221975\n", "The running loss is:\n", "4.924015037715435\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.6155018797144294\n", "The running loss is:\n", "4.314315214753151\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.5392894018441439\n", "The running loss is:\n", "4.0485982075333595\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.5060747759416699\n", "The running loss is:\n", "4.1723093539476395\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5215386692434549\n", "The running loss is:\n", "3.7383037842810154\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.4672879730351269\n", "The running loss is:\n", "3.931921534240246\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.4914901917800307\n", "The running loss is:\n", "3.2728704884648323\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.40910881105810404\n", "The running loss is:\n", "2.915392220020294\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.3644240275025368\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.045798\n", "48 30755 ... 10.157353\n", "49 30756 ... 12.095802\n", "50 30757 ... 12.449658\n", "51 30758 ... 13.165064\n", "52 30759 ... 13.813021\n", "53 30760 ... 14.683218\n", "54 30761 ... 14.160168\n", "55 30762 ... 16.617773\n", "56 30763 ... 18.648075\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: rtci6z3m \n", "\n", "wandb: Agent Starting Run: w4b6zyi6 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: w4b6zyi6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/w4b6zyi6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.17788852751255\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.3972360659390688\n", "The running loss is:\n", "7.812009304761887\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9765011630952358\n", "The running loss is:\n", "5.429758012294769\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.6787197515368462\n", "The running loss is:\n", "4.718441881239414\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.5898052351549268\n", "The running loss is:\n", "4.047854967415333\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.5059818709269166\n", "The running loss is:\n", "4.080165818333626\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5100207272917032\n", "The running loss is:\n", "3.7863672226667404\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.47329590283334255\n", "The running loss is:\n", "3.964346893131733\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.4955433616414666\n", "The running loss is:\n", "3.737635724246502\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.46720446553081274\n", "The running loss is:\n", "3.944605380296707\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.4930756725370884\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.542191\n", "48 30755 ... 11.410826\n", "49 30756 ... 11.835811\n", "50 30757 ... 13.282190\n", "51 30758 ... 14.953685\n", "52 30759 ... 17.249598\n", "53 30760 ... 20.018517\n", "54 30761 ... 21.872402\n", "55 30762 ... 22.083441\n", "56 30763 ... 23.206171\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: w4b6zyi6 \n", "\n", "wandb: Agent Starting Run: 72mdqylc with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 72mdqylc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/72mdqylc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.393648847937584\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.424206105992198\n", "The running loss is:\n", "9.387817233800888\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.173477154225111\n", "The running loss is:\n", "5.967179387807846\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7458974234759808\n", "The running loss is:\n", "5.219222843647003\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6524028554558754\n", "The running loss is:\n", "5.00519023835659\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6256487797945738\n", "The running loss is:\n", "4.8075766414403915\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6009470801800489\n", "The running loss is:\n", "4.8459101021289825\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6057387627661228\n", "The running loss is:\n", "4.758179634809494\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5947724543511868\n", "The running loss is:\n", "4.346340090036392\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.543292511254549\n", "The running loss is:\n", "4.356025725603104\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.544503215700388\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.593064\n", "48 30755 ... 11.480613\n", "49 30756 ... 12.681897\n", "50 30757 ... 13.842297\n", "51 30758 ... 15.154292\n", "52 30759 ... 17.142323\n", "53 30760 ... 19.458761\n", "54 30761 ... 19.006266\n", "55 30762 ... 20.721127\n", "56 30763 ... 22.308397\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 72mdqylc \n", "\n", "wandb: Agent Starting Run: 2zunql63 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 2zunql63\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2zunql63
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "7.381741419434547\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "0.9227176774293184\n", "The running loss is:\n", "25.146740198135376\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "3.143342524766922\n", "The running loss is:\n", "6.870392799377441\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.8587990999221802\n", "The running loss is:\n", "8.847517043352127\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.1059396304190159\n", "The running loss is:\n", "6.185571424663067\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7731964280828834\n", "The running loss is:\n", "5.277693450450897\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6597116813063622\n", "The running loss is:\n", "4.669010818004608\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.583626352250576\n", "The running loss is:\n", "4.379348270595074\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5474185338243842\n", "The running loss is:\n", "4.096095941960812\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5120119927451015\n", "The running loss is:\n", "3.4440850913524628\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.43051063641905785\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.933676\n", "48 30755 ... 12.289965\n", "49 30756 ... 13.424484\n", "50 30757 ... 16.420580\n", "51 30758 ... 15.872095\n", "52 30759 ... 16.816118\n", "53 30760 ... 16.920258\n", "54 30761 ... 17.218924\n", "55 30762 ... 19.419926\n", "56 30763 ... 20.266211\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2zunql63 \n", "\n", "wandb: Agent Starting Run: ktoorkl6 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ktoorkl6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ktoorkl6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.426167532801628\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.0532709416002035\n", "The running loss is:\n", "19.593581795692444\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.4491977244615555\n", "The running loss is:\n", "7.231603503227234\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.9039504379034042\n", "The running loss is:\n", "7.827229708433151\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.9784037135541439\n", "The running loss is:\n", "6.041022434830666\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7551278043538332\n", "The running loss is:\n", "5.206323370337486\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6507904212921858\n", "The running loss is:\n", "4.792576283216476\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5990720354020596\n", "The running loss is:\n", "4.740285784006119\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5925357230007648\n", "The running loss is:\n", "4.0978415086865425\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5122301885858178\n", "The running loss is:\n", "4.568242058157921\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5710302572697401\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 19.106853\n", "48 30755 ... 13.079176\n", "49 30756 ... 16.165695\n", "50 30757 ... 16.851734\n", "51 30758 ... 19.214518\n", "52 30759 ... 20.072746\n", "53 30760 ... 22.310108\n", "54 30761 ... 26.341103\n", "55 30762 ... 25.220377\n", "56 30763 ... 26.363348\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ktoorkl6 \n", "\n", "wandb: Agent Starting Run: ve8frys1 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ve8frys1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ve8frys1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.473036348819733\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.0591295436024666\n", "The running loss is:\n", "29.853841066360474\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "3.731730133295059\n", "The running loss is:\n", "7.707319617271423\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.9634149521589279\n", "The running loss is:\n", "9.419616043567657\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.1774520054459572\n", "The running loss is:\n", "6.854966193437576\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.856870774179697\n", "The running loss is:\n", "6.6577427089214325\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8322178386151791\n", "The running loss is:\n", "5.656194299459457\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7070242874324322\n", "The running loss is:\n", "4.75788351893425\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5947354398667812\n", "The running loss is:\n", "4.642626956105232\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.580328369513154\n", "The running loss is:\n", "4.646610513329506\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5808263141661882\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.130877\n", "48 30755 ... 9.629366\n", "49 30756 ... 11.600607\n", "50 30757 ... 13.214843\n", "51 30758 ... 13.308360\n", "52 30759 ... 13.217094\n", "53 30760 ... 13.293304\n", "54 30761 ... 13.836164\n", "55 30762 ... 15.439205\n", "56 30763 ... 15.485834\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ve8frys1 \n", "\n", "wandb: Agent Starting Run: y3b1pfx7 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: y3b1pfx7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/y3b1pfx7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "31.35861313343048\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "3.91982664167881\n", "The running loss is:\n", "7.149083212018013\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.8936354015022516\n", "The running loss is:\n", "20.340464413166046\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "2.5425580516457558\n", "The running loss is:\n", "9.993232488632202\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.2491540610790253\n", "The running loss is:\n", "6.315747439861298\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7894684299826622\n", "The running loss is:\n", "6.914129972457886\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8642662465572357\n", "The running loss is:\n", "8.855332881212234\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "1.1069166101515293\n", "The running loss is:\n", "7.344175457954407\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.9180219322443008\n", "The running loss is:\n", "6.533271104097366\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.8166588880121708\n", "The running loss is:\n", "6.510418713092804\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.8138023391366005\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.678343\n", "48 30755 ... 10.423984\n", "49 30756 ... 10.337050\n", "50 30757 ... 9.651506\n", "51 30758 ... 9.475930\n", "52 30759 ... 9.294815\n", "53 30760 ... 9.063562\n", "54 30761 ... 9.299700\n", "55 30762 ... 9.436070\n", "56 30763 ... 9.489004\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: y3b1pfx7 \n", "\n", "wandb: Agent Starting Run: 2a35yhra with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 2a35yhra\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2a35yhra
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "24.757554709911346\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "3.0946943387389183\n", "The running loss is:\n", "8.207798480987549\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.0259748101234436\n", "The running loss is:\n", "17.192712485790253\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "2.1490890607237816\n", "The running loss is:\n", "8.110509365797043\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.0138136707246304\n", "The running loss is:\n", "8.176392793655396\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.0220490992069244\n", "The running loss is:\n", "6.2795825600624084\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7849478200078011\n", "The running loss is:\n", "5.406195282936096\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.675774410367012\n", "The running loss is:\n", "6.565752103924751\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.8207190129905939\n", "The running loss is:\n", "4.730227127671242\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5912783909589052\n", "The running loss is:\n", "5.622362457215786\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.7027953071519732\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.653543\n", "48 30755 ... 11.666175\n", "49 30756 ... 12.358805\n", "50 30757 ... 12.517196\n", "51 30758 ... 10.681630\n", "52 30759 ... 11.495918\n", "53 30760 ... 12.448450\n", "54 30761 ... 13.540613\n", "55 30762 ... 13.895693\n", "56 30763 ... 14.009988\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2a35yhra \n", "\n", "wandb: Agent Starting Run: wi4kd4m5 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: wi4kd4m5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/wi4kd4m5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "28.664043128490448\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "3.583005391061306\n", "The running loss is:\n", "9.607732936739922\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.2009666170924902\n", "The running loss is:\n", "20.923362255096436\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "2.6154202818870544\n", "The running loss is:\n", "10.49313597381115\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.3116419967263937\n", "The running loss is:\n", "8.878450512886047\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.109806314110756\n", "The running loss is:\n", "7.381859600543976\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.922732450067997\n", "The running loss is:\n", "7.193650335073471\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.8992062918841839\n", "The running loss is:\n", "7.023971408605576\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.877996426075697\n", "The running loss is:\n", "7.099064201116562\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.8873830251395702\n", "The running loss is:\n", "7.1568794548511505\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.8946099318563938\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.627852\n", "48 30755 ... 9.286406\n", "49 30756 ... 9.280918\n", "50 30757 ... 9.513455\n", "51 30758 ... 9.275638\n", "52 30759 ... 9.122575\n", "53 30760 ... 8.958853\n", "54 30761 ... 9.268032\n", "55 30762 ... 9.285326\n", "56 30763 ... 9.277149\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: wi4kd4m5 \n", "\n", "wandb: Agent Starting Run: pkhq8vpm with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: pkhq8vpm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/pkhq8vpm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.593297243118286\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.1991621553897858\n", "The running loss is:\n", "5.726599365472794\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.7158249206840992\n", "The running loss is:\n", "5.369395866990089\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.6711744833737612\n", "The running loss is:\n", "4.905842535197735\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6132303168997169\n", "The running loss is:\n", "4.665864020586014\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.5832330025732517\n", "The running loss is:\n", "4.398593630641699\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5498242038302124\n", "The running loss is:\n", "4.1014852412045\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5126856551505625\n", "The running loss is:\n", "4.372003979980946\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5465004974976182\n", "The running loss is:\n", "4.193980306386948\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5242475382983685\n", "The running loss is:\n", "4.117913290858269\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5147391613572836\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.286014\n", "48 30755 ... 9.692314\n", "49 30756 ... 10.136795\n", "50 30757 ... 11.271959\n", "51 30758 ... 14.237857\n", "52 30759 ... 14.391908\n", "53 30760 ... 14.427896\n", "54 30761 ... 14.958170\n", "55 30762 ... 14.813080\n", "56 30763 ... 16.110613\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: pkhq8vpm \n", "\n", "wandb: Agent Starting Run: sxces3b8 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: sxces3b8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/sxces3b8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.55923479795456\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.31990434974432\n", "The running loss is:\n", "6.29985573887825\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.7874819673597813\n", "The running loss is:\n", "5.972567766904831\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7465709708631039\n", "The running loss is:\n", "5.386669382452965\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6733336728066206\n", "The running loss is:\n", "5.082741692662239\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6353427115827799\n", "The running loss is:\n", "4.794009312987328\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.599251164123416\n", "The running loss is:\n", "4.415606319904327\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5519507899880409\n", "The running loss is:\n", "4.496867328882217\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5621084161102772\n", "The running loss is:\n", "4.166094034910202\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5207617543637753\n", "The running loss is:\n", "4.42698822170496\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.55337352771312\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.020846\n", "48 30755 ... 11.632212\n", "49 30756 ... 10.593838\n", "50 30757 ... 11.659601\n", "51 30758 ... 13.485876\n", "52 30759 ... 14.449990\n", "53 30760 ... 15.599710\n", "54 30761 ... 15.936440\n", "55 30762 ... 16.600374\n", "56 30763 ... 17.529819\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: sxces3b8 \n", "\n", "wandb: Agent Starting Run: u6jqkn40 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: u6jqkn40\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u6jqkn40
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.690836369991302\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.3363545462489128\n", "The running loss is:\n", "6.87058699131012\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.858823373913765\n", "The running loss is:\n", "6.5186139941215515\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.8148267492651939\n", "The running loss is:\n", "5.737721726298332\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7172152157872915\n", "The running loss is:\n", "5.308574818074703\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6635718522593379\n", "The running loss is:\n", "4.752960331737995\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5941200414672494\n", "The running loss is:\n", "5.247718453407288\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.655964806675911\n", "The running loss is:\n", "5.271296665072441\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6589120831340551\n", "The running loss is:\n", "5.179829057306051\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6474786321632564\n", "The running loss is:\n", "4.976058304309845\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6220072880387306\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.681442\n", "48 30755 ... 14.238687\n", "49 30756 ... 6.291836\n", "50 30757 ... 6.188722\n", "51 30758 ... 4.669639\n", "52 30759 ... 3.085255\n", "53 30760 ... 1.716406\n", "54 30761 ... 1.458660\n", "55 30762 ... 1.863988\n", "56 30763 ... 0.911042\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u6jqkn40 \n", "\n", "wandb: Agent Starting Run: 6zornv2x with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 6zornv2x\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6zornv2x
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.969246834516525\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.3711558543145657\n", "The running loss is:\n", "7.660423636436462\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9575529545545578\n", "The running loss is:\n", "5.484717682003975\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.6855897102504969\n", "The running loss is:\n", "4.548533156514168\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.568566644564271\n", "The running loss is:\n", "4.64577092975378\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.5807213662192225\n", "The running loss is:\n", "4.139353573322296\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.517419196665287\n", "The running loss is:\n", "4.1177546083927155\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5147193260490894\n", "The running loss is:\n", "4.4892129227519035\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5611516153439879\n", "The running loss is:\n", "3.7275320515036583\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.4659415064379573\n", "The running loss is:\n", "4.080616444349289\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5100770555436611\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.373961\n", "48 30755 ... 9.177148\n", "49 30756 ... 10.464656\n", "50 30757 ... 11.428827\n", "51 30758 ... 13.522120\n", "52 30759 ... 14.078564\n", "53 30760 ... 14.482571\n", "54 30761 ... 14.862568\n", "55 30762 ... 14.067533\n", "56 30763 ... 16.003128\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6zornv2x \n", "\n", "wandb: Agent Starting Run: g32bev53 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: g32bev53\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/g32bev53
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.977671682834625\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.4972089603543282\n", "The running loss is:\n", "9.989576682448387\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.2486970853060484\n", "The running loss is:\n", "6.243221879005432\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.780402734875679\n", "The running loss is:\n", "5.672764778137207\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7090955972671509\n", "The running loss is:\n", "5.184059038758278\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6480073798447847\n", "The running loss is:\n", "4.671211451292038\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5839014314115047\n", "The running loss is:\n", "4.3249501734972\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.54061877168715\n", "The running loss is:\n", "4.325228467583656\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.540653558447957\n", "The running loss is:\n", "3.901700511574745\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.48771256394684315\n", "The running loss is:\n", "4.088552720844746\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5110690901055932\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.630117\n", "48 30755 ... 11.711292\n", "49 30756 ... 11.650674\n", "50 30757 ... 12.819802\n", "51 30758 ... 13.787545\n", "52 30759 ... 15.544405\n", "53 30760 ... 17.753273\n", "54 30761 ... 17.949461\n", "55 30762 ... 17.935369\n", "56 30763 ... 19.329866\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: g32bev53 \n", "\n", "wandb: Agent Starting Run: 392dutrx with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 392dutrx\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/392dutrx
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.297696448862553\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.537212056107819\n", "The running loss is:\n", "8.727506756782532\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.0909383445978165\n", "The running loss is:\n", "6.73730343580246\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.8421629294753075\n", "The running loss is:\n", "5.71261340379715\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7140766754746437\n", "The running loss is:\n", "5.148693040013313\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6435866300016642\n", "The running loss is:\n", "4.604528576135635\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5755660720169544\n", "The running loss is:\n", "4.971816077828407\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6214770097285509\n", "The running loss is:\n", "5.4065783098340034\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6758222887292504\n", "The running loss is:\n", "6.092674419283867\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.7615843024104834\n", "The running loss is:\n", "5.4708035588264465\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6838504448533058\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.954944\n", "48 30755 ... 14.330663\n", "49 30756 ... 7.776496\n", "50 30757 ... 7.571167\n", "51 30758 ... 6.841137\n", "52 30759 ... 6.501884\n", "53 30760 ... 6.554061\n", "54 30761 ... 5.964196\n", "55 30762 ... 6.573196\n", "56 30763 ... 5.763231\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 392dutrx \n", "\n", "wandb: Agent Starting Run: 6bg9psl8 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 6bg9psl8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6bg9psl8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.58815935254097\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.1985199190676212\n", "The running loss is:\n", "19.209636002779007\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.401204500347376\n", "The running loss is:\n", "7.738292142748833\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.9672865178436041\n", "The running loss is:\n", "7.697542876005173\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.9621928595006466\n", "The running loss is:\n", "6.6694705337285995\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.8336838167160749\n", "The running loss is:\n", "4.881348237395287\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6101685296744108\n", "The running loss is:\n", "5.010814595967531\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6263518244959414\n", "The running loss is:\n", "5.574698239564896\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.696837279945612\n", "The running loss is:\n", "4.987785197794437\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6234731497243047\n", "The running loss is:\n", "4.6631989777088165\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5828998722136021\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.443740\n", "48 30755 ... 12.292900\n", "49 30756 ... 12.623646\n", "50 30757 ... 12.933738\n", "51 30758 ... 14.440177\n", "52 30759 ... 14.580387\n", "53 30760 ... 13.962379\n", "54 30761 ... 13.850780\n", "55 30762 ... 11.960580\n", "56 30763 ... 13.511158\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6bg9psl8 \n", "\n", "wandb: Agent Starting Run: v3ddsk1y with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: v3ddsk1y\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v3ddsk1y
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.516865834593773\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.1896082293242216\n", "The running loss is:\n", "23.52896511554718\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.9411206394433975\n", "The running loss is:\n", "7.973791569471359\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.9967239461839199\n", "The running loss is:\n", "9.503426253795624\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.187928281724453\n", "The running loss is:\n", "6.929812371730804\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.8662265464663506\n", "The running loss is:\n", "6.647747039794922\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8309683799743652\n", "The running loss is:\n", "5.848790943622589\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7310988679528236\n", "The running loss is:\n", "5.039943665266037\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6299929581582546\n", "The running loss is:\n", "5.0003694742918015\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6250461842864752\n", "The running loss is:\n", "4.339855998754501\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5424819998443127\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.040102\n", "48 30755 ... 10.688581\n", "49 30756 ... 11.481241\n", "50 30757 ... 12.348065\n", "51 30758 ... 13.985934\n", "52 30759 ... 14.072204\n", "53 30760 ... 13.699750\n", "54 30761 ... 15.169630\n", "55 30762 ... 14.083228\n", "56 30763 ... 15.484697\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v3ddsk1y \n", "\n", "wandb: Agent Starting Run: 2s9xavbj with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 2s9xavbj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2s9xavbj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.567524492740631\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.1959405615925789\n", "The running loss is:\n", "21.582385897636414\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.6977982372045517\n", "The running loss is:\n", "8.409520030021667\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.0511900037527084\n", "The running loss is:\n", "8.695797711610794\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.0869747139513493\n", "The running loss is:\n", "7.450117468833923\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.9312646836042404\n", "The running loss is:\n", "7.004117637872696\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.875514704734087\n", "The running loss is:\n", "6.92552524805069\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.8656906560063362\n", "The running loss is:\n", "6.250691711902618\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.7813364639878273\n", "The running loss is:\n", "6.194503873586655\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.7743129841983318\n", "The running loss is:\n", "6.021981239318848\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.752747654914856\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.852979\n", "48 30755 ... 10.419504\n", "49 30756 ... 7.349399\n", "50 30757 ... 7.643004\n", "51 30758 ... 8.218159\n", "52 30759 ... 7.719066\n", "53 30760 ... 7.764626\n", "54 30761 ... 5.754187\n", "55 30762 ... 3.776912\n", "56 30763 ... 4.989199\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2s9xavbj \n", "\n", "wandb: Agent Starting Run: bsztwaei with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: bsztwaei\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bsztwaei
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.21518623828888\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "2.77689827978611\n", "The running loss is:\n", "7.293961197137833\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9117451496422291\n", "The running loss is:\n", "11.329310700297356\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.4161638375371695\n", "The running loss is:\n", "8.372911632061005\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.0466139540076256\n", "The running loss is:\n", "7.673612356185913\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.9592015445232391\n", "The running loss is:\n", "6.563172549009323\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8203965686261654\n", "The running loss is:\n", "7.0265980660915375\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.8783247582614422\n", "The running loss is:\n", "7.765732854604721\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.9707166068255901\n", "The running loss is:\n", "5.755122497677803\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.7193903122097254\n", "The running loss is:\n", "6.191661715507507\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.7739577144384384\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.349856\n", "48 30755 ... 14.594925\n", "49 30756 ... 8.787890\n", "50 30757 ... 10.063706\n", "51 30758 ... 12.845061\n", "52 30759 ... 11.149172\n", "53 30760 ... 12.277591\n", "54 30761 ... 10.631094\n", "55 30762 ... 7.704789\n", "56 30763 ... 11.401577\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bsztwaei \n", "\n", "wandb: Agent Starting Run: 0bra3ihp with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 0bra3ihp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0bra3ihp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "30.714923441410065\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "3.839365430176258\n", "The running loss is:\n", "8.897786349058151\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.112223293632269\n", "The running loss is:\n", "14.070866167545319\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.7588582709431648\n", "The running loss is:\n", "6.147258788347244\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7684073485434055\n", "The running loss is:\n", "8.751449584960938\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.0939311981201172\n", "The running loss is:\n", "6.525316268205643\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8156645335257053\n", "The running loss is:\n", "6.006653621792793\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7508317027240992\n", "The running loss is:\n", "5.657045960426331\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.7071307450532913\n", "The running loss is:\n", "5.266755282878876\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6583444103598595\n", "The running loss is:\n", "4.700027108192444\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5875033885240555\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 13.381409\n", "48 30755 ... 11.875984\n", "49 30756 ... 7.917060\n", "50 30757 ... 8.531528\n", "51 30758 ... 9.563288\n", "52 30759 ... 10.676108\n", "53 30760 ... 9.577621\n", "54 30761 ... 7.140139\n", "55 30762 ... 5.638883\n", "56 30763 ... 8.996849\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0bra3ihp \n", "\n", "wandb: Agent Starting Run: llavyg4a with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: llavyg4a\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/llavyg4a
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "25.851928889751434\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "3.2314911112189293\n", "The running loss is:\n", "9.666099555790424\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.208262444473803\n", "The running loss is:\n", "17.461497962474823\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "2.182687245309353\n", "The running loss is:\n", "11.974535584449768\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.496816948056221\n", "The running loss is:\n", "7.328074067831039\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.9160092584788799\n", "The running loss is:\n", "7.055084586143494\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8818855732679367\n", "The running loss is:\n", "7.310244619846344\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.913780577480793\n", "The running loss is:\n", "8.090441286563873\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "1.0113051608204842\n", "The running loss is:\n", "6.187301903963089\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.7734127379953861\n", "The running loss is:\n", "7.4150442481040955\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.9268805310130119\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.429152\n", "48 30755 ... 9.470564\n", "49 30756 ... 7.614705\n", "50 30757 ... 7.615232\n", "51 30758 ... 6.435814\n", "52 30759 ... 6.161608\n", "53 30760 ... 6.723379\n", "54 30761 ... 6.004760\n", "55 30762 ... 5.973912\n", "56 30763 ... 6.007796\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: llavyg4a \n", "\n", "wandb: Agent Starting Run: cva4oexj with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: cva4oexj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cva4oexj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.988087236881256\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.373510904610157\n", "The running loss is:\n", "6.130865275859833\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.7663581594824791\n", "The running loss is:\n", "6.174404188990593\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7718005236238241\n", "The running loss is:\n", "5.187673270702362\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6484591588377953\n", "The running loss is:\n", "4.837460793554783\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6046825991943479\n", "The running loss is:\n", "4.544721320271492\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5680901650339365\n", "The running loss is:\n", "4.069583348929882\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5086979186162353\n", "The running loss is:\n", "3.594746358692646\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.44934329483658075\n", "The running loss is:\n", "3.7067486941814423\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.4633435867726803\n", "The running loss is:\n", "4.295153647661209\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5368942059576511\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 4.944542\n", "48 30755 ... 9.224927\n", "49 30756 ... 15.323524\n", "50 30757 ... 8.676831\n", "51 30758 ... 7.893984\n", "52 30759 ... 5.685059\n", "53 30760 ... 7.073691\n", "54 30761 ... 5.709319\n", "55 30762 ... 6.393231\n", "56 30763 ... 8.572709\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cva4oexj \n", "\n", "wandb: Agent Starting Run: t7i777b8 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: t7i777b8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/t7i777b8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.518769428133965\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.3148461785167456\n", "The running loss is:\n", "5.923578202724457\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.7404472753405571\n", "The running loss is:\n", "5.645459771156311\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7056824713945389\n", "The running loss is:\n", "4.980411872267723\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6225514840334654\n", "The running loss is:\n", "4.530896496027708\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.5663620620034635\n", "The running loss is:\n", "4.397785879671574\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5497232349589467\n", "The running loss is:\n", "4.29297462105751\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5366218276321888\n", "The running loss is:\n", "4.506956547498703\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5633695684373379\n", "The running loss is:\n", "4.146910917013884\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5183638646267354\n", "The running loss is:\n", "4.1442591547966\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.518032394349575\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.146306\n", "48 30755 ... 10.201323\n", "49 30756 ... 10.728070\n", "50 30757 ... 5.294060\n", "51 30758 ... 4.995479\n", "52 30759 ... 3.408786\n", "53 30760 ... 1.815881\n", "54 30761 ... 1.260006\n", "55 30762 ... 0.527362\n", "56 30763 ... -0.697772\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: t7i777b8 \n", "\n", "wandb: Agent Starting Run: 5w26imkb with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 5w26imkb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5w26imkb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.894125536084175\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.2705893622977393\n", "The running loss is:\n", "5.564131408929825\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.7948759155614036\n", "The running loss is:\n", "5.312940925359726\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7589915607656751\n", "The running loss is:\n", "5.099969863891602\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.7285671234130859\n", "The running loss is:\n", "4.625931918621063\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6608474169458661\n", "The running loss is:\n", "4.33843432366848\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.61977633195264\n", "The running loss is:\n", "4.1866855174303055\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5980979310614722\n", "The running loss is:\n", "3.9940166771411896\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5705738110201699\n", "The running loss is:\n", "3.970025137066841\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5671464481524059\n", "The running loss is:\n", "3.9160776883363724\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5594396697623389\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.635190\n", "48 30755 ... 7.895287\n", "49 30756 ... 8.697375\n", "50 30757 ... 1.898233\n", "51 30758 ... 0.671871\n", "52 30759 ... -4.522796\n", "53 30760 ... -9.575880\n", "54 30761 ... -11.591200\n", "55 30762 ... -12.904318\n", "56 30763 ... -14.246117\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5w26imkb \n", "\n", "wandb: Agent Starting Run: ecutckzr with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ecutckzr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ecutckzr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.887800768017769\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.485975096002221\n", "The running loss is:\n", "12.321395099163055\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.540174387395382\n", "The running loss is:\n", "6.093603327870369\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7617004159837961\n", "The running loss is:\n", "5.896246939897537\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7370308674871922\n", "The running loss is:\n", "5.005269628018141\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6256587035022676\n", "The running loss is:\n", "4.166861433535814\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5208576791919768\n", "The running loss is:\n", "4.017287373542786\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5021609216928482\n", "The running loss is:\n", "3.493396818637848\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.436674602329731\n", "The running loss is:\n", "3.3815640807151794\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.42269551008939743\n", "The running loss is:\n", "3.7725103944540024\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.4715637993067503\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 3.423247\n", "48 30755 ... 7.961720\n", "49 30756 ... 16.994312\n", "50 30757 ... 8.721828\n", "51 30758 ... 7.517489\n", "52 30759 ... 5.470166\n", "53 30760 ... 6.306812\n", "54 30761 ... 4.383795\n", "55 30762 ... 5.612186\n", "56 30763 ... 9.138195\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ecutckzr \n", "\n", "wandb: Agent Starting Run: 1l8cw7d1 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 1l8cw7d1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1l8cw7d1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.111236214637756\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.3889045268297195\n", "The running loss is:\n", "10.37959161400795\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.2974489517509937\n", "The running loss is:\n", "5.6099735498428345\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7012466937303543\n", "The running loss is:\n", "5.337096557021141\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6671370696276426\n", "The running loss is:\n", "4.966018117964268\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6207522647455335\n", "The running loss is:\n", "4.362881056964397\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.5453601321205497\n", "The running loss is:\n", "4.704715624451637\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5880894530564547\n", "The running loss is:\n", "4.736382022500038\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5920477528125048\n", "The running loss is:\n", "4.6529160887002945\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5816145110875368\n", "The running loss is:\n", "4.296320855617523\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5370401069521904\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.446108\n", "48 30755 ... 11.343395\n", "49 30756 ... 11.887388\n", "50 30757 ... 7.717669\n", "51 30758 ... 7.751965\n", "52 30759 ... 7.669600\n", "53 30760 ... 7.350806\n", "54 30761 ... 7.241406\n", "55 30762 ... 6.712784\n", "56 30763 ... 5.831652\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1l8cw7d1 \n", "\n", "wandb: Agent Starting Run: nv44ow12 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: nv44ow12\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nv44ow12
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.599854245781898\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.3714077493974142\n", "The running loss is:\n", "7.652046352624893\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.0931494789464133\n", "The running loss is:\n", "5.750150084495544\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.821450012070792\n", "The running loss is:\n", "5.102803453803062\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.7289719219718661\n", "The running loss is:\n", "4.570298731327057\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6528998187610081\n", "The running loss is:\n", "4.174758642911911\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5963940918445587\n", "The running loss is:\n", "4.100458398461342\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5857797712087631\n", "The running loss is:\n", "3.8777418956160545\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5539631279451507\n", "The running loss is:\n", "4.013542205095291\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5733631721564701\n", "The running loss is:\n", "3.7913883179426193\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5416269025632313\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.821921\n", "48 30755 ... 7.197848\n", "49 30756 ... 8.571998\n", "50 30757 ... 2.402885\n", "51 30758 ... 1.511044\n", "52 30759 ... -4.203164\n", "53 30760 ... -8.865639\n", "54 30761 ... -11.548653\n", "55 30762 ... -11.881847\n", "56 30763 ... -11.955574\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nv44ow12 \n", "\n", "wandb: Agent Starting Run: obtghbzd with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: obtghbzd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/obtghbzd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.997101932764053\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.2496377415955067\n", "The running loss is:\n", "25.993660151958466\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "3.249207518994808\n", "The running loss is:\n", "8.482003197073936\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.060250399634242\n", "The running loss is:\n", "9.39265489578247\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.1740818619728088\n", "The running loss is:\n", "6.332621991634369\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7915777489542961\n", "The running loss is:\n", "6.0705039873719215\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7588129984214902\n", "The running loss is:\n", "4.406190410256386\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5507738012820482\n", "The running loss is:\n", "4.119934968650341\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5149918710812926\n", "The running loss is:\n", "3.609408460557461\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.4511760575696826\n", "The running loss is:\n", "3.869946077466011\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.4837432596832514\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 3.105083\n", "48 30755 ... 7.483217\n", "49 30756 ... 16.624786\n", "50 30757 ... 13.093364\n", "51 30758 ... 11.839172\n", "52 30759 ... 8.308400\n", "53 30760 ... 7.560250\n", "54 30761 ... 4.328191\n", "55 30762 ... 7.659884\n", "56 30763 ... 15.055558\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: obtghbzd \n", "\n", "wandb: Agent Starting Run: zsuiwysp with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: zsuiwysp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/zsuiwysp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.068325817584991\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.258540727198124\n", "The running loss is:\n", "24.007892698049545\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "3.000986587256193\n", "The running loss is:\n", "9.265377074480057\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.158172134310007\n", "The running loss is:\n", "8.75785793364048\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.09473224170506\n", "The running loss is:\n", "6.427554905414581\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.8034443631768227\n", "The running loss is:\n", "5.975850880146027\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7469813600182533\n", "The running loss is:\n", "5.8006473779678345\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.7250809222459793\n", "The running loss is:\n", "5.041416525840759\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.6301770657300949\n", "The running loss is:\n", "5.184276461601257\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6480345577001572\n", "The running loss is:\n", "4.828471004962921\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.6035588756203651\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.685125\n", "48 30755 ... 10.141446\n", "49 30756 ... 10.176304\n", "50 30757 ... 8.534622\n", "51 30758 ... 8.422894\n", "52 30759 ... 9.165926\n", "53 30760 ... 8.473968\n", "54 30761 ... 8.556828\n", "55 30762 ... 8.253967\n", "56 30763 ... 7.639414\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: zsuiwysp \n", "\n", "wandb: Agent Starting Run: becfxy1h with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: becfxy1h\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/becfxy1h
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.460621416568756\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.2086602023669653\n", "The running loss is:\n", "18.102233052253723\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "2.5860332931791032\n", "The running loss is:\n", "6.512787103652954\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.9303981576647077\n", "The running loss is:\n", "6.982966423034668\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.9975666318620954\n", "The running loss is:\n", "6.328465700149536\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.9040665285927909\n", "The running loss is:\n", "5.637281686067581\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.8053259551525116\n", "The running loss is:\n", "5.099390223622322\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.7284843176603317\n", "The running loss is:\n", "5.197691917419434\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.7425274167742048\n", "The running loss is:\n", "4.571497932076454\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6530711331537792\n", "The running loss is:\n", "4.5052072405815125\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.6436010343687875\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.477296\n", "48 30755 ... 12.216771\n", "49 30756 ... 16.080605\n", "50 30757 ... 7.985258\n", "51 30758 ... 5.157682\n", "52 30759 ... 5.292890\n", "53 30760 ... 8.751102\n", "54 30761 ... 6.112296\n", "55 30762 ... 5.893753\n", "56 30763 ... 2.171442\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: becfxy1h \n", "\n", "wandb: Agent Starting Run: ft6dluaf with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ft6dluaf\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ft6dluaf
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "51.745544634759426\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "6.468193079344928\n", "The running loss is:\n", "7.415382172912359\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9269227716140449\n", "The running loss is:\n", "26.316525518894196\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "3.2895656898617744\n", "The running loss is:\n", "10.214841291308403\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.2768551614135504\n", "The running loss is:\n", "8.170285634696484\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.0212857043370605\n", "The running loss is:\n", "7.0604946203529835\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.8825618275441229\n", "The running loss is:\n", "7.179498016834259\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.8974372521042824\n", "The running loss is:\n", "6.191406540572643\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.7739258175715804\n", "The running loss is:\n", "5.223570495843887\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.6529463119804859\n", "The running loss is:\n", "4.520765490829945\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5650956863537431\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 4.974351\n", "48 30755 ... 8.985002\n", "49 30756 ... 12.309855\n", "50 30757 ... 13.367251\n", "51 30758 ... 9.941705\n", "52 30759 ... 8.789341\n", "53 30760 ... 6.738607\n", "54 30761 ... 6.319057\n", "55 30762 ... 8.400917\n", "56 30763 ... 14.151873\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ft6dluaf \n", "\n", "wandb: Agent Starting Run: 2arfilkc with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 2arfilkc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2arfilkc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "41.46526186168194\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "5.183157732710242\n", "The running loss is:\n", "9.50710366666317\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.1883879583328962\n", "The running loss is:\n", "16.354243218898773\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "2.0442804023623466\n", "The running loss is:\n", "13.173823714256287\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.6467279642820358\n", "The running loss is:\n", "9.65525808930397\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.2069072611629963\n", "The running loss is:\n", "8.45247933268547\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "1.0565599165856838\n", "The running loss is:\n", "7.676742374897003\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.9595927968621254\n", "The running loss is:\n", "7.17548294365406\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.8969353679567575\n", "The running loss is:\n", "7.414336830377579\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.9267921037971973\n", "The running loss is:\n", "7.242239236831665\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.9052799046039581\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.665867\n", "48 30755 ... 8.799163\n", "49 30756 ... 8.671396\n", "50 30757 ... 8.563816\n", "51 30758 ... 8.574473\n", "52 30759 ... 8.541787\n", "53 30760 ... 8.166990\n", "54 30761 ... 8.139524\n", "55 30762 ... 8.140105\n", "56 30763 ... 8.138222\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2arfilkc \n", "\n", "wandb: Agent Starting Run: 42em95oh with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 42em95oh\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/42em95oh
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "28.903275549411774\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "4.129039364201682\n", "The running loss is:\n", "8.714233547449112\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.2448905067784446\n", "The running loss is:\n", "10.163697183132172\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "1.4519567404474532\n", "The running loss is:\n", "6.631345450878143\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.9473350644111633\n", "The running loss is:\n", "8.022440493106842\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "1.1460629275866918\n", "The running loss is:\n", "6.365507125854492\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.909358160836356\n", "The running loss is:\n", "5.899640619754791\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.842805802822113\n", "The running loss is:\n", "5.404639720916748\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.7720913887023926\n", "The running loss is:\n", "4.700559139251709\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6715084484645298\n", "The running loss is:\n", "4.579154878854752\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.654164982693536\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 14.387460\n", "48 30755 ... 14.059313\n", "49 30756 ... 16.322126\n", "50 30757 ... 7.285743\n", "51 30758 ... 7.333082\n", "52 30759 ... 6.417980\n", "53 30760 ... 8.817734\n", "54 30761 ... 7.192719\n", "55 30762 ... 7.644890\n", "56 30763 ... 4.754567\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 42em95oh \n", "\n", "wandb: Agent Starting Run: v04iw04x with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: v04iw04x\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v04iw04x
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.009780496358871\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.126222562044859\n", "The running loss is:\n", "8.815376043319702\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "1.1019220054149628\n", "The running loss is:\n", "5.679255768656731\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.7099069710820913\n", "The running loss is:\n", "5.220305755734444\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.6525382194668055\n", "The running loss is:\n", "5.057030022144318\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.6321287527680397\n", "The running loss is:\n", "5.1790468990802765\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6473808623850346\n", "The running loss is:\n", "4.504566803574562\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.5630708504468203\n", "The running loss is:\n", "4.49835005402565\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5622937567532063\n", "The running loss is:\n", "4.113087989389896\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.514135998673737\n", "The running loss is:\n", "4.175215393304825\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5219019241631031\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.973689\n", "48 30755 ... 13.957306\n", "49 30756 ... 14.184193\n", "50 30757 ... 13.553813\n", "51 30758 ... 9.452812\n", "52 30759 ... 9.643188\n", "53 30760 ... 9.692542\n", "54 30761 ... 9.199206\n", "55 30762 ... 8.749400\n", "56 30763 ... 8.436934\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v04iw04x \n", "\n", "wandb: Agent Starting Run: z0gzzvz7 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: z0gzzvz7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/z0gzzvz7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.857616066932678\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.2653737238475256\n", "The running loss is:\n", "5.892047256231308\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.8417210366044726\n", "The running loss is:\n", "5.294501721858978\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7563573888369969\n", "The running loss is:\n", "4.488193511962891\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6411705017089844\n", "The running loss is:\n", "4.085705995559692\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.583672285079956\n", "The running loss is:\n", "3.9441015422344208\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5634430774620601\n", "The running loss is:\n", "3.6253725737333298\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5179103676761899\n", "The running loss is:\n", "3.4738786220550537\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.4962683745792934\n", "The running loss is:\n", "3.252960652112961\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.4647086645875658\n", "The running loss is:\n", "3.3102271109819412\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.47288958728313446\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.235288\n", "48 30755 ... 5.120963\n", "49 30756 ... 6.150893\n", "50 30757 ... 6.511737\n", "51 30758 ... 0.237356\n", "52 30759 ... -1.679703\n", "53 30760 ... -7.668720\n", "54 30761 ... -9.001451\n", "55 30762 ... -10.168573\n", "56 30763 ... -10.948854\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: z0gzzvz7 \n", "\n", "wandb: Agent Starting Run: mg19jgh7 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: mg19jgh7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mg19jgh7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.379037261009216\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.1970053230013167\n", "The running loss is:\n", "5.307533085346222\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.7582190121923175\n", "The running loss is:\n", "4.932691335678101\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7046701908111572\n", "The running loss is:\n", "4.546344310045242\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6494777585778918\n", "The running loss is:\n", "4.347181588411331\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6210259412016187\n", "The running loss is:\n", "3.996902972459793\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5709861389228276\n", "The running loss is:\n", "3.996919736266136\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5709885337523052\n", "The running loss is:\n", "3.778156131505966\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.539736590215138\n", "The running loss is:\n", "3.7420578598976135\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5345796942710876\n", "The running loss is:\n", "3.785576105117798\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5407965864453997\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.854308\n", "48 30755 ... 5.433422\n", "49 30756 ... 6.249044\n", "50 30757 ... 6.006957\n", "51 30758 ... 0.170424\n", "52 30759 ... -1.708926\n", "53 30760 ... -6.426423\n", "54 30761 ... -8.075663\n", "55 30762 ... -9.582035\n", "56 30763 ... -10.701384\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mg19jgh7 \n", "\n", "wandb: Agent Starting Run: xujmq1wm with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: xujmq1wm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xujmq1wm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.328620731830597\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "1.2910775914788246\n", "The running loss is:\n", "17.95246112346649\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.2440576404333115\n", "The running loss is:\n", "6.625293288379908\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "0.8281616610474885\n", "The running loss is:\n", "6.007527709007263\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.7509409636259079\n", "The running loss is:\n", "5.87974913418293\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7349686417728662\n", "The running loss is:\n", "5.40078030526638\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.6750975381582975\n", "The running loss is:\n", "4.814377501606941\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6017971877008677\n", "The running loss is:\n", "4.766529709100723\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.5958162136375904\n", "The running loss is:\n", "4.524849310517311\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.5656061638146639\n", "The running loss is:\n", "4.09240049123764\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.511550061404705\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.599988\n", "48 30755 ... 14.127781\n", "49 30756 ... 14.584249\n", "50 30757 ... 14.020692\n", "51 30758 ... 11.691189\n", "52 30759 ... 11.752935\n", "53 30760 ... 11.960830\n", "54 30761 ... 11.773537\n", "55 30762 ... 11.726958\n", "56 30763 ... 11.685018\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xujmq1wm \n", "\n", "wandb: Agent Starting Run: 1mpruz7r with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 1mpruz7r\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1mpruz7r
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.134911477565765\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.3049873539379664\n", "The running loss is:\n", "11.372960567474365\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.624708652496338\n", "The running loss is:\n", "4.703024297952652\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.671860613993236\n", "The running loss is:\n", "4.89816290140152\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6997375573430743\n", "The running loss is:\n", "4.575336530804634\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.653619504400662\n", "The running loss is:\n", "4.036156639456749\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5765938056366784\n", "The running loss is:\n", "3.7723549902439117\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5389078557491302\n", "The running loss is:\n", "3.553560823202133\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5076515461717334\n", "The running loss is:\n", "3.3667041957378387\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.48095774224826265\n", "The running loss is:\n", "3.3663299083709717\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.48090427262442453\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.382259\n", "48 30755 ... 5.730763\n", "49 30756 ... 6.944045\n", "50 30757 ... 8.367525\n", "51 30758 ... 3.260181\n", "52 30759 ... 2.212879\n", "53 30760 ... -2.212296\n", "54 30761 ... -2.790353\n", "55 30762 ... -3.146363\n", "56 30763 ... -3.273260\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1mpruz7r \n", "\n", "wandb: Agent Starting Run: h98tjc97 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: h98tjc97\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/h98tjc97
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.568547546863556\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.224078220980508\n", "The running loss is:\n", "7.439529746770859\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.0627899638244085\n", "The running loss is:\n", "4.960866212844849\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7086951732635498\n", "The running loss is:\n", "4.659017026424408\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6655738609177726\n", "The running loss is:\n", "4.433339834213257\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6333342620304653\n", "The running loss is:\n", "3.8202225267887115\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5457460752555302\n", "The running loss is:\n", "3.9327641278505325\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5618234468357903\n", "The running loss is:\n", "3.604253336787224\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5148933338267463\n", "The running loss is:\n", "3.4691165685653687\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.4955880812236241\n", "The running loss is:\n", "3.4035107642412186\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.4862158234630312\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 5.711511\n", "48 30755 ... 5.064266\n", "49 30756 ... 5.884321\n", "50 30757 ... 6.018492\n", "51 30758 ... -0.261717\n", "52 30759 ... -1.986962\n", "53 30760 ... -7.378283\n", "54 30761 ... -9.749792\n", "55 30762 ... -11.496117\n", "56 30763 ... -11.704885\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: h98tjc97 \n", "\n", "wandb: Agent Starting Run: os66dtsw with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: os66dtsw\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/os66dtsw
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.596001714468002\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "2.3245002143085003\n", "The running loss is:\n", "17.31740289926529\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "2.164675362408161\n", "The running loss is:\n", "9.421775847673416\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "1.177721980959177\n", "The running loss is:\n", "6.757692888379097\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "0.8447116110473871\n", "The running loss is:\n", "6.253585696220398\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "0.7816982120275497\n", "The running loss is:\n", "5.741266116499901\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "0.7176582645624876\n", "The running loss is:\n", "4.830026730895042\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "0.6037533413618803\n", "The running loss is:\n", "4.553853526711464\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "0.569231690838933\n", "The running loss is:\n", "4.212658815085888\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.526582351885736\n", "The running loss is:\n", "4.101347729563713\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.5126684661954641\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.757821\n", "48 30755 ... 14.091363\n", "49 30756 ... 14.059839\n", "50 30757 ... 13.189163\n", "51 30758 ... 10.963506\n", "52 30759 ... 10.853949\n", "53 30760 ... 11.138344\n", "54 30761 ... 11.210142\n", "55 30762 ... 11.705401\n", "56 30763 ... 11.253247\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: os66dtsw \n", "\n", "wandb: Agent Starting Run: dtx619mj with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: dtx619mj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/dtx619mj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.538036316633224\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.648290902376175\n", "The running loss is:\n", "27.30086961388588\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "3.9001242305551256\n", "The running loss is:\n", "6.902018129825592\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.9860025899750846\n", "The running loss is:\n", "8.486170530319214\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.2123100757598877\n", "The running loss is:\n", "5.592561990022659\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.7989374271460942\n", "The running loss is:\n", "5.384973257780075\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.7692818939685822\n", "The running loss is:\n", "4.928272694349289\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.7040389563356128\n", "The running loss is:\n", "4.354663372039795\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.6220947674342564\n", "The running loss is:\n", "4.097138851881027\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5853055502687182\n", "The running loss is:\n", "3.9094666242599487\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5584952320371356\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.796641\n", "48 30755 ... 9.342697\n", "49 30756 ... 9.459212\n", "50 30757 ... 9.968360\n", "51 30758 ... 8.718388\n", "52 30759 ... 8.447587\n", "53 30760 ... 8.985465\n", "54 30761 ... 8.420585\n", "55 30762 ... 9.642568\n", "56 30763 ... 9.002261\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: dtx619mj \n", "\n", "wandb: Agent Starting Run: ph3sz2jf with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ph3sz2jf\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ph3sz2jf
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.805723547935486\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.2579605068479265\n", "The running loss is:\n", "20.8605694770813\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "2.980081353868757\n", "The running loss is:\n", "5.607284247875214\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.8010406068393162\n", "The running loss is:\n", "6.950852543115616\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.9929789347308022\n", "The running loss is:\n", "5.903511047363281\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.8433587210518974\n", "The running loss is:\n", "5.360262036323547\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.7657517194747925\n", "The running loss is:\n", "4.968137204647064\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.709733886378152\n", "The running loss is:\n", "4.6906518042087555\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.6700931148869651\n", "The running loss is:\n", "4.265324801206589\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6093321144580841\n", "The running loss is:\n", "4.243742972612381\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.606248996087483\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.965941\n", "48 30755 ... 7.205519\n", "49 30756 ... 8.403504\n", "50 30757 ... 9.476584\n", "51 30758 ... 7.341923\n", "52 30759 ... 7.236106\n", "53 30760 ... 6.708858\n", "54 30761 ... 3.748622\n", "55 30762 ... 3.855751\n", "56 30763 ... 3.793899\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ph3sz2jf \n", "\n", "wandb: Agent Starting Run: tl2ee0kx with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: tl2ee0kx\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/tl2ee0kx
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "79.56610406935215\n", "The number of items in train is: \n", "8\n", "The loss for epoch 0\n", "9.945763008669019\n", "The running loss is:\n", "7.204314440488815\n", "The number of items in train is: \n", "8\n", "The loss for epoch 1\n", "0.9005393050611019\n", "The running loss is:\n", "34.79838861897588\n", "The number of items in train is: \n", "8\n", "The loss for epoch 2\n", "4.349798577371985\n", "The running loss is:\n", "13.492564976215363\n", "The number of items in train is: \n", "8\n", "The loss for epoch 3\n", "1.6865706220269203\n", "The running loss is:\n", "8.105150907533243\n", "The number of items in train is: \n", "8\n", "The loss for epoch 4\n", "1.0131438634416554\n", "The running loss is:\n", "17.24639244377613\n", "The number of items in train is: \n", "8\n", "The loss for epoch 5\n", "2.1557990554720163\n", "The running loss is:\n", "15.907869756221771\n", "The number of items in train is: \n", "8\n", "The loss for epoch 6\n", "1.9884837195277214\n", "The running loss is:\n", "9.063403755426407\n", "The number of items in train is: \n", "8\n", "The loss for epoch 7\n", "1.1329254694283009\n", "The running loss is:\n", "7.892887741327286\n", "The number of items in train is: \n", "8\n", "The loss for epoch 8\n", "0.9866109676659107\n", "The running loss is:\n", "7.113882530480623\n", "The number of items in train is: \n", "8\n", "The loss for epoch 9\n", "0.8892353163100779\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.513741\n", "48 30755 ... 7.839818\n", "49 30756 ... 7.624097\n", "50 30757 ... 7.607502\n", "51 30758 ... 6.127538\n", "52 30759 ... 7.737118\n", "53 30760 ... 7.606065\n", "54 30761 ... 6.173356\n", "55 30762 ... 6.936601\n", "56 30763 ... 7.023078\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: tl2ee0kx \n", "\n", "wandb: Agent Starting Run: 7fa9a6s1 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 7fa9a6s1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/7fa9a6s1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "52.08390510082245\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "7.440557871546064\n", "The running loss is:\n", "11.381277471780777\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.6258967816829681\n", "The running loss is:\n", "25.816108763217926\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "3.6880155376025607\n", "The running loss is:\n", "5.692464888095856\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.8132092697279794\n", "The running loss is:\n", "12.835353791713715\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "1.8336219702448164\n", "The running loss is:\n", "20.29457151889801\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "2.899224502699716\n", "The running loss is:\n", "6.967081665992737\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.9952973808561053\n", "The running loss is:\n", "7.198956787586212\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "1.0284223982266016\n", "The running loss is:\n", "7.881454288959503\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "1.1259220412799291\n", "The running loss is:\n", "7.26533517241478\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "1.037905024630683\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.481693\n", "48 30755 ... 7.128554\n", "49 30756 ... 6.864052\n", "50 30757 ... 6.029053\n", "51 30758 ... 6.576490\n", "52 30759 ... 6.761997\n", "53 30760 ... 6.898374\n", "54 30761 ... 7.043981\n", "55 30762 ... 7.331190\n", "56 30763 ... 6.609051\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 7fa9a6s1 \n", "\n", "wandb: Agent Starting Run: 2g1uqyaf with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 2g1uqyaf\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2g1uqyaf
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "37.419967859983444\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "5.345709694283349\n", "The running loss is:\n", "10.821948528289795\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.545992646898542\n", "The running loss is:\n", "9.870258629322052\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "1.4100369470460075\n", "The running loss is:\n", "5.8033487200737\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.8290498171533857\n", "The running loss is:\n", "6.369944393634796\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.9099920562335423\n", "The running loss is:\n", "5.617344975471497\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.8024778536387852\n", "The running loss is:\n", "5.247073173522949\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.7495818819318499\n", "The running loss is:\n", "5.167417734861374\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.7382025335516248\n", "The running loss is:\n", "5.165225565433502\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.7378893664905003\n", "The running loss is:\n", "4.82859468460083\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.6897992406572614\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.674891\n", "48 30755 ... 11.012010\n", "49 30756 ... 10.963237\n", "50 30757 ... 10.817793\n", "51 30758 ... 5.869459\n", "52 30759 ... 5.821937\n", "53 30760 ... 5.026206\n", "54 30761 ... 2.507891\n", "55 30762 ... 2.534259\n", "56 30763 ... 3.081643\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2g1uqyaf \n", "\n", "wandb: Agent Starting Run: fbzwgj5d with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: fbzwgj5d\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fbzwgj5d
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.336233288049698\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.3337476125785284\n", "The running loss is:\n", "5.11325016617775\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.7304643094539642\n", "The running loss is:\n", "4.894846081733704\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.6992637259619576\n", "The running loss is:\n", "4.361954137682915\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6231363053832736\n", "The running loss is:\n", "3.946231722831726\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.5637473889759609\n", "The running loss is:\n", "4.036977797746658\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5767111139638084\n", "The running loss is:\n", "3.637524761259556\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5196463944656509\n", "The running loss is:\n", "3.5761826187372208\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5108832312481744\n", "The running loss is:\n", "3.4031307995319366\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.4861615427902767\n", "The running loss is:\n", "3.205967530608177\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.4579953615154539\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.806149\n", "48 30755 ... 11.034535\n", "49 30756 ... 14.467689\n", "50 30757 ... 14.238250\n", "51 30758 ... 10.971130\n", "52 30759 ... 10.287059\n", "53 30760 ... 10.894358\n", "54 30761 ... 10.626654\n", "55 30762 ... 10.909733\n", "56 30763 ... 12.139064\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fbzwgj5d \n", "\n", "wandb: Agent Starting Run: z773q140 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: z773q140\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/z773q140
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.177690148353577\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.3110985926219396\n", "The running loss is:\n", "5.94622865319252\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.8494612361703601\n", "The running loss is:\n", "5.502836525440216\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7861195036343166\n", "The running loss is:\n", "4.882712662220001\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.697530380317143\n", "The running loss is:\n", "4.823515743017197\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6890736775738853\n", "The running loss is:\n", "4.585278883576393\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.6550398405109134\n", "The running loss is:\n", "4.415525987744331\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.6307894268206188\n", "The running loss is:\n", "4.571172222495079\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.6530246032135827\n", "The running loss is:\n", "4.134524956345558\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5906464223350797\n", "The running loss is:\n", "4.182448834180832\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5974926905972617\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.957873\n", "48 30755 ... 10.888971\n", "49 30756 ... 12.070364\n", "50 30757 ... 12.814865\n", "51 30758 ... 12.341984\n", "52 30759 ... 10.130991\n", "53 30760 ... 10.580561\n", "54 30761 ... 11.226346\n", "55 30762 ... 11.099922\n", "56 30763 ... 11.260043\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: z773q140 \n", "\n", "wandb: Agent Starting Run: c17omt6j with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: c17omt6j\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c17omt6j
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.464878857135773\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.2092684081622533\n", "The running loss is:\n", "5.037981957197189\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.719711708171027\n", "The running loss is:\n", "4.809891790151596\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.6871273985930851\n", "The running loss is:\n", "4.0787065625190735\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.5826723660741534\n", "The running loss is:\n", "4.271046087145805\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6101494410208294\n", "The running loss is:\n", "4.067079246044159\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5810113208634513\n", "The running loss is:\n", "4.014323055744171\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5734747222491673\n", "The running loss is:\n", "3.7231625616550446\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5318803659507206\n", "The running loss is:\n", "3.71854804456234\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5312211492231914\n", "The running loss is:\n", "3.612421989440918\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5160602842058454\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.139462\n", "48 30755 ... 9.361436\n", "49 30756 ... 10.952075\n", "50 30757 ... 10.844501\n", "51 30758 ... 9.159294\n", "52 30759 ... 7.213850\n", "53 30760 ... 7.122150\n", "54 30761 ... 7.227113\n", "55 30762 ... 6.614833\n", "56 30763 ... 6.647117\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c17omt6j \n", "\n", "wandb: Agent Starting Run: dc420ovb with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: dc420ovb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/dc420ovb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.042995542287827\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.434713648898261\n", "The running loss is:\n", "7.474764108657837\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.0678234440939767\n", "The running loss is:\n", "4.9013950526714325\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.700199293238776\n", "The running loss is:\n", "4.431417480111122\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6330596400158746\n", "The running loss is:\n", "4.164117723703384\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.594873960529055\n", "The running loss is:\n", "3.84988109767437\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5499830139534814\n", "The running loss is:\n", "3.5169313699007034\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.502418767128672\n", "The running loss is:\n", "3.107982710003853\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.4439975300005504\n", "The running loss is:\n", "3.3591590151190758\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.4798798593027251\n", "The running loss is:\n", "3.0317525193095207\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.43310750275850296\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.845029\n", "48 30755 ... 11.769980\n", "49 30756 ... 16.313171\n", "50 30757 ... 15.718273\n", "51 30758 ... 12.462557\n", "52 30759 ... 11.991672\n", "53 30760 ... 12.592597\n", "54 30761 ... 12.409809\n", "55 30762 ... 13.502852\n", "56 30763 ... 15.533869\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: dc420ovb \n", "\n", "wandb: Agent Starting Run: 2lak3mf3 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 2lak3mf3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2lak3mf3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.486467003822327\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.355209571974618\n", "The running loss is:\n", "7.774271607398987\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.1106102296284266\n", "The running loss is:\n", "5.2772374749183655\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7538910678454808\n", "The running loss is:\n", "5.003746151924133\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.7148208788463047\n", "The running loss is:\n", "4.869605340063572\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6956579057233674\n", "The running loss is:\n", "4.4538838267326355\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.6362691181046622\n", "The running loss is:\n", "4.390820115804672\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.6272600165435246\n", "The running loss is:\n", "4.38667120039463\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.6266673143420901\n", "The running loss is:\n", "3.9946878850460052\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.570669697863715\n", "The running loss is:\n", "3.964384078979492\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.566340582711356\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.839034\n", "48 30755 ... 11.101344\n", "49 30756 ... 12.585072\n", "50 30757 ... 13.072854\n", "51 30758 ... 13.150121\n", "52 30759 ... 10.736032\n", "53 30760 ... 11.587616\n", "54 30761 ... 11.559414\n", "55 30762 ... 11.871531\n", "56 30763 ... 12.667596\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2lak3mf3 \n", "\n", "wandb: Agent Starting Run: 1vfg1v1j with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 1vfg1v1j\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1vfg1v1j
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.01353543996811\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.2876479199954443\n", "The running loss is:\n", "8.305128276348114\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.1864468966211592\n", "The running loss is:\n", "4.578442484140396\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.6540632120200566\n", "The running loss is:\n", "4.405091732740402\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6292988189629146\n", "The running loss is:\n", "4.34169502556324\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6202421465090343\n", "The running loss is:\n", "3.9862598925828934\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5694656989404133\n", "The running loss is:\n", "3.979832261800766\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.568547465971538\n", "The running loss is:\n", "3.5811107754707336\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5115872536386762\n", "The running loss is:\n", "3.5624044686555862\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5089149240936551\n", "The running loss is:\n", "3.448199100792408\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.4925998715417726\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.244447\n", "48 30755 ... 9.826646\n", "49 30756 ... 11.896688\n", "50 30757 ... 11.638386\n", "51 30758 ... 9.964475\n", "52 30759 ... 8.469487\n", "53 30760 ... 8.533617\n", "54 30761 ... 8.421778\n", "55 30762 ... 8.096305\n", "56 30763 ... 8.440117\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1vfg1v1j \n", "\n", "wandb: Agent Starting Run: j8qqp3c2 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: j8qqp3c2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/j8qqp3c2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.458968162536621\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.3512811660766602\n", "The running loss is:\n", "21.075702905654907\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "3.010814700807844\n", "The running loss is:\n", "5.451179146766663\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7787398781095233\n", "The running loss is:\n", "6.688863754272461\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.9555519648960659\n", "The running loss is:\n", "6.188786864280701\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.8841124091829572\n", "The running loss is:\n", "5.368324548006058\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.7669035068580082\n", "The running loss is:\n", "4.517726391553879\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.645389484507697\n", "The running loss is:\n", "4.753752812743187\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.6791075446775982\n", "The running loss is:\n", "4.646036148071289\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6637194497244698\n", "The running loss is:\n", "4.074129417538643\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5820184882198062\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.402539\n", "48 30755 ... 12.075924\n", "49 30756 ... 15.184203\n", "50 30757 ... 12.845176\n", "51 30758 ... 8.898929\n", "52 30759 ... 11.674198\n", "53 30760 ... 11.553167\n", "54 30761 ... 11.936520\n", "55 30762 ... 12.232157\n", "56 30763 ... 13.043743\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: j8qqp3c2 \n", "\n", "wandb: Agent Starting Run: zewye6m1 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: zewye6m1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/zewye6m1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.001771569252014\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.428824509893145\n", "The running loss is:\n", "20.346972823143005\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "2.9067104033061435\n", "The running loss is:\n", "5.735487461090088\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.8193553515842983\n", "The running loss is:\n", "6.7128947377204895\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.9589849625314985\n", "The running loss is:\n", "6.372850209474564\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.9104071727820805\n", "The running loss is:\n", "5.315346002578735\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.7593351432255336\n", "The running loss is:\n", "4.923664838075638\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.7033806911536625\n", "The running loss is:\n", "4.619252592325211\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.6598932274750301\n", "The running loss is:\n", "4.849480867385864\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6927829810551235\n", "The running loss is:\n", "4.769946187734604\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.6814208839620862\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.882496\n", "48 30755 ... 12.364532\n", "49 30756 ... 14.726078\n", "50 30757 ... 13.591410\n", "51 30758 ... 12.194124\n", "52 30759 ... 12.492190\n", "53 30760 ... 12.379921\n", "54 30761 ... 12.688085\n", "55 30762 ... 12.570847\n", "56 30763 ... 12.598701\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: zewye6m1 \n", "\n", "wandb: Agent Starting Run: 6gwcnc5t with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 6gwcnc5t\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6gwcnc5t
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.065265715122223\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.5807522450174605\n", "The running loss is:\n", "19.994363248348236\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "2.856337606906891\n", "The running loss is:\n", "5.749635964632034\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.8213765663760049\n", "The running loss is:\n", "6.598259687423706\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.9426085267748151\n", "The running loss is:\n", "4.696272283792496\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6708960405417851\n", "The running loss is:\n", "4.804319143295288\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.6863313061850411\n", "The running loss is:\n", "4.463131815195084\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.6375902593135834\n", "The running loss is:\n", "4.612153172492981\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.6588790246418544\n", "The running loss is:\n", "4.284528285264969\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6120754693235669\n", "The running loss is:\n", "4.153792500495911\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.593398928642273\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.800093\n", "48 30755 ... 11.202961\n", "49 30756 ... 11.976234\n", "50 30757 ... 11.460857\n", "51 30758 ... 10.998887\n", "52 30759 ... 10.735220\n", "53 30760 ... 10.952649\n", "54 30761 ... 10.644355\n", "55 30762 ... 10.612105\n", "56 30763 ... 11.144648\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6gwcnc5t \n", "\n", "wandb: Agent Starting Run: 1oow5e52 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 1oow5e52\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1oow5e52
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "39.09426712989807\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "5.584895304271153\n", "The running loss is:\n", "8.815387278795242\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.2593410398278917\n", "The running loss is:\n", "10.441057562828064\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "1.4915796518325806\n", "The running loss is:\n", "7.836777687072754\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.119539669581822\n", "The running loss is:\n", "5.5894342958927155\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.7984906136989594\n", "The running loss is:\n", "4.797979637980461\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.6854256625686374\n", "The running loss is:\n", "5.106695920228958\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.7295279886041369\n", "The running loss is:\n", "5.3624774515628815\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.7660682073661259\n", "The running loss is:\n", "5.132751166820526\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.7332501666886466\n", "The running loss is:\n", "4.637645840644836\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.6625208343778338\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.461702\n", "48 30755 ... 11.493561\n", "49 30756 ... 7.273075\n", "50 30757 ... 12.487080\n", "51 30758 ... 11.164696\n", "52 30759 ... 10.003759\n", "53 30760 ... 9.965696\n", "54 30761 ... 9.195720\n", "55 30762 ... 9.681444\n", "56 30763 ... 10.299913\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1oow5e52 \n", "\n", "wandb: Agent Starting Run: ervqlzd5 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ervqlzd5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ervqlzd5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "36.73223286867142\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "5.247461838381631\n", "The running loss is:\n", "8.665028989315033\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.2378612841878618\n", "The running loss is:\n", "10.718747615814209\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "1.53124965940203\n", "The running loss is:\n", "6.298239514231682\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.8997485020330974\n", "The running loss is:\n", "6.406042277812958\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.9151488968304226\n", "The running loss is:\n", "6.371782273054123\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.9102546104363033\n", "The running loss is:\n", "6.079530298709869\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.8685043283871242\n", "The running loss is:\n", "6.881429195404053\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.9830613136291504\n", "The running loss is:\n", "5.822851479053497\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.831835925579071\n", "The running loss is:\n", "5.205782949924469\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.7436832785606384\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.829610\n", "48 30755 ... 13.508774\n", "49 30756 ... 13.238535\n", "50 30757 ... 12.937251\n", "51 30758 ... 12.953267\n", "52 30759 ... 11.199141\n", "53 30760 ... 11.241271\n", "54 30761 ... 11.257262\n", "55 30762 ... 11.259697\n", "56 30763 ... 11.264960\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ervqlzd5 \n", "\n", "wandb: Agent Starting Run: 1csgx861 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 1csgx861\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1csgx861
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "45.76984786987305\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "6.538549695696149\n", "The running loss is:\n", "6.865525305271149\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.9807893293244498\n", "The running loss is:\n", "13.207008957862854\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "1.8867155654089791\n", "The running loss is:\n", "6.200265973806381\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.8857522819723401\n", "The running loss is:\n", "7.200608611106873\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "1.0286583730152674\n", "The running loss is:\n", "5.776394367218018\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.8251991953168597\n", "The running loss is:\n", "5.003000259399414\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.7147143227713448\n", "The running loss is:\n", "5.345502436161041\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.763643205165863\n", "The running loss is:\n", "4.749779254198074\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6785398934568677\n", "The running loss is:\n", "4.6609319150447845\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.6658474164349693\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.792873\n", "48 30755 ... 9.695145\n", "49 30756 ... 9.721715\n", "50 30757 ... 10.123501\n", "51 30758 ... 9.551498\n", "52 30759 ... 9.261765\n", "53 30760 ... 9.297737\n", "54 30761 ... 9.213287\n", "55 30762 ... 8.607971\n", "56 30763 ... 8.690456\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1csgx861 \n", "\n", "wandb: Agent Starting Run: qf1wsozx with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: qf1wsozx\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qf1wsozx
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.453750848770142\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.207678692681449\n", "The running loss is:\n", "5.78881973028183\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.8269742471831185\n", "The running loss is:\n", "4.940449774265289\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7057785391807556\n", "The running loss is:\n", "4.20541875064373\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6007741072348186\n", "The running loss is:\n", "3.9624558836221695\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.5660651262317385\n", "The running loss is:\n", "3.706973645836115\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5295676636908736\n", "The running loss is:\n", "3.901065617799759\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5572950882571084\n", "The running loss is:\n", "3.821559399366379\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5459370570523399\n", "The running loss is:\n", "3.222411021590233\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.46034443165574757\n", "The running loss is:\n", "3.5929430425167084\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5132775775023869\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.300883\n", "48 30755 ... 7.877327\n", "49 30756 ... 9.205451\n", "50 30757 ... 11.192038\n", "51 30758 ... 10.560779\n", "52 30759 ... 8.089823\n", "53 30760 ... 6.922207\n", "54 30761 ... 6.764965\n", "55 30762 ... 6.743966\n", "56 30763 ... 6.344927\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qf1wsozx \n", "\n", "wandb: Agent Starting Run: 9y7auasy with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 9y7auasy\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9y7auasy
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "7.978905558586121\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.1398436512265886\n", "The running loss is:\n", "5.127258628606796\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.7324655183723995\n", "The running loss is:\n", "4.72313766181469\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.6747339516878128\n", "The running loss is:\n", "4.185404866933823\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.5979149809905461\n", "The running loss is:\n", "4.080670237541199\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.5829528910773141\n", "The running loss is:\n", "3.9133199751377106\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5590457107339587\n", "The running loss is:\n", "3.774104356765747\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5391577652522496\n", "The running loss is:\n", "3.395247310400009\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.48503533005714417\n", "The running loss is:\n", "3.3610329627990723\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.48014756611415316\n", "The running loss is:\n", "3.049194633960724\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.43559923342296053\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.223148\n", "48 30755 ... 8.128177\n", "49 30756 ... 9.358207\n", "50 30757 ... 11.647758\n", "51 30758 ... 10.551282\n", "52 30759 ... 6.696947\n", "53 30760 ... 4.689186\n", "54 30761 ... 4.889297\n", "55 30762 ... 4.608911\n", "56 30763 ... 4.071383\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9y7auasy \n", "\n", "wandb: Agent Starting Run: notixq7k with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: notixq7k\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/notixq7k
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.997486591339111\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.2853552273341589\n", "The running loss is:\n", "7.690601214766502\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.0986573163952147\n", "The running loss is:\n", "5.448296874761581\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7783281249659402\n", "The running loss is:\n", "4.938282564282417\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.705468937754631\n", "The running loss is:\n", "4.373410284519196\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6247728977884565\n", "The running loss is:\n", "4.2776922807097435\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.611098897244249\n", "The running loss is:\n", "4.26933291554451\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.6099047022206443\n", "The running loss is:\n", "4.139234617352486\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5913192310503551\n", "The running loss is:\n", "4.1257902681827545\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5893986097403935\n", "The running loss is:\n", "4.044198751449585\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5777426787785122\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.824650\n", "48 30755 ... 8.085434\n", "49 30756 ... 8.181070\n", "50 30757 ... 8.486726\n", "51 30758 ... 8.320390\n", "52 30759 ... 6.810356\n", "53 30760 ... 4.630260\n", "54 30761 ... 4.928142\n", "55 30762 ... 5.116070\n", "56 30763 ... 4.218055\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: notixq7k \n", "\n", "wandb: Agent Starting Run: w9adv0f5 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: w9adv0f5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/w9adv0f5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.615247905254364\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.3736068436077662\n", "The running loss is:\n", "10.547258883714676\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.5067512691020966\n", "The running loss is:\n", "4.555299267172813\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.6507570381675448\n", "The running loss is:\n", "4.357711434364319\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6225302049091884\n", "The running loss is:\n", "4.136801086366177\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.5909715837665966\n", "The running loss is:\n", "3.620665431022644\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5172379187175206\n", "The running loss is:\n", "3.600349932909012\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5143357047012874\n", "The running loss is:\n", "3.7059518694877625\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.529421695641109\n", "The running loss is:\n", "3.25237987190485\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.46462569598640713\n", "The running loss is:\n", "3.219434306025505\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.45991918657507214\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.156307\n", "48 30755 ... 7.571031\n", "49 30756 ... 9.347271\n", "50 30757 ... 11.671964\n", "51 30758 ... 10.866534\n", "52 30759 ... 8.150193\n", "53 30760 ... 7.649214\n", "54 30761 ... 7.405383\n", "55 30762 ... 6.930293\n", "56 30763 ... 6.566906\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: w9adv0f5 \n", "\n", "wandb: Agent Starting Run: gacyucuv with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: gacyucuv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gacyucuv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.557386875152588\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.2224838393075126\n", "The running loss is:\n", "7.062704995274544\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.008957856467792\n", "The running loss is:\n", "4.506389617919922\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.6437699454171317\n", "The running loss is:\n", "4.436160206794739\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6337371723992484\n", "The running loss is:\n", "4.230875015258789\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6044107164655413\n", "The running loss is:\n", "3.8724400401115417\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5532057200159345\n", "The running loss is:\n", "3.7256204038858414\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5322314862694059\n", "The running loss is:\n", "3.1940614581108093\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.4562944940158299\n", "The running loss is:\n", "3.305657684803009\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.4722368121147156\n", "The running loss is:\n", "2.8400733023881912\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.4057247574840273\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.997660\n", "48 30755 ... 8.063605\n", "49 30756 ... 9.996701\n", "50 30757 ... 12.595577\n", "51 30758 ... 10.900799\n", "52 30759 ... 6.122150\n", "53 30760 ... 5.258817\n", "54 30761 ... 5.399448\n", "55 30762 ... 4.413244\n", "56 30763 ... 4.609431\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gacyucuv \n", "\n", "wandb: Agent Starting Run: 8ioil8pg with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 8ioil8pg\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8ioil8pg
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.57857894897461\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.6540827069963728\n", "The running loss is:\n", "15.518137007951736\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "2.2168767154216766\n", "The running loss is:\n", "5.213935896754265\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7448479852506092\n", "The running loss is:\n", "5.0660145208239555\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.7237163601177079\n", "The running loss is:\n", "5.008541256189346\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.7155058937413352\n", "The running loss is:\n", "4.271195217967033\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.610170745423862\n", "The running loss is:\n", "4.4964863657951355\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.6423551951135907\n", "The running loss is:\n", "4.307799831032753\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.6153999758618218\n", "The running loss is:\n", "4.247691720724106\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6068131029605865\n", "The running loss is:\n", "4.0502769947052\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5786109992436\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.857596\n", "48 30755 ... 8.346721\n", "49 30756 ... 8.373069\n", "50 30757 ... 8.797526\n", "51 30758 ... 8.479051\n", "52 30759 ... 6.737048\n", "53 30760 ... 5.295413\n", "54 30761 ... 5.722424\n", "55 30762 ... 5.626678\n", "56 30763 ... 4.922710\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8ioil8pg \n", "\n", "wandb: Agent Starting Run: v2jkyt2t with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: v2jkyt2t\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v2jkyt2t
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.313868522644043\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "2.0448383603777205\n", "The running loss is:\n", "21.173898339271545\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "3.024842619895935\n", "The running loss is:\n", "8.537031590938568\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "1.2195759415626526\n", "The running loss is:\n", "9.553512573242188\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.3647875104631697\n", "The running loss is:\n", "5.124066233634949\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.7320094619478498\n", "The running loss is:\n", "4.670688271522522\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.6672411816460746\n", "The running loss is:\n", "4.281704246997833\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.6116720352854047\n", "The running loss is:\n", "3.969690963625908\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5670987090894154\n", "The running loss is:\n", "4.173694938421249\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5962421340601785\n", "The running loss is:\n", "3.5966562777757645\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5138080396822521\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 11.959491\n", "48 30755 ... 7.152155\n", "49 30756 ... 11.036368\n", "50 30757 ... 14.112470\n", "51 30758 ... 12.477591\n", "52 30759 ... 9.832200\n", "53 30760 ... 10.799255\n", "54 30761 ... 11.602201\n", "55 30762 ... 9.996349\n", "56 30763 ... 10.044203\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v2jkyt2t \n", "\n", "wandb: Agent Starting Run: b7cia89b with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: b7cia89b\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/b7cia89b
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.498386919498444\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.4997695599283491\n", "The running loss is:\n", "16.961153388023376\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "2.423021912574768\n", "The running loss is:\n", "6.070439994335175\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.8672057134764535\n", "The running loss is:\n", "7.044522300362587\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.0063603286232268\n", "The running loss is:\n", "5.524796187877655\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.7892565982682365\n", "The running loss is:\n", "5.174478992819786\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.7392112846885409\n", "The running loss is:\n", "5.18627268075943\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.7408960972513471\n", "The running loss is:\n", "4.556998088955879\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.650999726993697\n", "The running loss is:\n", "4.025437951087952\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5750625644411359\n", "The running loss is:\n", "3.7488027215003967\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5355432459286281\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.350999\n", "48 30755 ... 8.313608\n", "49 30756 ... 9.650146\n", "50 30757 ... 13.457047\n", "51 30758 ... 11.586737\n", "52 30759 ... 7.641543\n", "53 30760 ... 7.716665\n", "54 30761 ... 8.501719\n", "55 30762 ... 7.343888\n", "56 30763 ... 6.925780\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: b7cia89b \n", "\n", "wandb: Agent Starting Run: msl0siip with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: msl0siip\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/msl0siip
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.923059403896332\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "2.8461513434137617\n", "The running loss is:\n", "21.545911133289337\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "3.0779873047556197\n", "The running loss is:\n", "14.83446341753006\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "2.1192090596471513\n", "The running loss is:\n", "9.760437935590744\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.3943482765129633\n", "The running loss is:\n", "5.346604257822037\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.763800608260291\n", "The running loss is:\n", "6.062074542045593\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.8660106488636562\n", "The running loss is:\n", "5.347100764513016\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.7638715377875737\n", "The running loss is:\n", "4.903612896800041\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.7005161281142916\n", "The running loss is:\n", "4.763592883944511\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6805132691349302\n", "The running loss is:\n", "4.394327566027641\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.6277610808610916\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.194539\n", "48 30755 ... 8.257804\n", "49 30756 ... 8.486530\n", "50 30757 ... 8.778533\n", "51 30758 ... 8.804259\n", "52 30759 ... 8.143517\n", "53 30760 ... 7.652658\n", "54 30761 ... 7.324890\n", "55 30762 ... 7.184923\n", "56 30763 ... 6.334022\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: msl0siip \n", "\n", "wandb: Agent Starting Run: j25gdui1 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: j25gdui1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/j25gdui1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "67.53127729892731\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "9.647325328418187\n", "The running loss is:\n", "8.399534657597542\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.1999335225139345\n", "The running loss is:\n", "19.160128891468048\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "2.737161270209721\n", "The running loss is:\n", "6.752385526895523\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.9646265038422176\n", "The running loss is:\n", "10.865512549877167\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "1.552216078553881\n", "The running loss is:\n", "8.864420533180237\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "1.2663457904543196\n", "The running loss is:\n", "6.685234010219574\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.9550334300313678\n", "The running loss is:\n", "5.997121214866638\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.8567316021238055\n", "The running loss is:\n", "6.7596277594566345\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.9656611084938049\n", "The running loss is:\n", "6.355755656957626\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.9079650938510895\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.615163\n", "48 30755 ... 9.802985\n", "49 30756 ... 9.741320\n", "50 30757 ... 9.703117\n", "51 30758 ... 9.675394\n", "52 30759 ... 9.667830\n", "53 30760 ... 9.622468\n", "54 30761 ... 9.616317\n", "55 30762 ... 9.702218\n", "56 30763 ... 9.624327\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: j25gdui1 \n", "\n", "wandb: Agent Starting Run: r2ml7nx8 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: r2ml7nx8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/r2ml7nx8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "43.192112147808075\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "6.170301735401154\n", "The running loss is:\n", "9.303201377391815\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.3290287681988306\n", "The running loss is:\n", "15.101940214633942\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "2.1574200306619917\n", "The running loss is:\n", "6.0063003450632095\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.8580429064376014\n", "The running loss is:\n", "5.982577458024025\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.8546539225748607\n", "The running loss is:\n", "6.759203761816025\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.9656005374022892\n", "The running loss is:\n", "4.7542779594659805\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.6791825656379972\n", "The running loss is:\n", "5.1109654903411865\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.7301379271915981\n", "The running loss is:\n", "6.155610501766205\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.8793729288237435\n", "The running loss is:\n", "4.374343603849411\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.6249062291213444\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.731800\n", "48 30755 ... 12.378132\n", "49 30756 ... 11.761867\n", "50 30757 ... 11.758492\n", "51 30758 ... 11.453133\n", "52 30759 ... 11.467014\n", "53 30760 ... 11.495632\n", "54 30761 ... 11.227182\n", "55 30762 ... 11.354984\n", "56 30763 ... 11.109964\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: r2ml7nx8 \n", "\n", "wandb: Agent Starting Run: e5h01qn1 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: e5h01qn1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/e5h01qn1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "90.54687196016312\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "12.935267422880445\n", "The running loss is:\n", "8.523807942867279\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.21768684898104\n", "The running loss is:\n", "28.74505126476288\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "4.1064358949661255\n", "The running loss is:\n", "11.200783550739288\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.6001119358198983\n", "The running loss is:\n", "18.60291025042534\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "2.6575586072036197\n", "The running loss is:\n", "29.870601654052734\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "4.2672288077218195\n", "The running loss is:\n", "6.606499120593071\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.943785588656153\n", "The running loss is:\n", "7.695777118206024\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "1.0993967311722892\n", "The running loss is:\n", "6.955000162124634\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.9935714517320905\n", "The running loss is:\n", "6.869924068450928\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.9814177240644183\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.303787\n", "48 30755 ... 7.303229\n", "49 30756 ... 7.191536\n", "50 30757 ... 7.176568\n", "51 30758 ... 7.345643\n", "52 30759 ... 7.316633\n", "53 30760 ... 6.877242\n", "54 30761 ... 6.870254\n", "55 30762 ... 6.869648\n", "56 30763 ... 7.055112\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: e5h01qn1 \n", "\n", "wandb: Agent Starting Run: 51pgmxyd with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 51pgmxyd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/51pgmxyd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.386345356702805\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.1980493366718292\n", "The running loss is:\n", "5.305130660533905\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.7578758086477008\n", "The running loss is:\n", "5.040349066257477\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.720049866608211\n", "The running loss is:\n", "4.216301918029785\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6023288454328265\n", "The running loss is:\n", "4.013143762946129\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.573306251849447\n", "The running loss is:\n", "4.111067958176136\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5872954225965908\n", "The running loss is:\n", "3.9650451093912125\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.566435015627316\n", "The running loss is:\n", "3.8456651866436005\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5493807409490857\n", "The running loss is:\n", "3.4701995626091957\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.49574279465845655\n", "The running loss is:\n", "3.600193105638027\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5143133008054325\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.014473\n", "48 30755 ... 9.291738\n", "49 30756 ... 10.382364\n", "50 30757 ... 10.538802\n", "51 30758 ... 10.259753\n", "52 30759 ... 10.314054\n", "53 30760 ... 9.395301\n", "54 30761 ... 6.940967\n", "55 30762 ... 7.337349\n", "56 30763 ... 8.289805\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 51pgmxyd \n", "\n", "wandb: Agent Starting Run: gx05z4h0 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: gx05z4h0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gx05z4h0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.603733956813812\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.2291048509734017\n", "The running loss is:\n", "5.768532857298851\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.8240761224712644\n", "The running loss is:\n", "5.064010441303253\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7234300630433219\n", "The running loss is:\n", "4.223667658865452\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6033810941236359\n", "The running loss is:\n", "4.201617494225502\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6002310706036431\n", "The running loss is:\n", "4.033991657197475\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5762845224567822\n", "The running loss is:\n", "3.9912275075912476\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5701753582273211\n", "The running loss is:\n", "3.7576887756586075\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5368126822369439\n", "The running loss is:\n", "3.7496463656425476\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.535663766520364\n", "The running loss is:\n", "3.759747177362442\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.537106739623206\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 6.349306\n", "48 30755 ... 6.258404\n", "49 30756 ... 7.824118\n", "50 30757 ... 7.399878\n", "51 30758 ... 6.525862\n", "52 30759 ... 6.587952\n", "53 30760 ... 5.459343\n", "54 30761 ... 1.024171\n", "55 30762 ... 0.872965\n", "56 30763 ... 1.004691\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gx05z4h0 \n", "\n", "wandb: Agent Starting Run: kua0nnmv with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: kua0nnmv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/kua0nnmv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "8.157315015792847\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.1653307165418352\n", "The running loss is:\n", "5.333026871085167\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "0.7618609815835953\n", "The running loss is:\n", "4.923013836145401\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.7032876908779144\n", "The running loss is:\n", "4.182542055845261\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.5975060079778943\n", "The running loss is:\n", "3.877619966864586\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.5539457095520837\n", "The running loss is:\n", "4.020708501338959\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5743869287627084\n", "The running loss is:\n", "3.8042884171009064\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.543469773871558\n", "The running loss is:\n", "3.4904306679964066\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.4986329525709152\n", "The running loss is:\n", "3.805373951792717\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5436248502561024\n", "The running loss is:\n", "3.578959584236145\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5112799406051636\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.411602\n", "48 30755 ... 8.892941\n", "49 30756 ... 7.403359\n", "50 30757 ... 8.140916\n", "51 30758 ... 9.077764\n", "52 30759 ... 8.763077\n", "53 30760 ... 7.171425\n", "54 30761 ... 4.151009\n", "55 30762 ... 4.456970\n", "56 30763 ... 4.688587\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: kua0nnmv \n", "\n", "wandb: Agent Starting Run: 9nb3qucq with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 9nb3qucq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9nb3qucq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.452470779418945\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.3503529684884208\n", "The running loss is:\n", "8.573224395513535\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.2247463422162193\n", "The running loss is:\n", "4.582139626145363\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.6545913751636233\n", "The running loss is:\n", "4.537662208080292\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6482374582971845\n", "The running loss is:\n", "4.334219105541706\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6191741579345295\n", "The running loss is:\n", "3.8650491908192635\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5521498844027519\n", "The running loss is:\n", "4.087241470813751\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5838916386876788\n", "The running loss is:\n", "3.7244302183389664\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5320614597627095\n", "The running loss is:\n", "3.0911393761634827\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.4415913394519261\n", "The running loss is:\n", "3.1409634202718735\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.4487090600388391\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 8.991542\n", "48 30755 ... 7.977815\n", "49 30756 ... 11.552586\n", "50 30757 ... 11.382884\n", "51 30758 ... 9.104527\n", "52 30759 ... 10.094441\n", "53 30760 ... 10.687099\n", "54 30761 ... 6.068766\n", "55 30762 ... 6.669483\n", "56 30763 ... 6.720552\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9nb3qucq \n", "\n", "wandb: Agent Starting Run: 2d77dsds with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 2d77dsds\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2d77dsds
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "10.341898024082184\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.477414003440312\n", "The running loss is:\n", "9.692167803645134\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.3845954005207335\n", "The running loss is:\n", "4.67776694893837\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.66825242127691\n", "The running loss is:\n", "4.513872340321541\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6448389057602201\n", "The running loss is:\n", "4.335822895169258\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6194032707384655\n", "The running loss is:\n", "4.105712324380875\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5865303320544106\n", "The running loss is:\n", "4.100954279303551\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5858506113290787\n", "The running loss is:\n", "3.741816997528076\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5345452853611538\n", "The running loss is:\n", "3.687743529677391\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5268205042396273\n", "The running loss is:\n", "3.4706184715032578\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.4958026387861797\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.107794\n", "48 30755 ... 6.300855\n", "49 30756 ... 8.690669\n", "50 30757 ... 8.066691\n", "51 30758 ... 6.239733\n", "52 30759 ... 6.995705\n", "53 30760 ... 7.065566\n", "54 30761 ... 1.747199\n", "55 30762 ... 1.620586\n", "56 30763 ... 1.295900\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2d77dsds \n", "\n", "wandb: Agent Starting Run: kv3ugs2f with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: kv3ugs2f\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/kv3ugs2f
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "9.399968564510345\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.3428526520729065\n", "The running loss is:\n", "8.328093975782394\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.1897277108260564\n", "The running loss is:\n", "4.483197212219238\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.6404567446027484\n", "The running loss is:\n", "4.404286772012711\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.6291838245732444\n", "The running loss is:\n", "4.283157721161842\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6118796744516918\n", "The running loss is:\n", "4.080961152911186\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.5829944504158837\n", "The running loss is:\n", "3.922510102391243\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.5603585860558918\n", "The running loss is:\n", "3.649494081735611\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.5213562973908016\n", "The running loss is:\n", "4.0167796313762665\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5738256616251809\n", "The running loss is:\n", "3.7649319767951965\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5378474252564567\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.075241\n", "48 30755 ... 9.679935\n", "49 30756 ... 7.270753\n", "50 30757 ... 8.642411\n", "51 30758 ... 9.739583\n", "52 30759 ... 9.584579\n", "53 30760 ... 8.186583\n", "54 30761 ... 6.058244\n", "55 30762 ... 6.880507\n", "56 30763 ... 6.824042\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: kv3ugs2f \n", "\n", "wandb: Agent Starting Run: s1dkmad8 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: s1dkmad8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/s1dkmad8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.163711488246918\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "2.0233873554638455\n", "The running loss is:\n", "17.172690749168396\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "2.453241535595485\n", "The running loss is:\n", "7.470961958169937\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "1.0672802797385625\n", "The running loss is:\n", "7.662623822689056\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.0946605460984367\n", "The running loss is:\n", "4.7404936999082565\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.6772133857011795\n", "The running loss is:\n", "4.622741907835007\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.6603917011192867\n", "The running loss is:\n", "4.599970698356628\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.6571386711938041\n", "The running loss is:\n", "4.118006765842438\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.588286680834634\n", "The running loss is:\n", "3.2050129547715187\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.4578589935387884\n", "The running loss is:\n", "3.9961725622415543\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5708817946059364\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.272706\n", "48 30755 ... 10.734841\n", "49 30756 ... 9.385545\n", "50 30757 ... 11.560097\n", "51 30758 ... 11.946331\n", "52 30759 ... 12.485663\n", "53 30760 ... 14.132852\n", "54 30761 ... 12.056442\n", "55 30762 ... 12.276989\n", "56 30763 ... 12.371525\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: s1dkmad8 \n", "\n", "wandb: Agent Starting Run: ftcthxo3 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ftcthxo3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ftcthxo3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.386868000030518\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "2.1981240000043596\n", "The running loss is:\n", "20.018226504325867\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "2.8597466434751238\n", "The running loss is:\n", "8.846402645111084\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "1.2637718064444405\n", "The running loss is:\n", "8.188300907611847\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.1697572725159782\n", "The running loss is:\n", "5.718660831451416\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.8169515473502023\n", "The running loss is:\n", "4.988060265779495\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.7125800379684993\n", "The running loss is:\n", "4.967563331127167\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.7096519044467381\n", "The running loss is:\n", "4.434747152030468\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.633535307432924\n", "The running loss is:\n", "4.422097831964493\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6317282617092133\n", "The running loss is:\n", "4.5411578714847565\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.6487368387835366\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 7.052814\n", "48 30755 ... 7.284422\n", "49 30756 ... 7.511244\n", "50 30757 ... 8.769793\n", "51 30758 ... 9.044814\n", "52 30759 ... 9.060470\n", "53 30760 ... 8.379431\n", "54 30761 ... 7.380647\n", "55 30762 ... 8.095577\n", "56 30763 ... 8.026391\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ftcthxo3 \n", "\n", "wandb: Agent Starting Run: nfbfbmg4 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: nfbfbmg4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nfbfbmg4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.547432959079742\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "1.9353475655828203\n", "The running loss is:\n", "16.23163253068924\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "2.3188046472413197\n", "The running loss is:\n", "6.393091231584549\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "0.9132987473692212\n", "The running loss is:\n", "6.579031050205231\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "0.9398615786007473\n", "The running loss is:\n", "5.11293551325798\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.7304193590368543\n", "The running loss is:\n", "4.956169933080673\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.7080242761543819\n", "The running loss is:\n", "4.477589040994644\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.6396555772849492\n", "The running loss is:\n", "3.994989514350891\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.570712787764413\n", "The running loss is:\n", "3.823404371738434\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.5462006245340619\n", "The running loss is:\n", "4.004239939153194\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.5720342770218849\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 10.857925\n", "48 30755 ... 8.150393\n", "49 30756 ... 0.958358\n", "50 30757 ... 5.166536\n", "51 30758 ... 7.655322\n", "52 30759 ... 9.013206\n", "53 30760 ... 7.398972\n", "54 30761 ... 4.278189\n", "55 30762 ... 6.075479\n", "56 30763 ... 8.513471\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nfbfbmg4 \n", "\n", "wandb: Agent Starting Run: cbzag821 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: cbzag821\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cbzag821
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "67.39246386289597\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "9.627494837556567\n", "The running loss is:\n", "9.074194252490997\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.296313464641571\n", "The running loss is:\n", "10.388038083910942\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "1.484005440558706\n", "The running loss is:\n", "10.391907647252083\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.4845582353217261\n", "The running loss is:\n", "5.420821771025658\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.7744031101465225\n", "The running loss is:\n", "5.024749353528023\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.7178213362182889\n", "The running loss is:\n", "4.97475703060627\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.7106795758008957\n", "The running loss is:\n", "4.761862933635712\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.6802661333765302\n", "The running loss is:\n", "4.68121574819088\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.6687451068844114\n", "The running loss is:\n", "5.033755451440811\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.7191079216344016\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 12.181989\n", "48 30755 ... 11.518135\n", "49 30756 ... 11.462760\n", "50 30757 ... 11.136217\n", "51 30758 ... 10.741853\n", "52 30759 ... 10.793540\n", "53 30760 ... 12.484796\n", "54 30761 ... 9.014488\n", "55 30762 ... 9.239480\n", "56 30763 ... 8.877860\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cbzag821 \n", "\n", "wandb: Agent Starting Run: bdyp6lnn with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: bdyp6lnn\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bdyp6lnn
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "67.81293976306915\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "9.687562823295593\n", "The running loss is:\n", "9.99773907661438\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.42824843951634\n", "The running loss is:\n", "15.24121206998825\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "2.1773160099983215\n", "The running loss is:\n", "7.703388452529907\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.1004840646471297\n", "The running loss is:\n", "7.230520695447922\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "1.0329315279211317\n", "The running loss is:\n", "5.7543908059597015\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.8220558294228145\n", "The running loss is:\n", "6.086855813860893\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.8695508305515561\n", "The running loss is:\n", "6.224896281957626\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.8892708974225181\n", "The running loss is:\n", "5.51524843275547\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.7878926332507815\n", "The running loss is:\n", "5.073978707194328\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.7248541010277612\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.048117\n", "48 30755 ... 10.169812\n", "49 30756 ... 4.386463\n", "50 30757 ... 8.051113\n", "51 30758 ... 12.294018\n", "52 30759 ... 9.637958\n", "53 30760 ... 7.130473\n", "54 30761 ... 8.857204\n", "55 30762 ... 9.039351\n", "56 30763 ... 8.967212\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bdyp6lnn \n", "\n", "wandb: Agent Starting Run: pml2qhh1 with config:\n", "\tbatch_size: 5\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: pml2qhh1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/dmjolbmp
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/pml2qhh1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 5\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Douglas County.csv\n", " train_end: 45\n", " training_path: Colorado_Douglas County.csv\n", " valid_end: 58\n", " valid_start: 46\n", " validation_path: Colorado_Douglas County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Douglas County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Douglas County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 5\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "56.04367220401764\n", "The number of items in train is: \n", "7\n", "The loss for epoch 0\n", "8.006238886288234\n", "The running loss is:\n", "10.853782594203949\n", "The number of items in train is: \n", "7\n", "The loss for epoch 1\n", "1.550540370600564\n", "The running loss is:\n", "13.280152201652527\n", "The number of items in train is: \n", "7\n", "The loss for epoch 2\n", "1.8971646002360754\n", "The running loss is:\n", "7.083515048027039\n", "The number of items in train is: \n", "7\n", "The loss for epoch 3\n", "1.01193072114672\n", "The running loss is:\n", "5.93258336186409\n", "The number of items in train is: \n", "7\n", "The loss for epoch 4\n", "0.8475119088377271\n", "The running loss is:\n", "5.776451528072357\n", "The number of items in train is: \n", "7\n", "The loss for epoch 5\n", "0.8252073611531939\n", "The running loss is:\n", "5.619628816843033\n", "The number of items in train is: \n", "7\n", "The loss for epoch 6\n", "0.8028041166918618\n", "The running loss is:\n", "6.114215791225433\n", "The number of items in train is: \n", "7\n", "The loss for epoch 7\n", "0.8734593987464905\n", "The running loss is:\n", "5.572997599840164\n", "The number of items in train is: \n", "7\n", "The loss for epoch 8\n", "0.7961425142628806\n", "The running loss is:\n", "5.289255976676941\n", "The number of items in train is: \n", "7\n", "The loss for epoch 9\n", "0.7556079966681344\n", "interpolate should be below\n", "Now loading and scaling Colorado_Douglas County.csv\n", "CSV Path below\n", "Colorado_Douglas County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30744 ... 0.000000\n", "38 30745 ... 0.000000\n", "39 30746 ... 0.000000\n", "40 30747 ... 0.000000\n", "41 30748 ... 0.000000\n", "42 30749 ... 0.000000\n", "43 30750 ... 0.000000\n", "44 30751 ... 0.000000\n", "45 30752 ... 0.000000\n", "46 30753 ... 0.000000\n", "47 30754 ... 9.162136\n", "48 30755 ... 9.868551\n", "49 30756 ... 8.345331\n", "50 30757 ... 9.502460\n", "51 30758 ... 9.210078\n", "52 30759 ... 9.329942\n", "53 30760 ... 9.226681\n", "54 30761 ... 9.408814\n", "55 30762 ... 9.454621\n", "56 30763 ... 9.417312\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: pml2qhh1 \n", "\n", "Colorado_Eagle County\n", "Create sweep with ID: izk6f8yh\n", "Sweep URL: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:13: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " del sys.path[0]\n", "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:14: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " \n", "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:15: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " from ipykernel import kernelapp as app\n", "/usr/local/lib/python3.6/dist-packages/ipykernel_launcher.py:18: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Starting Run: 3md9qfjj with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 3md9qfjj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3md9qfjj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "24.994310602545738\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "1.1902052667878924\n", "The running loss is:\n", "31.338150784373283\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.492292894493966\n", "The running loss is:\n", "23.230982203036547\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.106237247763645\n", "The running loss is:\n", "22.80511908652261\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.0859580517391718\n", "The running loss is:\n", "21.484980678884313\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.0230943180421102\n", "The running loss is:\n", "22.467626813799143\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.0698869911332924\n", "The running loss is:\n", "22.521564692491665\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "1.0724554615472222\n", "The running loss is:\n", "21.74733708333224\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "1.0355874801586782\n", "The running loss is:\n", "21.972762659657747\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "1.0463220314122736\n", "The running loss is:\n", "21.711856733076274\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "1.0338979396702987\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.320036\n", "47 30819 ... 10.372439\n", "48 30820 ... 10.091675\n", "49 30821 ... 9.566354\n", "50 30822 ... 8.996174\n", "51 30823 ... 8.417763\n", "52 30824 ... 7.837843\n", "53 30825 ... 10.574365\n", "54 30826 ... 10.602532\n", "55 30827 ... 10.133883\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3md9qfjj \n", "\n", "wandb: Agent Starting Run: jedyojoo with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: jedyojoo\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/jedyojoo
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "30.50091978907585\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.5250459894537927\n", "The running loss is:\n", "35.48609974980354\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.774304987490177\n", "The running loss is:\n", "28.23683187365532\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.411841593682766\n", "The running loss is:\n", "28.132872357964516\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.4066436178982258\n", "The running loss is:\n", "27.100994661450386\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.3550497330725193\n", "The running loss is:\n", "26.87871690094471\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.3439358450472354\n", "The running loss is:\n", "26.260645911097527\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.3130322955548763\n", "The running loss is:\n", "26.076900631189346\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.3038450315594674\n", "The running loss is:\n", "25.671136647462845\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.2835568323731423\n", "The running loss is:\n", "25.587705582380295\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.2793852791190148\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 16.139271\n", "47 30819 ... 18.936136\n", "48 30820 ... 18.685638\n", "49 30821 ... 17.682741\n", "50 30822 ... 16.494076\n", "51 30823 ... 15.259542\n", "52 30824 ... 14.013685\n", "53 30825 ... 19.352375\n", "54 30826 ... 19.729458\n", "55 30827 ... 18.881512\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: jedyojoo \n", "\n", "wandb: Agent Starting Run: ha9jzb1p with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ha9jzb1p\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ha9jzb1p
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "30.087819531559944\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.5043909765779973\n", "The running loss is:\n", "38.96592804789543\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.9482964023947715\n", "The running loss is:\n", "29.03825269639492\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.451912634819746\n", "The running loss is:\n", "27.82487864047289\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.3912439320236445\n", "The running loss is:\n", "26.97020795941353\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.3485103979706765\n", "The running loss is:\n", "26.578218407928944\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.328910920396447\n", "The running loss is:\n", "26.662743851542473\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.3331371925771236\n", "The running loss is:\n", "26.146022632718086\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.3073011316359042\n", "The running loss is:\n", "25.915332719683647\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.2957666359841824\n", "The running loss is:\n", "25.717713937163353\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.2858856968581676\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 1.090912\n", "47 30819 Eagle County, Colorado, United States ... 47 0.957550\n", "48 30820 Eagle County, Colorado, United States ... 48 0.796825\n", "49 30821 Eagle County, Colorado, United States ... 49 0.632762\n", "50 30822 Eagle County, Colorado, United States ... 50 0.468292\n", "51 30823 Eagle County, Colorado, United States ... 51 0.303773\n", "52 30824 Eagle County, Colorado, United States ... 52 0.139247\n", "53 30825 Eagle County, Colorado, United States ... 53 0.985899\n", "54 30826 Eagle County, Colorado, United States ... 54 0.944738\n", "55 30827 Eagle County, Colorado, United States ... 55 0.795262\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ha9jzb1p \n", "\n", "wandb: Agent Starting Run: guveixrq with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: guveixrq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/guveixrq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.42800808791071\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "1.0203813375195576\n", "The running loss is:\n", "33.97634669393301\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.617921271139667\n", "The running loss is:\n", "32.660160295665264\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.5552457283650125\n", "The running loss is:\n", "26.03447231533937\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.2397367769209224\n", "The running loss is:\n", "22.19169175659772\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.0567472265046534\n", "The running loss is:\n", "22.451023087836802\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.0690963375160383\n", "The running loss is:\n", "21.957806181162596\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "1.0456098181505997\n", "The running loss is:\n", "22.098417993169278\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "1.0523056187223465\n", "The running loss is:\n", "21.93328778957948\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "1.044442275694261\n", "The running loss is:\n", "21.70377436140552\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "1.0335130648288344\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.462493\n", "47 30819 ... 10.482204\n", "48 30820 ... 10.290704\n", "49 30821 ... 9.902096\n", "50 30822 ... 9.481412\n", "51 30823 ... 9.055507\n", "52 30824 ... 8.628753\n", "53 30825 ... 10.703968\n", "54 30826 ... 10.684237\n", "55 30827 ... 10.323583\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: guveixrq \n", "\n", "wandb: Agent Starting Run: m6nbqbmq with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: m6nbqbmq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/m6nbqbmq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "26.785726577043533\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.3392863288521766\n", "The running loss is:\n", "39.627033829689026\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.9813516914844513\n", "The running loss is:\n", "33.684926599264145\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.6842463299632073\n", "The running loss is:\n", "27.56533844769001\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.3782669223845005\n", "The running loss is:\n", "26.230642080307007\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.3115321040153503\n", "The running loss is:\n", "25.43548308312893\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.2717741541564465\n", "The running loss is:\n", "24.62746013700962\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.2313730068504811\n", "The running loss is:\n", "24.4681788533926\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.22340894266963\n", "The running loss is:\n", "23.801658302545547\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.1900829151272774\n", "The running loss is:\n", "23.667554318904877\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.1833777159452439\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 15.175662\n", "47 30819 ... 17.513287\n", "48 30820 ... 17.114977\n", "49 30821 ... 16.084354\n", "50 30822 ... 14.907595\n", "51 30823 ... 13.697062\n", "52 30824 ... 12.478723\n", "53 30825 ... 17.828556\n", "54 30826 ... 18.126408\n", "55 30827 ... 17.256680\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: m6nbqbmq \n", "\n", "wandb: Agent Starting Run: 3ff31iqc with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 3ff31iqc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3ff31iqc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "26.19386227428913\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.3096931137144565\n", "The running loss is:\n", "42.867518559098244\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "2.1433759279549123\n", "The running loss is:\n", "34.7266606092453\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.736333030462265\n", "The running loss is:\n", "27.950618222355843\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.397530911117792\n", "The running loss is:\n", "26.19993595778942\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.309996797889471\n", "The running loss is:\n", "25.272186301648617\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.2636093150824308\n", "The running loss is:\n", "25.510257616639137\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.275512880831957\n", "The running loss is:\n", "24.659199744462967\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.2329599872231483\n", "The running loss is:\n", "24.421232596039772\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.2210616298019885\n", "The running loss is:\n", "24.122598320245743\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.2061299160122871\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 2.737662\n", "47 30819 Eagle County, Colorado, United States ... 47 2.728444\n", "48 30820 Eagle County, Colorado, United States ... 48 2.546297\n", "49 30821 Eagle County, Colorado, United States ... 49 2.347031\n", "50 30822 Eagle County, Colorado, United States ... 50 2.146070\n", "51 30823 Eagle County, Colorado, United States ... 51 1.944941\n", "52 30824 Eagle County, Colorado, United States ... 52 1.743796\n", "53 30825 Eagle County, Colorado, United States ... 53 2.811293\n", "54 30826 Eagle County, Colorado, United States ... 54 2.735733\n", "55 30827 Eagle County, Colorado, United States ... 55 2.547019\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3ff31iqc \n", "\n", "wandb: Agent Starting Run: jbvxtyo1 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: jbvxtyo1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/jbvxtyo1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "28.431543273851275\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "1.3538830130405368\n", "The running loss is:\n", "24.86347783706151\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.183975135098167\n", "The running loss is:\n", "27.93423504382372\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.3302016687535105\n", "The running loss is:\n", "35.81483320891857\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.7054682480437415\n", "The running loss is:\n", "36.937019128352404\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.7589056727786858\n", "The running loss is:\n", "32.27701100707054\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.5370005241462164\n", "The running loss is:\n", "27.327979074791074\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "1.301332336894813\n", "The running loss is:\n", "22.494237068109214\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "1.0711541461004388\n", "The running loss is:\n", "22.358194688451476\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "1.0646759375453083\n", "The running loss is:\n", "21.776387142948806\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "1.0369708163308955\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.246925\n", "47 30819 ... 10.244971\n", "48 30820 ... 10.100391\n", "49 30821 ... 9.775701\n", "50 30822 ... 9.422621\n", "51 30823 ... 9.065064\n", "52 30824 ... 8.706804\n", "53 30825 ... 10.461733\n", "54 30826 ... 10.436459\n", "55 30827 ... 10.130575\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: jbvxtyo1 \n", "\n", "wandb: Agent Starting Run: xrtaxjua with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: xrtaxjua\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xrtaxjua
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "29.28187485039234\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.464093742519617\n", "The running loss is:\n", "33.413817927241325\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.6706908963620664\n", "The running loss is:\n", "32.58062018454075\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.6290310092270375\n", "The running loss is:\n", "29.036787658929825\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.4518393829464913\n", "The running loss is:\n", "33.49508434534073\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.6747542172670364\n", "The running loss is:\n", "31.11882695555687\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.5559413477778434\n", "The running loss is:\n", "27.91164129972458\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.395582064986229\n", "The running loss is:\n", "24.096679963171482\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.204833998158574\n", "The running loss is:\n", "22.1046689376235\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.105233446881175\n", "The running loss is:\n", "22.059589117765427\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.1029794558882713\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 13.587997\n", "47 30819 ... 15.503042\n", "48 30820 ... 15.083281\n", "49 30821 ... 14.152758\n", "50 30822 ... 13.110500\n", "51 30823 ... 12.043802\n", "52 30824 ... 10.971756\n", "53 30825 ... 15.769411\n", "54 30826 ... 15.980247\n", "55 30827 ... 15.187674\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xrtaxjua \n", "\n", "wandb: Agent Starting Run: 0v9zhmnb with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 0v9zhmnb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0v9zhmnb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "31.78796711564064\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.589398355782032\n", "The running loss is:\n", "33.291881904006004\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.6645940952003002\n", "The running loss is:\n", "32.06749828159809\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.6033749140799045\n", "The running loss is:\n", "28.367174096405506\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.4183587048202753\n", "The running loss is:\n", "33.985155656933784\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.6992577828466893\n", "The running loss is:\n", "34.81114760041237\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.7405573800206184\n", "The running loss is:\n", "27.80887019634247\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.3904435098171235\n", "The running loss is:\n", "39.12357208132744\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.956178604066372\n", "The running loss is:\n", "27.10132560878992\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.355066280439496\n", "The running loss is:\n", "25.432943373918533\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.2716471686959268\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.820832\n", "47 30819 Eagle County, Colorado, United States ... 47 6.710801\n", "48 30820 Eagle County, Colorado, United States ... 48 6.761901\n", "49 30821 Eagle County, Colorado, United States ... 49 6.808624\n", "50 30822 Eagle County, Colorado, United States ... 50 6.855465\n", "51 30823 Eagle County, Colorado, United States ... 51 6.902304\n", "52 30824 Eagle County, Colorado, United States ... 52 6.949142\n", "53 30825 Eagle County, Colorado, United States ... 53 6.659204\n", "54 30826 Eagle County, Colorado, United States ... 54 6.715192\n", "55 30827 Eagle County, Colorado, United States ... 55 6.761782\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0v9zhmnb \n", "\n", "wandb: Agent Starting Run: lx2yib44 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: lx2yib44\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lx2yib44
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "48.09504758147523\n", "The number of items in train is: \n", "21\n", "The loss for epoch 0\n", "2.29024036102263\n", "The running loss is:\n", "22.480513457208872\n", "The number of items in train is: \n", "21\n", "The loss for epoch 1\n", "1.0705006408194702\n", "The running loss is:\n", "41.80015133321285\n", "The number of items in train is: \n", "21\n", "The loss for epoch 2\n", "1.9904833968196596\n", "The running loss is:\n", "40.18148048967123\n", "The number of items in train is: \n", "21\n", "The loss for epoch 3\n", "1.913403832841487\n", "The running loss is:\n", "27.97383632697165\n", "The number of items in train is: \n", "21\n", "The loss for epoch 4\n", "1.3320874441415071\n", "The running loss is:\n", "31.400769567117095\n", "The number of items in train is: \n", "21\n", "The loss for epoch 5\n", "1.4952747412912903\n", "The running loss is:\n", "32.24099379777908\n", "The number of items in train is: \n", "21\n", "The loss for epoch 6\n", "1.5352854189418612\n", "The running loss is:\n", "24.44546188414097\n", "The number of items in train is: \n", "21\n", "The loss for epoch 7\n", "1.1640696135305224\n", "The running loss is:\n", "22.073538778349757\n", "The number of items in train is: \n", "21\n", "The loss for epoch 8\n", "1.0511208942071313\n", "The running loss is:\n", "21.668216380290687\n", "The number of items in train is: \n", "21\n", "The loss for epoch 9\n", "1.0318198276328898\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.249763\n", "47 30819 ... 10.780683\n", "48 30820 ... 10.627822\n", "49 30821 ... 10.421335\n", "50 30822 ... 10.210644\n", "51 30823 ... 9.999621\n", "52 30824 ... 9.788574\n", "53 30825 ... 10.939012\n", "54 30826 ... 10.834738\n", "55 30827 ... 10.632061\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lx2yib44 \n", "\n", "wandb: Agent Starting Run: rpc2w1fl with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: rpc2w1fl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/rpc2w1fl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "57.4059556722641\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "2.870297783613205\n", "The running loss is:\n", "40.249125987291336\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "2.0124562993645667\n", "The running loss is:\n", "27.546720668673515\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.3773360334336757\n", "The running loss is:\n", "39.57624187320471\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.9788120936602354\n", "The running loss is:\n", "26.22379694879055\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.3111898474395276\n", "The running loss is:\n", "26.18321020901203\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.3091605104506017\n", "The running loss is:\n", "22.03504551947117\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.1017522759735585\n", "The running loss is:\n", "21.372891955077648\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.0686445977538823\n", "The running loss is:\n", "20.670882388949394\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.0335441194474697\n", "The running loss is:\n", "20.363346807658672\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.0181673403829337\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 11.920742\n", "47 30819 ... 13.835093\n", "48 30820 ... 13.454808\n", "49 30821 ... 12.489900\n", "50 30822 ... 11.376041\n", "51 30823 ... 10.224234\n", "52 30824 ... 9.062757\n", "53 30825 ... 13.974960\n", "54 30826 ... 14.358463\n", "55 30827 ... 13.588152\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: rpc2w1fl \n", "\n", "wandb: Agent Starting Run: 71uwwud0 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 71uwwud0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/71uwwud0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "65.11059759557247\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "3.2555298797786234\n", "The running loss is:\n", "28.523036420345306\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.4261518210172652\n", "The running loss is:\n", "33.405703380703926\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.6702851690351963\n", "The running loss is:\n", "24.232465356588364\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.211623267829418\n", "The running loss is:\n", "34.218861397355795\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.7109430698677897\n", "The running loss is:\n", "25.364171378314495\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.2682085689157248\n", "The running loss is:\n", "36.61564963310957\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.8307824816554785\n", "The running loss is:\n", "22.46705986559391\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.1233529932796955\n", "The running loss is:\n", "27.24634464085102\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.362317232042551\n", "The running loss is:\n", "23.25190670788288\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.162595335394144\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.090479\n", "47 30819 ... 11.080034\n", "48 30820 ... 11.165306\n", "49 30821 ... 11.149635\n", "50 30822 ... 11.122695\n", "51 30823 ... 11.094498\n", "52 30824 ... 11.066160\n", "53 30825 ... 11.214138\n", "54 30826 ... 11.205466\n", "55 30827 ... 11.179308\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 71uwwud0 \n", "\n", "wandb: Agent Starting Run: 3rvnt4hr with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 3rvnt4hr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3rvnt4hr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.894857458304614\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.1447428729152307\n", "The running loss is:\n", "32.818418147042394\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.6409209073521196\n", "The running loss is:\n", "22.32921899855137\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.1164609499275684\n", "The running loss is:\n", "19.03028530627489\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "0.9515142653137445\n", "The running loss is:\n", "17.922462274320424\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.8961231137160212\n", "The running loss is:\n", "16.806524269282818\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.8403262134641409\n", "The running loss is:\n", "17.183919344097376\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.8591959672048688\n", "The running loss is:\n", "16.498050395399332\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.8249025197699666\n", "The running loss is:\n", "16.132734179496765\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.8066367089748383\n", "The running loss is:\n", "16.202645121142268\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.8101322560571134\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 2.556585\n", "47 30819 ... 9.645228\n", "48 30820 ... 11.145407\n", "49 30821 ... 10.554946\n", "50 30822 ... 9.139843\n", "51 30823 ... 7.114215\n", "52 30824 ... 4.747508\n", "53 30825 ... 5.182785\n", "54 30826 ... 11.098437\n", "55 30827 ... 11.842958\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3rvnt4hr \n", "\n", "wandb: Agent Starting Run: m31yaxhk with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: m31yaxhk\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/m31yaxhk
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.808099165558815\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.1404049582779408\n", "The running loss is:\n", "32.54965762794018\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.6274828813970088\n", "The running loss is:\n", "23.487822026014328\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.1743911013007164\n", "The running loss is:\n", "21.436568334698677\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.071828416734934\n", "The running loss is:\n", "20.173894971609116\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.0086947485804558\n", "The running loss is:\n", "19.244802474975586\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.9622401237487793\n", "The running loss is:\n", "19.414657458662987\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.9707328729331494\n", "The running loss is:\n", "18.745623260736465\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.9372811630368233\n", "The running loss is:\n", "18.42511696368456\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.9212558481842279\n", "The running loss is:\n", "17.993324242532253\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.8996662121266127\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 1.286533\n", "47 30819 Eagle County, Colorado, United States ... 47 7.902304\n", "48 30820 Eagle County, Colorado, United States ... 48 8.358495\n", "49 30821 Eagle County, Colorado, United States ... 49 7.713692\n", "50 30822 Eagle County, Colorado, United States ... 50 5.313522\n", "51 30823 Eagle County, Colorado, United States ... 51 2.300918\n", "52 30824 Eagle County, Colorado, United States ... 52 -1.653545\n", "53 30825 Eagle County, Colorado, United States ... 53 -0.715274\n", "54 30826 Eagle County, Colorado, United States ... 54 6.250890\n", "55 30827 Eagle County, Colorado, United States ... 55 7.206236\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: m31yaxhk \n", "\n", "wandb: Agent Starting Run: 5wjn16ui with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 5wjn16ui\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5wjn16ui
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "23.883200803771615\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.2570105686195587\n", "The running loss is:\n", "29.3741205483675\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.5460063446509211\n", "The running loss is:\n", "22.550002455711365\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.1868422345111245\n", "The running loss is:\n", "21.398591592907906\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.1262416627846266\n", "The running loss is:\n", "20.165410295128822\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.0613373839541485\n", "The running loss is:\n", "19.983036041259766\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.0517387390136719\n", "The running loss is:\n", "19.7033898383379\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.0370205178072578\n", "The running loss is:\n", "20.062028273940086\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.055896224944215\n", "The running loss is:\n", "19.604557141661644\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.0318187969295602\n", "The running loss is:\n", "19.286929190158844\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.0151015363241498\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 4.172461\n", "47 30819 ... 9.464293\n", "48 30820 ... 10.587953\n", "49 30821 ... 11.135654\n", "50 30822 ... 10.621194\n", "51 30823 ... 9.779943\n", "52 30824 ... 8.561573\n", "53 30825 ... 7.978648\n", "54 30826 ... 12.218817\n", "55 30827 ... 12.135553\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5wjn16ui \n", "\n", "wandb: Agent Starting Run: qdw71sjg with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: qdw71sjg\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qdw71sjg
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.258419326506555\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "0.9629209663253278\n", "The running loss is:\n", "29.041860688477755\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.4520930344238878\n", "The running loss is:\n", "28.806721806526184\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.4403360903263092\n", "The running loss is:\n", "22.60324565321207\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.1301622826606035\n", "The running loss is:\n", "17.439734483137727\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.8719867241568864\n", "The running loss is:\n", "17.076150111854076\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.8538075055927038\n", "The running loss is:\n", "16.122335635125637\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.8061167817562819\n", "The running loss is:\n", "16.304215546697378\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.8152107773348689\n", "The running loss is:\n", "15.875915486365557\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.7937957743182779\n", "The running loss is:\n", "15.645636413246393\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.7822818206623197\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 2.874076\n", "47 30819 ... 10.008490\n", "48 30820 ... 11.268057\n", "49 30821 ... 10.409958\n", "50 30822 ... 9.094545\n", "51 30823 ... 7.289007\n", "52 30824 ... 5.318330\n", "53 30825 ... 5.599030\n", "54 30826 ... 11.190384\n", "55 30827 ... 11.729114\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qdw71sjg \n", "\n", "wandb: Agent Starting Run: txdsr8qd with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: txdsr8qd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/txdsr8qd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.926999300718307\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.0963499650359154\n", "The running loss is:\n", "33.55658884346485\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.6778294421732425\n", "The running loss is:\n", "27.994558811187744\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.3997279405593872\n", "The running loss is:\n", "22.162001058459282\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.108100052922964\n", "The running loss is:\n", "20.306521743535995\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.0153260871767997\n", "The running loss is:\n", "19.236631900072098\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.9618315950036049\n", "The running loss is:\n", "19.31939486414194\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.965969743207097\n", "The running loss is:\n", "18.986520119011402\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.9493260059505702\n", "The running loss is:\n", "17.964872032403946\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.8982436016201973\n", "The running loss is:\n", "17.021880947053432\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.8510940473526716\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 -1.726226\n", "47 30819 Eagle County, Colorado, United States ... 47 8.152036\n", "48 30820 Eagle County, Colorado, United States ... 48 9.121257\n", "49 30821 Eagle County, Colorado, United States ... 49 7.794924\n", "50 30822 Eagle County, Colorado, United States ... 50 5.571714\n", "51 30823 Eagle County, Colorado, United States ... 51 2.250640\n", "52 30824 Eagle County, Colorado, United States ... 52 -1.358527\n", "53 30825 Eagle County, Colorado, United States ... 53 -2.516638\n", "54 30826 Eagle County, Colorado, United States ... 54 6.146439\n", "55 30827 Eagle County, Colorado, United States ... 55 7.692529\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: txdsr8qd \n", "\n", "wandb: Agent Starting Run: 1kt2ejdy with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 1kt2ejdy\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1kt2ejdy
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.44402662664652\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.0760014014024484\n", "The running loss is:\n", "31.244781777262688\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.6444621988032992\n", "The running loss is:\n", "28.567642599344254\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.5035601368075924\n", "The running loss is:\n", "22.09902586042881\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.1631066242330952\n", "The running loss is:\n", "20.13299036026001\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.059631071592632\n", "The running loss is:\n", "19.623609885573387\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.032821572924915\n", "The running loss is:\n", "19.941684514284134\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.0495623428570597\n", "The running loss is:\n", "20.171836733818054\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.0616756175693713\n", "The running loss is:\n", "19.684818655252457\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.0360430871185504\n", "The running loss is:\n", "18.656600639224052\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.9819263494328448\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.344335\n", "47 30819 ... 8.965163\n", "48 30820 ... 9.366188\n", "49 30821 ... 9.369502\n", "50 30822 ... 8.577673\n", "51 30823 ... 7.636180\n", "52 30824 ... 6.371642\n", "53 30825 ... 7.675599\n", "54 30826 ... 10.337065\n", "55 30827 ... 10.057920\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1kt2ejdy \n", "\n", "wandb: Agent Starting Run: bvwqzrjt with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: bvwqzrjt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/bvwqzrjt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.858943171799183\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.142947158589959\n", "The running loss is:\n", "25.452721800655127\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.2726360900327562\n", "The running loss is:\n", "23.522745087742805\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.1761372543871402\n", "The running loss is:\n", "30.910138800740242\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.545506940037012\n", "The running loss is:\n", "27.686953529715538\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.384347676485777\n", "The running loss is:\n", "22.573460146784782\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.128673007339239\n", "The running loss is:\n", "17.657725639641285\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.8828862819820642\n", "The running loss is:\n", "17.554872505366802\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.8777436252683402\n", "The running loss is:\n", "16.82310827448964\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.8411554137244821\n", "The running loss is:\n", "15.671338841319084\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.7835669420659542\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 2.077608\n", "47 30819 ... 9.250809\n", "48 30820 ... 10.825143\n", "49 30821 ... 9.578727\n", "50 30822 ... 7.942455\n", "51 30823 ... 5.830050\n", "52 30824 ... 3.557108\n", "53 30825 ... 3.781698\n", "54 30826 ... 9.988200\n", "55 30827 ... 11.042790\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: bvwqzrjt \n", "\n", "wandb: Agent Starting Run: 9hkq0cre with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 9hkq0cre\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9hkq0cre
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "26.16333219408989\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.3081666097044944\n", "The running loss is:\n", "26.045250490307808\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.3022625245153905\n", "The running loss is:\n", "25.80753855407238\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.290376927703619\n", "The running loss is:\n", "26.523033320903778\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.3261516660451889\n", "The running loss is:\n", "26.54793219268322\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.327396609634161\n", "The running loss is:\n", "22.712683379650116\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.1356341689825058\n", "The running loss is:\n", "20.329153656959534\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.0164576828479768\n", "The running loss is:\n", "19.61660325527191\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.9808301627635956\n", "The running loss is:\n", "20.726151082664728\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.0363075541332365\n", "The running loss is:\n", "19.05374999344349\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.9526874996721745\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.453219\n", "47 30819 Eagle County, Colorado, United States ... 47 9.035815\n", "48 30820 Eagle County, Colorado, United States ... 48 9.680546\n", "49 30821 Eagle County, Colorado, United States ... 49 9.059596\n", "50 30822 Eagle County, Colorado, United States ... 50 7.984948\n", "51 30823 Eagle County, Colorado, United States ... 51 6.752469\n", "52 30824 Eagle County, Colorado, United States ... 52 5.493628\n", "53 30825 Eagle County, Colorado, United States ... 53 6.058336\n", "54 30826 Eagle County, Colorado, United States ... 54 9.732533\n", "55 30827 Eagle County, Colorado, United States ... 55 9.939076\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9hkq0cre \n", "\n", "wandb: Agent Starting Run: wcq119wq with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: wcq119wq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/wcq119wq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "23.35972896963358\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.2294594194543988\n", "The running loss is:\n", "29.350028984248638\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.5447383675920336\n", "The running loss is:\n", "23.49043282866478\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.2363385699297254\n", "The running loss is:\n", "24.20486121624708\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.2739400640130043\n", "The running loss is:\n", "23.583865851163864\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.2412560974296771\n", "The running loss is:\n", "21.583225786685944\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.1359592519308392\n", "The running loss is:\n", "19.9445867985487\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.0497150946604579\n", "The running loss is:\n", "20.0459441319108\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.0550496911532001\n", "The running loss is:\n", "19.574128806591034\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.0302173056100543\n", "The running loss is:\n", "19.495283983647823\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.0260675780867274\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 7.255701\n", "47 30819 ... 9.307986\n", "48 30820 ... 10.159330\n", "49 30821 ... 10.204440\n", "50 30822 ... 9.981266\n", "51 30823 ... 9.593956\n", "52 30824 ... 9.135714\n", "53 30825 ... 9.793672\n", "54 30826 ... 10.906508\n", "55 30827 ... 10.791603\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: wcq119wq \n", "\n", "wandb: Agent Starting Run: yxaojihg with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: yxaojihg\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yxaojihg
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "63.12795731425285\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "3.1563978657126426\n", "The running loss is:\n", "27.380909606814384\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.3690454803407193\n", "The running loss is:\n", "38.64922794699669\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.9324613973498344\n", "The running loss is:\n", "24.797455199062824\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.2398727599531412\n", "The running loss is:\n", "24.066325157880783\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.203316257894039\n", "The running loss is:\n", "20.85441730171442\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.042720865085721\n", "The running loss is:\n", "22.116691429167986\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.1058345714583993\n", "The running loss is:\n", "20.194003105163574\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.0097001552581788\n", "The running loss is:\n", "19.880487099289894\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.9940243549644947\n", "The running loss is:\n", "19.48942229896784\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.9744711149483919\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.095248\n", "47 30819 ... 13.675316\n", "48 30820 ... 13.755165\n", "49 30821 ... 12.772159\n", "50 30822 ... 11.387144\n", "51 30823 ... 9.963962\n", "52 30824 ... 8.419066\n", "53 30825 ... 7.604329\n", "54 30826 ... 14.152313\n", "55 30827 ... 13.881279\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yxaojihg \n", "\n", "wandb: Agent Starting Run: vo69e3rr with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: vo69e3rr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vo69e3rr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "44.05574178695679\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "2.202787089347839\n", "The running loss is:\n", "25.349156990647316\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.2674578495323658\n", "The running loss is:\n", "33.40304487943649\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.6701522439718246\n", "The running loss is:\n", "31.406648948788643\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.5703324474394322\n", "The running loss is:\n", "22.615651819854975\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.1307825909927487\n", "The running loss is:\n", "22.341147303581238\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.1170573651790618\n", "The running loss is:\n", "22.197795197367668\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.1098897598683835\n", "The running loss is:\n", "24.94717773795128\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.247358886897564\n", "The running loss is:\n", "21.06535917520523\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.0532679587602616\n", "The running loss is:\n", "23.481164187192917\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.1740582093596459\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 9.153221\n", "47 30819 Eagle County, Colorado, United States ... 47 9.367915\n", "48 30820 Eagle County, Colorado, United States ... 48 9.625638\n", "49 30821 Eagle County, Colorado, United States ... 49 9.611838\n", "50 30822 Eagle County, Colorado, United States ... 50 9.603510\n", "51 30823 Eagle County, Colorado, United States ... 51 9.651998\n", "52 30824 Eagle County, Colorado, United States ... 52 9.644343\n", "53 30825 Eagle County, Colorado, United States ... 53 9.659492\n", "54 30826 Eagle County, Colorado, United States ... 54 9.670691\n", "55 30827 Eagle County, Colorado, United States ... 55 9.647216\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vo69e3rr \n", "\n", "wandb: Agent Starting Run: x99vu0oz with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: x99vu0oz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/x99vu0oz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "43.28711162507534\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "2.2782690328987023\n", "The running loss is:\n", "25.05246562510729\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.3185508223740678\n", "The running loss is:\n", "26.483036309480667\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.3938440162884562\n", "The running loss is:\n", "23.21202003955841\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.2216852652399164\n", "The running loss is:\n", "24.40618184953928\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.284535886817857\n", "The running loss is:\n", "23.41523738205433\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.2323809148449647\n", "The running loss is:\n", "21.69338585436344\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.1417571502296548\n", "The running loss is:\n", "19.94015894830227\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.0494820499106456\n", "The running loss is:\n", "20.32781156897545\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.0698848194197605\n", "The running loss is:\n", "19.49485769867897\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.0260451420357353\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.251549\n", "47 30819 ... 10.083247\n", "48 30820 ... 10.766473\n", "49 30821 ... 10.922501\n", "50 30822 ... 10.916012\n", "51 30823 ... 10.829031\n", "52 30824 ... 10.715705\n", "53 30825 ... 9.894305\n", "54 30826 ... 11.196030\n", "55 30827 ... 11.021307\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: x99vu0oz \n", "\n", "wandb: Agent Starting Run: 0112l6k2 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 0112l6k2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0112l6k2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.372625601943582\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.018631280097179\n", "The running loss is:\n", "42.762292738305405\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "2.13811463691527\n", "The running loss is:\n", "30.07040224969387\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.5035201124846935\n", "The running loss is:\n", "25.568414388224483\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.278420719411224\n", "The running loss is:\n", "21.809938758146018\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.0904969379073008\n", "The running loss is:\n", "19.993976016994566\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.9996988008497283\n", "The running loss is:\n", "18.31971403909847\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.9159857019549236\n", "The running loss is:\n", "18.475750502664596\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.9237875251332298\n", "The running loss is:\n", "17.406269858358428\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.8703134929179214\n", "The running loss is:\n", "15.831582311540842\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.7915791155770421\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 0.211360\n", "47 30819 Eagle County, Colorado, United States ... 47 0.805061\n", "48 30820 Eagle County, Colorado, United States ... 48 6.456613\n", "49 30821 Eagle County, Colorado, United States ... 49 5.171219\n", "50 30822 Eagle County, Colorado, United States ... 50 4.403521\n", "51 30823 Eagle County, Colorado, United States ... 51 3.981504\n", "52 30824 Eagle County, Colorado, United States ... 52 1.503850\n", "53 30825 Eagle County, Colorado, United States ... 53 1.144254\n", "54 30826 Eagle County, Colorado, United States ... 54 1.294929\n", "55 30827 Eagle County, Colorado, United States ... 55 6.817929\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0112l6k2 \n", "\n", "wandb: Agent Starting Run: cz0b2jhf with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: cz0b2jhf\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cz0b2jhf
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.58346115425229\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.0833400607501205\n", "The running loss is:\n", "32.63544833660126\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.7176551756105924\n", "The running loss is:\n", "24.86648626625538\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.3087624350660725\n", "The running loss is:\n", "19.861273169517517\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0453301668167114\n", "The running loss is:\n", "19.426814898848534\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.0224639420446597\n", "The running loss is:\n", "19.01237651705742\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.000651395634601\n", "The running loss is:\n", "18.123736664652824\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.9538808770869908\n", "The running loss is:\n", "17.36862461268902\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9141381375099483\n", "The running loss is:\n", "16.771386608481407\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.8827045583411267\n", "The running loss is:\n", "16.049383729696274\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.8447044068261197\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 0.222322\n", "47 30819 ... 0.539564\n", "48 30820 ... 14.811440\n", "49 30821 ... 12.646440\n", "50 30822 ... 12.469790\n", "51 30823 ... 12.615289\n", "52 30824 ... 7.882138\n", "53 30825 ... 7.685679\n", "54 30826 ... 7.464492\n", "55 30827 ... 20.618021\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cz0b2jhf \n", "\n", "wandb: Agent Starting Run: 6m4vzuog with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 6m4vzuog\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6m4vzuog
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.154827743768692\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.008148828619405\n", "The running loss is:\n", "31.390202894806862\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.65211594183194\n", "The running loss is:\n", "22.409427136182785\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.1794435334833044\n", "The running loss is:\n", "20.129380136728287\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0594410598278046\n", "The running loss is:\n", "19.285180315375328\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.015009490282912\n", "The running loss is:\n", "18.609702050685883\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.979458002667678\n", "The running loss is:\n", "17.89329308271408\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.9417522675112674\n", "The running loss is:\n", "18.30278380215168\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9633044106395621\n", "The running loss is:\n", "17.593301609158516\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.9259632425872903\n", "The running loss is:\n", "16.95015725493431\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.8921135397333848\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 1.498729\n", "47 30819 ... 2.784153\n", "48 30820 ... 7.250659\n", "49 30821 ... 6.390955\n", "50 30822 ... 6.113214\n", "51 30823 ... 6.685583\n", "52 30824 ... 4.513458\n", "53 30825 ... 5.044778\n", "54 30826 ... 6.276218\n", "55 30827 ... 10.104283\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6m4vzuog \n", "\n", "wandb: Agent Starting Run: xj4p6nut with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: xj4p6nut\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xj4p6nut
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "24.988776933401823\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "1.2494388466700912\n", "The running loss is:\n", "34.32063250988722\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.7160316254943608\n", "The running loss is:\n", "33.453855484724045\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.6726927742362023\n", "The running loss is:\n", "23.9404144436121\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.1970207221806048\n", "The running loss is:\n", "17.672576233861037\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "0.8836288116930519\n", "The running loss is:\n", "17.489475843962282\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "0.874473792198114\n", "The running loss is:\n", "17.147922162897885\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "0.8573961081448942\n", "The running loss is:\n", "16.498743789969012\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.8249371894984506\n", "The running loss is:\n", "17.00277705863118\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.8501388529315591\n", "The running loss is:\n", "16.65495465998538\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "0.832747732999269\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 0.488977\n", "47 30819 Eagle County, Colorado, United States ... 47 0.897190\n", "48 30820 Eagle County, Colorado, United States ... 48 6.354722\n", "49 30821 Eagle County, Colorado, United States ... 49 4.820605\n", "50 30822 Eagle County, Colorado, United States ... 50 4.016927\n", "51 30823 Eagle County, Colorado, United States ... 51 4.606457\n", "52 30824 Eagle County, Colorado, United States ... 52 2.254005\n", "53 30825 Eagle County, Colorado, United States ... 53 1.486971\n", "54 30826 Eagle County, Colorado, United States ... 54 1.760599\n", "55 30827 Eagle County, Colorado, United States ... 55 7.010409\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xj4p6nut \n", "\n", "wandb: Agent Starting Run: ktbeaa9j with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ktbeaa9j\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ktbeaa9j
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.999079801142216\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.1578463053232746\n", "The running loss is:\n", "30.826843470335007\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.6224654458071057\n", "The running loss is:\n", "26.63893211632967\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.4020490587541932\n", "The running loss is:\n", "22.48357506096363\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.1833460558401911\n", "The running loss is:\n", "19.925148122012615\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.0486920064217167\n", "The running loss is:\n", "18.893528878688812\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.9943962567730954\n", "The running loss is:\n", "18.58210776746273\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.9780056719717226\n", "The running loss is:\n", "17.370767161250114\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9142509032236902\n", "The running loss is:\n", "16.939767386764288\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.8915667045665415\n", "The running loss is:\n", "18.0814261212945\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.951654006383921\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.043530\n", "47 30819 ... 8.564563\n", "48 30820 ... 13.208735\n", "49 30821 ... 13.813708\n", "50 30822 ... 14.007776\n", "51 30823 ... 12.857953\n", "52 30824 ... 9.531335\n", "53 30825 ... 11.662832\n", "54 30826 ... 13.480352\n", "55 30827 ... 18.950397\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ktbeaa9j \n", "\n", "wandb: Agent Starting Run: hxsffuei with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: hxsffuei\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hxsffuei
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.854974925518036\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.044998680290423\n", "The running loss is:\n", "30.09627439081669\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.584014441621931\n", "The running loss is:\n", "26.052530765533447\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.3711858297649182\n", "The running loss is:\n", "20.87158501148224\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0985044742885388\n", "The running loss is:\n", "19.386949434876442\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.020365759730339\n", "The running loss is:\n", "18.365763187408447\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.9666191151267604\n", "The running loss is:\n", "18.275505244731903\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.9618686970911527\n", "The running loss is:\n", "18.561134546995163\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9769018182629033\n", "The running loss is:\n", "17.98644445836544\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.9466549714929179\n", "The running loss is:\n", "16.56345410645008\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.8717607424447411\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 4.921343\n", "47 30819 ... 5.653644\n", "48 30820 ... 9.571172\n", "49 30821 ... 10.741131\n", "50 30822 ... 9.583526\n", "51 30823 ... 10.284985\n", "52 30824 ... 8.859438\n", "53 30825 ... 12.613676\n", "54 30826 ... 13.139013\n", "55 30827 ... 16.450876\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hxsffuei \n", "\n", "wandb: Agent Starting Run: b737k97a with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: b737k97a\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/b737k97a
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "40.35339838266373\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "2.017669919133186\n", "The running loss is:\n", "25.41597201861441\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.2707986009307206\n", "The running loss is:\n", "53.00542160903569\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "2.650271080451785\n", "The running loss is:\n", "30.41038277000189\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.5205191385000945\n", "The running loss is:\n", "40.67561185359955\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "2.0337805926799772\n", "The running loss is:\n", "22.468553626909852\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.1234276813454926\n", "The running loss is:\n", "21.3985225148499\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.069926125742495\n", "The running loss is:\n", "19.585227265022695\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "0.9792613632511348\n", "The running loss is:\n", "19.549080536235124\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "0.9774540268117562\n", "The running loss is:\n", "21.40721446927637\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.0703607234638184\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.792440\n", "47 30819 Eagle County, Colorado, United States ... 47 7.494670\n", "48 30820 Eagle County, Colorado, United States ... 48 7.285886\n", "49 30821 Eagle County, Colorado, United States ... 49 7.716760\n", "50 30822 Eagle County, Colorado, United States ... 50 7.138034\n", "51 30823 Eagle County, Colorado, United States ... 51 6.490120\n", "52 30824 Eagle County, Colorado, United States ... 52 5.939859\n", "53 30825 Eagle County, Colorado, United States ... 53 8.235563\n", "54 30826 Eagle County, Colorado, United States ... 54 8.465868\n", "55 30827 Eagle County, Colorado, United States ... 55 8.199594\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: b737k97a \n", "\n", "wandb: Agent Starting Run: fe84e15w with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: fe84e15w\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fe84e15w
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "29.204040184617043\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.5370547465587918\n", "The running loss is:\n", "24.24693512916565\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.2761544804824025\n", "The running loss is:\n", "23.89077879488468\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.2574094102570885\n", "The running loss is:\n", "25.985695831477642\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.367668201656718\n", "The running loss is:\n", "23.965177146717906\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.261325112985153\n", "The running loss is:\n", "21.409245938062668\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.126802417792772\n", "The running loss is:\n", "19.704271476715803\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.0370669198271476\n", "The running loss is:\n", "19.2407064512372\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.0126687605914317\n", "The running loss is:\n", "18.875049274414778\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.9934236460218304\n", "The running loss is:\n", "16.603436348959804\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.8738650709978844\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.420867\n", "47 30819 ... 10.179868\n", "48 30820 ... 11.027630\n", "49 30821 ... 11.649125\n", "50 30822 ... 10.415971\n", "51 30823 ... 8.790237\n", "52 30824 ... 6.691815\n", "53 30825 ... 10.714285\n", "54 30826 ... 11.232683\n", "55 30827 ... 11.909349\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fe84e15w \n", "\n", "wandb: Agent Starting Run: 8ufb9xcb with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 8ufb9xcb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8ufb9xcb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "25.113935858011246\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.3217860977900655\n", "The running loss is:\n", "22.519097536802292\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.1852156598316996\n", "The running loss is:\n", "24.353960901498795\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.2817874158683575\n", "The running loss is:\n", "24.2918109446764\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.2785163655092842\n", "The running loss is:\n", "25.014960184693336\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.316576851825965\n", "The running loss is:\n", "21.30792599916458\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.1214697894297148\n", "The running loss is:\n", "19.39668668806553\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.020878246740291\n", "The running loss is:\n", "19.37868858873844\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.0199309783546548\n", "The running loss is:\n", "19.13155810534954\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.0069241108078706\n", "The running loss is:\n", "19.100456029176712\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.0052871594303532\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.524095\n", "47 30819 ... 10.476821\n", "48 30820 ... 11.046574\n", "49 30821 ... 11.381286\n", "50 30822 ... 10.889049\n", "51 30823 ... 10.311730\n", "52 30824 ... 9.664641\n", "53 30825 ... 11.371816\n", "54 30826 ... 11.416924\n", "55 30827 ... 11.818830\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8ufb9xcb \n", "\n", "wandb: Agent Starting Run: g4xzyzr0 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: g4xzyzr0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/g4xzyzr0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "117.5767124183476\n", "The number of items in train is: \n", "20\n", "The loss for epoch 0\n", "5.87883562091738\n", "The running loss is:\n", "25.486171117052436\n", "The number of items in train is: \n", "20\n", "The loss for epoch 1\n", "1.2743085558526217\n", "The running loss is:\n", "37.6898739207536\n", "The number of items in train is: \n", "20\n", "The loss for epoch 2\n", "1.88449369603768\n", "The running loss is:\n", "23.39531859382987\n", "The number of items in train is: \n", "20\n", "The loss for epoch 3\n", "1.1697659296914935\n", "The running loss is:\n", "27.995998777856585\n", "The number of items in train is: \n", "20\n", "The loss for epoch 4\n", "1.3997999388928293\n", "The running loss is:\n", "37.414801586419344\n", "The number of items in train is: \n", "20\n", "The loss for epoch 5\n", "1.8707400793209672\n", "The running loss is:\n", "27.45275203883648\n", "The number of items in train is: \n", "20\n", "The loss for epoch 6\n", "1.372637601941824\n", "The running loss is:\n", "29.12205201201141\n", "The number of items in train is: \n", "20\n", "The loss for epoch 7\n", "1.4561026006005704\n", "The running loss is:\n", "21.42994563933462\n", "The number of items in train is: \n", "20\n", "The loss for epoch 8\n", "1.071497281966731\n", "The running loss is:\n", "20.176511982805096\n", "The number of items in train is: \n", "20\n", "The loss for epoch 9\n", "1.0088255991402548\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.190459\n", "47 30819 ... 9.656222\n", "48 30820 ... 10.072992\n", "49 30821 ... 10.239223\n", "50 30822 ... 9.966965\n", "51 30823 ... 9.720456\n", "52 30824 ... 9.445283\n", "53 30825 ... 10.617431\n", "54 30826 ... 10.793635\n", "55 30827 ... 10.693918\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: g4xzyzr0 \n", "\n", "wandb: Agent Starting Run: q4a00375 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: q4a00375\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/q4a00375
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "75.37063696980476\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "3.9668756299897243\n", "The running loss is:\n", "28.946842608973384\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.5235180320512307\n", "The running loss is:\n", "37.80971126258373\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.9899848032938807\n", "The running loss is:\n", "28.027809100225568\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.475147847380293\n", "The running loss is:\n", "22.214233489707112\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.1691701836687953\n", "The running loss is:\n", "22.130612179636955\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.1647690620861555\n", "The running loss is:\n", "20.125448502600193\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.0592341317157996\n", "The running loss is:\n", "19.99137994274497\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.0521778917234195\n", "The running loss is:\n", "19.447364665567875\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.0235455087140988\n", "The running loss is:\n", "19.63094657845795\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.0332077146556817\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.141244\n", "47 30819 ... 8.384874\n", "48 30820 ... 9.568216\n", "49 30821 ... 10.020310\n", "50 30822 ... 9.479197\n", "51 30823 ... 9.105638\n", "52 30824 ... 8.633883\n", "53 30825 ... 9.554037\n", "54 30826 ... 9.554685\n", "55 30827 ... 10.687004\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: q4a00375 \n", "\n", "wandb: Agent Starting Run: oo78j1mm with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: oo78j1mm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/oo78j1mm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "55.04631087183952\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "2.8971742564126064\n", "The running loss is:\n", "25.651281729340553\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.3500674594389765\n", "The running loss is:\n", "29.31262482702732\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.5427697277382801\n", "The running loss is:\n", "21.643531814217567\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.139133253379872\n", "The running loss is:\n", "23.51069213449955\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.237404849184187\n", "The running loss is:\n", "20.243462055921555\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.0654453713642924\n", "The running loss is:\n", "19.515670895576477\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.0271405734513934\n", "The running loss is:\n", "19.44848108291626\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.0236042675219084\n", "The running loss is:\n", "19.702705189585686\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.0369844836624045\n", "The running loss is:\n", "19.46839915215969\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.0246525869557732\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.704140\n", "47 30819 ... 8.862094\n", "48 30820 ... 11.880857\n", "49 30821 ... 11.703236\n", "50 30822 ... 10.769067\n", "51 30823 ... 8.554482\n", "52 30824 ... 7.181332\n", "53 30825 ... 9.513320\n", "54 30826 ... 9.827226\n", "55 30827 ... 12.694811\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: oo78j1mm \n", "\n", "wandb: Agent Starting Run: wdzwiki2 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: wdzwiki2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/wdzwiki2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.439917542040348\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.0231535548442288\n", "The running loss is:\n", "30.940813273191452\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.6284638564837606\n", "The running loss is:\n", "20.62387929111719\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.0854673311114311\n", "The running loss is:\n", "18.94204149954021\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.9969495526073795\n", "The running loss is:\n", "18.354026339948177\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.966001386313062\n", "The running loss is:\n", "17.25484985858202\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.9081499925569484\n", "The running loss is:\n", "15.713611334562302\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.827032175503279\n", "The running loss is:\n", "17.080039270222187\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.8989494352748519\n", "The running loss is:\n", "16.1761021791026\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.8513737989001369\n", "The running loss is:\n", "15.210037291049957\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.8005282784763136\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 1.405954\n", "47 30819 ... 5.021082\n", "48 30820 ... 6.838092\n", "49 30821 ... 13.628771\n", "50 30822 ... 11.002051\n", "51 30823 ... 10.494727\n", "52 30824 ... 8.353095\n", "53 30825 ... 8.039375\n", "54 30826 ... 12.134420\n", "55 30827 ... 13.312056\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: wdzwiki2 \n", "\n", "wandb: Agent Starting Run: 9sw07zmk with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 9sw07zmk\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9sw07zmk
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.866965148597956\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.1508929025577872\n", "The running loss is:\n", "28.42113022506237\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.495848959213809\n", "The running loss is:\n", "19.687769025564194\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.0361983697665365\n", "The running loss is:\n", "18.45985646545887\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.9715713929188879\n", "The running loss is:\n", "17.097035117447376\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.8998439535498619\n", "The running loss is:\n", "17.411960707977414\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.9164189846303902\n", "The running loss is:\n", "15.815325029194355\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.8323855278523344\n", "The running loss is:\n", "17.199874091893435\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.905256531152286\n", "The running loss is:\n", "15.348654120229185\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.8078239010646939\n", "The running loss is:\n", "16.138024419546127\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.8493697062919014\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.408259\n", "47 30819 Eagle County, Colorado, United States ... 47 4.232812\n", "48 30820 Eagle County, Colorado, United States ... 48 4.682319\n", "49 30821 Eagle County, Colorado, United States ... 49 4.901486\n", "50 30822 Eagle County, Colorado, United States ... 50 5.480176\n", "51 30823 Eagle County, Colorado, United States ... 51 5.034000\n", "52 30824 Eagle County, Colorado, United States ... 52 4.305603\n", "53 30825 Eagle County, Colorado, United States ... 53 6.571662\n", "54 30826 Eagle County, Colorado, United States ... 54 7.423872\n", "55 30827 Eagle County, Colorado, United States ... 55 7.719498\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9sw07zmk \n", "\n", "wandb: Agent Starting Run: js3qf6my with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: js3qf6my\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/js3qf6my
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.61895739287138\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.0343865218261878\n", "The running loss is:\n", "32.830586299300194\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.823921461072233\n", "The running loss is:\n", "20.112476214766502\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.1173597897092502\n", "The running loss is:\n", "18.968113116919994\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.0537840620511107\n", "The running loss is:\n", "16.988379642367363\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9437988690204091\n", "The running loss is:\n", "15.98021186888218\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.8877895482712321\n", "The running loss is:\n", "16.49119970947504\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9161777616375022\n", "The running loss is:\n", "14.859417550265789\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.8255231972369883\n", "The running loss is:\n", "17.23430199921131\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.9574612221784062\n", "The running loss is:\n", "15.640456855297089\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8689142697387271\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.227388\n", "47 30819 ... 9.126212\n", "48 30820 ... 10.664755\n", "49 30821 ... 11.284911\n", "50 30822 ... 13.417641\n", "51 30823 ... 14.878563\n", "52 30824 ... 15.908744\n", "53 30825 ... 16.099213\n", "54 30826 ... 17.605251\n", "55 30827 ... 18.707098\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: js3qf6my \n", "\n", "wandb: Agent Starting Run: a624rlup with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: a624rlup\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/a624rlup
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.47774775326252\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.9198814606980273\n", "The running loss is:\n", "34.215459898114204\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.800813678848116\n", "The running loss is:\n", "26.83509284630418\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.4123733077002198\n", "The running loss is:\n", "18.867049887776375\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.9930026256724408\n", "The running loss is:\n", "19.295793317258358\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.0155680693293874\n", "The running loss is:\n", "17.851775374263525\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.9395671249612382\n", "The running loss is:\n", "15.97345557063818\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.8407081879283252\n", "The running loss is:\n", "17.56080763041973\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9242530331799859\n", "The running loss is:\n", "14.913559079170227\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.7849241620615909\n", "The running loss is:\n", "12.077535170596093\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.6356597458208469\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 2.444650\n", "47 30819 ... 6.855227\n", "48 30820 ... 9.685863\n", "49 30821 ... 15.988708\n", "50 30822 ... 8.681789\n", "51 30823 ... 9.771622\n", "52 30824 ... 9.542686\n", "53 30825 ... 9.555958\n", "54 30826 ... 13.526699\n", "55 30827 ... 14.681934\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: a624rlup \n", "\n", "wandb: Agent Starting Run: 40xynftp with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 40xynftp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/40xynftp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.308471772819757\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.9636037775168294\n", "The running loss is:\n", "30.251929253339767\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.5922068028073562\n", "The running loss is:\n", "24.49585047364235\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.2892552880864394\n", "The running loss is:\n", "19.259405851364136\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0136529395454807\n", "The running loss is:\n", "18.27196502685547\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.9616823698344984\n", "The running loss is:\n", "19.17086371779442\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.0089928272523379\n", "The running loss is:\n", "17.18504023551941\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.9044758018694425\n", "The running loss is:\n", "18.312036082148552\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9637913727446606\n", "The running loss is:\n", "16.296567849814892\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.8577140973586785\n", "The running loss is:\n", "17.141273446381092\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.9021722866516364\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.938318\n", "47 30819 Eagle County, Colorado, United States ... 47 5.764008\n", "48 30820 Eagle County, Colorado, United States ... 48 6.388542\n", "49 30821 Eagle County, Colorado, United States ... 49 7.110359\n", "50 30822 Eagle County, Colorado, United States ... 50 7.884383\n", "51 30823 Eagle County, Colorado, United States ... 51 7.342934\n", "52 30824 Eagle County, Colorado, United States ... 52 6.783928\n", "53 30825 Eagle County, Colorado, United States ... 53 8.088088\n", "54 30826 Eagle County, Colorado, United States ... 54 8.484551\n", "55 30827 Eagle County, Colorado, United States ... 55 8.842177\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 40xynftp \n", "\n", "wandb: Agent Starting Run: x9p0raql with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: x9p0raql\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/x9p0raql
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.20878306031227\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.0115990589062374\n", "The running loss is:\n", "30.39992317557335\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.688884620865186\n", "The running loss is:\n", "24.892738670110703\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3829299261172612\n", "The running loss is:\n", "18.693133994936943\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.0385074441631634\n", "The running loss is:\n", "17.386428490281105\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9659126939045058\n", "The running loss is:\n", "17.251834139227867\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9584352299571037\n", "The running loss is:\n", "16.990745536983013\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9439303076101674\n", "The running loss is:\n", "15.523895770311356\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.8624386539061865\n", "The running loss is:\n", "15.15600986033678\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.8420005477964878\n", "The running loss is:\n", "15.994639500975609\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8885910833875338\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... -3.318589\n", "47 30819 ... 3.843014\n", "48 30820 ... 5.907660\n", "49 30821 ... 8.168655\n", "50 30822 ... 7.266984\n", "51 30823 ... 11.548547\n", "52 30824 ... 12.392776\n", "53 30825 ... 7.730372\n", "54 30826 ... 12.077904\n", "55 30827 ... 15.405001\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: x9p0raql \n", "\n", "wandb: Agent Starting Run: 1nc5hjpj with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 1nc5hjpj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1nc5hjpj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.01491452753544\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.1586797119755494\n", "The running loss is:\n", "31.853158585727215\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.6764820308277482\n", "The running loss is:\n", "26.29714571684599\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.384060300886631\n", "The running loss is:\n", "26.294843655079603\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.3839391397410317\n", "The running loss is:\n", "19.7319422904402\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.038523278444221\n", "The running loss is:\n", "19.520247725769877\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.0273814592510462\n", "The running loss is:\n", "20.0667427983135\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.0561443578059737\n", "The running loss is:\n", "21.17197396606207\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.1143144192664247\n", "The running loss is:\n", "19.718472911044955\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.037814363739208\n", "The running loss is:\n", "19.412712370976806\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.0217217037356214\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.294752\n", "47 30819 ... 9.692703\n", "48 30820 ... 9.468822\n", "49 30821 ... 9.753605\n", "50 30822 ... 9.970875\n", "51 30823 ... 10.097393\n", "52 30824 ... 10.157984\n", "53 30825 ... 9.429254\n", "54 30826 ... 9.691366\n", "55 30827 ... 9.643483\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1nc5hjpj \n", "\n", "wandb: Agent Starting Run: 4l4l0izo with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 4l4l0izo\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4l4l0izo
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.050547145307064\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.1605551129108982\n", "The running loss is:\n", "25.80047580599785\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.3579197792630446\n", "The running loss is:\n", "25.028174303472042\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.3172723317616863\n", "The running loss is:\n", "20.451709896326065\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0764057840171612\n", "The running loss is:\n", "19.47241935878992\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.0248641767784168\n", "The running loss is:\n", "20.091709028929472\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.0574583699436564\n", "The running loss is:\n", "19.807796388864517\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.042515599413922\n", "The running loss is:\n", "19.969597205519676\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.0510314318694567\n", "The running loss is:\n", "19.053783051669598\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.0028306869299788\n", "The running loss is:\n", "20.52410914003849\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.0802162705283416\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 12.075467\n", "47 30819 ... 12.087450\n", "48 30820 ... 12.215178\n", "49 30821 ... 12.526230\n", "50 30822 ... 12.124049\n", "51 30823 ... 12.042738\n", "52 30824 ... 11.950590\n", "53 30825 ... 11.619714\n", "54 30826 ... 11.910013\n", "55 30827 ... 11.983730\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4l4l0izo \n", "\n", "wandb: Agent Starting Run: 9n09j7mq with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 9n09j7mq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9n09j7mq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.33804288506508\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.2410023825036154\n", "The running loss is:\n", "29.3419336527586\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.6301074251532555\n", "The running loss is:\n", "24.344750091433525\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3524861161907513\n", "The running loss is:\n", "26.355553224682808\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.464197401371267\n", "The running loss is:\n", "19.099645756185055\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0610914308991697\n", "The running loss is:\n", "18.798252046108246\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.0443473358949025\n", "The running loss is:\n", "18.6990150436759\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "1.0388341690931056\n", "The running loss is:\n", "18.03596955537796\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.001998308632109\n", "The running loss is:\n", "19.955710768699646\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "1.1086505982610915\n", "The running loss is:\n", "17.729627013206482\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.9849792785114713\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.881124\n", "47 30819 ... 8.230920\n", "48 30820 ... 9.809904\n", "49 30821 ... 10.729694\n", "50 30822 ... 11.824153\n", "51 30823 ... 12.183820\n", "52 30824 ... 12.874773\n", "53 30825 ... 15.379370\n", "54 30826 ... 11.733409\n", "55 30827 ... 12.554773\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9n09j7mq \n", "\n", "wandb: Agent Starting Run: syski6rt with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: syski6rt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/syski6rt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "63.3910943493247\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "3.3363733868065633\n", "The running loss is:\n", "47.28794980049133\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "2.4888394631837545\n", "The running loss is:\n", "23.97084303200245\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.2616233174738132\n", "The running loss is:\n", "24.236013285815716\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.2755796466218798\n", "The running loss is:\n", "23.217061527073383\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.2219506066880728\n", "The running loss is:\n", "23.78413737937808\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.2517967041777938\n", "The running loss is:\n", "20.42416459042579\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.0749560310750415\n", "The running loss is:\n", "21.191512526012957\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.1153427645269978\n", "The running loss is:\n", "20.13818071037531\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.05990424791449\n", "The running loss is:\n", "19.909312774660066\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.047858567087372\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.473160\n", "47 30819 ... 10.076666\n", "48 30820 ... 9.667487\n", "49 30821 ... 9.543557\n", "50 30822 ... 9.632355\n", "51 30823 ... 9.628160\n", "52 30824 ... 9.336935\n", "53 30825 ... 9.680449\n", "54 30826 ... 9.660083\n", "55 30827 ... 9.695948\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: syski6rt \n", "\n", "wandb: Agent Starting Run: 4du6hfng with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 4du6hfng\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4du6hfng
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "45.15644834935665\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "2.376655176281929\n", "The running loss is:\n", "24.583040460944176\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.2938442347865355\n", "The running loss is:\n", "24.31435240805149\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.2797027583184994\n", "The running loss is:\n", "19.6933766156435\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0364935060865001\n", "The running loss is:\n", "22.520604372024536\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.1852949669486599\n", "The running loss is:\n", "20.99607415497303\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.1050565344722647\n", "The running loss is:\n", "21.251499339938164\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.1184999652599033\n", "The running loss is:\n", "18.809990733861923\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9899995123085222\n", "The running loss is:\n", "21.792427882552147\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.146969888555376\n", "The running loss is:\n", "26.7241814956069\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.4065358681898368\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 13.673933\n", "47 30819 ... 14.546380\n", "48 30820 ... 13.259560\n", "49 30821 ... 12.589678\n", "50 30822 ... 12.516530\n", "51 30823 ... 12.692194\n", "52 30824 ... 12.960377\n", "53 30825 ... 12.941114\n", "54 30826 ... 12.940870\n", "55 30827 ... 12.940939\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4du6hfng \n", "\n", "wandb: Agent Starting Run: fcgaitxn with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: fcgaitxn\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fcgaitxn
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "53.720550164580345\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "2.9844750091433525\n", "The running loss is:\n", "28.512199953198433\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.584011108511024\n", "The running loss is:\n", "27.69733640551567\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.5387409114175372\n", "The running loss is:\n", "21.140835970640182\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.174490887257788\n", "The running loss is:\n", "20.6005170494318\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.1444731694128778\n", "The running loss is:\n", "19.554107524454594\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.086339306914144\n", "The running loss is:\n", "18.478814348578453\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "1.0266007971432474\n", "The running loss is:\n", "20.78046827018261\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.1544704594545894\n", "The running loss is:\n", "19.102542735636234\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "1.061252374202013\n", "The running loss is:\n", "18.857495926320553\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "1.047638662573364\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 7.976553\n", "47 30819 ... 10.621822\n", "48 30820 ... 10.570047\n", "49 30821 ... 10.549634\n", "50 30822 ... 10.590073\n", "51 30823 ... 10.583848\n", "52 30824 ... 10.555012\n", "53 30825 ... 10.526819\n", "54 30826 ... 10.730923\n", "55 30827 ... 10.765011\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fcgaitxn \n", "\n", "wandb: Agent Starting Run: q1qyufq3 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: q1qyufq3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/q1qyufq3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "23.65174242667854\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.2448285487725546\n", "The running loss is:\n", "25.936323020607233\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.3650696326635385\n", "The running loss is:\n", "19.027717442717403\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.0014588127746002\n", "The running loss is:\n", "17.514922223752365\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.9218380117764402\n", "The running loss is:\n", "18.12891899421811\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "0.9541536312746374\n", "The running loss is:\n", "15.658698424231261\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.8241420223279611\n", "The running loss is:\n", "14.604375790804625\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.7686513574107697\n", "The running loss is:\n", "13.23361701448448\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.6965061586570779\n", "The running loss is:\n", "10.202940588351339\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.5369968730711231\n", "The running loss is:\n", "12.158686246722937\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.6399308550906809\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 -1.166312\n", "47 30819 Eagle County, Colorado, United States ... 47 -1.301611\n", "48 30820 Eagle County, Colorado, United States ... 48 -0.988161\n", "49 30821 Eagle County, Colorado, United States ... 49 -0.737440\n", "50 30822 Eagle County, Colorado, United States ... 50 -0.657340\n", "51 30823 Eagle County, Colorado, United States ... 51 -2.650376\n", "52 30824 Eagle County, Colorado, United States ... 52 -3.321557\n", "53 30825 Eagle County, Colorado, United States ... 53 -5.164228\n", "54 30826 Eagle County, Colorado, United States ... 54 -5.676957\n", "55 30827 Eagle County, Colorado, United States ... 55 -5.217156\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: q1qyufq3 \n", "\n", "wandb: Agent Starting Run: enziyrl1 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: enziyrl1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/enziyrl1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.002433963119984\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.055690775728888\n", "The running loss is:\n", "30.960632115602493\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.7200351175334718\n", "The running loss is:\n", "20.485445886850357\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.1380803270472422\n", "The running loss is:\n", "18.922638848423958\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.051257713801331\n", "The running loss is:\n", "17.114296164363623\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9507942313535346\n", "The running loss is:\n", "16.546244710683823\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9192358172602124\n", "The running loss is:\n", "15.97559380531311\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.8875329891840616\n", "The running loss is:\n", "15.165507942438126\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.8425282190243403\n", "The running loss is:\n", "16.049193635582924\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.8916218686434958\n", "The running loss is:\n", "14.222302194684744\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.790127899704708\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.894466\n", "47 30819 ... 10.531710\n", "48 30820 ... 8.822516\n", "49 30821 ... 7.990013\n", "50 30822 ... 6.305098\n", "51 30823 ... 10.142908\n", "52 30824 ... 13.165692\n", "53 30825 ... 15.270938\n", "54 30826 ... 19.283394\n", "55 30827 ... 17.361763\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: enziyrl1 \n", "\n", "wandb: Agent Starting Run: 05s9xxu7 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 05s9xxu7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/05s9xxu7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.876264482736588\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.1597924712631438\n", "The running loss is:\n", "27.826325714588165\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.545906984143787\n", "The running loss is:\n", "20.435464337468147\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.135303574303786\n", "The running loss is:\n", "19.343905992805958\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.0746614440447755\n", "The running loss is:\n", "18.26167470216751\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0145374834537506\n", "The running loss is:\n", "17.55466791242361\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9752593284679784\n", "The running loss is:\n", "16.646836515516043\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9248242508620024\n", "The running loss is:\n", "15.990774627774954\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.8883763682097197\n", "The running loss is:\n", "15.255841538310051\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.8475467521283362\n", "The running loss is:\n", "15.562775813043118\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8645986562801732\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 4.490562\n", "47 30819 ... 5.109116\n", "48 30820 ... 4.521112\n", "49 30821 ... 4.500493\n", "50 30822 ... 4.532074\n", "51 30823 ... 7.254538\n", "52 30824 ... 9.073475\n", "53 30825 ... 11.282241\n", "54 30826 ... 12.836247\n", "55 30827 ... 11.248981\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 05s9xxu7 \n", "\n", "wandb: Agent Starting Run: q1pw4m4o with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: q1pw4m4o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/q1pw4m4o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.18984922982054\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "0.9573604857800283\n", "The running loss is:\n", "31.015213429927826\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.6323796542067277\n", "The running loss is:\n", "25.05902342684567\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.3188959698339826\n", "The running loss is:\n", "17.705750689841807\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "0.9318816152548319\n", "The running loss is:\n", "19.256243493407965\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.0134864996530508\n", "The running loss is:\n", "16.12529268709477\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "0.848699615110251\n", "The running loss is:\n", "16.88124701194465\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "0.8884866848391922\n", "The running loss is:\n", "17.862726697698236\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "0.9401435104051703\n", "The running loss is:\n", "16.728870145976543\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.8804668497882391\n", "The running loss is:\n", "11.848636295646429\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.62361243661297\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 2.103765\n", "47 30819 Eagle County, Colorado, United States ... 47 1.870756\n", "48 30820 Eagle County, Colorado, United States ... 48 2.080886\n", "49 30821 Eagle County, Colorado, United States ... 49 2.155844\n", "50 30822 Eagle County, Colorado, United States ... 50 2.076065\n", "51 30823 Eagle County, Colorado, United States ... 51 2.572889\n", "52 30824 Eagle County, Colorado, United States ... 52 1.959953\n", "53 30825 Eagle County, Colorado, United States ... 53 3.224896\n", "54 30826 Eagle County, Colorado, United States ... 54 3.106375\n", "55 30827 Eagle County, Colorado, United States ... 55 3.125867\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: q1pw4m4o \n", "\n", "wandb: Agent Starting Run: 4c1kh057 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 4c1kh057\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4c1kh057
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.494125075638294\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.9718958375354608\n", "The running loss is:\n", "28.09664772450924\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.5609248735838466\n", "The running loss is:\n", "24.013664718717337\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3340924843731854\n", "The running loss is:\n", "18.162125043570995\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.0090069468650553\n", "The running loss is:\n", "16.80295354872942\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9334974193738567\n", "The running loss is:\n", "17.79146870970726\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.98841492831707\n", "The running loss is:\n", "17.33954283967614\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9633079355375634\n", "The running loss is:\n", "16.02283275872469\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.890157375484705\n", "The running loss is:\n", "16.078760348260403\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.8932644637922446\n", "The running loss is:\n", "13.699175633490086\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.7610653129716715\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.590535\n", "47 30819 ... 6.649212\n", "48 30820 ... 6.258964\n", "49 30821 ... 6.280522\n", "50 30822 ... 6.141128\n", "51 30823 ... 8.359175\n", "52 30824 ... 8.270262\n", "53 30825 ... 10.945897\n", "54 30826 ... 11.430916\n", "55 30827 ... 11.242756\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4c1kh057 \n", "\n", "wandb: Agent Starting Run: 84tk4dxu with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 84tk4dxu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/84tk4dxu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.54656159132719\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.0303645328515105\n", "The running loss is:\n", "29.21507738530636\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.623059854739242\n", "The running loss is:\n", "23.851110816001892\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3250617120001051\n", "The running loss is:\n", "19.94340915977955\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.1079671755433083\n", "The running loss is:\n", "19.323927462100983\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0735515256722767\n", "The running loss is:\n", "18.458923548460007\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.0254957526922226\n", "The running loss is:\n", "17.79984922707081\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.988880512615045\n", "The running loss is:\n", "16.900932855904102\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9389407142168946\n", "The running loss is:\n", "16.755262605845928\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.930847922546996\n", "The running loss is:\n", "18.575405955314636\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "1.03196699751748\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 3.838975\n", "47 30819 ... 2.985913\n", "48 30820 ... 4.822277\n", "49 30821 ... 5.249653\n", "50 30822 ... 5.096822\n", "51 30823 ... 7.568799\n", "52 30824 ... 8.716757\n", "53 30825 ... 9.766637\n", "54 30826 ... 9.079391\n", "55 30827 ... 10.247148\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 84tk4dxu \n", "\n", "wandb: Agent Starting Run: 3cso2ma6 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 3cso2ma6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3cso2ma6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.242283281870186\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "1.1706464885194834\n", "The running loss is:\n", "24.795687010977417\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.3050361584724957\n", "The running loss is:\n", "27.57364009693265\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.4512442156280343\n", "The running loss is:\n", "20.696718683699146\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.0893009833525866\n", "The running loss is:\n", "20.01832439377904\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "1.0535960207252126\n", "The running loss is:\n", "21.98695570975542\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.1572081952502853\n", "The running loss is:\n", "20.906687308102846\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.1003519635843604\n", "The running loss is:\n", "19.587092012166977\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.0308995795877356\n", "The running loss is:\n", "18.418085638433695\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "0.9693729283386155\n", "The running loss is:\n", "16.86983137577772\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "0.887885861883038\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.581883\n", "47 30819 ... 9.565614\n", "48 30820 ... 9.369929\n", "49 30821 ... 9.071023\n", "50 30822 ... 9.034859\n", "51 30823 ... 10.051611\n", "52 30824 ... 10.008867\n", "53 30825 ... 11.184799\n", "54 30826 ... 11.403122\n", "55 30827 ... 11.031343\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3cso2ma6 \n", "\n", "wandb: Agent Starting Run: twuvsomh with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: twuvsomh\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/twuvsomh
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.412616685032845\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.189589815835158\n", "The running loss is:\n", "22.069864347577095\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.2261035748653941\n", "The running loss is:\n", "26.440984159708023\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.4689435644282236\n", "The running loss is:\n", "20.751066893339157\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.1528370496299531\n", "The running loss is:\n", "18.370464075356722\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0205813375198178\n", "The running loss is:\n", "18.27291965484619\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.0151622030470107\n", "The running loss is:\n", "20.864477939903736\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "1.1591376633279853\n", "The running loss is:\n", "18.746755480766296\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.0414864155981276\n", "The running loss is:\n", "18.56461740285158\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "1.0313676334917545\n", "The running loss is:\n", "18.1154655367136\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "1.0064147520396445\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 11.008367\n", "47 30819 ... 15.284899\n", "48 30820 ... 12.420164\n", "49 30821 ... 11.182684\n", "50 30822 ... 9.871691\n", "51 30823 ... 10.450293\n", "52 30824 ... 11.239236\n", "53 30825 ... 11.804643\n", "54 30826 ... 14.075599\n", "55 30827 ... 12.123839\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: twuvsomh \n", "\n", "wandb: Agent Starting Run: 4dfdcpti with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 4dfdcpti\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4dfdcpti
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.670164734125137\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.20389804078473\n", "The running loss is:\n", "25.513697922229767\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.4174276623460982\n", "The running loss is:\n", "22.322134003043175\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.2401185557246208\n", "The running loss is:\n", "20.4907748401165\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.1383763800064723\n", "The running loss is:\n", "18.35349614918232\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0196386749545734\n", "The running loss is:\n", "18.696768805384636\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.0387093780769243\n", "The running loss is:\n", "17.7908186763525\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9883788153529167\n", "The running loss is:\n", "18.77002341300249\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.0427790785001383\n", "The running loss is:\n", "17.80537621676922\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.98918756759829\n", "The running loss is:\n", "18.945369634777308\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "1.052520535265406\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.815019\n", "47 30819 ... 10.132872\n", "48 30820 ... 9.367234\n", "49 30821 ... 9.324808\n", "50 30822 ... 9.046239\n", "51 30823 ... 10.439740\n", "52 30824 ... 10.854648\n", "53 30825 ... 11.246872\n", "54 30826 ... 10.885998\n", "55 30827 ... 9.790585\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4dfdcpti \n", "\n", "wandb: Agent Starting Run: z6gn81nx with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: z6gn81nx\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/z6gn81nx
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "54.29879327118397\n", "The number of items in train is: \n", "19\n", "The loss for epoch 0\n", "2.857831224799156\n", "The running loss is:\n", "25.204199893400073\n", "The number of items in train is: \n", "19\n", "The loss for epoch 1\n", "1.3265368364947407\n", "The running loss is:\n", "24.917403297498822\n", "The number of items in train is: \n", "19\n", "The loss for epoch 2\n", "1.3114422788157274\n", "The running loss is:\n", "26.80236802622676\n", "The number of items in train is: \n", "19\n", "The loss for epoch 3\n", "1.4106509487487768\n", "The running loss is:\n", "38.15466159582138\n", "The number of items in train is: \n", "19\n", "The loss for epoch 4\n", "2.008140083990599\n", "The running loss is:\n", "25.13397454470396\n", "The number of items in train is: \n", "19\n", "The loss for epoch 5\n", "1.3228407655107348\n", "The running loss is:\n", "32.146171571686864\n", "The number of items in train is: \n", "19\n", "The loss for epoch 6\n", "1.6919037669308876\n", "The running loss is:\n", "24.309386016801\n", "The number of items in train is: \n", "19\n", "The loss for epoch 7\n", "1.2794413693053157\n", "The running loss is:\n", "22.214474976062775\n", "The number of items in train is: \n", "19\n", "The loss for epoch 8\n", "1.1691828934769881\n", "The running loss is:\n", "20.81675188243389\n", "The number of items in train is: \n", "19\n", "The loss for epoch 9\n", "1.0956185201280995\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.340683\n", "47 30819 ... 11.081213\n", "48 30820 ... 11.072694\n", "49 30821 ... 10.951793\n", "50 30822 ... 10.874124\n", "51 30823 ... 10.559611\n", "52 30824 ... 10.377087\n", "53 30825 ... 10.069571\n", "54 30826 ... 11.455525\n", "55 30827 ... 11.084692\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: z6gn81nx \n", "\n", "wandb: Agent Starting Run: p4yuqpwz with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: p4yuqpwz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/p4yuqpwz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "58.09991538524628\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "3.2277730769581265\n", "The running loss is:\n", "29.909697026014328\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.6616498347785738\n", "The running loss is:\n", "23.141397207975388\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.2856331782208548\n", "The running loss is:\n", "19.834211759269238\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.1019006532927353\n", "The running loss is:\n", "17.75834746658802\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.98657485925489\n", "The running loss is:\n", "18.921377703547478\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.051187650197082\n", "The running loss is:\n", "20.49680781364441\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "1.1387115452024672\n", "The running loss is:\n", "19.066853269934654\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.0592696261074808\n", "The running loss is:\n", "18.26368085294962\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "1.0146489362749789\n", "The running loss is:\n", "17.676290668547153\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.9820161482526196\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 11.354430\n", "47 30819 ... 14.269297\n", "48 30820 ... 12.166956\n", "49 30821 ... 11.732918\n", "50 30822 ... 10.295154\n", "51 30823 ... 8.951567\n", "52 30824 ... 10.023297\n", "53 30825 ... 10.744930\n", "54 30826 ... 14.557074\n", "55 30827 ... 12.767807\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: p4yuqpwz \n", "\n", "wandb: Agent Starting Run: 3pth17fj with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 3pth17fj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3pth17fj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "53.13939993083477\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "2.952188885046376\n", "The running loss is:\n", "23.89207072556019\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.3273372625311215\n", "The running loss is:\n", "21.42414081096649\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.190230045053694\n", "The running loss is:\n", "19.368080615997314\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.0760044786665175\n", "The running loss is:\n", "18.88629299402237\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0492384996679094\n", "The running loss is:\n", "18.86470042169094\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.0480389123161633\n", "The running loss is:\n", "18.934682935476303\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "1.0519268297486835\n", "The running loss is:\n", "19.125713765621185\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.0625396536456213\n", "The running loss is:\n", "18.64470000565052\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "1.0358166669805844\n", "The running loss is:\n", "19.651452392339706\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "1.0917473551299837\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.818055\n", "47 30819 ... 12.139648\n", "48 30820 ... 11.247300\n", "49 30821 ... 10.832371\n", "50 30822 ... 10.382744\n", "51 30823 ... 10.604967\n", "52 30824 ... 10.664228\n", "53 30825 ... 11.099741\n", "54 30826 ... 11.873261\n", "55 30827 ... 9.890029\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3pth17fj \n", "\n", "wandb: Agent Starting Run: h3sok6h3 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: h3sok6h3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/h3sok6h3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.83428485947661\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.0463491588598117\n", "The running loss is:\n", "30.694389076903462\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.705243837605748\n", "The running loss is:\n", "22.378335297107697\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.2432408498393164\n", "The running loss is:\n", "19.81809677183628\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.1010053762131267\n", "The running loss is:\n", "17.860943913459778\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9922746618588766\n", "The running loss is:\n", "17.826664086431265\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9903702270239592\n", "The running loss is:\n", "16.915876930579543\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9397709405877523\n", "The running loss is:\n", "16.87274954468012\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9373749747044511\n", "The running loss is:\n", "16.296894021332264\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.9053830011851258\n", "The running loss is:\n", "15.18472127057612\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8435956261431178\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.589013\n", "47 30819 ... 5.464175\n", "48 30820 ... 7.635145\n", "49 30821 ... 6.665916\n", "50 30822 ... 6.748456\n", "51 30823 ... 6.279453\n", "52 30824 ... 10.910107\n", "53 30825 ... 10.739932\n", "54 30826 ... 12.164768\n", "55 30827 ... 14.138649\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: h3sok6h3 \n", "\n", "wandb: Agent Starting Run: ti0jhceq with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ti0jhceq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ti0jhceq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.50762452557683\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.028201362532046\n", "The running loss is:\n", "30.229473516345024\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.6794151953525014\n", "The running loss is:\n", "20.547360464930534\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.1415200258294742\n", "The running loss is:\n", "18.828258499503136\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.0460143610835075\n", "The running loss is:\n", "17.361575104296207\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9645319502386782\n", "The running loss is:\n", "17.0721765011549\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9484542500641611\n", "The running loss is:\n", "15.66090652346611\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.870050362414784\n", "The running loss is:\n", "16.027198612689972\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.8903999229272207\n", "The running loss is:\n", "15.154059939086437\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.8418922188381354\n", "The running loss is:\n", "14.604415582492948\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8113564212496082\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 4.798800\n", "47 30819 ... 4.839271\n", "48 30820 ... 6.942317\n", "49 30821 ... 6.201822\n", "50 30822 ... 6.283172\n", "51 30823 ... 5.738673\n", "52 30824 ... 11.060683\n", "53 30825 ... 12.862118\n", "54 30826 ... 14.975395\n", "55 30827 ... 16.912077\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ti0jhceq \n", "\n", "wandb: Agent Starting Run: tq5g8c8y with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: tq5g8c8y\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/tq5g8c8y
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.326459631323814\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.1956740959602243\n", "The running loss is:\n", "26.52370758354664\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.5602180931498022\n", "The running loss is:\n", "20.00117264688015\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.1765395674635382\n", "The running loss is:\n", "18.83174880594015\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1077499297611855\n", "The running loss is:\n", "18.203551523387432\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0707971484345549\n", "The running loss is:\n", "17.697747506201267\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0410439709530157\n", "The running loss is:\n", "17.05414705723524\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0031851210138376\n", "The running loss is:\n", "16.714102994650602\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9831825290970942\n", "The running loss is:\n", "16.31566223502159\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.9597448373542112\n", "The running loss is:\n", "16.255682721734047\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.9562166306902381\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.511676\n", "47 30819 Eagle County, Colorado, United States ... 47 0.885248\n", "48 30820 Eagle County, Colorado, United States ... 48 1.917389\n", "49 30821 Eagle County, Colorado, United States ... 49 1.170372\n", "50 30822 Eagle County, Colorado, United States ... 50 1.376424\n", "51 30823 Eagle County, Colorado, United States ... 51 0.887287\n", "52 30824 Eagle County, Colorado, United States ... 52 5.287897\n", "53 30825 Eagle County, Colorado, United States ... 53 3.549723\n", "54 30826 Eagle County, Colorado, United States ... 54 3.942515\n", "55 30827 Eagle County, Colorado, United States ... 55 5.333583\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: tq5g8c8y \n", "\n", "wandb: Agent Starting Run: onfqi4iq with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: onfqi4iq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/onfqi4iq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.58739176625386\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.0326328759029921\n", "The running loss is:\n", "25.453700333833694\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.4140944629907608\n", "The running loss is:\n", "24.478219382464886\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3599010768036048\n", "The running loss is:\n", "18.617552369832993\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.0343084649907217\n", "The running loss is:\n", "18.47619041055441\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0264550228085783\n", "The running loss is:\n", "17.632004007697105\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9795557782053947\n", "The running loss is:\n", "17.34126414358616\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9634035635325644\n", "The running loss is:\n", "17.196547646075487\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9553637581153048\n", "The running loss is:\n", "16.807551510632038\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.9337528617017798\n", "The running loss is:\n", "15.813888244330883\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8785493469072713\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.189288\n", "47 30819 ... 6.000010\n", "48 30820 ... 9.140032\n", "49 30821 ... 8.488817\n", "50 30822 ... 7.783149\n", "51 30823 ... 6.252083\n", "52 30824 ... 8.576809\n", "53 30825 ... 8.205903\n", "54 30826 ... 10.083464\n", "55 30827 ... 12.833640\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: onfqi4iq \n", "\n", "wandb: Agent Starting Run: jaqkg5qo with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: jaqkg5qo\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/jaqkg5qo
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.67767819389701\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "0.9820932329942783\n", "The running loss is:\n", "28.929249703884125\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.6071805391046736\n", "The running loss is:\n", "25.189696937799454\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3994276076555252\n", "The running loss is:\n", "19.118132956326008\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.062118497573667\n", "The running loss is:\n", "18.119125105440617\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0066180614133675\n", "The running loss is:\n", "17.72756700590253\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9848648336612515\n", "The running loss is:\n", "17.2081276550889\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9560070919493834\n", "The running loss is:\n", "17.779209829866886\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9877338794370493\n", "The running loss is:\n", "16.979998294264078\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.9433332385702266\n", "The running loss is:\n", "17.875624038279057\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.9930902243488364\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.322368\n", "47 30819 ... 5.418035\n", "48 30820 ... 6.938383\n", "49 30821 ... 6.316636\n", "50 30822 ... 6.411837\n", "51 30823 ... 5.790046\n", "52 30824 ... 9.559429\n", "53 30825 ... 9.863681\n", "54 30826 ... 10.531605\n", "55 30827 ... 11.683816\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: jaqkg5qo \n", "\n", "wandb: Agent Starting Run: 76w7wtbu with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 76w7wtbu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/76w7wtbu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.189144864678383\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.0699496979222578\n", "The running loss is:\n", "25.82771911472082\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.5192775949835777\n", "The running loss is:\n", "22.746037542819977\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.3380022084011751\n", "The running loss is:\n", "18.930177986621857\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1135398815659916\n", "The running loss is:\n", "18.611469365656376\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0947923156268455\n", "The running loss is:\n", "18.261943750083447\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0742319852990263\n", "The running loss is:\n", "17.79456951469183\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0467393832171665\n", "The running loss is:\n", "17.808585457503796\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0475638504413998\n", "The running loss is:\n", "16.707562319934368\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.982797783525551\n", "The running loss is:\n", "16.852712512016296\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.9913360301186057\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.346636\n", "47 30819 ... 3.546402\n", "48 30820 ... 5.990652\n", "49 30821 ... 4.534712\n", "50 30822 ... 5.614292\n", "51 30823 ... 4.396796\n", "52 30824 ... 10.686534\n", "53 30825 ... 12.141682\n", "54 30826 ... 15.663172\n", "55 30827 ... 16.982374\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 76w7wtbu \n", "\n", "wandb: Agent Starting Run: 7lzkogad with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 7lzkogad\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/7lzkogad
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "25.985687144100666\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.4436492857833703\n", "The running loss is:\n", "25.533394917845726\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.4185219398803182\n", "The running loss is:\n", "24.65770325437188\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3698724030206602\n", "The running loss is:\n", "20.977828606963158\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.1654349226090643\n", "The running loss is:\n", "18.592061333358288\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0328922962976828\n", "The running loss is:\n", "18.60237979888916\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.0334655443827312\n", "The running loss is:\n", "17.721400048583746\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9845222249213192\n", "The running loss is:\n", "18.594129770994186\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.033007209499677\n", "The running loss is:\n", "17.56918104365468\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.9760656135363711\n", "The running loss is:\n", "19.658490262925625\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "1.0921383479403124\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.338434\n", "47 30819 ... 9.948380\n", "48 30820 ... 11.497427\n", "49 30821 ... 10.225165\n", "50 30822 ... 9.329464\n", "51 30823 ... 9.572168\n", "52 30824 ... 10.839942\n", "53 30825 ... 10.214510\n", "54 30826 ... 10.921080\n", "55 30827 ... 12.323168\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 7lzkogad \n", "\n", "wandb: Agent Starting Run: ldu1i9ut with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ldu1i9ut\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ldu1i9ut
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "23.17583403736353\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.287546335409085\n", "The running loss is:\n", "25.385982364416122\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.4103323535786734\n", "The running loss is:\n", "23.672232568264008\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.3151240315702226\n", "The running loss is:\n", "21.137772634625435\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.1743207019236352\n", "The running loss is:\n", "18.826060451567173\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0458922473092873\n", "The running loss is:\n", "18.50016212463379\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.0277867847018771\n", "The running loss is:\n", "17.455230563879013\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9697350313266119\n", "The running loss is:\n", "18.82326005399227\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.0457366696662374\n", "The running loss is:\n", "17.129642881453037\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.951646826747391\n", "The running loss is:\n", "17.606110781431198\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.9781172656350665\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.194985\n", "47 30819 ... 9.862240\n", "48 30820 ... 16.316151\n", "49 30821 ... 12.624606\n", "50 30822 ... 12.543795\n", "51 30823 ... 8.049689\n", "52 30824 ... 13.099211\n", "53 30825 ... 13.100273\n", "54 30826 ... 14.972973\n", "55 30827 ... 17.187275\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ldu1i9ut \n", "\n", "wandb: Agent Starting Run: z1khalb3 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: z1khalb3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/z1khalb3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.20541825890541\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.2473775446414948\n", "The running loss is:\n", "26.331035990267992\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.5488844700157642\n", "The running loss is:\n", "21.423548463732004\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.2602087331607061\n", "The running loss is:\n", "19.311860531568527\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1359917959746193\n", "The running loss is:\n", "18.42611952126026\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0838893836035448\n", "The running loss is:\n", "18.355855636298656\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.079756213899921\n", "The running loss is:\n", "18.343623392283916\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0790366701343481\n", "The running loss is:\n", "18.220871716737747\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0718159833375145\n", "The running loss is:\n", "18.014991000294685\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.059705352958511\n", "The running loss is:\n", "18.06001925468445\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.0623540738049675\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 9.165402\n", "47 30819 Eagle County, Colorado, United States ... 47 9.069475\n", "48 30820 Eagle County, Colorado, United States ... 48 8.965014\n", "49 30821 Eagle County, Colorado, United States ... 49 8.994439\n", "50 30822 Eagle County, Colorado, United States ... 50 9.027403\n", "51 30823 Eagle County, Colorado, United States ... 51 8.972231\n", "52 30824 Eagle County, Colorado, United States ... 52 9.810741\n", "53 30825 Eagle County, Colorado, United States ... 53 9.936197\n", "54 30826 Eagle County, Colorado, United States ... 54 9.907127\n", "55 30827 Eagle County, Colorado, United States ... 55 9.882858\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: z1khalb3 \n", "\n", "wandb: Agent Starting Run: ok5falth with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ok5falth\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ok5falth
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "91.93867326527834\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "5.1077040702932415\n", "The running loss is:\n", "41.00077871978283\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "2.277821039987935\n", "The running loss is:\n", "22.16812052205205\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.2315622512251139\n", "The running loss is:\n", "24.294399526901543\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.3496888626056414\n", "The running loss is:\n", "20.05660403892398\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.114255779940221\n", "The running loss is:\n", "20.849789410829544\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.1583216339349747\n", "The running loss is:\n", "19.57541885972023\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "1.0875232699844573\n", "The running loss is:\n", "18.560163848102093\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.0311202137834496\n", "The running loss is:\n", "19.261560007929802\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "1.0700866671072111\n", "The running loss is:\n", "18.674716770648956\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "1.0374842650360532\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 11.174484\n", "47 30819 ... 11.524269\n", "48 30820 ... 11.487882\n", "49 30821 ... 11.509277\n", "50 30822 ... 11.597288\n", "51 30823 ... 11.396919\n", "52 30824 ... 11.390881\n", "53 30825 ... 11.174414\n", "54 30826 ... 11.205681\n", "55 30827 ... 11.476442\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ok5falth \n", "\n", "wandb: Agent Starting Run: jdb0w9lf with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: jdb0w9lf\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/jdb0w9lf
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "71.70084895193577\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "3.983380497329765\n", "The running loss is:\n", "34.523087076842785\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.9179492820468214\n", "The running loss is:\n", "20.573708325624466\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.1429837958680258\n", "The running loss is:\n", "18.896047294139862\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.0497804052299924\n", "The running loss is:\n", "18.512571424245834\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.0284761902358797\n", "The running loss is:\n", "18.70388262718916\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.0391045903993978\n", "The running loss is:\n", "18.608287632465363\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "1.0337937573591869\n", "The running loss is:\n", "19.012116946280003\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.056228719237778\n", "The running loss is:\n", "18.82577931880951\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "1.0458766288227506\n", "The running loss is:\n", "18.978907726705074\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "1.0543837625947263\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.771688\n", "47 30819 ... 10.069174\n", "48 30820 ... 10.424778\n", "49 30821 ... 10.578030\n", "50 30822 ... 9.966643\n", "51 30823 ... 9.754827\n", "52 30824 ... 9.886961\n", "53 30825 ... 9.548673\n", "54 30826 ... 9.559739\n", "55 30827 ... 9.601932\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: jdb0w9lf \n", "\n", "wandb: Agent Starting Run: f8rga1l5 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: f8rga1l5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/f8rga1l5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "60.02559678256512\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "3.530917457797948\n", "The running loss is:\n", "21.879589214920998\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.2870346597012352\n", "The running loss is:\n", "22.272070422768593\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.310121789574623\n", "The running loss is:\n", "20.273326992988586\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1925486466463875\n", "The running loss is:\n", "18.233934313058853\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0725843713564032\n", "The running loss is:\n", "18.1911773532629\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0700692560742884\n", "The running loss is:\n", "17.973187312483788\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0572463124990463\n", "The running loss is:\n", "17.894800126552582\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0526353015619165\n", "The running loss is:\n", "18.38982318341732\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.0817543049069012\n", "The running loss is:\n", "18.14912710338831\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.0675957119640183\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.190907\n", "47 30819 ... 10.166980\n", "48 30820 ... 10.167084\n", "49 30821 ... 9.968959\n", "50 30822 ... 10.873432\n", "51 30823 ... 10.553559\n", "52 30824 ... 10.352334\n", "53 30825 ... 10.250555\n", "54 30826 ... 10.249765\n", "55 30827 ... 10.249871\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: f8rga1l5 \n", "\n", "wandb: Agent Starting Run: gr7vy5x5 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: gr7vy5x5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gr7vy5x5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.120445497334003\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.0066914165185556\n", "The running loss is:\n", "36.88737970899092\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "2.049298872721718\n", "The running loss is:\n", "25.769994165748358\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.4316663425415754\n", "The running loss is:\n", "22.722472186665982\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.262359565925888\n", "The running loss is:\n", "20.244089771062136\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.1246716539478965\n", "The running loss is:\n", "18.204342804849148\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.011352378047175\n", "The running loss is:\n", "16.84917761210818\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.9360654228948988\n", "The running loss is:\n", "16.967705154791474\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9426502863773041\n", "The running loss is:\n", "15.167392913252115\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.8426329396251175\n", "The running loss is:\n", "14.847127000335604\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.8248403889075335\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.234351\n", "47 30819 Eagle County, Colorado, United States ... 47 5.589938\n", "48 30820 Eagle County, Colorado, United States ... 48 4.432260\n", "49 30821 Eagle County, Colorado, United States ... 49 3.562717\n", "50 30822 Eagle County, Colorado, United States ... 50 3.846261\n", "51 30823 Eagle County, Colorado, United States ... 51 4.097902\n", "52 30824 Eagle County, Colorado, United States ... 52 4.603130\n", "53 30825 Eagle County, Colorado, United States ... 53 6.944318\n", "54 30826 Eagle County, Colorado, United States ... 54 8.064589\n", "55 30827 Eagle County, Colorado, United States ... 55 7.837166\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gr7vy5x5 \n", "\n", "wandb: Agent Starting Run: d51fuypy with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: d51fuypy\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/d51fuypy
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.863892681896687\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.050817216582158\n", "The running loss is:\n", "30.557269416749477\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.797486436279381\n", "The running loss is:\n", "24.31645315885544\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.4303795975797318\n", "The running loss is:\n", "21.716937102377415\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.277466888375142\n", "The running loss is:\n", "18.302996151149273\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0766468324205454\n", "The running loss is:\n", "17.990163557231426\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0582449151312603\n", "The running loss is:\n", "17.505731016397476\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0297488833174986\n", "The running loss is:\n", "16.266479892656207\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9568517583915416\n", "The running loss is:\n", "14.844720372930169\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.8732188454664805\n", "The running loss is:\n", "13.61546167358756\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.800909510211033\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.055187\n", "47 30819 Eagle County, Colorado, United States ... 47 5.612241\n", "48 30820 Eagle County, Colorado, United States ... 48 4.139591\n", "49 30821 Eagle County, Colorado, United States ... 49 3.982578\n", "50 30822 Eagle County, Colorado, United States ... 50 2.636002\n", "51 30823 Eagle County, Colorado, United States ... 51 3.206338\n", "52 30824 Eagle County, Colorado, United States ... 52 3.745330\n", "53 30825 Eagle County, Colorado, United States ... 53 6.512134\n", "54 30826 Eagle County, Colorado, United States ... 54 8.213514\n", "55 30827 Eagle County, Colorado, United States ... 55 8.196659\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: d51fuypy \n", "\n", "wandb: Agent Starting Run: fquo39qu with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: fquo39qu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fquo39qu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.315565809607506\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.1362097535063238\n", "The running loss is:\n", "27.744996145367622\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.6320585967863308\n", "The running loss is:\n", "20.23160046339035\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.1900941449053146\n", "The running loss is:\n", "18.820374861359596\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1070808741976232\n", "The running loss is:\n", "17.80506058037281\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0473565047278124\n", "The running loss is:\n", "17.640491649508476\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0376759793828516\n", "The running loss is:\n", "17.346722543239594\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.020395443719976\n", "The running loss is:\n", "16.878471672534943\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9928512748549966\n", "The running loss is:\n", "16.163867503404617\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.9508157354943892\n", "The running loss is:\n", "15.284686610102654\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.8990992123589796\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.138500\n", "47 30819 Eagle County, Colorado, United States ... 47 2.068359\n", "48 30820 Eagle County, Colorado, United States ... 48 0.579822\n", "49 30821 Eagle County, Colorado, United States ... 49 0.431010\n", "50 30822 Eagle County, Colorado, United States ... 50 0.268291\n", "51 30823 Eagle County, Colorado, United States ... 51 0.398433\n", "52 30824 Eagle County, Colorado, United States ... 52 0.306655\n", "53 30825 Eagle County, Colorado, United States ... 53 0.049325\n", "54 30826 Eagle County, Colorado, United States ... 54 -0.512394\n", "55 30827 Eagle County, Colorado, United States ... 55 -1.082926\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fquo39qu \n", "\n", "wandb: Agent Starting Run: nf5ma7q9 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: nf5ma7q9\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nf5ma7q9
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.964837659150362\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.1647132032861311\n", "The running loss is:\n", "31.43228393420577\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.746237996344765\n", "The running loss is:\n", "27.462910482892767\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.525717249049598\n", "The running loss is:\n", "22.641178257763386\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.2578432365424104\n", "The running loss is:\n", "17.97154197283089\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "0.9984189984906051\n", "The running loss is:\n", "17.729456153698266\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "0.9849697863165703\n", "The running loss is:\n", "16.689082900062203\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "0.927171272225678\n", "The running loss is:\n", "15.960812779143453\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.8867118210635252\n", "The running loss is:\n", "14.336336515843868\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "0.7964631397691038\n", "The running loss is:\n", "16.482185130473226\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.915676951692957\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.596330\n", "47 30819 ... 8.111716\n", "48 30820 ... 6.830262\n", "49 30821 ... 4.093390\n", "50 30822 ... 4.867238\n", "51 30823 ... 4.692516\n", "52 30824 ... 5.357278\n", "53 30825 ... 9.984414\n", "54 30826 ... 12.083361\n", "55 30827 ... 11.586036\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nf5ma7q9 \n", "\n", "wandb: Agent Starting Run: c7t70oa7 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: c7t70oa7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c7t70oa7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.068575020879507\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.1216808835811474\n", "The running loss is:\n", "28.107707070186734\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.6533945335403961\n", "The running loss is:\n", "23.106055334210396\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.359179725541788\n", "The running loss is:\n", "18.721203669905663\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.101247274700333\n", "The running loss is:\n", "17.369276450015604\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0217221441185649\n", "The running loss is:\n", "16.890567852184176\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.9935628148343634\n", "The running loss is:\n", "14.150886859744787\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.8324051093967522\n", "The running loss is:\n", "14.029157891869545\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.8252445818746791\n", "The running loss is:\n", "20.90973387658596\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.2299843456815271\n", "The running loss is:\n", "16.326852202415466\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.9604030707303215\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 17.318516\n", "47 30819 ... 19.041769\n", "48 30820 ... 18.542461\n", "49 30821 ... 16.740143\n", "50 30822 ... 15.915383\n", "51 30823 ... 16.412432\n", "52 30824 ... 15.848831\n", "53 30825 ... 20.144848\n", "54 30826 ... 20.758886\n", "55 30827 ... 20.443157\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c7t70oa7 \n", "\n", "wandb: Agent Starting Run: 86o6l336 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 86o6l336\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/86o6l336
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.208781145513058\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.0122812438537092\n", "The running loss is:\n", "27.71545758843422\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.6303210346137775\n", "The running loss is:\n", "22.386159673333168\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.3168329219607746\n", "The running loss is:\n", "18.690160259604454\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.0994211917414385\n", "The running loss is:\n", "18.08047254383564\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.06355720846092\n", "The running loss is:\n", "17.788220658898354\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0463659211116678\n", "The running loss is:\n", "17.880096539855003\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0517703846973532\n", "The running loss is:\n", "17.113020420074463\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0066482600043802\n", "The running loss is:\n", "16.699109718203545\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.9823005716590321\n", "The running loss is:\n", "16.5759494304657\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.9750558488509234\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.256034\n", "47 30819 Eagle County, Colorado, United States ... 47 1.807457\n", "48 30820 Eagle County, Colorado, United States ... 48 2.076961\n", "49 30821 Eagle County, Colorado, United States ... 49 5.788992\n", "50 30822 Eagle County, Colorado, United States ... 50 5.307059\n", "51 30823 Eagle County, Colorado, United States ... 51 4.971756\n", "52 30824 Eagle County, Colorado, United States ... 52 2.691475\n", "53 30825 Eagle County, Colorado, United States ... 53 2.570121\n", "54 30826 Eagle County, Colorado, United States ... 54 1.330946\n", "55 30827 Eagle County, Colorado, United States ... 55 3.026186\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 86o6l336 \n", "\n", "wandb: Agent Starting Run: 426vphnv with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 426vphnv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/426vphnv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "34.267729624174535\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "1.9037627568985853\n", "The running loss is:\n", "33.94760421384126\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.88597801188007\n", "The running loss is:\n", "30.238472133874893\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "1.6799151185486052\n", "The running loss is:\n", "38.51619838178158\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "2.1397887989878654\n", "The running loss is:\n", "20.47893139347434\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.1377184107485745\n", "The running loss is:\n", "18.94241794757545\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.0523565526430805\n", "The running loss is:\n", "20.30167916836217\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "1.1278710649090096\n", "The running loss is:\n", "19.38399739563465\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "1.076888744201925\n", "The running loss is:\n", "19.88887568563223\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "1.1049375380906794\n", "The running loss is:\n", "19.532415185123682\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "1.0851341769513156\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.723194\n", "47 30819 Eagle County, Colorado, United States ... 47 9.183539\n", "48 30820 Eagle County, Colorado, United States ... 48 9.319058\n", "49 30821 Eagle County, Colorado, United States ... 49 9.258557\n", "50 30822 Eagle County, Colorado, United States ... 50 9.028840\n", "51 30823 Eagle County, Colorado, United States ... 51 8.666627\n", "52 30824 Eagle County, Colorado, United States ... 52 8.366081\n", "53 30825 Eagle County, Colorado, United States ... 53 8.915517\n", "54 30826 Eagle County, Colorado, United States ... 54 9.048261\n", "55 30827 Eagle County, Colorado, United States ... 55 9.422303\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 426vphnv \n", "\n", "wandb: Agent Starting Run: scc0pqfm with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: scc0pqfm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/scc0pqfm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "28.23943081498146\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.6611429891165566\n", "The running loss is:\n", "28.07338646426797\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.651375674368704\n", "The running loss is:\n", "23.87537007406354\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.4044335337684435\n", "The running loss is:\n", "21.13710781186819\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.24335928305107\n", "The running loss is:\n", "18.549016206525266\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0911186003838391\n", "The running loss is:\n", "18.38492915406823\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.081466420827543\n", "The running loss is:\n", "17.49588319659233\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.029169599799549\n", "The running loss is:\n", "17.270923353731632\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0159366678665667\n", "The running loss is:\n", "16.28042573481798\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.9576721020481166\n", "The running loss is:\n", "14.823214331641793\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.8719537842142231\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.629309\n", "47 30819 ... 8.105134\n", "48 30820 ... 10.640922\n", "49 30821 ... 10.022057\n", "50 30822 ... 8.972525\n", "51 30823 ... 8.227419\n", "52 30824 ... 5.991323\n", "53 30825 ... 9.148765\n", "54 30826 ... 7.008259\n", "55 30827 ... 11.216730\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: scc0pqfm \n", "\n", "wandb: Agent Starting Run: m3rmcjcn with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: m3rmcjcn\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/m3rmcjcn
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.020679511129856\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.2953340888899916\n", "The running loss is:\n", "22.291063234210014\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.3112390137770598\n", "The running loss is:\n", "21.546183705329895\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.2674225709017586\n", "The running loss is:\n", "20.533206969499588\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.207835704088211\n", "The running loss is:\n", "18.27320285141468\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0748942853773342\n", "The running loss is:\n", "18.226271092891693\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0721335936995113\n", "The running loss is:\n", "18.01798863708973\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.05988168453469\n", "The running loss is:\n", "18.02622178196907\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0603659871746511\n", "The running loss is:\n", "17.861629962921143\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.0506841154659496\n", "The running loss is:\n", "18.037888653576374\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.0610522737397867\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.485203\n", "47 30819 ... 9.542734\n", "48 30820 ... 10.885259\n", "49 30821 ... 15.454107\n", "50 30822 ... 12.658281\n", "51 30823 ... 12.965693\n", "52 30824 ... 10.985974\n", "53 30825 ... 9.893891\n", "54 30826 ... 8.056896\n", "55 30827 ... 10.138981\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: m3rmcjcn \n", "\n", "wandb: Agent Starting Run: yqngqnis with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: yqngqnis\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yqngqnis
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "137.28573689609766\n", "The number of items in train is: \n", "18\n", "The loss for epoch 0\n", "7.626985383116537\n", "The running loss is:\n", "25.87799007911235\n", "The number of items in train is: \n", "18\n", "The loss for epoch 1\n", "1.4376661155062418\n", "The running loss is:\n", "38.774653896689415\n", "The number of items in train is: \n", "18\n", "The loss for epoch 2\n", "2.1541474387049675\n", "The running loss is:\n", "22.72174153709784\n", "The number of items in train is: \n", "18\n", "The loss for epoch 3\n", "1.2623189742832135\n", "The running loss is:\n", "22.097350671887398\n", "The number of items in train is: \n", "18\n", "The loss for epoch 4\n", "1.2276305928826332\n", "The running loss is:\n", "20.19718218408525\n", "The number of items in train is: \n", "18\n", "The loss for epoch 5\n", "1.122065676893625\n", "The running loss is:\n", "19.485243333270773\n", "The number of items in train is: \n", "18\n", "The loss for epoch 6\n", "1.082513518515043\n", "The running loss is:\n", "17.892029164126143\n", "The number of items in train is: \n", "18\n", "The loss for epoch 7\n", "0.9940016202292301\n", "The running loss is:\n", "18.208995703607798\n", "The number of items in train is: \n", "18\n", "The loss for epoch 8\n", "1.0116108724226553\n", "The running loss is:\n", "17.07296721637249\n", "The number of items in train is: \n", "18\n", "The loss for epoch 9\n", "0.9484981786873605\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.838210\n", "47 30819 Eagle County, Colorado, United States ... 47 3.904054\n", "48 30820 Eagle County, Colorado, United States ... 48 3.808350\n", "49 30821 Eagle County, Colorado, United States ... 49 3.808419\n", "50 30822 Eagle County, Colorado, United States ... 50 3.808272\n", "51 30823 Eagle County, Colorado, United States ... 51 3.810375\n", "52 30824 Eagle County, Colorado, United States ... 52 3.794322\n", "53 30825 Eagle County, Colorado, United States ... 53 5.768596\n", "54 30826 Eagle County, Colorado, United States ... 54 5.768584\n", "55 30827 Eagle County, Colorado, United States ... 55 5.768637\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yqngqnis \n", "\n", "wandb: Agent Starting Run: me7r4kuv with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: me7r4kuv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/me7r4kuv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "93.78758010268211\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "5.51691647662836\n", "The running loss is:\n", "29.59822855144739\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.7410722677321995\n", "The running loss is:\n", "22.846619226038456\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.3439187780022621\n", "The running loss is:\n", "23.303640887141228\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.3708024051259546\n", "The running loss is:\n", "26.486353397369385\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.558020788080552\n", "The running loss is:\n", "20.396254796534777\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.1997796939138103\n", "The running loss is:\n", "19.39982558786869\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.1411662110510994\n", "The running loss is:\n", "18.315881371498108\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0774047865587122\n", "The running loss is:\n", "19.250380620360374\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.1323753306094337\n", "The running loss is:\n", "17.944953735917807\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.055585513877518\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.394843\n", "47 30819 Eagle County, Colorado, United States ... 47 8.136378\n", "48 30820 Eagle County, Colorado, United States ... 48 9.291075\n", "49 30821 Eagle County, Colorado, United States ... 49 9.697542\n", "50 30822 Eagle County, Colorado, United States ... 50 8.140117\n", "51 30823 Eagle County, Colorado, United States ... 51 8.296720\n", "52 30824 Eagle County, Colorado, United States ... 52 7.882609\n", "53 30825 Eagle County, Colorado, United States ... 53 8.762344\n", "54 30826 Eagle County, Colorado, United States ... 54 8.641793\n", "55 30827 Eagle County, Colorado, United States ... 55 9.389215\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: me7r4kuv \n", "\n", "wandb: Agent Starting Run: 3wm5l7tj with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 3wm5l7tj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3wm5l7tj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "68.26089033484459\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "4.015346490284976\n", "The running loss is:\n", "27.4893958568573\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.6170232856974882\n", "The running loss is:\n", "21.516857236623764\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.2656974845072801\n", "The running loss is:\n", "18.865566059947014\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1097391799968832\n", "The running loss is:\n", "18.153654858469963\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.067862050498233\n", "The running loss is:\n", "18.767946392297745\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.1039968466057497\n", "The running loss is:\n", "17.852910339832306\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0501711964607239\n", "The running loss is:\n", "18.34410585463047\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0790650502723806\n", "The running loss is:\n", "18.192266955971718\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.0701333503512775\n", "The running loss is:\n", "18.552403688430786\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.0913178640253403\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.797457\n", "47 30819 ... 10.797460\n", "48 30820 ... 10.797462\n", "49 30821 ... 10.797461\n", "50 30822 ... 10.797450\n", "51 30823 ... 10.771597\n", "52 30824 ... 10.780639\n", "53 30825 ... 10.770386\n", "54 30826 ... 10.770385\n", "55 30827 ... 10.770388\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3wm5l7tj \n", "\n", "wandb: Agent Starting Run: yefxbgtv with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: yefxbgtv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yefxbgtv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.462372362613678\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.203668962506687\n", "The running loss is:\n", "27.696742221713066\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.629220130689004\n", "The running loss is:\n", "19.980237632989883\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.1753080960582285\n", "The running loss is:\n", "18.27062140405178\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.0747424355324577\n", "The running loss is:\n", "17.597937013953924\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0351727655267013\n", "The running loss is:\n", "17.500756841152906\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0294562847737003\n", "The running loss is:\n", "17.59584029763937\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0350494292729042\n", "The running loss is:\n", "16.307608522474766\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9592710895573392\n", "The running loss is:\n", "14.856096312403679\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.873888018376687\n", "The running loss is:\n", "15.076502352952957\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.8868530795854681\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.705813\n", "47 30819 ... 9.390274\n", "48 30820 ... 12.924283\n", "49 30821 ... 10.632058\n", "50 30822 ... 5.007174\n", "51 30823 ... 7.001017\n", "52 30824 ... 7.316066\n", "53 30825 ... 7.175669\n", "54 30826 ... 11.666767\n", "55 30827 ... 16.188978\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yefxbgtv \n", "\n", "wandb: Agent Starting Run: ptzv63ti with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ptzv63ti\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ptzv63ti
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.43279777467251\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.2607528102748535\n", "The running loss is:\n", "28.9186382740736\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.701096369063153\n", "The running loss is:\n", "19.826389342546463\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.1662581966203802\n", "The running loss is:\n", "19.31631900370121\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1362540590412475\n", "The running loss is:\n", "18.248578935861588\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.073445819756564\n", "The running loss is:\n", "18.17185389995575\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0689325823503382\n", "The running loss is:\n", "17.282859161496162\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0166387742056566\n", "The running loss is:\n", "17.04989528656006\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0029350168564741\n", "The running loss is:\n", "15.761375814676285\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.9271397538044873\n", "The running loss is:\n", "15.65200425684452\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.92070613275556\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.450491\n", "47 30819 ... 8.844732\n", "48 30820 ... 14.072254\n", "49 30821 ... 10.256414\n", "50 30822 ... 3.695667\n", "51 30823 ... 7.670989\n", "52 30824 ... 7.494445\n", "53 30825 ... 5.381908\n", "54 30826 ... 11.431887\n", "55 30827 ... 17.711899\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ptzv63ti \n", "\n", "wandb: Agent Starting Run: 5n23rnej with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 5n23rnej\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5n23rnej
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.669841051101685\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.1668650656938553\n", "The running loss is:\n", "28.15961427986622\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.7599758924916387\n", "The running loss is:\n", "20.083170026540756\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.2551981266587973\n", "The running loss is:\n", "18.681346032768488\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.1675841270480305\n", "The running loss is:\n", "17.155792146921158\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0722370091825724\n", "The running loss is:\n", "17.125128746032715\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0703205466270447\n", "The running loss is:\n", "16.875126153230667\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.0546953845769167\n", "The running loss is:\n", "16.763597190380096\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.047724824398756\n", "The running loss is:\n", "16.318107686936855\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.0198817304335535\n", "The running loss is:\n", "16.028378427028656\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.001773651689291\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 7.727273\n", "47 30819 ... 8.141912\n", "48 30820 ... 8.153705\n", "49 30821 ... 7.590404\n", "50 30822 ... 7.745370\n", "51 30823 ... 8.056146\n", "52 30824 ... 8.437635\n", "53 30825 ... 9.068559\n", "54 30826 ... 9.863579\n", "55 30827 ... 10.122281\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5n23rnej \n", "\n", "wandb: Agent Starting Run: z8wl2mpd with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: z8wl2mpd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/z8wl2mpd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.78652110695839\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.0462659474681406\n", "The running loss is:\n", "29.496645376086235\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.735096786828602\n", "The running loss is:\n", "21.52673441171646\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.2662784948068506\n", "The running loss is:\n", "18.22583021223545\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.0721076595432617\n", "The running loss is:\n", "17.649071596562862\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0381806821507567\n", "The running loss is:\n", "16.916042253375053\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.9950613090220619\n", "The running loss is:\n", "17.47312443703413\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0278308492373018\n", "The running loss is:\n", "16.61391367763281\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9772890398607534\n", "The running loss is:\n", "16.87849473580718\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.9928526315180695\n", "The running loss is:\n", "17.174730110913515\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.0102782418184422\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 7.426375\n", "47 30819 ... 10.432105\n", "48 30820 ... 13.992594\n", "49 30821 ... 12.741571\n", "50 30822 ... 6.316299\n", "51 30823 ... 7.661055\n", "52 30824 ... 9.314131\n", "53 30825 ... 8.768213\n", "54 30826 ... 11.098319\n", "55 30827 ... 15.006298\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: z8wl2mpd \n", "\n", "wandb: Agent Starting Run: klplltl7 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: klplltl7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/klplltl7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.754808202385902\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.1032240119050531\n", "The running loss is:\n", "27.57693576812744\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.6221726922427906\n", "The running loss is:\n", "21.580725207924843\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.269454423995579\n", "The running loss is:\n", "19.201142698526382\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1294789822662579\n", "The running loss is:\n", "17.52506871521473\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0308863950126312\n", "The running loss is:\n", "16.90795011818409\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.9945853010696524\n", "The running loss is:\n", "14.841296076774597\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.8730174162808586\n", "The running loss is:\n", "17.39919090270996\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0234818178064682\n", "The running loss is:\n", "13.71133454144001\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.8065490906729418\n", "The running loss is:\n", "15.23483623471111\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.8961668373359477\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.157433\n", "47 30819 ... 8.102160\n", "48 30820 ... 17.461388\n", "49 30821 ... 16.528046\n", "50 30822 ... 2.348297\n", "51 30823 ... 8.818064\n", "52 30824 ... 10.826026\n", "53 30825 ... 5.528331\n", "54 30826 ... 11.029634\n", "55 30827 ... 22.022442\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: klplltl7 \n", "\n", "wandb: Agent Starting Run: b9vef1w8 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: b9vef1w8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/b9vef1w8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.429183930158615\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.0893239956349134\n", "The running loss is:\n", "25.076544493436813\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.5672840308398008\n", "The running loss is:\n", "21.2126601934433\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.3257912620902061\n", "The running loss is:\n", "17.364732414484024\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.0852957759052515\n", "The running loss is:\n", "17.196853309869766\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0748033318668604\n", "The running loss is:\n", "16.994296818971634\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0621435511857271\n", "The running loss is:\n", "17.03663896024227\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.064789935015142\n", "The running loss is:\n", "16.859628692269325\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.0537267932668328\n", "The running loss is:\n", "16.93640587478876\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.0585253671742976\n", "The running loss is:\n", "17.753980338573456\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.109623771160841\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.685909\n", "47 30819 Eagle County, Colorado, United States ... 47 8.640967\n", "48 30820 Eagle County, Colorado, United States ... 48 9.257741\n", "49 30821 Eagle County, Colorado, United States ... 49 8.904490\n", "50 30822 Eagle County, Colorado, United States ... 50 8.397946\n", "51 30823 Eagle County, Colorado, United States ... 51 8.507514\n", "52 30824 Eagle County, Colorado, United States ... 52 8.640145\n", "53 30825 Eagle County, Colorado, United States ... 53 8.585375\n", "54 30826 Eagle County, Colorado, United States ... 54 9.138819\n", "55 30827 Eagle County, Colorado, United States ... 55 9.589720\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: b9vef1w8 \n", "\n", "wandb: Agent Starting Run: gessnckp with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: gessnckp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gessnckp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "23.54187097400427\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.3848159396473099\n", "The running loss is:\n", "24.992527093738317\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.4701486525728422\n", "The running loss is:\n", "21.432729721069336\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.2607488071217257\n", "The running loss is:\n", "18.33254014328122\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.0783847143106602\n", "The running loss is:\n", "16.867909282445908\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.9922299577909357\n", "The running loss is:\n", "17.271138109266758\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0159493005451035\n", "The running loss is:\n", "17.526262529194355\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0309566193643738\n", "The running loss is:\n", "17.195260427892208\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.011485907523071\n", "The running loss is:\n", "17.226871080696583\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.0133453576880342\n", "The running loss is:\n", "16.88069112598896\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.992981830940527\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.652255\n", "47 30819 ... 13.184143\n", "48 30820 ... 14.892082\n", "49 30821 ... 14.395442\n", "50 30822 ... 9.526847\n", "51 30823 ... 9.159123\n", "52 30824 ... 10.524038\n", "53 30825 ... 11.447363\n", "54 30826 ... 12.936011\n", "55 30827 ... 14.850525\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gessnckp \n", "\n", "wandb: Agent Starting Run: ga1qgbm2 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ga1qgbm2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ga1qgbm2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.710720017552376\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.3359247069148457\n", "The running loss is:\n", "25.101445123553276\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.476555595503134\n", "The running loss is:\n", "22.209337458014488\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.3064316151773228\n", "The running loss is:\n", "20.105842724442482\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1826966308495577\n", "The running loss is:\n", "18.94278684258461\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.1142815789755653\n", "The running loss is:\n", "18.09556182473898\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.06444481321994\n", "The running loss is:\n", "18.789756417274475\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.1052797892514397\n", "The running loss is:\n", "18.20790345966816\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0710531446863623\n", "The running loss is:\n", "17.90162880718708\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.0530369886580635\n", "The running loss is:\n", "17.974793404340744\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.057340788490632\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.552468\n", "47 30819 ... 13.281707\n", "48 30820 ... 18.242928\n", "49 30821 ... 14.926788\n", "50 30822 ... 5.647899\n", "51 30823 ... 9.067403\n", "52 30824 ... 13.766898\n", "53 30825 ... 10.045872\n", "54 30826 ... 13.696932\n", "55 30827 ... 16.382318\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ga1qgbm2 \n", "\n", "wandb: Agent Starting Run: 9mwe9odr with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 9mwe9odr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9mwe9odr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "24.058534413576126\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.5036584008485079\n", "The running loss is:\n", "24.180755577981472\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.511297223623842\n", "The running loss is:\n", "20.436290249228477\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.2772681405767798\n", "The running loss is:\n", "18.773078814148903\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.1733174258843064\n", "The running loss is:\n", "17.54651653021574\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0966572831384838\n", "The running loss is:\n", "17.458857282996178\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.091178580187261\n", "The running loss is:\n", "17.353648215532303\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.084603013470769\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "\u001b[34m\u001b[1mwandb\u001b[0m: Network error resolved after 0:00:11.333796, resuming normal operation.\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "The running loss is:\n", "16.79451848566532\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.0496574053540826\n", "The running loss is:\n", "16.56403110176325\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.035251943860203\n", "The running loss is:\n", "18.429389148950577\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.151836821809411\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.982271\n", "47 30819 ... 10.173903\n", "48 30820 ... 10.837774\n", "49 30821 ... 10.261594\n", "50 30822 ... 9.828760\n", "51 30823 ... 9.887388\n", "52 30824 ... 9.815040\n", "53 30825 ... 9.642322\n", "54 30826 ... 9.854512\n", "55 30827 ... 10.046807\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9mwe9odr \n", "\n", "wandb: Agent Starting Run: tpqh9vdt with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: tpqh9vdt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/tpqh9vdt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "76.73103265464306\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "4.513590156155474\n", "The running loss is:\n", "31.05447568744421\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.8267338639673065\n", "The running loss is:\n", "20.485956706106663\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.2050562768298037\n", "The running loss is:\n", "21.844449251890182\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.2849676030523636\n", "The running loss is:\n", "18.358333572745323\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.079901974867372\n", "The running loss is:\n", "18.44140242645517\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0847883780267746\n", "The running loss is:\n", "20.418050155043602\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.2010617738260942\n", "The running loss is:\n", "20.065719813108444\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.1803364595946144\n", "The running loss is:\n", "18.964558770880103\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.115562280640006\n", "The running loss is:\n", "17.706577128730714\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.0415633605135715\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 11.264996\n", "47 30819 ... 11.263235\n", "48 30820 ... 11.252102\n", "49 30821 ... 11.254551\n", "50 30822 ... 11.251740\n", "51 30823 ... 11.266092\n", "52 30824 ... 11.297521\n", "53 30825 ... 11.289854\n", "54 30826 ... 11.319056\n", "55 30827 ... 11.313751\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: tpqh9vdt \n", "\n", "wandb: Agent Starting Run: 6hn5aa9q with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 6hn5aa9q\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6hn5aa9q
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "64.83852332830429\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "3.8140307840178993\n", "The running loss is:\n", "24.20455026626587\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.4237970744862276\n", "The running loss is:\n", "19.660972595214844\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.1565277997185202\n", "The running loss is:\n", "19.629955507814884\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1547032651655815\n", "The running loss is:\n", "19.02102354168892\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.118883737746407\n", "The running loss is:\n", "18.660875782370567\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.0976985754335629\n", "The running loss is:\n", "18.049541860818863\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.0617377565187567\n", "The running loss is:\n", "16.762809321284294\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9860476071343702\n", "The running loss is:\n", "21.54910632967949\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.2675944899811464\n", "The running loss is:\n", "19.76157969236374\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.1624458642566906\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 11.821740\n", "47 30819 ... 12.099711\n", "48 30820 ... 12.154493\n", "49 30821 ... 11.972459\n", "50 30822 ... 11.806449\n", "51 30823 ... 12.246671\n", "52 30824 ... 12.140120\n", "53 30825 ... 12.150714\n", "54 30826 ... 12.229416\n", "55 30827 ... 12.229841\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6hn5aa9q \n", "\n", "wandb: Agent Starting Run: wh54t7pz with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: wh54t7pz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/wh54t7pz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "86.34015256166458\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "5.396259535104036\n", "The running loss is:\n", "21.355846017599106\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.3347403760999441\n", "The running loss is:\n", "26.509278684854507\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.6568299178034067\n", "The running loss is:\n", "18.682842135429382\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.1676776334643364\n", "The running loss is:\n", "17.745087578892708\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.1090679736807942\n", "The running loss is:\n", "17.44467857480049\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0902924109250307\n", "The running loss is:\n", "17.872719079256058\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.1170449424535036\n", "The running loss is:\n", "17.736331656575203\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.1085207285359502\n", "The running loss is:\n", "17.695459455251694\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.1059662159532309\n", "The running loss is:\n", "17.168903946876526\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.0730564966797829\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 12.047359\n", "47 30819 ... 11.826193\n", "48 30820 ... 9.759015\n", "49 30821 ... 10.301134\n", "50 30822 ... 12.089850\n", "51 30823 ... 11.833580\n", "52 30824 ... 11.614565\n", "53 30825 ... 13.017410\n", "54 30826 ... 11.678865\n", "55 30827 ... 9.747301\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: wh54t7pz \n", "\n", "wandb: Agent Starting Run: cjk92bph with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: cjk92bph\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cjk92bph
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.541068863123655\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.1494746390072739\n", "The running loss is:\n", "31.577809385955334\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.8575181991738432\n", "The running loss is:\n", "21.210836698301136\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.2476962763706552\n", "The running loss is:\n", "19.0487511085812\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1205147710930117\n", "The running loss is:\n", "17.747340630739927\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0439612135729368\n", "The running loss is:\n", "16.326730091124773\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.9603958877132219\n", "The running loss is:\n", "16.821684509515762\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.9895108535009272\n", "The running loss is:\n", "16.196162899956107\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "0.9527154647033004\n", "The running loss is:\n", "16.129438281059265\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.9487904871211332\n", "The running loss is:\n", "14.658306866884232\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.8622533451108372\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.140587\n", "47 30819 Eagle County, Colorado, United States ... 47 8.496163\n", "48 30820 Eagle County, Colorado, United States ... 48 8.369562\n", "49 30821 Eagle County, Colorado, United States ... 49 7.550753\n", "50 30822 Eagle County, Colorado, United States ... 50 6.753438\n", "51 30823 Eagle County, Colorado, United States ... 51 7.273794\n", "52 30824 Eagle County, Colorado, United States ... 52 7.213016\n", "53 30825 Eagle County, Colorado, United States ... 53 8.200387\n", "54 30826 Eagle County, Colorado, United States ... 54 9.424652\n", "55 30827 Eagle County, Colorado, United States ... 55 9.819715\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cjk92bph \n", "\n", "wandb: Agent Starting Run: zbcdwhpq with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: zbcdwhpq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/zbcdwhpq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.168893314898014\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.2605558321811259\n", "The running loss is:\n", "25.939899191260338\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.6212436994537711\n", "The running loss is:\n", "18.034993439912796\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.1271870899945498\n", "The running loss is:\n", "17.39638414233923\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.0872740088962018\n", "The running loss is:\n", "16.87509286403656\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.054693304002285\n", "The running loss is:\n", "16.00445708632469\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0002785678952932\n", "The running loss is:\n", "16.381498876959085\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.0238436798099428\n", "The running loss is:\n", "15.403928969055414\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.9627455605659634\n", "The running loss is:\n", "14.709752142429352\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.9193595089018345\n", "The running loss is:\n", "14.122410148382187\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.8826506342738867\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.590269\n", "47 30819 Eagle County, Colorado, United States ... 47 6.284689\n", "48 30820 Eagle County, Colorado, United States ... 48 6.673457\n", "49 30821 Eagle County, Colorado, United States ... 49 5.553449\n", "50 30822 Eagle County, Colorado, United States ... 50 4.031074\n", "51 30823 Eagle County, Colorado, United States ... 51 3.671934\n", "52 30824 Eagle County, Colorado, United States ... 52 3.971685\n", "53 30825 Eagle County, Colorado, United States ... 53 5.478973\n", "54 30826 Eagle County, Colorado, United States ... 54 6.330999\n", "55 30827 Eagle County, Colorado, United States ... 55 6.209041\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: zbcdwhpq \n", "\n", "wandb: Agent Starting Run: vo9vk3ik with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: vo9vk3ik\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vo9vk3ik
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.161318197846413\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.1350823873654008\n", "The running loss is:\n", "28.34734532237053\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.771709082648158\n", "The running loss is:\n", "21.952908873558044\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.3720568045973778\n", "The running loss is:\n", "18.008008897304535\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.1255005560815334\n", "The running loss is:\n", "18.31263779103756\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.1445398619398475\n", "The running loss is:\n", "16.959372133016586\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0599607583135366\n", "The running loss is:\n", "16.71182854473591\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.0444892840459943\n", "The running loss is:\n", "16.340465560555458\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.0212790975347161\n", "The running loss is:\n", "15.99364747107029\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.9996029669418931\n", "The running loss is:\n", "15.350911244750023\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.9594319527968764\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.893581\n", "47 30819 Eagle County, Colorado, United States ... 47 4.652898\n", "48 30820 Eagle County, Colorado, United States ... 48 4.505464\n", "49 30821 Eagle County, Colorado, United States ... 49 3.514089\n", "50 30822 Eagle County, Colorado, United States ... 50 2.621427\n", "51 30823 Eagle County, Colorado, United States ... 51 2.962666\n", "52 30824 Eagle County, Colorado, United States ... 52 2.937756\n", "53 30825 Eagle County, Colorado, United States ... 53 3.398608\n", "54 30826 Eagle County, Colorado, United States ... 54 3.783144\n", "55 30827 Eagle County, Colorado, United States ... 55 3.793390\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vo9vk3ik \n", "\n", "wandb: Agent Starting Run: m0nfhmwv with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: m0nfhmwv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/m0nfhmwv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.05170270940289\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.179511924082523\n", "The running loss is:\n", "27.10501365410164\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.5944125678883319\n", "The running loss is:\n", "24.45247669145465\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.4383809818502735\n", "The running loss is:\n", "17.12475097551942\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.0073382926776129\n", "The running loss is:\n", "16.83773805736564\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "0.9904551798450377\n", "The running loss is:\n", "16.38904993236065\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.964061760727097\n", "The running loss is:\n", "16.86034062318504\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "0.9917847425402964\n", "The running loss is:\n", "17.765443854033947\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0450261090608204\n", "The running loss is:\n", "16.69217774644494\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "0.9818928086144083\n", "The running loss is:\n", "15.330347783863544\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "0.901785163756679\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.371289\n", "47 30819 Eagle County, Colorado, United States ... 47 9.567065\n", "48 30820 Eagle County, Colorado, United States ... 48 9.085946\n", "49 30821 Eagle County, Colorado, United States ... 49 8.364687\n", "50 30822 Eagle County, Colorado, United States ... 50 7.982452\n", "51 30823 Eagle County, Colorado, United States ... 51 8.483797\n", "52 30824 Eagle County, Colorado, United States ... 52 8.248549\n", "53 30825 Eagle County, Colorado, United States ... 53 8.893828\n", "54 30826 Eagle County, Colorado, United States ... 54 9.528422\n", "55 30827 Eagle County, Colorado, United States ... 55 9.468787\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: m0nfhmwv \n", "\n", "wandb: Agent Starting Run: gx5177rp with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: gx5177rp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gx5177rp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.488044381141663\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.093002773821354\n", "The running loss is:\n", "23.978667616844177\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.498666726052761\n", "The running loss is:\n", "19.89868026971817\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.2436675168573856\n", "The running loss is:\n", "17.491415731608868\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.0932134832255542\n", "The running loss is:\n", "17.02195332199335\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0638720826245844\n", "The running loss is:\n", "16.250655472278595\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0156659670174122\n", "The running loss is:\n", "17.369982078671455\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.085623879916966\n", "The running loss is:\n", "16.19321621209383\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.0120760132558644\n", "The running loss is:\n", "15.575257241725922\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.9734535776078701\n", "The running loss is:\n", "14.779532857239246\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.9237208035774529\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 7.571152\n", "47 30819 Eagle County, Colorado, United States ... 47 5.052190\n", "48 30820 Eagle County, Colorado, United States ... 48 5.632578\n", "49 30821 Eagle County, Colorado, United States ... 49 5.871844\n", "50 30822 Eagle County, Colorado, United States ... 50 3.961731\n", "51 30823 Eagle County, Colorado, United States ... 51 3.108603\n", "52 30824 Eagle County, Colorado, United States ... 52 3.412964\n", "53 30825 Eagle County, Colorado, United States ... 53 4.292527\n", "54 30826 Eagle County, Colorado, United States ... 54 4.116302\n", "55 30827 Eagle County, Colorado, United States ... 55 4.581748\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gx5177rp \n", "\n", "wandb: Agent Starting Run: 90rqzvhh with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 90rqzvhh\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/90rqzvhh
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.225835099816322\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.3266146937385201\n", "The running loss is:\n", "24.082868233323097\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.5051792645826936\n", "The running loss is:\n", "27.372445285320282\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.7107778303325176\n", "The running loss is:\n", "20.892320051789284\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.3057700032368302\n", "The running loss is:\n", "20.565253868699074\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.2853283667936921\n", "The running loss is:\n", "16.875523328781128\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0547202080488205\n", "The running loss is:\n", "17.473206147551537\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.092075384221971\n", "The running loss is:\n", "16.84730589389801\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.0529566183686256\n", "The running loss is:\n", "16.792904995381832\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.0495565622113645\n", "The running loss is:\n", "16.68462935835123\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.042789334896952\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.352649\n", "47 30819 Eagle County, Colorado, United States ... 47 6.084286\n", "48 30820 Eagle County, Colorado, United States ... 48 6.090950\n", "49 30821 Eagle County, Colorado, United States ... 49 5.605799\n", "50 30822 Eagle County, Colorado, United States ... 50 5.207687\n", "51 30823 Eagle County, Colorado, United States ... 51 5.319816\n", "52 30824 Eagle County, Colorado, United States ... 52 5.325910\n", "53 30825 Eagle County, Colorado, United States ... 53 5.664911\n", "54 30826 Eagle County, Colorado, United States ... 54 5.746319\n", "55 30827 Eagle County, Colorado, United States ... 55 6.000322\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 90rqzvhh \n", "\n", "wandb: Agent Starting Run: 5kqgou97 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 5kqgou97\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5kqgou97
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "28.777981208404526\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "1.6928224240237957\n", "The running loss is:\n", "24.640328461304307\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.4494310859590769\n", "The running loss is:\n", "27.799861981067806\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.6352859988863415\n", "The running loss is:\n", "20.27729516022373\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.1927820682484547\n", "The running loss is:\n", "17.45506318518892\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.0267684226581717\n", "The running loss is:\n", "16.46949014440179\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "0.9687935379059875\n", "The running loss is:\n", "21.04788029473275\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.2381106055725146\n", "The running loss is:\n", "18.626586033031344\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.095681531354785\n", "The running loss is:\n", "18.9736210629344\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.1160953566432\n", "The running loss is:\n", "17.51461985334754\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.0302717560792671\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.366323\n", "47 30819 Eagle County, Colorado, United States ... 47 5.725136\n", "48 30820 Eagle County, Colorado, United States ... 48 6.439533\n", "49 30821 Eagle County, Colorado, United States ... 49 6.884377\n", "50 30822 Eagle County, Colorado, United States ... 50 6.239933\n", "51 30823 Eagle County, Colorado, United States ... 51 4.986047\n", "52 30824 Eagle County, Colorado, United States ... 52 6.204242\n", "53 30825 Eagle County, Colorado, United States ... 53 6.950147\n", "54 30826 Eagle County, Colorado, United States ... 54 6.047112\n", "55 30827 Eagle County, Colorado, United States ... 55 6.310897\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5kqgou97 \n", "\n", "wandb: Agent Starting Run: kf0ese4y with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: kf0ese4y\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/kf0ese4y
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.219055324792862\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.3886909577995539\n", "The running loss is:\n", "22.0189621001482\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.3761851312592626\n", "The running loss is:\n", "19.93704141676426\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.2460650885477662\n", "The running loss is:\n", "17.88787931203842\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.1179924570024014\n", "The running loss is:\n", "16.455111406743526\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0284444629214704\n", "The running loss is:\n", "16.531717360019684\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0332323350012302\n", "The running loss is:\n", "17.8481187466532\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.115507421665825\n", "The running loss is:\n", "17.158546946942806\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.0724091841839254\n", "The running loss is:\n", "17.001652263104916\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.0626032664440572\n", "The running loss is:\n", "16.163067802786827\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.0101917376741767\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.685339\n", "47 30819 ... 9.254963\n", "48 30820 ... 9.078858\n", "49 30821 ... 9.091250\n", "50 30822 ... 9.344090\n", "51 30823 ... 9.539142\n", "52 30824 ... 8.981033\n", "53 30825 ... 9.279771\n", "54 30826 ... 9.038018\n", "55 30827 ... 9.276935\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: kf0ese4y \n", "\n", "wandb: Agent Starting Run: krqw3ydc with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: krqw3ydc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/krqw3ydc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "35.509117022156715\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "2.2193198138847947\n", "The running loss is:\n", "27.793827712535858\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.7371142320334911\n", "The running loss is:\n", "27.488479807972908\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.7180299879983068\n", "The running loss is:\n", "21.062721334397793\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.316420083399862\n", "The running loss is:\n", "17.644332513213158\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.1027707820758224\n", "The running loss is:\n", "17.82902693748474\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.1143141835927963\n", "The running loss is:\n", "17.82366769760847\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.1139792311005294\n", "The running loss is:\n", "16.8096736446023\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.0506046027876437\n", "The running loss is:\n", "16.60496674105525\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.0378104213159531\n", "The running loss is:\n", "16.044241465628147\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.0027650916017592\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.428545\n", "47 30819 Eagle County, Colorado, United States ... 47 5.813026\n", "48 30820 Eagle County, Colorado, United States ... 48 5.347736\n", "49 30821 Eagle County, Colorado, United States ... 49 4.646779\n", "50 30822 Eagle County, Colorado, United States ... 50 3.470057\n", "51 30823 Eagle County, Colorado, United States ... 51 4.449368\n", "52 30824 Eagle County, Colorado, United States ... 52 4.113334\n", "53 30825 Eagle County, Colorado, United States ... 53 3.690783\n", "54 30826 Eagle County, Colorado, United States ... 54 4.221715\n", "55 30827 Eagle County, Colorado, United States ... 55 4.104982\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: krqw3ydc \n", "\n", "wandb: Agent Starting Run: sh72of1b with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: sh72of1b\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/sh72of1b
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "103.1626292373985\n", "The number of items in train is: \n", "17\n", "The loss for epoch 0\n", "6.068389955141089\n", "The running loss is:\n", "32.25590829923749\n", "The number of items in train is: \n", "17\n", "The loss for epoch 1\n", "1.8974063705433817\n", "The running loss is:\n", "23.828247282654047\n", "The number of items in train is: \n", "17\n", "The loss for epoch 2\n", "1.4016616048620028\n", "The running loss is:\n", "31.835000079125166\n", "The number of items in train is: \n", "17\n", "The loss for epoch 3\n", "1.8726470634779508\n", "The running loss is:\n", "20.61502874654252\n", "The number of items in train is: \n", "17\n", "The loss for epoch 4\n", "1.212648749796619\n", "The running loss is:\n", "19.363679410889745\n", "The number of items in train is: \n", "17\n", "The loss for epoch 5\n", "1.1390399653464556\n", "The running loss is:\n", "19.635973207186908\n", "The number of items in train is: \n", "17\n", "The loss for epoch 6\n", "1.1550572474815828\n", "The running loss is:\n", "18.29618028178811\n", "The number of items in train is: \n", "17\n", "The loss for epoch 7\n", "1.0762458989287125\n", "The running loss is:\n", "19.22706305421889\n", "The number of items in train is: \n", "17\n", "The loss for epoch 8\n", "1.1310037090716993\n", "The running loss is:\n", "18.380500946193933\n", "The number of items in train is: \n", "17\n", "The loss for epoch 9\n", "1.0812059380114079\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.151937\n", "47 30819 ... 7.935369\n", "48 30820 ... 8.738775\n", "49 30821 ... 10.614862\n", "50 30822 ... 9.969593\n", "51 30823 ... 7.311244\n", "52 30824 ... 7.801637\n", "53 30825 ... 7.693194\n", "54 30826 ... 6.158726\n", "55 30827 ... 9.466553\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: sh72of1b \n", "\n", "wandb: Agent Starting Run: b05a558h with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: b05a558h\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/b05a558h
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "78.69877743721008\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "4.91867358982563\n", "The running loss is:\n", "25.414799951016903\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.5884249969385564\n", "The running loss is:\n", "20.38876563310623\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.2742978520691395\n", "The running loss is:\n", "19.538819804787636\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.2211762377992272\n", "The running loss is:\n", "16.742633998394012\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0464146248996258\n", "The running loss is:\n", "17.317697145044804\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0823560715653002\n", "The running loss is:\n", "17.5643428042531\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.0977714252658188\n", "The running loss is:\n", "17.789347365498543\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.111834210343659\n", "The running loss is:\n", "17.489750310778618\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.0931093944236636\n", "The running loss is:\n", "17.39979489147663\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.0874871807172894\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.857318\n", "47 30819 ... 10.542280\n", "48 30820 ... 13.393419\n", "49 30821 ... 12.905228\n", "50 30822 ... 13.987958\n", "51 30823 ... 9.857606\n", "52 30824 ... 9.617988\n", "53 30825 ... 11.862918\n", "54 30826 ... 12.504917\n", "55 30827 ... 12.476783\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: b05a558h \n", "\n", "wandb: Agent Starting Run: b42edysj with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: b42edysj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/b42edysj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "129.31433825194836\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "8.082146140746772\n", "The running loss is:\n", "33.838866889476776\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "2.1149291805922985\n", "The running loss is:\n", "32.69537399709225\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "2.0434608748182654\n", "The running loss is:\n", "20.72595465183258\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.2953721657395363\n", "The running loss is:\n", "18.550900161266327\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.1594312600791454\n", "The running loss is:\n", "18.944357007741928\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.1840223129838705\n", "The running loss is:\n", "16.659233570098877\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.0412020981311798\n", "The running loss is:\n", "16.95862276852131\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.0599139230325818\n", "The running loss is:\n", "17.480562835931778\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.0925351772457361\n", "The running loss is:\n", "16.70482873916626\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.0440517961978912\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 9.223022\n", "47 30819 Eagle County, Colorado, United States ... 47 9.480515\n", "48 30820 Eagle County, Colorado, United States ... 48 9.003038\n", "49 30821 Eagle County, Colorado, United States ... 49 7.573602\n", "50 30822 Eagle County, Colorado, United States ... 50 8.637365\n", "51 30823 Eagle County, Colorado, United States ... 51 9.787563\n", "52 30824 Eagle County, Colorado, United States ... 52 9.713055\n", "53 30825 Eagle County, Colorado, United States ... 53 9.106526\n", "54 30826 Eagle County, Colorado, United States ... 54 8.233118\n", "55 30827 Eagle County, Colorado, United States ... 55 8.937274\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: b42edysj \n", "\n", "wandb: Agent Starting Run: 0y4dvzek with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 0y4dvzek\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0y4dvzek
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.024294704198837\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.1890184190124273\n", "The running loss is:\n", "28.17329168319702\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.7608307301998138\n", "The running loss is:\n", "19.229630678892136\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.2018519174307585\n", "The running loss is:\n", "18.052614729851484\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.1282884206157178\n", "The running loss is:\n", "16.58875320851803\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0367970755323768\n", "The running loss is:\n", "16.503416620194912\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.031463538762182\n", "The running loss is:\n", "15.970246095210314\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.9981403809506446\n", "The running loss is:\n", "15.178171835839748\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.9486357397399843\n", "The running loss is:\n", "15.022873431444168\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.9389295894652605\n", "The running loss is:\n", "14.425640754401684\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.9016025471501052\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "36 30808 ... 0.000000\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 7.330852\n", "47 30819 ... 9.025394\n", "48 30820 ... 10.150417\n", "49 30821 ... 8.791727\n", "50 30822 ... 8.136430\n", "51 30823 ... 6.754112\n", "52 30824 ... 6.621983\n", "53 30825 ... 7.065903\n", "54 30826 ... 9.010159\n", "55 30827 ... 10.120397\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0y4dvzek \n", "\n", "wandb: Agent Starting Run: n6y0nnnv with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: n6y0nnnv\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/n6y0nnnv
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.83935895562172\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.2399599347263575\n", "The running loss is:\n", "28.57678074762225\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.7860487967263907\n", "The running loss is:\n", "19.893600448966026\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.2433500280603766\n", "The running loss is:\n", "19.118501737713814\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.1949063586071134\n", "The running loss is:\n", "17.059373825788498\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0662108641117811\n", "The running loss is:\n", "17.05972745269537\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0662329657934606\n", "The running loss is:\n", "16.174344236031175\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.0108965147519484\n", "The running loss is:\n", "16.34573794156313\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.0216086213476956\n", "The running loss is:\n", "15.519824489951134\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.9699890306219459\n", "The running loss is:\n", "15.651652056723833\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "0.9782282535452396\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.513955\n", "47 30819 Eagle County, Colorado, United States ... 47 4.736606\n", "48 30820 Eagle County, Colorado, United States ... 48 5.299429\n", "49 30821 Eagle County, Colorado, United States ... 49 4.227453\n", "50 30822 Eagle County, Colorado, United States ... 50 3.256231\n", "51 30823 Eagle County, Colorado, United States ... 51 1.791030\n", "52 30824 Eagle County, Colorado, United States ... 52 1.133979\n", "53 30825 Eagle County, Colorado, United States ... 53 1.495904\n", "54 30826 Eagle County, Colorado, United States ... 54 2.602427\n", "55 30827 Eagle County, Colorado, United States ... 55 3.637704\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: n6y0nnnv \n", "\n", "wandb: Agent Starting Run: n0i03nbs with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: n0i03nbs\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/n0i03nbs
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.348762914538383\n", "The number of items in train is: \n", "15\n", "The loss for epoch 0\n", "1.2232508609692256\n", "The running loss is:\n", "25.289881259202957\n", "The number of items in train is: \n", "15\n", "The loss for epoch 1\n", "1.6859920839468638\n", "The running loss is:\n", "17.352391123771667\n", "The number of items in train is: \n", "15\n", "The loss for epoch 2\n", "1.1568260749181112\n", "The running loss is:\n", "17.013499923050404\n", "The number of items in train is: \n", "15\n", "The loss for epoch 3\n", "1.1342333282033603\n", "The running loss is:\n", "16.516328513622284\n", "The number of items in train is: \n", "15\n", "The loss for epoch 4\n", "1.101088567574819\n", "The running loss is:\n", "16.258019223809242\n", "The number of items in train is: \n", "15\n", "The loss for epoch 5\n", "1.0838679482539495\n", "The running loss is:\n", "15.751357644796371\n", "The number of items in train is: \n", "15\n", "The loss for epoch 6\n", "1.0500905096530915\n", "The running loss is:\n", "15.609124556183815\n", "The number of items in train is: \n", "15\n", "The loss for epoch 7\n", "1.0406083037455878\n", "The running loss is:\n", "15.097268715500832\n", "The number of items in train is: \n", "15\n", "The loss for epoch 8\n", "1.0064845810333887\n", "The running loss is:\n", "14.87123168259859\n", "The number of items in train is: \n", "15\n", "The loss for epoch 9\n", "0.9914154455065727\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.172585\n", "47 30819 Eagle County, Colorado, United States ... 47 8.545061\n", "48 30820 Eagle County, Colorado, United States ... 48 8.406359\n", "49 30821 Eagle County, Colorado, United States ... 49 7.705727\n", "50 30822 Eagle County, Colorado, United States ... 50 7.680320\n", "51 30823 Eagle County, Colorado, United States ... 51 5.664755\n", "52 30824 Eagle County, Colorado, United States ... 52 3.960229\n", "53 30825 Eagle County, Colorado, United States ... 53 4.914542\n", "54 30826 Eagle County, Colorado, United States ... 54 7.783839\n", "55 30827 Eagle County, Colorado, United States ... 55 8.135820\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: n0i03nbs \n", "\n", "wandb: Agent Starting Run: yjybu031 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: yjybu031\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yjybu031
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.16425657272339\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.1977660357952118\n", "The running loss is:\n", "24.791586220264435\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.5494741387665272\n", "The running loss is:\n", "21.69253620505333\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.355783512815833\n", "The running loss is:\n", "16.800780154764652\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.0500487596727908\n", "The running loss is:\n", "16.302987061440945\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.018936691340059\n", "The running loss is:\n", "15.405229218304157\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.9628268261440098\n", "The running loss is:\n", "14.881639704108238\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.9301024815067649\n", "The running loss is:\n", "14.712513819336891\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.9195321137085557\n", "The running loss is:\n", "15.10964523628354\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.9443528272677213\n", "The running loss is:\n", "16.02715666871518\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.0016972917946987\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "36 30808 ... 0.000000\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.599871\n", "47 30819 ... 10.097055\n", "48 30820 ... 8.892070\n", "49 30821 ... 7.969182\n", "50 30822 ... 8.750723\n", "51 30823 ... 7.703031\n", "52 30824 ... 6.274693\n", "53 30825 ... 6.066268\n", "54 30826 ... 8.236106\n", "55 30827 ... 8.333554\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yjybu031 \n", "\n", "wandb: Agent Starting Run: miyu4pi3 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: miyu4pi3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/miyu4pi3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.28632080554962\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.2678950503468513\n", "The running loss is:\n", "24.294055610895157\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.5183784756809473\n", "The running loss is:\n", "21.431798800826073\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.3394874250516295\n", "The running loss is:\n", "16.71895857900381\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.0449349111877382\n", "The running loss is:\n", "16.85727497190237\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0535796857438982\n", "The running loss is:\n", "16.236333053559065\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0147708158474416\n", "The running loss is:\n", "15.517197554931045\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.9698248471831903\n", "The running loss is:\n", "15.630752064287663\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.9769220040179789\n", "The running loss is:\n", "14.89614998549223\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "0.9310093740932643\n", "The running loss is:\n", "18.13109051436186\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.1331931571476161\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.372117\n", "47 30819 Eagle County, Colorado, United States ... 47 6.291941\n", "48 30820 Eagle County, Colorado, United States ... 48 8.174136\n", "49 30821 Eagle County, Colorado, United States ... 49 6.047145\n", "50 30822 Eagle County, Colorado, United States ... 50 5.574130\n", "51 30823 Eagle County, Colorado, United States ... 51 4.054066\n", "52 30824 Eagle County, Colorado, United States ... 52 4.882196\n", "53 30825 Eagle County, Colorado, United States ... 53 4.373847\n", "54 30826 Eagle County, Colorado, United States ... 54 4.788294\n", "55 30827 Eagle County, Colorado, United States ... 55 5.587177\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: miyu4pi3 \n", "\n", "wandb: Agent Starting Run: 6l418pc3 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 6l418pc3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/6l418pc3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.847505494952202\n", "The number of items in train is: \n", "15\n", "The loss for epoch 0\n", "1.1898336996634802\n", "The running loss is:\n", "22.748151302337646\n", "The number of items in train is: \n", "15\n", "The loss for epoch 1\n", "1.5165434201558432\n", "The running loss is:\n", "18.75277553498745\n", "The number of items in train is: \n", "15\n", "The loss for epoch 2\n", "1.25018503566583\n", "The running loss is:\n", "16.23998997360468\n", "The number of items in train is: \n", "15\n", "The loss for epoch 3\n", "1.082665998240312\n", "The running loss is:\n", "16.405739322304726\n", "The number of items in train is: \n", "15\n", "The loss for epoch 4\n", "1.093715954820315\n", "The running loss is:\n", "15.832581028342247\n", "The number of items in train is: \n", "15\n", "The loss for epoch 5\n", "1.0555054018894832\n", "The running loss is:\n", "14.198189176619053\n", "The number of items in train is: \n", "15\n", "The loss for epoch 6\n", "0.9465459451079369\n", "The running loss is:\n", "14.678221568465233\n", "The number of items in train is: \n", "15\n", "The loss for epoch 7\n", "0.9785481045643488\n", "The running loss is:\n", "14.704874739050865\n", "The number of items in train is: \n", "15\n", "The loss for epoch 8\n", "0.980324982603391\n", "The running loss is:\n", "13.837015897035599\n", "The number of items in train is: \n", "15\n", "The loss for epoch 9\n", "0.92246772646904\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 2.811941\n", "47 30819 Eagle County, Colorado, United States ... 47 7.373936\n", "48 30820 Eagle County, Colorado, United States ... 48 6.976442\n", "49 30821 Eagle County, Colorado, United States ... 49 6.321370\n", "50 30822 Eagle County, Colorado, United States ... 50 6.951790\n", "51 30823 Eagle County, Colorado, United States ... 51 3.973511\n", "52 30824 Eagle County, Colorado, United States ... 52 2.230998\n", "53 30825 Eagle County, Colorado, United States ... 53 1.945158\n", "54 30826 Eagle County, Colorado, United States ... 54 5.537347\n", "55 30827 Eagle County, Colorado, United States ... 55 4.562379\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 6l418pc3 \n", "\n", "wandb: Agent Starting Run: 2lswnnys with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 2lswnnys\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2lswnnys
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "28.321928784251213\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.7701205490157008\n", "The running loss is:\n", "23.84320007637143\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.4902000047732145\n", "The running loss is:\n", "22.800938323140144\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.425058645196259\n", "The running loss is:\n", "16.60193409025669\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.0376208806410432\n", "The running loss is:\n", "16.297849643044174\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0186156026902609\n", "The running loss is:\n", "15.142806701362133\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "0.9464254188351333\n", "The running loss is:\n", "15.968816300854087\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.9980510188033804\n", "The running loss is:\n", "18.68184170126915\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.1676151063293219\n", "The running loss is:\n", "17.71508727967739\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.107192954979837\n", "The running loss is:\n", "17.00942861661315\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.0630892885383219\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "36 30808 ... 0.000000\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 12.924442\n", "47 30819 ... 11.307852\n", "48 30820 ... 11.383236\n", "49 30821 ... 11.235537\n", "50 30822 ... 10.485743\n", "51 30823 ... 10.882519\n", "52 30824 ... 12.352532\n", "53 30825 ... 11.872038\n", "54 30826 ... 10.437772\n", "55 30827 ... 12.334542\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2lswnnys \n", "\n", "wandb: Agent Starting Run: s96dsy11 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: s96dsy11\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/s96dsy11
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "29.96261489391327\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "1.8726634308695793\n", "The running loss is:\n", "27.067424595355988\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "1.6917140372097492\n", "The running loss is:\n", "20.166864212602377\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.2604290132876486\n", "The running loss is:\n", "17.68713990226388\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.1054462438914925\n", "The running loss is:\n", "16.726590804755688\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.0454119252972305\n", "The running loss is:\n", "16.821392374113202\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.0513370233820751\n", "The running loss is:\n", "15.821807194501162\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "0.9888629496563226\n", "The running loss is:\n", "15.549790024757385\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "0.9718618765473366\n", "The running loss is:\n", "17.553053379058838\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.0970658361911774\n", "The running loss is:\n", "16.198522921651602\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.0124076826032251\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 7.124155\n", "47 30819 Eagle County, Colorado, United States ... 47 7.601325\n", "48 30820 Eagle County, Colorado, United States ... 48 7.351948\n", "49 30821 Eagle County, Colorado, United States ... 49 6.322805\n", "50 30822 Eagle County, Colorado, United States ... 50 7.087974\n", "51 30823 Eagle County, Colorado, United States ... 51 6.653691\n", "52 30824 Eagle County, Colorado, United States ... 52 6.018229\n", "53 30825 Eagle County, Colorado, United States ... 53 5.255400\n", "54 30826 Eagle County, Colorado, United States ... 54 6.463150\n", "55 30827 Eagle County, Colorado, United States ... 55 6.508754\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: s96dsy11 \n", "\n", "wandb: Agent Starting Run: ox8sw2mt with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ox8sw2mt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ox8sw2mt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "24.2190171033144\n", "The number of items in train is: \n", "15\n", "The loss for epoch 0\n", "1.61460114022096\n", "The running loss is:\n", "23.19199651479721\n", "The number of items in train is: \n", "15\n", "The loss for epoch 1\n", "1.5461331009864807\n", "The running loss is:\n", "19.841294646263123\n", "The number of items in train is: \n", "15\n", "The loss for epoch 2\n", "1.3227529764175414\n", "The running loss is:\n", "16.733892038464546\n", "The number of items in train is: \n", "15\n", "The loss for epoch 3\n", "1.1155928025643032\n", "The running loss is:\n", "16.701290532946587\n", "The number of items in train is: \n", "15\n", "The loss for epoch 4\n", "1.1134193688631058\n", "The running loss is:\n", "16.376007974147797\n", "The number of items in train is: \n", "15\n", "The loss for epoch 5\n", "1.0917338649431865\n", "The running loss is:\n", "15.544721752405167\n", "The number of items in train is: \n", "15\n", "The loss for epoch 6\n", "1.0363147834936777\n", "The running loss is:\n", "14.802310332655907\n", "The number of items in train is: \n", "15\n", "The loss for epoch 7\n", "0.9868206888437271\n", "The running loss is:\n", "16.197223231196404\n", "The number of items in train is: \n", "15\n", "The loss for epoch 8\n", "1.0798148820797602\n", "The running loss is:\n", "17.143785387277603\n", "The number of items in train is: \n", "15\n", "The loss for epoch 9\n", "1.142919025818507\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "36 30808 ... 0.000000\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.421041\n", "47 30819 ... 10.157938\n", "48 30820 ... 9.647425\n", "49 30821 ... 9.630416\n", "50 30822 ... 10.029798\n", "51 30823 ... 9.603886\n", "52 30824 ... 7.974997\n", "53 30825 ... 8.477596\n", "54 30826 ... 9.787393\n", "55 30827 ... 8.910323\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ox8sw2mt \n", "\n", "wandb: Agent Starting Run: 1j4ina8x with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 1j4ina8x\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1j4ina8x
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "108.48466435819864\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "6.780291522387415\n", "The running loss is:\n", "37.332396514713764\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "2.3332747821696103\n", "The running loss is:\n", "20.24184750393033\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.2651154689956456\n", "The running loss is:\n", "19.149915374815464\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.1968697109259665\n", "The running loss is:\n", "19.72006557881832\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.232504098676145\n", "The running loss is:\n", "17.883113749325275\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.1176946093328297\n", "The running loss is:\n", "17.11849595978856\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.069905997486785\n", "The running loss is:\n", "16.509005554020405\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.0318128471262753\n", "The running loss is:\n", "18.953058928251266\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.1845661830157042\n", "The running loss is:\n", "19.251508221030235\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.2032192638143897\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "36 30808 ... 0.000000\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 11.076435\n", "47 30819 ... 11.008322\n", "48 30820 ... 11.043419\n", "49 30821 ... 11.140252\n", "50 30822 ... 11.340688\n", "51 30823 ... 11.105280\n", "52 30824 ... 10.863495\n", "53 30825 ... 11.017091\n", "54 30826 ... 10.999365\n", "55 30827 ... 10.982702\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1j4ina8x \n", "\n", "wandb: Agent Starting Run: l32pcy0y with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: l32pcy0y\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l32pcy0y
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "106.40463045239449\n", "The number of items in train is: \n", "16\n", "The loss for epoch 0\n", "6.650289403274655\n", "The running loss is:\n", "32.68300420045853\n", "The number of items in train is: \n", "16\n", "The loss for epoch 1\n", "2.042687762528658\n", "The running loss is:\n", "21.02730058133602\n", "The number of items in train is: \n", "16\n", "The loss for epoch 2\n", "1.3142062863335013\n", "The running loss is:\n", "22.76759300008416\n", "The number of items in train is: \n", "16\n", "The loss for epoch 3\n", "1.42297456250526\n", "The running loss is:\n", "20.224891159683466\n", "The number of items in train is: \n", "16\n", "The loss for epoch 4\n", "1.2640556974802166\n", "The running loss is:\n", "20.061361081898212\n", "The number of items in train is: \n", "16\n", "The loss for epoch 5\n", "1.2538350676186383\n", "The running loss is:\n", "18.02659384161234\n", "The number of items in train is: \n", "16\n", "The loss for epoch 6\n", "1.1266621151007712\n", "The running loss is:\n", "17.840649589896202\n", "The number of items in train is: \n", "16\n", "The loss for epoch 7\n", "1.1150405993685126\n", "The running loss is:\n", "17.845503389835358\n", "The number of items in train is: \n", "16\n", "The loss for epoch 8\n", "1.1153439618647099\n", "The running loss is:\n", "18.144714556634426\n", "The number of items in train is: \n", "16\n", "The loss for epoch 9\n", "1.1340446597896516\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 9.451546\n", "47 30819 Eagle County, Colorado, United States ... 47 9.509930\n", "48 30820 Eagle County, Colorado, United States ... 48 9.710898\n", "49 30821 Eagle County, Colorado, United States ... 49 9.667391\n", "50 30822 Eagle County, Colorado, United States ... 50 9.587912\n", "51 30823 Eagle County, Colorado, United States ... 51 9.663891\n", "52 30824 Eagle County, Colorado, United States ... 52 9.581569\n", "53 30825 Eagle County, Colorado, United States ... 53 9.588292\n", "54 30826 Eagle County, Colorado, United States ... 54 9.580448\n", "55 30827 Eagle County, Colorado, United States ... 55 9.681818\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l32pcy0y \n", "\n", "wandb: Agent Starting Run: e65jo2m6 with config:\n", "\tbatch_size: 2\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: e65jo2m6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/e65jo2m6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 2\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 2\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "80.18639262020588\n", "The number of items in train is: \n", "15\n", "The loss for epoch 0\n", "5.3457595080137255\n", "The running loss is:\n", "28.25533753633499\n", "The number of items in train is: \n", "15\n", "The loss for epoch 1\n", "1.8836891690889994\n", "The running loss is:\n", "18.94506999105215\n", "The number of items in train is: \n", "15\n", "The loss for epoch 2\n", "1.2630046660701433\n", "The running loss is:\n", "17.882804982364178\n", "The number of items in train is: \n", "15\n", "The loss for epoch 3\n", "1.1921869988242786\n", "The running loss is:\n", "17.178523786365986\n", "The number of items in train is: \n", "15\n", "The loss for epoch 4\n", "1.1452349190910658\n", "The running loss is:\n", "19.025928854942322\n", "The number of items in train is: \n", "15\n", "The loss for epoch 5\n", "1.2683952569961547\n", "The running loss is:\n", "17.12258891016245\n", "The number of items in train is: \n", "15\n", "The loss for epoch 6\n", "1.1415059273441632\n", "The running loss is:\n", "16.434594467282295\n", "The number of items in train is: \n", "15\n", "The loss for epoch 7\n", "1.095639631152153\n", "The running loss is:\n", "17.38167379796505\n", "The number of items in train is: \n", "15\n", "The loss for epoch 8\n", "1.15877825319767\n", "The running loss is:\n", "17.034118846058846\n", "The number of items in train is: \n", "15\n", "The loss for epoch 9\n", "1.1356079230705898\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "36 30808 ... 0.000000\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.681185\n", "47 30819 ... 10.923750\n", "48 30820 ... 8.556581\n", "49 30821 ... 8.627446\n", "50 30822 ... 8.821712\n", "51 30823 ... 8.461462\n", "52 30824 ... 8.276463\n", "53 30825 ... 8.955903\n", "54 30826 ... 9.159882\n", "55 30827 ... 8.890931\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: e65jo2m6 \n", "\n", "wandb: Agent Starting Run: r2moei7q with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: r2moei7q\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/r2moei7q
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.59494494833052\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.32821035345218\n", "The running loss is:\n", "14.932796542532742\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.0666283244666244\n", "The running loss is:\n", "14.904814524576068\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.0646296088982905\n", "The running loss is:\n", "14.451682602986693\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.032263043070478\n", "The running loss is:\n", "13.970589200034738\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.9978992285739098\n", "The running loss is:\n", "14.210589300841093\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.015042092917221\n", "The running loss is:\n", "13.587398022413254\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.9705284301723752\n", "The running loss is:\n", "14.565642356872559\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.0404030254908971\n", "The running loss is:\n", "14.67211166024208\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.0480079757315772\n", "The running loss is:\n", "14.311140194535255\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "1.022224299609661\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.055877\n", "47 30819 ... 11.829143\n", "48 30820 ... 11.898178\n", "49 30821 ... 11.568399\n", "50 30822 ... 11.145294\n", "51 30823 ... 10.700349\n", "52 30824 ... 10.250292\n", "53 30825 ... 12.220572\n", "54 30826 ... 12.335711\n", "55 30827 ... 12.016722\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: r2moei7q \n", "\n", "wandb: Agent Starting Run: fximbnf8 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: fximbnf8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fximbnf8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.81448957324028\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.6296063980885915\n", "The running loss is:\n", "20.114689007401466\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.436763500528676\n", "The running loss is:\n", "19.003370255231857\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.3573835896594184\n", "The running loss is:\n", "18.38408713042736\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.3131490807448114\n", "The running loss is:\n", "18.05182459950447\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.2894160428217478\n", "The running loss is:\n", "18.1113803088665\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.2936700220618929\n", "The running loss is:\n", "18.247668206691742\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.303404871906553\n", "The running loss is:\n", "17.699394717812538\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.2642424798437528\n", "The running loss is:\n", "17.261331766843796\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.2329522690602712\n", "The running loss is:\n", "17.405240193009377\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "1.2432314423578126\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 15.450606\n", "47 30819 ... 19.255352\n", "48 30820 ... 19.566013\n", "49 30821 ... 18.729879\n", "50 30822 ... 17.517355\n", "51 30823 ... 16.181293\n", "52 30824 ... 14.804688\n", "53 30825 ... 19.981453\n", "54 30826 ... 20.742424\n", "55 30827 ... 20.054089\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fximbnf8 \n", "\n", "wandb: Agent Starting Run: 76xgyieq with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 76xgyieq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/76xgyieq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.649044513702393\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.6653111164386456\n", "The running loss is:\n", "20.08183240890503\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.5447563391465406\n", "The running loss is:\n", "18.43745982646942\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.4182661404976478\n", "The running loss is:\n", "17.936023265123367\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.379694097317182\n", "The running loss is:\n", "17.735933303833008\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.3643025618333082\n", "The running loss is:\n", "17.864655077457428\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.3742042367274945\n", "The running loss is:\n", "17.435856461524963\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.3412197278096125\n", "The running loss is:\n", "17.46800085902214\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.3436923737709339\n", "The running loss is:\n", "17.538733899593353\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.3491333768917964\n", "The running loss is:\n", "17.084585398435593\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.314198876802738\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 1.993502\n", "47 30819 Eagle County, Colorado, United States ... 47 1.660632\n", "48 30820 Eagle County, Colorado, United States ... 48 1.195935\n", "49 30821 Eagle County, Colorado, United States ... 49 0.718136\n", "50 30822 Eagle County, Colorado, United States ... 50 0.239035\n", "51 30823 Eagle County, Colorado, United States ... 51 -0.240196\n", "52 30824 Eagle County, Colorado, United States ... 52 -0.719441\n", "53 30825 Eagle County, Colorado, United States ... 53 1.822607\n", "54 30826 Eagle County, Colorado, United States ... 54 1.643647\n", "55 30827 Eagle County, Colorado, United States ... 55 1.194247\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 76xgyieq \n", "\n", "wandb: Agent Starting Run: 0yngjqqa with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 0yngjqqa\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0yngjqqa
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.013466119766235\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.143819008554731\n", "The running loss is:\n", "29.16191405057907\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.0829938607556477\n", "The running loss is:\n", "17.242529824376106\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.231609273169722\n", "The running loss is:\n", "15.2852763235569\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.0918054516826357\n", "The running loss is:\n", "13.825423995032907\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.9875302853594933\n", "The running loss is:\n", "14.278043230995536\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.0198602307853954\n", "The running loss is:\n", "13.592282935976982\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.9708773525697845\n", "The running loss is:\n", "14.36550104059279\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.0261072171851993\n", "The running loss is:\n", "14.437449997290969\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.0312464283779263\n", "The running loss is:\n", "14.289774606004357\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "1.0206981861431683\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.096048\n", "47 30819 ... 11.764206\n", "48 30820 ... 11.783741\n", "49 30821 ... 11.437365\n", "50 30822 ... 11.009774\n", "51 30823 ... 10.564157\n", "52 30824 ... 10.114541\n", "53 30825 ... 12.119022\n", "54 30826 ... 12.213205\n", "55 30827 ... 11.883397\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0yngjqqa \n", "\n", "wandb: Agent Starting Run: fjhq2m63 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: fjhq2m63\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fjhq2m63
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.899971932172775\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.4214265665837698\n", "The running loss is:\n", "30.802632376551628\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.200188026896545\n", "The running loss is:\n", "19.786646991968155\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.4133319279977254\n", "The running loss is:\n", "18.989270001649857\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.3563764286892754\n", "The running loss is:\n", "17.26893775165081\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.2334955536893435\n", "The running loss is:\n", "17.307947099208832\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.2362819356577737\n", "The running loss is:\n", "17.254249587655067\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.232446399118219\n", "The running loss is:\n", "16.732941687107086\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.195210120507649\n", "The running loss is:\n", "16.49874599277973\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.1784818566271238\n", "The running loss is:\n", "16.410493820905685\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "1.1721781300646918\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 14.413111\n", "47 30819 ... 17.841599\n", "48 30820 ... 18.107571\n", "49 30821 ... 17.371849\n", "50 30822 ... 16.318855\n", "51 30823 ... 15.165368\n", "52 30824 ... 13.980051\n", "53 30825 ... 18.524395\n", "54 30826 ... 19.143803\n", "55 30827 ... 18.520027\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fjhq2m63 \n", "\n", "wandb: Agent Starting Run: cptzspm9 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: cptzspm9\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cptzspm9
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.011935591697693\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.3855335070536687\n", "The running loss is:\n", "31.434290528297424\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.418022348330571\n", "The running loss is:\n", "19.867827773094177\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.5282944440841675\n", "The running loss is:\n", "18.71837419271469\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.4398749379011302\n", "The running loss is:\n", "17.043402820825577\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.3110309862173521\n", "The running loss is:\n", "17.26927536725998\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.3284057974815369\n", "The running loss is:\n", "16.922881990671158\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.3017601531285505\n", "The running loss is:\n", "16.785142093896866\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.2911647764536052\n", "The running loss is:\n", "16.733474850654602\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.2871903731272771\n", "The running loss is:\n", "16.36581662297249\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.2589089709978838\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 2.694916\n", "47 30819 Eagle County, Colorado, United States ... 47 2.521640\n", "48 30820 Eagle County, Colorado, United States ... 48 2.190051\n", "49 30821 Eagle County, Colorado, United States ... 49 1.845047\n", "50 30822 Eagle County, Colorado, United States ... 50 1.498905\n", "51 30823 Eagle County, Colorado, United States ... 51 1.152667\n", "52 30824 Eagle County, Colorado, United States ... 52 0.806421\n", "53 30825 Eagle County, Colorado, United States ... 53 2.678512\n", "54 30826 Eagle County, Colorado, United States ... 54 2.520250\n", "55 30827 Eagle County, Colorado, United States ... 55 2.189933\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cptzspm9 \n", "\n", "wandb: Agent Starting Run: v3ynd9po with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: v3ynd9po\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/v3ynd9po
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.401278633624315\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.2429484738303083\n", "The running loss is:\n", "20.994035825133324\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.499573987509523\n", "The running loss is:\n", "20.901939246803522\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.4929956604859658\n", "The running loss is:\n", "17.49182690680027\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.2494162076285906\n", "The running loss is:\n", "14.579859712161124\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.0414185508686518\n", "The running loss is:\n", "14.753086706623435\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.0537919076159596\n", "The running loss is:\n", "13.997532527893782\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.999823751992413\n", "The running loss is:\n", "14.817034468054771\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.058359604861055\n", "The running loss is:\n", "14.553301157429814\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.0395215112449867\n", "The running loss is:\n", "14.703020714223385\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "1.0502157653016704\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.369466\n", "47 30819 ... 11.836428\n", "48 30820 ... 11.770448\n", "49 30821 ... 11.407104\n", "50 30822 ... 10.986075\n", "51 30823 ... 10.553859\n", "52 30824 ... 10.119472\n", "53 30825 ... 12.138479\n", "54 30826 ... 12.179585\n", "55 30827 ... 11.837014\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: v3ynd9po \n", "\n", "wandb: Agent Starting Run: 30q9ac39 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 30q9ac39\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/30q9ac39
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.857100248336792\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.418364303452628\n", "The running loss is:\n", "26.54387801885605\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.8959912870611464\n", "The running loss is:\n", "23.77830880880356\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.6984506292002541\n", "The running loss is:\n", "20.03038616478443\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.4307418689131737\n", "The running loss is:\n", "17.19534194469452\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.2282387103353227\n", "The running loss is:\n", "16.544086322188377\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.181720451584884\n", "The running loss is:\n", "16.140186935663223\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.152870495404516\n", "The running loss is:\n", "15.713112562894821\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.1223651830639159\n", "The running loss is:\n", "15.244650691747665\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.088903620839119\n", "The running loss is:\n", "14.965971872210503\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "1.0689979908721787\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 13.930508\n", "47 30819 ... 16.271799\n", "48 30820 ... 16.045662\n", "49 30821 ... 15.197029\n", "50 30822 ... 14.197470\n", "51 30823 ... 13.161317\n", "52 30824 ... 12.116292\n", "53 30825 ... 16.625732\n", "54 30826 ... 16.925278\n", "55 30827 ... 16.204102\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 30q9ac39 \n", "\n", "wandb: Agent Starting Run: fcdxmr7c with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: fcdxmr7c\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fcdxmr7c
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.934100329875946\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.4564692561443036\n", "The running loss is:\n", "27.40670943260193\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.108208417892456\n", "The running loss is:\n", "23.129272490739822\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.7791748069799864\n", "The running loss is:\n", "19.054784208536148\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.4657526314258575\n", "The running loss is:\n", "16.83181044459343\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.29475464958411\n", "The running loss is:\n", "16.373175472021103\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.2594750363093157\n", "The running loss is:\n", "15.920186161994934\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.224629704768841\n", "The running loss is:\n", "15.883338451385498\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.221795265491192\n", "The running loss is:\n", "15.632668197154999\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.2025129382426922\n", "The running loss is:\n", "15.228438049554825\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.1714183115042174\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.237244\n", "47 30819 Eagle County, Colorado, United States ... 47 4.232128\n", "48 30820 Eagle County, Colorado, United States ... 48 3.997910\n", "49 30821 Eagle County, Colorado, United States ... 49 3.747505\n", "50 30822 Eagle County, Colorado, United States ... 50 3.495956\n", "51 30823 Eagle County, Colorado, United States ... 51 3.244326\n", "52 30824 Eagle County, Colorado, United States ... 52 2.992691\n", "53 30825 Eagle County, Colorado, United States ... 53 4.378044\n", "54 30826 Eagle County, Colorado, United States ... 54 4.242076\n", "55 30827 Eagle County, Colorado, United States ... 55 3.998613\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fcdxmr7c \n", "\n", "wandb: Agent Starting Run: t1l0vtle with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: t1l0vtle\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/t1l0vtle
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "34.37906017899513\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "2.4556471556425095\n", "The running loss is:\n", "26.15366743505001\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.8681191025035722\n", "The running loss is:\n", "25.3820013217628\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.8130000944116287\n", "The running loss is:\n", "28.283599134534597\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "2.0202570810381855\n", "The running loss is:\n", "33.98149111866951\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "2.4272493656192506\n", "The running loss is:\n", "17.64745257794857\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.2605323269963264\n", "The running loss is:\n", "15.027765817940235\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.0734118441385883\n", "The running loss is:\n", "14.682047221809626\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.0487176587006874\n", "The running loss is:\n", "14.17528066970408\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.0125200478360057\n", "The running loss is:\n", "14.080418163910508\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "1.0057441545650363\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.958035\n", "47 30819 ... 11.445734\n", "48 30820 ... 11.345182\n", "49 30821 ... 10.906959\n", "50 30822 ... 10.396943\n", "51 30823 ... 9.871664\n", "52 30824 ... 9.343140\n", "53 30825 ... 11.731848\n", "54 30826 ... 11.822859\n", "55 30827 ... 11.425363\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: t1l0vtle \n", "\n", "wandb: Agent Starting Run: zwxvm8ym with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: zwxvm8ym\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/zwxvm8ym
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "37.94893169403076\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "2.7106379781450545\n", "The running loss is:\n", "27.68363320827484\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.9774023720196314\n", "The running loss is:\n", "26.667637139558792\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.9048312242541994\n", "The running loss is:\n", "27.63523341715336\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.9739452440823828\n", "The running loss is:\n", "21.57915799319744\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.5413684280855315\n", "The running loss is:\n", "21.874824732542038\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.5624874808958598\n", "The running loss is:\n", "14.983947649598122\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "1.0702819749712944\n", "The running loss is:\n", "14.43506047129631\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "1.0310757479497366\n", "The running loss is:\n", "14.08886642754078\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "1.0063476019671984\n", "The running loss is:\n", "13.513579778373241\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.9652556984552315\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 12.079294\n", "47 30819 ... 14.102061\n", "48 30820 ... 13.870899\n", "49 30821 ... 13.078794\n", "50 30822 ... 12.147085\n", "51 30823 ... 11.180633\n", "52 30824 ... 10.205533\n", "53 30825 ... 14.370306\n", "54 30826 ... 14.672234\n", "55 30827 ... 14.012800\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: zwxvm8ym \n", "\n", "wandb: Agent Starting Run: 0ns4eryb with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 1\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 0ns4eryb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0ns4eryb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "45.304227113723755\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "3.4849405472095194\n", "The running loss is:\n", "31.466166585683823\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.4204743527449093\n", "The running loss is:\n", "27.548714011907578\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "2.1191318470698137\n", "The running loss is:\n", "22.79436346888542\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.7534125745296478\n", "The running loss is:\n", "17.69319573044777\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.3610150561882899\n", "The running loss is:\n", "16.08399274945259\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.2372302114963531\n", "The running loss is:\n", "15.254592299461365\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.1734301768816435\n", "The running loss is:\n", "16.17251518368721\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.2440396295144007\n", "The running loss is:\n", "15.37093037366867\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.1823792595129747\n", "The running loss is:\n", "14.669757455587387\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.1284428811990297\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 7.828729\n", "47 30819 Eagle County, Colorado, United States ... 47 8.117490\n", "48 30820 Eagle County, Colorado, United States ... 48 7.883338\n", "49 30821 Eagle County, Colorado, United States ... 49 7.607377\n", "50 30822 Eagle County, Colorado, United States ... 50 7.328072\n", "51 30823 Eagle County, Colorado, United States ... 51 7.048500\n", "52 30824 Eagle County, Colorado, United States ... 52 6.768906\n", "53 30825 Eagle County, Colorado, United States ... 53 8.289990\n", "54 30826 Eagle County, Colorado, United States ... 54 8.154371\n", "55 30827 Eagle County, Colorado, United States ... 55 7.886288\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0ns4eryb \n", "\n", "wandb: Agent Starting Run: 8e0eacod with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 8e0eacod\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8e0eacod
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "19.603286884725094\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.4002347774803638\n", "The running loss is:\n", "16.837858743965626\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.2027041959975446\n", "The running loss is:\n", "13.142932513728738\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "0.938780893837767\n", "The running loss is:\n", "12.648434773087502\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "0.9034596266491073\n", "The running loss is:\n", "12.131098728626966\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "0.8665070520447833\n", "The running loss is:\n", "12.628641948103905\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.9020458534359932\n", "The running loss is:\n", "11.111840911209583\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.793702922229256\n", "The running loss is:\n", "12.15914048999548\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.8685100349996772\n", "The running loss is:\n", "10.403061028569937\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.7430757877549955\n", "The running loss is:\n", "11.373059086501598\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.8123613633215427\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 0.309699\n", "47 30819 Eagle County, Colorado, United States ... 47 5.267597\n", "48 30820 Eagle County, Colorado, United States ... 48 6.171280\n", "49 30821 Eagle County, Colorado, United States ... 49 5.798432\n", "50 30822 Eagle County, Colorado, United States ... 50 4.700201\n", "51 30823 Eagle County, Colorado, United States ... 51 3.081073\n", "52 30824 Eagle County, Colorado, United States ... 52 1.101784\n", "53 30825 Eagle County, Colorado, United States ... 53 0.857389\n", "54 30826 Eagle County, Colorado, United States ... 54 5.437455\n", "55 30827 Eagle County, Colorado, United States ... 55 6.270850\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8e0eacod \n", "\n", "wandb: Agent Starting Run: 9bth5gk6 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 9bth5gk6\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9bth5gk6
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.307483822107315\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.2544218324697936\n", "The running loss is:\n", "16.8885560631752\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.2991196971673231\n", "The running loss is:\n", "14.11893281340599\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.086071754877384\n", "The running loss is:\n", "13.040117263793945\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.003085943368765\n", "The running loss is:\n", "12.399544507265091\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9538111159434686\n", "The running loss is:\n", "12.317954629659653\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9475349715122809\n", "The running loss is:\n", "12.517528355121613\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.9628867965478164\n", "The running loss is:\n", "11.37213283777237\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8747794490594131\n", "The running loss is:\n", "11.30318507552147\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.869475775040113\n", "The running loss is:\n", "11.03271347284317\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.8486702671417823\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... -1.502937\n", "47 30819 ... 10.155432\n", "48 30820 ... 10.315764\n", "49 30821 ... 9.580840\n", "50 30822 ... 6.320834\n", "51 30823 ... 2.762872\n", "52 30824 ... -2.164825\n", "53 30825 ... -2.477209\n", "54 30826 ... 8.475018\n", "55 30827 ... 9.378270\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9bth5gk6 \n", "\n", "wandb: Agent Starting Run: 8xkfkomp with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 8xkfkomp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8xkfkomp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.484009578824043\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.4218468906787725\n", "The running loss is:\n", "16.133168160915375\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.2410129354550288\n", "The running loss is:\n", "14.021970570087433\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.0786131207759564\n", "The running loss is:\n", "13.871418491005898\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0670321916158383\n", "The running loss is:\n", "13.513418480753899\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.0394937292887614\n", "The running loss is:\n", "13.288902163505554\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.022223243346581\n", "The running loss is:\n", "13.067702129483223\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.005207856114094\n", "The running loss is:\n", "12.999311462044716\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.9999470355419012\n", "The running loss is:\n", "13.027460411190987\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.0021123393223836\n", "The running loss is:\n", "12.958777263760567\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.9968290202892743\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.103645\n", "47 30819 ... 10.392696\n", "48 30820 ... 11.688851\n", "49 30821 ... 12.198536\n", "50 30822 ... 11.687592\n", "51 30823 ... 10.778344\n", "52 30824 ... 9.438768\n", "53 30825 ... 10.621546\n", "54 30826 ... 13.821482\n", "55 30827 ... 13.794540\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8xkfkomp \n", "\n", "wandb: Agent Starting Run: d240mu9g with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: d240mu9g\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/d240mu9g
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.578325545415282\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.1127375389582344\n", "The running loss is:\n", "31.160696268081665\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.2257640191486905\n", "The running loss is:\n", "20.564725056290627\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.4689089325921876\n", "The running loss is:\n", "14.949720822274685\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.067837201591049\n", "The running loss is:\n", "14.392907034605742\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.0280647881861245\n", "The running loss is:\n", "13.032162211835384\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "0.9308687294168132\n", "The running loss is:\n", "11.537305176258087\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.8240932268755776\n", "The running loss is:\n", "12.44920339807868\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.8892288141484771\n", "The running loss is:\n", "11.219495192170143\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.8013925137264388\n", "The running loss is:\n", "12.205912753939629\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.8718509109956878\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.222100\n", "47 30819 Eagle County, Colorado, United States ... 47 8.353811\n", "48 30820 Eagle County, Colorado, United States ... 48 9.090399\n", "49 30821 Eagle County, Colorado, United States ... 49 8.430327\n", "50 30822 Eagle County, Colorado, United States ... 50 7.221142\n", "51 30823 Eagle County, Colorado, United States ... 51 5.685931\n", "52 30824 Eagle County, Colorado, United States ... 52 3.982207\n", "53 30825 Eagle County, Colorado, United States ... 53 4.731750\n", "54 30826 Eagle County, Colorado, United States ... 54 9.085600\n", "55 30827 Eagle County, Colorado, United States ... 55 9.379979\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: d240mu9g \n", "\n", "wandb: Agent Starting Run: ekya2hyl with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ekya2hyl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ekya2hyl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.734347730875015\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.1334113639134626\n", "The running loss is:\n", "24.244850277900696\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.8649884829154382\n", "The running loss is:\n", "16.024796843528748\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.2326766802714422\n", "The running loss is:\n", "14.830536425113678\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.1408104942395136\n", "The running loss is:\n", "12.796163737773895\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9843202875210688\n", "The running loss is:\n", "12.205731242895126\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9389024032996252\n", "The running loss is:\n", "11.800627201795578\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.9077405539842752\n", "The running loss is:\n", "11.113345444202423\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8548727264771094\n", "The running loss is:\n", "11.361089408397675\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8739299544921288\n", "The running loss is:\n", "10.799745172262192\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.8307496286355532\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... -0.377296\n", "47 30819 ... 11.099423\n", "48 30820 ... 11.109451\n", "49 30821 ... 10.542838\n", "50 30822 ... 7.268153\n", "51 30823 ... 4.264411\n", "52 30824 ... -0.463730\n", "53 30825 ... -0.160548\n", "54 30826 ... 10.614574\n", "55 30827 ... 10.970974\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ekya2hyl \n", "\n", "wandb: Agent Starting Run: xuiv1iir with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: xuiv1iir\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xuiv1iir
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.830458275973797\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.2177275596902921\n", "The running loss is:\n", "24.721736907958984\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.9016720698429987\n", "The running loss is:\n", "15.899764001369476\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.2230587693361135\n", "The running loss is:\n", "14.821087464690208\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.140083651130016\n", "The running loss is:\n", "13.545907482504845\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.0419928832696035\n", "The running loss is:\n", "13.130958944559097\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.0100737649660845\n", "The running loss is:\n", "12.650900229811668\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.9731461715239745\n", "The running loss is:\n", "12.674515426158905\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.9749627250891465\n", "The running loss is:\n", "12.911895290017128\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.9932227146167022\n", "The running loss is:\n", "13.055136889219284\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.0042412991707141\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 7.861941\n", "47 30819 ... 10.400677\n", "48 30820 ... 11.311898\n", "49 30821 ... 11.339298\n", "50 30822 ... 10.857693\n", "51 30823 ... 10.027314\n", "52 30824 ... 8.962327\n", "53 30825 ... 11.340019\n", "54 30826 ... 12.713752\n", "55 30827 ... 12.687253\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xuiv1iir \n", "\n", "wandb: Agent Starting Run: yae7j9w0 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: yae7j9w0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yae7j9w0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.342230960726738\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "1.2387307829090528\n", "The running loss is:\n", "20.26045072078705\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "1.4471750514847892\n", "The running loss is:\n", "22.982472449541092\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "1.641605174967221\n", "The running loss is:\n", "20.817503929138184\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.486964566367013\n", "The running loss is:\n", "14.470415085554123\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "1.0336010775395803\n", "The running loss is:\n", "14.11274079978466\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.008052914270333\n", "The running loss is:\n", "11.834928281605244\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.8453520201146603\n", "The running loss is:\n", "13.143593035638332\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.9388280739741666\n", "The running loss is:\n", "11.413032311946154\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.8152165937104395\n", "The running loss is:\n", "13.267729237675667\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.947694945548262\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 4.227926\n", "47 30819 ... 9.815310\n", "48 30820 ... 10.582678\n", "49 30821 ... 10.106319\n", "50 30822 ... 9.210567\n", "51 30823 ... 8.057738\n", "52 30824 ... 6.792384\n", "53 30825 ... 6.137255\n", "54 30826 ... 10.829433\n", "55 30827 ... 10.909749\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yae7j9w0 \n", "\n", "wandb: Agent Starting Run: p0mhmney with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: p0mhmney\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/p0mhmney
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.95596632361412\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.227382024893394\n", "The running loss is:\n", "19.904814451932907\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.5311395732256083\n", "The running loss is:\n", "17.617246568202972\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.3551728129386902\n", "The running loss is:\n", "14.285056918859482\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0988505322199602\n", "The running loss is:\n", "13.227111101150513\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.0174700847038856\n", "The running loss is:\n", "12.499546140432358\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9615035492640275\n", "The running loss is:\n", "13.50512745976448\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.0388559584434216\n", "The running loss is:\n", "12.428839951753616\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.9560646116733551\n", "The running loss is:\n", "11.402258604764938\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8770968157511491\n", "The running loss is:\n", "12.398717015981674\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.9537474627678211\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 4.122801\n", "47 30819 ... 10.667910\n", "48 30820 ... 10.910122\n", "49 30821 ... 9.676403\n", "50 30822 ... 8.409630\n", "51 30823 ... 6.942024\n", "52 30824 ... 5.444630\n", "53 30825 ... 4.966450\n", "54 30826 ... 10.898521\n", "55 30827 ... 10.963875\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: p0mhmney \n", "\n", "wandb: Agent Starting Run: qfsxslfo with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: qfsxslfo\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/qfsxslfo
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.105710506439209\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.1619777312645545\n", "The running loss is:\n", "21.77917169034481\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.6753208992572932\n", "The running loss is:\n", "18.279946982860565\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.4061497679123511\n", "The running loss is:\n", "16.003442779183388\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.2310340599371836\n", "The running loss is:\n", "13.852836847305298\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.0656028344080999\n", "The running loss is:\n", "13.569828808307648\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.0438329852544344\n", "The running loss is:\n", "13.323665149509907\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.0248973191930697\n", "The running loss is:\n", "12.957750007510185\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.9967500005777066\n", "The running loss is:\n", "13.089145131409168\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.0068573178007052\n", "The running loss is:\n", "12.660584628582\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.9738911252755386\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.720401\n", "47 30819 ... 14.553340\n", "48 30820 ... 12.440676\n", "49 30821 ... 12.086861\n", "50 30822 ... 10.753763\n", "51 30823 ... 10.002252\n", "52 30824 ... 8.860445\n", "53 30825 ... 11.386908\n", "54 30826 ... 13.338316\n", "55 30827 ... 12.476912\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: qfsxslfo \n", "\n", "wandb: Agent Starting Run: ma3rhz4r with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ma3rhz4r\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ma3rhz4r
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "49.51860047876835\n", "The number of items in train is: \n", "14\n", "The loss for epoch 0\n", "3.5370428913405965\n", "The running loss is:\n", "28.901946112513542\n", "The number of items in train is: \n", "14\n", "The loss for epoch 1\n", "2.064424722322396\n", "The running loss is:\n", "41.28298529610038\n", "The number of items in train is: \n", "14\n", "The loss for epoch 2\n", "2.94878466400717\n", "The running loss is:\n", "22.289564080536366\n", "The number of items in train is: \n", "14\n", "The loss for epoch 3\n", "1.592111720038312\n", "The running loss is:\n", "36.36759194731712\n", "The number of items in train is: \n", "14\n", "The loss for epoch 4\n", "2.59768513909408\n", "The running loss is:\n", "18.98034718632698\n", "The number of items in train is: \n", "14\n", "The loss for epoch 5\n", "1.3557390847376414\n", "The running loss is:\n", "12.218269184231758\n", "The number of items in train is: \n", "14\n", "The loss for epoch 6\n", "0.8727335131594113\n", "The running loss is:\n", "13.551307149231434\n", "The number of items in train is: \n", "14\n", "The loss for epoch 7\n", "0.9679505106593881\n", "The running loss is:\n", "11.265797924250364\n", "The number of items in train is: \n", "14\n", "The loss for epoch 8\n", "0.8046998517321688\n", "The running loss is:\n", "13.734506249427795\n", "The number of items in train is: \n", "14\n", "The loss for epoch 9\n", "0.9810361606734139\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.114567\n", "47 30819 ... 10.723621\n", "48 30820 ... 11.053820\n", "49 30821 ... 10.402370\n", "50 30822 ... 9.422271\n", "51 30823 ... 8.319467\n", "52 30824 ... 7.169548\n", "53 30825 ... 7.787798\n", "54 30826 ... 11.268772\n", "55 30827 ... 11.166240\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ma3rhz4r \n", "\n", "wandb: Agent Starting Run: lu4h4r69 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: lu4h4r69\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/lu4h4r69
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "33.13056826591492\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "2.5485052512242246\n", "The running loss is:\n", "24.387350022792816\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.8759500017532935\n", "The running loss is:\n", "17.332179129123688\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.3332445483941298\n", "The running loss is:\n", "15.971165239810944\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.2285511722931495\n", "The running loss is:\n", "15.627148747444153\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.2020883651880117\n", "The running loss is:\n", "15.911345362663269\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.22394964328179\n", "The running loss is:\n", "16.257684774696827\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.2505911365151405\n", "The running loss is:\n", "18.721322864294052\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.44010175879185\n", "The running loss is:\n", "15.539374977350235\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.1953365367192488\n", "The running loss is:\n", "13.293075650930405\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.0225442808408003\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 7.132831\n", "47 30819 ... 11.071928\n", "48 30820 ... 11.549405\n", "49 30821 ... 11.268209\n", "50 30822 ... 10.758427\n", "51 30823 ... 10.136646\n", "52 30824 ... 9.477319\n", "53 30825 ... 9.136482\n", "54 30826 ... 11.781645\n", "55 30827 ... 11.742226\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: lu4h4r69 \n", "\n", "wandb: Agent Starting Run: 8s2c6etq with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 2\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 8s2c6etq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8s2c6etq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 2\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 2\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 2\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "37.826194524765015\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "2.9097072711357703\n", "The running loss is:\n", "25.056023612618446\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.9273864317398806\n", "The running loss is:\n", "19.604462698101997\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.5080355921616921\n", "The running loss is:\n", "23.130129784345627\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.7792407526419713\n", "The running loss is:\n", "19.19932833313942\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.4768714102414937\n", "The running loss is:\n", "21.637010172009468\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.664385397846882\n", "The running loss is:\n", "14.966464698314667\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.1512665152549744\n", "The running loss is:\n", "14.04200291633606\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.080154070487389\n", "The running loss is:\n", "13.40083523094654\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.03083347930358\n", "The running loss is:\n", "13.39405021071434\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.0303115546703339\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 2, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.445221\n", "47 30819 ... 10.774174\n", "48 30820 ... 10.911117\n", "49 30821 ... 10.884237\n", "50 30822 ... 10.770847\n", "51 30823 ... 10.652215\n", "52 30824 ... 10.530463\n", "53 30825 ... 8.822457\n", "54 30826 ... 11.169335\n", "55 30827 ... 10.922230\n", "\n", "[12 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8s2c6etq \n", "\n", "wandb: Agent Starting Run: kz9apop8 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: kz9apop8\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/kz9apop8
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.368877775967121\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.9514521366128554\n", "The running loss is:\n", "34.86844050884247\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.6821877314494205\n", "The running loss is:\n", "15.270158976316452\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.174627613562804\n", "The running loss is:\n", "13.466378290206194\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0358752530927842\n", "The running loss is:\n", "12.005736976861954\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9235182289893811\n", "The running loss is:\n", "11.864228069782257\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.912632928444789\n", "The running loss is:\n", "11.420268423855305\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8784821864504081\n", "The running loss is:\n", "10.192750919610262\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.7840577630469432\n", "The running loss is:\n", "10.271923331543803\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7901479485802926\n", "The running loss is:\n", "11.089218605309725\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.8530168157930558\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 -0.889949\n", "47 30819 Eagle County, Colorado, United States ... 47 0.066653\n", "48 30820 Eagle County, Colorado, United States ... 48 7.502620\n", "49 30821 Eagle County, Colorado, United States ... 49 5.934364\n", "50 30822 Eagle County, Colorado, United States ... 50 4.769490\n", "51 30823 Eagle County, Colorado, United States ... 51 3.567657\n", "52 30824 Eagle County, Colorado, United States ... 52 0.390301\n", "53 30825 Eagle County, Colorado, United States ... 53 -0.119038\n", "54 30826 Eagle County, Colorado, United States ... 54 0.273140\n", "55 30827 Eagle County, Colorado, United States ... 55 7.478982\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: kz9apop8 \n", "\n", "wandb: Agent Starting Run: yd8h1fzr with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: yd8h1fzr\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yd8h1fzr
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.579489664174616\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.2753453587826629\n", "The running loss is:\n", "19.769059717655182\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.5206969013580909\n", "The running loss is:\n", "13.712854489684105\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.0548349607449312\n", "The running loss is:\n", "13.466788783669472\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0359068295130363\n", "The running loss is:\n", "12.41582890599966\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9550637619999739\n", "The running loss is:\n", "11.723669052124023\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9018206963172326\n", "The running loss is:\n", "12.135962635278702\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.9335355873291309\n", "The running loss is:\n", "10.866565614938736\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8358896626875951\n", "The running loss is:\n", "10.691195979714394\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.822399690747261\n", "The running loss is:\n", "10.159182950854301\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.781475611604177\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... -0.968152\n", "47 30819 ... -0.342819\n", "48 30820 ... 13.105046\n", "49 30821 ... 8.941922\n", "50 30822 ... 8.937499\n", "51 30823 ... 7.656468\n", "52 30824 ... 1.802312\n", "53 30825 ... 2.238525\n", "54 30826 ... 1.972946\n", "55 30827 ... 14.276954\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yd8h1fzr \n", "\n", "wandb: Agent Starting Run: 3osejg4o with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 3osejg4o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3osejg4o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.370196998119354\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.1053997690861042\n", "The running loss is:\n", "19.316490292549133\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.4858838686576257\n", "The running loss is:\n", "12.656078651547432\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.9735445116574948\n", "The running loss is:\n", "12.666808053851128\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9743698502962406\n", "The running loss is:\n", "12.39689488708973\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9536072990069022\n", "The running loss is:\n", "11.922403216362\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9171079397201538\n", "The running loss is:\n", "11.341399416327477\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8724153397174982\n", "The running loss is:\n", "10.815890714526176\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8319915934250905\n", "The running loss is:\n", "11.103736594319344\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.854133584178411\n", "The running loss is:\n", "10.415005251765251\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.8011542501357886\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 0.309899\n", "47 30819 ... 0.997727\n", "48 30820 ... 9.866085\n", "49 30821 ... 7.090917\n", "50 30822 ... 6.927128\n", "51 30823 ... 9.617968\n", "52 30824 ... 5.897040\n", "53 30825 ... 6.094452\n", "54 30826 ... 7.577441\n", "55 30827 ... 14.233065\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3osejg4o \n", "\n", "wandb: Agent Starting Run: 59unu0sl with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 59unu0sl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/59unu0sl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.963503643870354\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.9971925879900272\n", "The running loss is:\n", "37.13133166730404\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.856256282100311\n", "The running loss is:\n", "21.90416258573532\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.6849355835181017\n", "The running loss is:\n", "18.790213316679\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.4454010243599231\n", "The running loss is:\n", "16.947905987501144\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.3036850759616265\n", "The running loss is:\n", "13.11191101744771\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.00860853980367\n", "The running loss is:\n", "11.513894490897655\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.885684191607512\n", "The running loss is:\n", "11.091134123504162\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8531641633464739\n", "The running loss is:\n", "11.206058628857136\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8620045099120873\n", "The running loss is:\n", "11.77466919273138\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.90574378405626\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 0.223539\n", "47 30819 Eagle County, Colorado, United States ... 47 1.187161\n", "48 30820 Eagle County, Colorado, United States ... 48 5.947976\n", "49 30821 Eagle County, Colorado, United States ... 49 5.060910\n", "50 30822 Eagle County, Colorado, United States ... 50 3.930160\n", "51 30823 Eagle County, Colorado, United States ... 51 2.693713\n", "52 30824 Eagle County, Colorado, United States ... 52 0.396199\n", "53 30825 Eagle County, Colorado, United States ... 53 0.830643\n", "54 30826 Eagle County, Colorado, United States ... 54 1.344829\n", "55 30827 Eagle County, Colorado, United States ... 55 5.947390\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 59unu0sl \n", "\n", "wandb: Agent Starting Run: gsblnief with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: gsblnief\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gsblnief
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.455913960933685\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.1119933816102834\n", "The running loss is:\n", "22.357890762388706\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.7198377509529774\n", "The running loss is:\n", "17.738923609256744\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.364532585327442\n", "The running loss is:\n", "13.448972549289465\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0345363499453435\n", "The running loss is:\n", "14.64394161105156\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.126457047003966\n", "The running loss is:\n", "11.938052050769329\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9183116962130253\n", "The running loss is:\n", "11.660171031951904\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8969362332270696\n", "The running loss is:\n", "10.605362512171268\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8157971163208668\n", "The running loss is:\n", "10.263663992285728\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7895126147912099\n", "The running loss is:\n", "9.898155242204666\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7613965570926666\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... -3.512244\n", "47 30819 ... -4.168801\n", "48 30820 ... 16.331560\n", "49 30821 ... 7.215089\n", "50 30822 ... 6.654920\n", "51 30823 ... 7.448952\n", "52 30824 ... -0.154256\n", "53 30825 ... -2.483047\n", "54 30826 ... -3.068379\n", "55 30827 ... 14.678398\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gsblnief \n", "\n", "wandb: Agent Starting Run: yf2arj2o with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: yf2arj2o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/yf2arj2o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.937836900353432\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "0.9952182231041101\n", "The running loss is:\n", "23.048843041062355\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.7729879262355657\n", "The running loss is:\n", "14.899169534444809\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.1460899641880622\n", "The running loss is:\n", "13.64275423437357\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0494426334133515\n", "The running loss is:\n", "13.533750593662262\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.0410577379740202\n", "The running loss is:\n", "12.572618752717972\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.967124519439844\n", "The running loss is:\n", "11.828686103224754\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.9098989310172888\n", "The running loss is:\n", "11.33057525753975\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8715827121184423\n", "The running loss is:\n", "11.64349377155304\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8956533670425415\n", "The running loss is:\n", "10.891612857580185\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.8378163736600143\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 -0.278797\n", "47 30819 Eagle County, Colorado, United States ... 47 -0.085567\n", "48 30820 Eagle County, Colorado, United States ... 48 7.881258\n", "49 30821 Eagle County, Colorado, United States ... 49 4.568991\n", "50 30822 Eagle County, Colorado, United States ... 50 3.322025\n", "51 30823 Eagle County, Colorado, United States ... 51 4.989382\n", "52 30824 Eagle County, Colorado, United States ... 52 0.591432\n", "53 30825 Eagle County, Colorado, United States ... 53 -0.368374\n", "54 30826 Eagle County, Colorado, United States ... 54 -0.109885\n", "55 30827 Eagle County, Colorado, United States ... 55 7.602907\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: yf2arj2o \n", "\n", "wandb: Agent Starting Run: f4an0eks with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: f4an0eks\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/f4an0eks
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "24.400188378989697\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.876937567614592\n", "The running loss is:\n", "31.185614429414272\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.3988934176472516\n", "The running loss is:\n", "32.44879423826933\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "2.496061095251487\n", "The running loss is:\n", "18.573741644620895\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.4287493572785304\n", "The running loss is:\n", "13.560782168060541\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.0431370898508108\n", "The running loss is:\n", "12.45004703849554\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9576959260381185\n", "The running loss is:\n", "12.11960457265377\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.9322772748195208\n", "The running loss is:\n", "11.551337949931622\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8885644576870478\n", "The running loss is:\n", "12.185599125921726\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.9373537789170558\n", "The running loss is:\n", "12.21959825605154\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.9399690966193492\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.386969\n", "47 30819 Eagle County, Colorado, United States ... 47 6.692326\n", "48 30820 Eagle County, Colorado, United States ... 48 7.089355\n", "49 30821 Eagle County, Colorado, United States ... 49 7.698109\n", "50 30822 Eagle County, Colorado, United States ... 50 6.623402\n", "51 30823 Eagle County, Colorado, United States ... 51 5.599646\n", "52 30824 Eagle County, Colorado, United States ... 52 4.635734\n", "53 30825 Eagle County, Colorado, United States ... 53 7.907625\n", "54 30826 Eagle County, Colorado, United States ... 54 7.940404\n", "55 30827 Eagle County, Colorado, United States ... 55 8.319972\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: f4an0eks \n", "\n", "wandb: Agent Starting Run: kwvkpv1h with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: kwvkpv1h\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/kwvkpv1h
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.458874687552452\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.3429903605809579\n", "The running loss is:\n", "18.81114272773266\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.4470109790563583\n", "The running loss is:\n", "18.729552567005157\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.4407348128465505\n", "The running loss is:\n", "14.729724779725075\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.1330557522865443\n", "The running loss is:\n", "13.426510781049728\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.0328085216192098\n", "The running loss is:\n", "12.910267278552055\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9930974829655427\n", "The running loss is:\n", "11.92785045132041\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.9175269577938777\n", "The running loss is:\n", "12.008645549416542\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.923741965339734\n", "The running loss is:\n", "12.661383390426636\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.9739525684943566\n", "The running loss is:\n", "12.345752455294132\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.9496732657918563\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.849866\n", "47 30819 ... 7.589612\n", "48 30820 ... 14.580077\n", "49 30821 ... 13.545156\n", "50 30822 ... 12.456741\n", "51 30823 ... 10.941383\n", "52 30824 ... 7.304590\n", "53 30825 ... 9.950720\n", "54 30826 ... 9.130615\n", "55 30827 ... 17.259148\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: kwvkpv1h \n", "\n", "wandb: Agent Starting Run: hktgvt1n with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: hktgvt1n\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hktgvt1n
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.013039693236351\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.154849207172027\n", "The running loss is:\n", "21.378779768943787\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.6445215206879835\n", "The running loss is:\n", "16.609514646232128\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.2776549727870867\n", "The running loss is:\n", "14.250408738851547\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0961852876039653\n", "The running loss is:\n", "12.660884097218513\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.973914161324501\n", "The running loss is:\n", "12.710350036621094\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.977719233586238\n", "The running loss is:\n", "12.260607942938805\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.9431236879183695\n", "The running loss is:\n", "11.451108917593956\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.880854532122612\n", "The running loss is:\n", "11.240634605288506\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8646642004068081\n", "The running loss is:\n", "11.278469979763031\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.8675746138279254\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 0.299133\n", "47 30819 Eagle County, Colorado, United States ... 47 -1.036485\n", "48 30820 Eagle County, Colorado, United States ... 48 7.932483\n", "49 30821 Eagle County, Colorado, United States ... 49 5.500789\n", "50 30822 Eagle County, Colorado, United States ... 50 3.142856\n", "51 30823 Eagle County, Colorado, United States ... 51 4.422402\n", "52 30824 Eagle County, Colorado, United States ... 52 0.140528\n", "53 30825 Eagle County, Colorado, United States ... 53 0.239170\n", "54 30826 Eagle County, Colorado, United States ... 54 -1.041948\n", "55 30827 Eagle County, Colorado, United States ... 55 7.568707\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hktgvt1n \n", "\n", "wandb: Agent Starting Run: 5tagpuju with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 5tagpuju\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5tagpuju
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "115.17622379213572\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "8.859709522471977\n", "The running loss is:\n", "40.81747505068779\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "3.13980577312983\n", "The running loss is:\n", "32.038784205913544\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "2.4645218619933495\n", "The running loss is:\n", "44.92502377741039\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "3.455771059800799\n", "The running loss is:\n", "36.635310769081116\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "2.818100828390855\n", "The running loss is:\n", "46.61492267251015\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "3.5857632825007806\n", "The running loss is:\n", "13.955021470785141\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.0734631900603955\n", "The running loss is:\n", "14.969138577580452\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.1514721982754195\n", "The running loss is:\n", "16.040683686733246\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.2338987451333265\n", "The running loss is:\n", "16.49948103353381\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.26919084873337\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.704542\n", "47 30819 Eagle County, Colorado, United States ... 47 4.672008\n", "48 30820 Eagle County, Colorado, United States ... 48 5.456105\n", "49 30821 Eagle County, Colorado, United States ... 49 5.308846\n", "50 30822 Eagle County, Colorado, United States ... 50 4.914132\n", "51 30823 Eagle County, Colorado, United States ... 51 4.560124\n", "52 30824 Eagle County, Colorado, United States ... 52 4.158611\n", "53 30825 Eagle County, Colorado, United States ... 53 4.864852\n", "54 30826 Eagle County, Colorado, United States ... 54 4.867615\n", "55 30827 Eagle County, Colorado, United States ... 55 5.671974\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5tagpuju \n", "\n", "wandb: Agent Starting Run: nif4icxc with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: nif4icxc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nif4icxc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "66.03357294201851\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "5.0795056109245005\n", "The running loss is:\n", "26.760784819722176\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "2.0585219092093983\n", "The running loss is:\n", "22.731184750795364\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.748552673138105\n", "The running loss is:\n", "20.40171890705824\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.5693629928506339\n", "The running loss is:\n", "17.968903437256813\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.3822233413274472\n", "The running loss is:\n", "15.660512588918209\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.2046548145321698\n", "The running loss is:\n", "15.091655969619751\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.1608966130476732\n", "The running loss is:\n", "13.655773513019085\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.0504441163860834\n", "The running loss is:\n", "13.347086157649755\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.0266989352038274\n", "The running loss is:\n", "12.99965537339449\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.9999734902611146\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.025051\n", "47 30819 ... 8.513655\n", "48 30820 ... 11.325939\n", "49 30821 ... 10.518827\n", "50 30822 ... 9.861224\n", "51 30823 ... 9.223644\n", "52 30824 ... 8.587379\n", "53 30825 ... 8.185777\n", "54 30826 ... 8.146936\n", "55 30827 ... 10.996994\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nif4icxc \n", "\n", "wandb: Agent Starting Run: thu9a8mz with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 3\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: thu9a8mz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/thu9a8mz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 3\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 3\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 3\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "44.96720665693283\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "3.459015896687141\n", "The running loss is:\n", "22.17994412779808\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.70614954829216\n", "The running loss is:\n", "14.762777239084244\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.1355982491603265\n", "The running loss is:\n", "14.303692415356636\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.1002840319505105\n", "The running loss is:\n", "13.229048073291779\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.017619082560906\n", "The running loss is:\n", "13.303537771105766\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.023349059315828\n", "The running loss is:\n", "13.995450779795647\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.0765731369073575\n", "The running loss is:\n", "12.943494260311127\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.9956534046393174\n", "The running loss is:\n", "13.159868687391281\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.012297591337791\n", "The running loss is:\n", "13.365740969777107\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.0281339207520852\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 3, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.087015\n", "47 30819 Eagle County, Colorado, United States ... 47 8.132568\n", "48 30820 Eagle County, Colorado, United States ... 48 8.483716\n", "49 30821 Eagle County, Colorado, United States ... 49 8.753112\n", "50 30822 Eagle County, Colorado, United States ... 50 7.402977\n", "51 30823 Eagle County, Colorado, United States ... 51 6.481536\n", "52 30824 Eagle County, Colorado, United States ... 52 5.727474\n", "53 30825 Eagle County, Colorado, United States ... 53 8.094894\n", "54 30826 Eagle County, Colorado, United States ... 54 8.747983\n", "55 30827 Eagle County, Colorado, United States ... 55 9.392281\n", "\n", "[13 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: thu9a8mz \n", "\n", "wandb: Agent Starting Run: ky4qam1f with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ky4qam1f\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ky4qam1f
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.872004628414288\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.2209234329549452\n", "The running loss is:\n", "17.338138416409492\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.3337029551084225\n", "The running loss is:\n", "12.708929975517094\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.9776099981166996\n", "The running loss is:\n", "12.215490847826004\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9396531421404618\n", "The running loss is:\n", "12.03363348171115\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9256641139777807\n", "The running loss is:\n", "11.642251981422305\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.8955578447247927\n", "The running loss is:\n", "10.20832685381174\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.7852559118316724\n", "The running loss is:\n", "10.859044075012207\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8353110826932467\n", "The running loss is:\n", "10.322055157274008\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7940042428672314\n", "The running loss is:\n", "11.003573529422283\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.8464287330324833\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 -0.346429\n", "47 30819 Eagle County, Colorado, United States ... 47 0.829351\n", "48 30820 Eagle County, Colorado, United States ... 48 1.952672\n", "49 30821 Eagle County, Colorado, United States ... 49 9.118698\n", "50 30822 Eagle County, Colorado, United States ... 50 5.451615\n", "51 30823 Eagle County, Colorado, United States ... 51 3.901324\n", "52 30824 Eagle County, Colorado, United States ... 52 2.318013\n", "53 30825 Eagle County, Colorado, United States ... 53 2.697446\n", "54 30826 Eagle County, Colorado, United States ... 54 2.428525\n", "55 30827 Eagle County, Colorado, United States ... 55 3.743862\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ky4qam1f \n", "\n", "wandb: Agent Starting Run: 8ni0jy4b with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 8ni0jy4b\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8ni0jy4b
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.790921412408352\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.291609339416027\n", "The running loss is:\n", "15.056650847196579\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.1582039113228138\n", "The running loss is:\n", "12.714531168341637\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.9780408591032028\n", "The running loss is:\n", "11.838263422250748\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9106356478654422\n", "The running loss is:\n", "11.716195069253445\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9012457745579573\n", "The running loss is:\n", "11.06982884556055\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.85152529581235\n", "The running loss is:\n", "11.064709179103374\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8511314753156441\n", "The running loss is:\n", "10.000222440809011\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.7692478800622317\n", "The running loss is:\n", "9.306559957563877\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7158892275049136\n", "The running loss is:\n", "9.157860904932022\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7044508388409247\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 1.791902\n", "47 30819 ... 5.654204\n", "48 30820 ... 8.961608\n", "49 30821 ... 11.700377\n", "50 30822 ... 10.315681\n", "51 30823 ... 10.420052\n", "52 30824 ... 9.844280\n", "53 30825 ... 11.127863\n", "54 30826 ... 15.757866\n", "55 30827 ... 18.537880\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8ni0jy4b \n", "\n", "wandb: Agent Starting Run: w9sexr89 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: w9sexr89\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/w9sexr89
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.78814585506916\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.23234548792243\n", "The running loss is:\n", "18.438936561346054\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.536578046778838\n", "The running loss is:\n", "12.376275420188904\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.031356285015742\n", "The running loss is:\n", "12.264208257198334\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0220173547665279\n", "The running loss is:\n", "11.700051099061966\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9750042582551638\n", "The running loss is:\n", "10.987978845834732\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.915664903819561\n", "The running loss is:\n", "10.582637771964073\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.8818864809970061\n", "The running loss is:\n", "10.795451432466507\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8996209527055422\n", "The running loss is:\n", "10.955302745103836\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9129418954253197\n", "The running loss is:\n", "10.035184428095818\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8362653690079848\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 7.124487\n", "47 30819 ... 8.182631\n", "48 30820 ... 8.625867\n", "49 30821 ... 8.606244\n", "50 30822 ... 11.974076\n", "51 30823 ... 12.952820\n", "52 30824 ... 13.684759\n", "53 30825 ... 16.254524\n", "54 30826 ... 16.794670\n", "55 30827 ... 17.070047\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: w9sexr89 \n", "\n", "wandb: Agent Starting Run: gkffdz2w with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: gkffdz2w\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gkffdz2w
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.34749260544777\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.0267302004190593\n", "The running loss is:\n", "25.4431431889534\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.957164860688723\n", "The running loss is:\n", "14.405924782156944\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.1081480601659188\n", "The running loss is:\n", "13.430022314190865\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0330786395531435\n", "The running loss is:\n", "12.23273740336299\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9409798002586915\n", "The running loss is:\n", "11.577613770961761\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.8905856746893662\n", "The running loss is:\n", "10.150533594191074\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.7808102764762365\n", "The running loss is:\n", "9.9775076135993\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.7675005856614846\n", "The running loss is:\n", "10.126881934702396\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7789909180540305\n", "The running loss is:\n", "12.508168563246727\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.9621668125574405\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 3.007489\n", "47 30819 ... 2.314451\n", "48 30820 ... 2.569708\n", "49 30821 ... 12.613434\n", "50 30822 ... 7.784388\n", "51 30823 ... 6.070034\n", "52 30824 ... 5.322172\n", "53 30825 ... 9.416172\n", "54 30826 ... 5.446332\n", "55 30827 ... 7.896643\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gkffdz2w \n", "\n", "wandb: Agent Starting Run: hv9fm6aa with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: hv9fm6aa\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/hv9fm6aa
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.490479558706284\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.0377291968235602\n", "The running loss is:\n", "23.68451225757599\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.8218855582750761\n", "The running loss is:\n", "14.904601812362671\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.1465078317202055\n", "The running loss is:\n", "13.458257734775543\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0352505949827342\n", "The running loss is:\n", "12.307238146662712\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9467106266663625\n", "The running loss is:\n", "11.53241079300642\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.8871085225389554\n", "The running loss is:\n", "11.265225373208523\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8665557979391172\n", "The running loss is:\n", "11.613157991319895\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8933198454861457\n", "The running loss is:\n", "10.200320366770029\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7846400282130792\n", "The running loss is:\n", "9.388746418058872\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7222112629276055\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 2.511043\n", "47 30819 ... 6.511939\n", "48 30820 ... 7.458131\n", "49 30821 ... 9.090449\n", "50 30822 ... 9.168793\n", "51 30823 ... 10.198345\n", "52 30824 ... 9.923094\n", "53 30825 ... 8.366743\n", "54 30826 ... 13.076762\n", "55 30827 ... 13.979200\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: hv9fm6aa \n", "\n", "wandb: Agent Starting Run: gh5ouzzl with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: gh5ouzzl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gh5ouzzl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.004660785198212\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.083721732099851\n", "The running loss is:\n", "23.263212963938713\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.938601080328226\n", "The running loss is:\n", "15.897933334112167\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.3248277778426807\n", "The running loss is:\n", "13.413813337683678\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1178177781403065\n", "The running loss is:\n", "12.639265418052673\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.053272118171056\n", "The running loss is:\n", "11.460458725690842\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9550382271409035\n", "The running loss is:\n", "11.300244197249413\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.941687016437451\n", "The running loss is:\n", "10.694719895720482\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8912266579767069\n", "The running loss is:\n", "9.931787982583046\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8276489985485872\n", "The running loss is:\n", "9.597246825695038\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.7997705688079199\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 1.344791\n", "47 30819 ... 6.949912\n", "48 30820 ... 7.202622\n", "49 30821 ... 7.324420\n", "50 30822 ... 8.290039\n", "51 30823 ... 11.569249\n", "52 30824 ... 12.225736\n", "53 30825 ... 7.409237\n", "54 30826 ... 13.821341\n", "55 30827 ... 13.868330\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gh5ouzzl \n", "\n", "wandb: Agent Starting Run: 7mnzgjkp with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 7mnzgjkp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/7mnzgjkp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.340472156181931\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.1031132427832255\n", "The running loss is:\n", "23.359602227807045\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.7968924790620804\n", "The running loss is:\n", "17.2289652582258\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.325305019863523\n", "The running loss is:\n", "12.503187745809555\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9617836727545812\n", "The running loss is:\n", "12.070784609764814\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9285218930588319\n", "The running loss is:\n", "11.330001890659332\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.8715386069737948\n", "The running loss is:\n", "11.012930020689964\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8471484631299973\n", "The running loss is:\n", "13.838854122906923\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.0645272402236094\n", "The running loss is:\n", "10.799162855371833\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8307048350286025\n", "The running loss is:\n", "9.654880156274885\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.742683088944222\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 0.577109\n", "47 30819 Eagle County, Colorado, United States ... 47 1.884349\n", "48 30820 Eagle County, Colorado, United States ... 48 2.142425\n", "49 30821 Eagle County, Colorado, United States ... 49 7.987684\n", "50 30822 Eagle County, Colorado, United States ... 50 5.628455\n", "51 30823 Eagle County, Colorado, United States ... 51 5.215091\n", "52 30824 Eagle County, Colorado, United States ... 52 4.537104\n", "53 30825 Eagle County, Colorado, United States ... 53 5.395092\n", "54 30826 Eagle County, Colorado, United States ... 54 5.019588\n", "55 30827 Eagle County, Colorado, United States ... 55 5.951438\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 7mnzgjkp \n", "\n", "wandb: Agent Starting Run: y662r8p1 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: y662r8p1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/y662r8p1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.1878132969141\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.0144471766857\n", "The running loss is:\n", "23.06560629606247\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.7742774073894207\n", "The running loss is:\n", "16.96458823233843\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.3049683255644946\n", "The running loss is:\n", "12.846139311790466\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9881645624454205\n", "The running loss is:\n", "12.694834038615227\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9765256952780944\n", "The running loss is:\n", "12.656872421503067\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.9736055708848513\n", "The running loss is:\n", "13.498041197657585\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.0383108613582759\n", "The running loss is:\n", "13.583044543862343\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.0448495802971034\n", "The running loss is:\n", "13.378036141395569\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.0290797031842744\n", "The running loss is:\n", "12.795019581913948\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.9842322755318421\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.474936\n", "47 30819 ... 10.948586\n", "48 30820 ... 11.335421\n", "49 30821 ... 10.313191\n", "50 30822 ... 11.425502\n", "51 30823 ... 11.269561\n", "52 30824 ... 11.183122\n", "53 30825 ... 11.199656\n", "54 30826 ... 11.811131\n", "55 30827 ... 12.008145\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: y662r8p1 \n", "\n", "wandb: Agent Starting Run: c4r1ypl4 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: c4r1ypl4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c4r1ypl4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.688956126570702\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.1407463438808918\n", "The running loss is:\n", "21.444616466760635\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.787051372230053\n", "The running loss is:\n", "19.336486667394638\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.6113738889495532\n", "The running loss is:\n", "14.048754200339317\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1707295166949432\n", "The running loss is:\n", "12.343533247709274\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0286277706424396\n", "The running loss is:\n", "11.741394221782684\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9784495184818903\n", "The running loss is:\n", "11.405920177698135\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9504933481415113\n", "The running loss is:\n", "10.7405776232481\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8950481352706751\n", "The running loss is:\n", "10.536985754966736\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.878082146247228\n", "The running loss is:\n", "12.78399670124054\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "1.0653330584367116\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 4.240464\n", "47 30819 ... 6.391535\n", "48 30820 ... 7.531720\n", "49 30821 ... 8.155801\n", "50 30822 ... 9.021329\n", "51 30823 ... 9.722328\n", "52 30824 ... 10.298412\n", "53 30825 ... 7.822366\n", "54 30826 ... 9.580545\n", "55 30827 ... 11.042983\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c4r1ypl4 \n", "\n", "wandb: Agent Starting Run: 5al65xub with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 5al65xub\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5al65xub
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "50.24515789747238\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "3.865012145959414\n", "The running loss is:\n", "23.777228504419327\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.829017577263025\n", "The running loss is:\n", "15.574093259871006\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.1980071738362312\n", "The running loss is:\n", "12.103242687880993\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.931018668298538\n", "The running loss is:\n", "15.460729956626892\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.1892869197405302\n", "The running loss is:\n", "13.119429018348455\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.0091868475652659\n", "The running loss is:\n", "13.760254144668579\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.0584810880514293\n", "The running loss is:\n", "14.075625222176313\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.0827404017058702\n", "The running loss is:\n", "14.208767905831337\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.0929821466024106\n", "The running loss is:\n", "13.554820150136948\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.0426784730874574\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.039810\n", "47 30819 Eagle County, Colorado, United States ... 47 8.730705\n", "48 30820 Eagle County, Colorado, United States ... 48 8.790469\n", "49 30821 Eagle County, Colorado, United States ... 49 9.177441\n", "50 30822 Eagle County, Colorado, United States ... 50 9.388792\n", "51 30823 Eagle County, Colorado, United States ... 51 9.147300\n", "52 30824 Eagle County, Colorado, United States ... 52 8.993916\n", "53 30825 Eagle County, Colorado, United States ... 53 6.918562\n", "54 30826 Eagle County, Colorado, United States ... 54 8.720302\n", "55 30827 Eagle County, Colorado, United States ... 55 8.799322\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5al65xub \n", "\n", "wandb: Agent Starting Run: 5s37jqge with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 5s37jqge\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5s37jqge
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "39.261084854602814\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "3.0200834503540626\n", "The running loss is:\n", "22.115912914276123\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.7012240703289325\n", "The running loss is:\n", "14.952192202210426\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.1501686309392636\n", "The running loss is:\n", "13.682401984930038\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0524924603792338\n", "The running loss is:\n", "14.396343678236008\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.1074110521720006\n", "The running loss is:\n", "13.456236526370049\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.0350951174130807\n", "The running loss is:\n", "13.37515278160572\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.028857906277363\n", "The running loss is:\n", "12.367682307958603\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.9513601775352771\n", "The running loss is:\n", "12.126630112528801\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.9328177009637539\n", "The running loss is:\n", "16.020440727472305\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "1.2323415944209466\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.693578\n", "47 30819 ... 11.420332\n", "48 30820 ... 11.478680\n", "49 30821 ... 11.421338\n", "50 30822 ... 12.134402\n", "51 30823 ... 12.323503\n", "52 30824 ... 12.366034\n", "53 30825 ... 11.342683\n", "54 30826 ... 11.622007\n", "55 30827 ... 12.030426\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5s37jqge \n", "\n", "wandb: Agent Starting Run: jw74vpwp with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 4\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: jw74vpwp\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/jw74vpwp
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 4\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 4\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 4\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "41.467525988817215\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "3.455627165734768\n", "The running loss is:\n", "20.88641083240509\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.7405342360337575\n", "The running loss is:\n", "12.568571835756302\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.0473809863130252\n", "The running loss is:\n", "12.954892814159393\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0795744011799495\n", "The running loss is:\n", "13.821066796779633\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.1517555663983028\n", "The running loss is:\n", "12.612691268324852\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.0510576056937377\n", "The running loss is:\n", "12.604485049843788\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "1.050373754153649\n", "The running loss is:\n", "11.31302846968174\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.9427523724734783\n", "The running loss is:\n", "11.463112786412239\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9552593988676866\n", "The running loss is:\n", "12.560555011034012\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "1.0467129175861676\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 4, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 9.026195\n", "47 30819 ... 10.410426\n", "48 30820 ... 11.938659\n", "49 30821 ... 10.415281\n", "50 30822 ... 10.345819\n", "51 30823 ... 10.234818\n", "52 30824 ... 10.661693\n", "53 30825 ... 10.597783\n", "54 30826 ... 11.888622\n", "55 30827 ... 11.954378\n", "\n", "[14 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: jw74vpwp \n", "\n", "wandb: Agent Starting Run: sa751o4d with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: sa751o4d\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/sa751o4d
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.105641320347786\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.3927416400267527\n", "The running loss is:\n", "14.012058325111866\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.0778506403932204\n", "The running loss is:\n", "12.297234199941158\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "0.945941092303166\n", "The running loss is:\n", "11.648973919451237\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.8960749168808644\n", "The running loss is:\n", "10.411581374704838\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.8008908749772952\n", "The running loss is:\n", "9.843764215707779\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.7572126319775214\n", "The running loss is:\n", "8.586901139467955\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.6605308568821504\n", "The running loss is:\n", "8.218328204005957\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.6321790926158428\n", "The running loss is:\n", "8.143619112670422\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.6264322394361863\n", "The running loss is:\n", "8.618214875459671\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6629396058045901\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 4.038171\n", "47 30819 ... 7.117307\n", "48 30820 ... 6.792751\n", "49 30821 ... 6.664652\n", "50 30822 ... 7.004401\n", "51 30823 ... 7.854282\n", "52 30824 ... 8.201924\n", "53 30825 ... 11.353144\n", "54 30826 ... 15.248468\n", "55 30827 ... 14.364745\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: sa751o4d \n", "\n", "wandb: Agent Starting Run: 4c7m3af5 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 4c7m3af5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4c7m3af5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.804713547229767\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.233726128935814\n", "The running loss is:\n", "16.97213351726532\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.41434445977211\n", "The running loss is:\n", "11.822531819343567\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.9852109849452972\n", "The running loss is:\n", "11.416342198848724\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.9513618499040604\n", "The running loss is:\n", "10.902691811323166\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9085576509435972\n", "The running loss is:\n", "9.671414703130722\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.8059512252608935\n", "The running loss is:\n", "9.385768637061119\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.78214738642176\n", "The running loss is:\n", "8.309829585254192\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6924857987711827\n", "The running loss is:\n", "8.777955651283264\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.7314963042736053\n", "The running loss is:\n", "9.56509893387556\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.7970915778229634\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.180499\n", "47 30819 ... 7.501813\n", "48 30820 ... 7.126774\n", "49 30821 ... 7.140279\n", "50 30822 ... 7.065376\n", "51 30823 ... 9.210360\n", "52 30824 ... 9.250754\n", "53 30825 ... 13.100918\n", "54 30826 ... 14.399408\n", "55 30827 ... 13.769780\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4c7m3af5 \n", "\n", "wandb: Agent Starting Run: mx7gqnu2 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: mx7gqnu2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/mx7gqnu2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.415991149842739\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2846659291535616\n", "The running loss is:\n", "15.498348452150822\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.2915290376792352\n", "The running loss is:\n", "12.637772336602211\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.053147694716851\n", "The running loss is:\n", "12.26582846045494\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0221523717045784\n", "The running loss is:\n", "11.29976324737072\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9416469372808933\n", "The running loss is:\n", "11.394211154431105\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.949517596202592\n", "The running loss is:\n", "10.832007095217705\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9026672579348087\n", "The running loss is:\n", "10.655730500817299\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8879775417347749\n", "The running loss is:\n", "10.479210518300533\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8732675431917111\n", "The running loss is:\n", "10.922551706433296\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.9102126422027746\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.188203\n", "47 30819 ... 6.379559\n", "48 30820 ... 5.693151\n", "49 30821 ... 5.827620\n", "50 30822 ... 6.130767\n", "51 30823 ... 8.003571\n", "52 30824 ... 9.042922\n", "53 30825 ... 10.781850\n", "54 30826 ... 12.356435\n", "55 30827 ... 11.059150\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: mx7gqnu2 \n", "\n", "wandb: Agent Starting Run: nb7otgv0 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: nb7otgv0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/nb7otgv0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.261770632117987\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.1739823563167682\n", "The running loss is:\n", "22.147419825196266\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.7036476788612513\n", "The running loss is:\n", "14.186409682035446\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.091262283233496\n", "The running loss is:\n", "11.937791492789984\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "0.9182916532915372\n", "The running loss is:\n", "10.14401987195015\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.7803092209192423\n", "The running loss is:\n", "8.372021302580833\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.6440016386600641\n", "The running loss is:\n", "7.423566944897175\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.5710436111459365\n", "The running loss is:\n", "9.638437408953905\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.7414182622272235\n", "The running loss is:\n", "11.166652858257294\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.8589732967890226\n", "The running loss is:\n", "9.7910625487566\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.7531586575966615\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.026867\n", "47 30819 Eagle County, Colorado, United States ... 47 4.579353\n", "48 30820 Eagle County, Colorado, United States ... 48 4.504891\n", "49 30821 Eagle County, Colorado, United States ... 49 4.475537\n", "50 30822 Eagle County, Colorado, United States ... 50 4.397957\n", "51 30823 Eagle County, Colorado, United States ... 51 5.628908\n", "52 30824 Eagle County, Colorado, United States ... 52 5.737713\n", "53 30825 Eagle County, Colorado, United States ... 53 6.915092\n", "54 30826 Eagle County, Colorado, United States ... 54 7.359157\n", "55 30827 Eagle County, Colorado, United States ... 55 7.099442\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: nb7otgv0 \n", "\n", "wandb: Agent Starting Run: 4l7cv9be with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 4l7cv9be\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4l7cv9be
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.323792949318886\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.026982745776574\n", "The running loss is:\n", "23.155533269047737\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.9296277724206448\n", "The running loss is:\n", "14.94628620147705\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.2455238501230876\n", "The running loss is:\n", "13.859730526804924\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1549775439004104\n", "The running loss is:\n", "11.672522738575935\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9727102282146612\n", "The running loss is:\n", "10.797379478812218\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.8997816232343515\n", "The running loss is:\n", "10.294382557272911\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.8578652131060759\n", "The running loss is:\n", "8.327066399157047\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.6939221999297539\n", "The running loss is:\n", "8.611333400011063\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.7176111166675886\n", "The running loss is:\n", "9.300903491675854\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.7750752909729878\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.034604\n", "47 30819 Eagle County, Colorado, United States ... 47 5.016776\n", "48 30820 Eagle County, Colorado, United States ... 48 4.942604\n", "49 30821 Eagle County, Colorado, United States ... 49 4.718325\n", "50 30822 Eagle County, Colorado, United States ... 50 4.520617\n", "51 30823 Eagle County, Colorado, United States ... 51 6.344130\n", "52 30824 Eagle County, Colorado, United States ... 52 6.747848\n", "53 30825 Eagle County, Colorado, United States ... 53 8.362752\n", "54 30826 Eagle County, Colorado, United States ... 54 9.566703\n", "55 30827 Eagle County, Colorado, United States ... 55 9.242714\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4l7cv9be \n", "\n", "wandb: Agent Starting Run: za86wxrm with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: za86wxrm\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/za86wxrm
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.776227623224258\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.1480189686020215\n", "The running loss is:\n", "21.34618742763996\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.7788489523033302\n", "The running loss is:\n", "14.572952851653099\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.2144127376377583\n", "The running loss is:\n", "13.57256968319416\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1310474735995133\n", "The running loss is:\n", "12.092315569519997\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0076929641266663\n", "The running loss is:\n", "12.090366944670677\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.0075305787225564\n", "The running loss is:\n", "11.1148621737957\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.926238514482975\n", "The running loss is:\n", "10.491286784410477\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.874273898700873\n", "The running loss is:\n", "10.797590360045433\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8997991966704527\n", "The running loss is:\n", "11.091501705348492\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.9242918087790409\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.309795\n", "47 30819 Eagle County, Colorado, United States ... 47 5.539655\n", "48 30820 Eagle County, Colorado, United States ... 48 5.529214\n", "49 30821 Eagle County, Colorado, United States ... 49 5.521837\n", "50 30822 Eagle County, Colorado, United States ... 50 5.204870\n", "51 30823 Eagle County, Colorado, United States ... 51 7.370545\n", "52 30824 Eagle County, Colorado, United States ... 52 8.238771\n", "53 30825 Eagle County, Colorado, United States ... 53 9.005033\n", "54 30826 Eagle County, Colorado, United States ... 54 9.360201\n", "55 30827 Eagle County, Colorado, United States ... 55 9.028099\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: za86wxrm \n", "\n", "wandb: Agent Starting Run: cbkj9g21 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: cbkj9g21\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cbkj9g21
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.15755881369114\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "1.0121199087454722\n", "The running loss is:\n", "23.383041262626648\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.7986954817405114\n", "The running loss is:\n", "20.34821653366089\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.565247425666222\n", "The running loss is:\n", "13.35105698555708\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.0270043835043907\n", "The running loss is:\n", "12.55769258737564\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "0.9659763528750493\n", "The running loss is:\n", "10.44101019948721\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "0.8031546307297853\n", "The running loss is:\n", "10.786027267575264\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "0.8296944051980972\n", "The running loss is:\n", "11.164955213665962\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "0.8588427087435355\n", "The running loss is:\n", "9.287103720009327\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "0.7143925938468713\n", "The running loss is:\n", "8.763795241713524\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.6741380955164249\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.958946\n", "47 30819 Eagle County, Colorado, United States ... 47 6.848919\n", "48 30820 Eagle County, Colorado, United States ... 48 6.667441\n", "49 30821 Eagle County, Colorado, United States ... 49 6.700452\n", "50 30822 Eagle County, Colorado, United States ... 50 3.761921\n", "51 30823 Eagle County, Colorado, United States ... 51 7.074552\n", "52 30824 Eagle County, Colorado, United States ... 52 7.613464\n", "53 30825 Eagle County, Colorado, United States ... 53 9.098127\n", "54 30826 Eagle County, Colorado, United States ... 54 9.997087\n", "55 30827 Eagle County, Colorado, United States ... 55 8.320040\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cbkj9g21 \n", "\n", "wandb: Agent Starting Run: pab0srgj with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: pab0srgj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/pab0srgj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.774470299482346\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.0645391916235287\n", "The running loss is:\n", "20.98992669582367\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.7491605579853058\n", "The running loss is:\n", "17.23653557896614\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.436377964913845\n", "The running loss is:\n", "13.365149036049843\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1137624196708202\n", "The running loss is:\n", "12.378368452191353\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0315307043492794\n", "The running loss is:\n", "11.96500751376152\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9970839594801267\n", "The running loss is:\n", "10.989426091313362\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9157855076094469\n", "The running loss is:\n", "9.780941367149353\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.815078447262446\n", "The running loss is:\n", "16.21955992281437\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "1.3516299935678642\n", "The running loss is:\n", "11.701737195253372\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.9751447662711143\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 11.694775\n", "47 30819 ... 11.760224\n", "48 30820 ... 11.690811\n", "49 30821 ... 11.608275\n", "50 30822 ... 11.581036\n", "51 30823 ... 11.688101\n", "52 30824 ... 11.740479\n", "53 30825 ... 11.747087\n", "54 30826 ... 11.845592\n", "55 30827 ... 11.739115\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: pab0srgj \n", "\n", "wandb: Agent Starting Run: 8h8obozd with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 8h8obozd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8h8obozd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.32255271077156\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.11021272589763\n", "The running loss is:\n", "22.797952115535736\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.8998293429613113\n", "The running loss is:\n", "16.07163879275322\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.339303232729435\n", "The running loss is:\n", "13.264043867588043\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1053369889656703\n", "The running loss is:\n", "12.219512164592743\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0182926803827286\n", "The running loss is:\n", "11.778143614530563\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9815119678775469\n", "The running loss is:\n", "11.204492971301079\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9337077476084232\n", "The running loss is:\n", "11.166005790233612\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.9305004825194677\n", "The running loss is:\n", "11.464188620448112\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9553490517040094\n", "The running loss is:\n", "10.929433912038803\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.9107861593365669\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... -0.247660\n", "47 30819 ... 9.233921\n", "48 30820 ... 5.277986\n", "49 30821 ... 6.317695\n", "50 30822 ... 5.119556\n", "51 30823 ... 4.109658\n", "52 30824 ... 4.720734\n", "53 30825 ... 2.022248\n", "54 30826 ... 12.015410\n", "55 30827 ... 8.368930\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8h8obozd \n", "\n", "wandb: Agent Starting Run: ayz6fdqn with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ayz6fdqn\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ayz6fdqn
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "43.19867384433746\n", "The number of items in train is: \n", "13\n", "The loss for epoch 0\n", "3.322974911102882\n", "The running loss is:\n", "20.882086783647537\n", "The number of items in train is: \n", "13\n", "The loss for epoch 1\n", "1.6063143679728875\n", "The running loss is:\n", "15.9086195230484\n", "The number of items in train is: \n", "13\n", "The loss for epoch 2\n", "1.2237399633114154\n", "The running loss is:\n", "17.856110900640488\n", "The number of items in train is: \n", "13\n", "The loss for epoch 3\n", "1.3735469923569605\n", "The running loss is:\n", "14.558780506253242\n", "The number of items in train is: \n", "13\n", "The loss for epoch 4\n", "1.119906192788711\n", "The running loss is:\n", "15.64150284230709\n", "The number of items in train is: \n", "13\n", "The loss for epoch 5\n", "1.2031925263313146\n", "The running loss is:\n", "15.482542432844639\n", "The number of items in train is: \n", "13\n", "The loss for epoch 6\n", "1.1909648025265107\n", "The running loss is:\n", "14.537198841571808\n", "The number of items in train is: \n", "13\n", "The loss for epoch 7\n", "1.1182460647362928\n", "The running loss is:\n", "13.648285038943868\n", "The number of items in train is: \n", "13\n", "The loss for epoch 8\n", "1.0498680799187592\n", "The running loss is:\n", "11.561186537146568\n", "The number of items in train is: \n", "13\n", "The loss for epoch 9\n", "0.8893220413189667\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 2.534576\n", "47 30819 ... 12.769893\n", "48 30820 ... 11.421350\n", "49 30821 ... 10.561858\n", "50 30822 ... 9.610747\n", "51 30823 ... 7.076689\n", "52 30824 ... 6.741565\n", "53 30825 ... 5.326016\n", "54 30826 ... 13.664184\n", "55 30827 ... 11.970482\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ayz6fdqn \n", "\n", "wandb: Agent Starting Run: fhblqpew with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: fhblqpew\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fhblqpew
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "44.207919269800186\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "3.683993272483349\n", "The running loss is:\n", "20.536793023347855\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.7113994186123211\n", "The running loss is:\n", "14.74533599615097\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.2287779996792476\n", "The running loss is:\n", "12.315197795629501\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.026266482969125\n", "The running loss is:\n", "12.204134806990623\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0170112339158852\n", "The running loss is:\n", "11.466395795345306\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9555329829454422\n", "The running loss is:\n", "11.339310720562935\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9449425600469112\n", "The running loss is:\n", "9.619177401065826\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8015981167554855\n", "The running loss is:\n", "12.089902177453041\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "1.0074918481210868\n", "The running loss is:\n", "13.646132752299309\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "1.1371777293582757\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.995404\n", "47 30819 ... 9.003286\n", "48 30820 ... 8.999191\n", "49 30821 ... 9.000885\n", "50 30822 ... 8.894744\n", "51 30823 ... 10.436748\n", "52 30824 ... 10.697165\n", "53 30825 ... 10.588944\n", "54 30826 ... 10.588954\n", "55 30827 ... 10.588938\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fhblqpew \n", "\n", "wandb: Agent Starting Run: 1t6pbtgz with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 5\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 1t6pbtgz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1t6pbtgz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 5\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 5\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 5\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "38.5756913125515\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "3.214640942712625\n", "The running loss is:\n", "18.708413749933243\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.5590344791611035\n", "The running loss is:\n", "13.634418800473213\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.1362015667061012\n", "The running loss is:\n", "13.00131143629551\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0834426196912925\n", "The running loss is:\n", "12.16117537021637\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0134312808513641\n", "The running loss is:\n", "12.743264377117157\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.0619386980930965\n", "The running loss is:\n", "12.74788312613964\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "1.06232359384497\n", "The running loss is:\n", "12.327722936868668\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "1.0273102447390556\n", "The running loss is:\n", "11.793324664235115\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9827770553529263\n", "The running loss is:\n", "12.077590823173523\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "1.0064659019311268\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 5, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.219585\n", "47 30819 Eagle County, Colorado, United States ... 47 8.171262\n", "48 30820 Eagle County, Colorado, United States ... 48 8.282984\n", "49 30821 Eagle County, Colorado, United States ... 49 8.246166\n", "50 30822 Eagle County, Colorado, United States ... 50 8.154293\n", "51 30823 Eagle County, Colorado, United States ... 51 9.300027\n", "52 30824 Eagle County, Colorado, United States ... 52 9.161006\n", "53 30825 Eagle County, Colorado, United States ... 53 9.634283\n", "54 30826 Eagle County, Colorado, United States ... 54 9.632183\n", "55 30827 Eagle County, Colorado, United States ... 55 9.632958\n", "\n", "[15 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1t6pbtgz \n", "\n", "wandb: Agent Starting Run: stuwxn27 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: stuwxn27\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/stuwxn27
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.118256822228432\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2598547351857026\n", "The running loss is:\n", "18.95265108346939\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.579387590289116\n", "The running loss is:\n", "12.225189611315727\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.0187658009429772\n", "The running loss is:\n", "11.719947949051857\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.9766623290876547\n", "The running loss is:\n", "11.743443045765162\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9786202538137635\n", "The running loss is:\n", "11.300051920115948\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9416709933429956\n", "The running loss is:\n", "10.814161136746407\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9011800947288672\n", "The running loss is:\n", "10.698570221662521\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8915475184718767\n", "The running loss is:\n", "10.697828751057386\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8914857292547822\n", "The running loss is:\n", "10.184408448636532\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8487007040530443\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.240055\n", "47 30819 Eagle County, Colorado, United States ... 47 1.800865\n", "48 30820 Eagle County, Colorado, United States ... 48 1.639500\n", "49 30821 Eagle County, Colorado, United States ... 49 1.430543\n", "50 30822 Eagle County, Colorado, United States ... 50 1.315372\n", "51 30823 Eagle County, Colorado, United States ... 51 1.186460\n", "52 30824 Eagle County, Colorado, United States ... 52 3.861452\n", "53 30825 Eagle County, Colorado, United States ... 53 3.363582\n", "54 30826 Eagle County, Colorado, United States ... 54 3.074578\n", "55 30827 Eagle County, Colorado, United States ... 55 2.776423\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: stuwxn27 \n", "\n", "wandb: Agent Starting Run: n3y19nh5 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: n3y19nh5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/n3y19nh5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.848535776138306\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2373779813448589\n", "The running loss is:\n", "17.392040729522705\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.4493367274602253\n", "The running loss is:\n", "11.61117922514677\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "0.9675982687622309\n", "The running loss is:\n", "11.772338047623634\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.9810281706353029\n", "The running loss is:\n", "11.49287236109376\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.95773936342448\n", "The running loss is:\n", "10.781698107719421\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.8984748423099518\n", "The running loss is:\n", "10.424548596143723\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.8687123830119768\n", "The running loss is:\n", "10.12140953913331\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8434507949277759\n", "The running loss is:\n", "9.658258616924286\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8048548847436905\n", "The running loss is:\n", "9.880091970786452\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8233409975655377\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.166862\n", "47 30819 Eagle County, Colorado, United States ... 47 2.140870\n", "48 30820 Eagle County, Colorado, United States ... 48 3.050914\n", "49 30821 Eagle County, Colorado, United States ... 49 2.472847\n", "50 30822 Eagle County, Colorado, United States ... 50 2.448125\n", "51 30823 Eagle County, Colorado, United States ... 51 2.150080\n", "52 30824 Eagle County, Colorado, United States ... 52 5.302005\n", "53 30825 Eagle County, Colorado, United States ... 53 5.484312\n", "54 30826 Eagle County, Colorado, United States ... 54 6.253271\n", "55 30827 Eagle County, Colorado, United States ... 55 7.036977\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: n3y19nh5 \n", "\n", "wandb: Agent Starting Run: h1q7w0qd with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: h1q7w0qd\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/h1q7w0qd
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.079257428646088\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2566047857205074\n", "The running loss is:\n", "15.718450710177422\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.309870892514785\n", "The running loss is:\n", "12.495803490281105\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.0413169575234253\n", "The running loss is:\n", "12.496650338172913\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.041387528181076\n", "The running loss is:\n", "12.224688678979874\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0187240565816562\n", "The running loss is:\n", "11.561807550489902\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9634839625408252\n", "The running loss is:\n", "11.38438879698515\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9486990664154291\n", "The running loss is:\n", "11.246962681412697\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.9372468901177248\n", "The running loss is:\n", "10.89895249903202\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9082460415860018\n", "The running loss is:\n", "10.400408629328012\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8667007191106677\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.580725\n", "47 30819 Eagle County, Colorado, United States ... 47 1.974475\n", "48 30820 Eagle County, Colorado, United States ... 48 -0.211604\n", "49 30821 Eagle County, Colorado, United States ... 49 0.609134\n", "50 30822 Eagle County, Colorado, United States ... 50 1.167469\n", "51 30823 Eagle County, Colorado, United States ... 51 1.519079\n", "52 30824 Eagle County, Colorado, United States ... 52 4.284061\n", "53 30825 Eagle County, Colorado, United States ... 53 3.987715\n", "54 30826 Eagle County, Colorado, United States ... 54 3.588098\n", "55 30827 Eagle County, Colorado, United States ... 55 2.746731\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: h1q7w0qd \n", "\n", "wandb: Agent Starting Run: oxt2syp4 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: oxt2syp4\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/oxt2syp4
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.496992111206055\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.0414160092671711\n", "The running loss is:\n", "23.51863168179989\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.959885973483324\n", "The running loss is:\n", "16.172030597925186\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.3476692164937656\n", "The running loss is:\n", "13.880412250757217\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1567010208964348\n", "The running loss is:\n", "12.677022129297256\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0564185107747714\n", "The running loss is:\n", "12.19552794098854\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.0162939950823784\n", "The running loss is:\n", "11.290437750518322\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9408698125431935\n", "The running loss is:\n", "10.617049016058445\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.884754084671537\n", "The running loss is:\n", "10.623746745288372\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.885312228774031\n", "The running loss is:\n", "9.808349553495646\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8173624627913038\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.538319\n", "47 30819 Eagle County, Colorado, United States ... 47 3.409076\n", "48 30820 Eagle County, Colorado, United States ... 48 4.306860\n", "49 30821 Eagle County, Colorado, United States ... 49 3.943794\n", "50 30822 Eagle County, Colorado, United States ... 50 4.117706\n", "51 30823 Eagle County, Colorado, United States ... 51 3.392669\n", "52 30824 Eagle County, Colorado, United States ... 52 6.199790\n", "53 30825 Eagle County, Colorado, United States ... 53 5.883504\n", "54 30826 Eagle County, Colorado, United States ... 54 6.553258\n", "55 30827 Eagle County, Colorado, United States ... 55 7.520857\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: oxt2syp4 \n", "\n", "wandb: Agent Starting Run: ie9c1ks0 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ie9c1ks0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ie9c1ks0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.599737614393234\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.0499781345327694\n", "The running loss is:\n", "22.203148394823074\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.8502623662352562\n", "The running loss is:\n", "14.325762331485748\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.1938135276238124\n", "The running loss is:\n", "13.595742899924517\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1329785749937098\n", "The running loss is:\n", "11.89985717087984\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9916547642399868\n", "The running loss is:\n", "11.515253067016602\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9596044222513834\n", "The running loss is:\n", "11.157676301896572\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.929806358491381\n", "The running loss is:\n", "10.4517732411623\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8709811034301916\n", "The running loss is:\n", "10.010308530181646\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8341923775151372\n", "The running loss is:\n", "10.091852685436606\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8409877237863839\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 2.594056\n", "47 30819 Eagle County, Colorado, United States ... 47 1.672091\n", "48 30820 Eagle County, Colorado, United States ... 48 4.155540\n", "49 30821 Eagle County, Colorado, United States ... 49 3.079499\n", "50 30822 Eagle County, Colorado, United States ... 50 2.709257\n", "51 30823 Eagle County, Colorado, United States ... 51 1.828926\n", "52 30824 Eagle County, Colorado, United States ... 52 4.691890\n", "53 30825 Eagle County, Colorado, United States ... 53 3.811723\n", "54 30826 Eagle County, Colorado, United States ... 54 5.404132\n", "55 30827 Eagle County, Colorado, United States ... 55 8.138603\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ie9c1ks0 \n", "\n", "wandb: Agent Starting Run: 2fpwq82a with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 2fpwq82a\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2fpwq82a
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.415539905428886\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.1179616587857406\n", "The running loss is:\n", "20.85493763536215\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.7379114696135123\n", "The running loss is:\n", "14.253133296966553\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.1877611080805461\n", "The running loss is:\n", "13.560869604349136\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1300724670290947\n", "The running loss is:\n", "12.388650253415108\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0323875211179256\n", "The running loss is:\n", "12.170100808143616\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.0141750673453014\n", "The running loss is:\n", "11.739183232188225\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9782652693490187\n", "The running loss is:\n", "11.55619814991951\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.9630165124932925\n", "The running loss is:\n", "10.790475085377693\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8992062571148077\n", "The running loss is:\n", "10.633037384599447\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8860864487166206\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.839489\n", "47 30819 Eagle County, Colorado, United States ... 47 1.569898\n", "48 30820 Eagle County, Colorado, United States ... 48 1.385082\n", "49 30821 Eagle County, Colorado, United States ... 49 0.573623\n", "50 30822 Eagle County, Colorado, United States ... 50 1.309624\n", "51 30823 Eagle County, Colorado, United States ... 51 1.179892\n", "52 30824 Eagle County, Colorado, United States ... 52 4.661685\n", "53 30825 Eagle County, Colorado, United States ... 53 2.778619\n", "54 30826 Eagle County, Colorado, United States ... 54 2.841144\n", "55 30827 Eagle County, Colorado, United States ... 55 4.202115\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2fpwq82a \n", "\n", "wandb: Agent Starting Run: l8nn6c9n with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: l8nn6c9n\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l8nn6c9n
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.551168888807297\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.3792640740672748\n", "The running loss is:\n", "16.275571942329407\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.3562976618607838\n", "The running loss is:\n", "24.606696739792824\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "2.050558061649402\n", "The running loss is:\n", "12.262774214148521\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0218978511790435\n", "The running loss is:\n", "12.773478485643864\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.064456540470322\n", "The running loss is:\n", "11.611447669565678\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9676206391304731\n", "The running loss is:\n", "11.665397956967354\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9721164964139462\n", "The running loss is:\n", "10.316370545886457\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8596975454905381\n", "The running loss is:\n", "11.990142315626144\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9991785263021787\n", "The running loss is:\n", "10.906970590353012\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.908914215862751\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.308692\n", "47 30819 Eagle County, Colorado, United States ... 47 3.952347\n", "48 30820 Eagle County, Colorado, United States ... 48 7.571158\n", "49 30821 Eagle County, Colorado, United States ... 49 3.904990\n", "50 30822 Eagle County, Colorado, United States ... 50 3.892237\n", "51 30823 Eagle County, Colorado, United States ... 51 3.134773\n", "52 30824 Eagle County, Colorado, United States ... 52 8.374115\n", "53 30825 Eagle County, Colorado, United States ... 53 7.191282\n", "54 30826 Eagle County, Colorado, United States ... 54 8.137844\n", "55 30827 Eagle County, Colorado, United States ... 55 9.537454\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l8nn6c9n \n", "\n", "wandb: Agent Starting Run: km3ikef2 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: km3ikef2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/km3ikef2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.698626637458801\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.2248855531215668\n", "The running loss is:\n", "20.655080318450928\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.721256693204244\n", "The running loss is:\n", "18.092076182365417\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.507673015197118\n", "The running loss is:\n", "12.09486810863018\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0079056757191818\n", "The running loss is:\n", "11.600006587803364\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9666672156502804\n", "The running loss is:\n", "10.95479815453291\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9128998462110758\n", "The running loss is:\n", "11.188478022813797\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9323731685678164\n", "The running loss is:\n", "10.409742364659905\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8674785303883255\n", "The running loss is:\n", "10.057693980634212\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8381411650528511\n", "The running loss is:\n", "12.17088376916945\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "1.014240314097454\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 2.268881\n", "47 30819 ... 1.202799\n", "48 30820 ... 10.090469\n", "49 30821 ... 8.409049\n", "50 30822 ... 6.849900\n", "51 30823 ... 2.807540\n", "52 30824 ... 5.809826\n", "53 30825 ... 2.110427\n", "54 30826 ... 5.633467\n", "55 30827 ... 13.213568\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: km3ikef2 \n", "\n", "wandb: Agent Starting Run: c5lun9dz with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: c5lun9dz\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c5lun9dz
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.00420992076397\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.1670174933969975\n", "The running loss is:\n", "19.73149611055851\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.6442913425465424\n", "The running loss is:\n", "15.858351707458496\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.3215293089548747\n", "The running loss is:\n", "13.022899746894836\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0852416455745697\n", "The running loss is:\n", "12.677206307649612\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.056433858970801\n", "The running loss is:\n", "12.486706361174583\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.0405588634312153\n", "The running loss is:\n", "12.287828579545021\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "1.023985714962085\n", "The running loss is:\n", "11.929625041782856\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.9941354201485714\n", "The running loss is:\n", "12.279497995972633\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "1.023291499664386\n", "The running loss is:\n", "11.818829461932182\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.9849024551610152\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.814013\n", "47 30819 ... 6.518628\n", "48 30820 ... 9.284746\n", "49 30821 ... 6.500539\n", "50 30822 ... 7.052881\n", "51 30823 ... 5.470279\n", "52 30824 ... 9.392167\n", "53 30825 ... 9.151134\n", "54 30826 ... 9.920794\n", "55 30827 ... 11.009304\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c5lun9dz \n", "\n", "wandb: Agent Starting Run: b3b14bgb with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: b3b14bgb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/b3b14bgb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "81.98305875062943\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "6.831921562552452\n", "The running loss is:\n", "23.46656311303377\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.9555469260861476\n", "The running loss is:\n", "18.955001026391983\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.5795834188659985\n", "The running loss is:\n", "13.628064028918743\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1356720024098952\n", "The running loss is:\n", "13.840984091162682\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.1534153409302235\n", "The running loss is:\n", "12.88997782766819\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.0741648189723492\n", "The running loss is:\n", "12.13399039208889\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "1.0111658660074074\n", "The running loss is:\n", "12.013321369886398\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "1.0011101141571999\n", "The running loss is:\n", "11.848396576941013\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9873663814117511\n", "The running loss is:\n", "12.80077788233757\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "1.0667314901947975\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.724473\n", "47 30819 ... 8.855355\n", "48 30820 ... 13.927794\n", "49 30821 ... 10.620327\n", "50 30822 ... 7.505313\n", "51 30823 ... 5.085643\n", "52 30824 ... 7.951116\n", "53 30825 ... 8.628775\n", "54 30826 ... 10.043982\n", "55 30827 ... 17.028318\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: b3b14bgb \n", "\n", "wandb: Agent Starting Run: s1h956bq with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: s1h956bq\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/s1h956bq
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "59.376845210790634\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "4.9480704342325526\n", "The running loss is:\n", "20.686773542314768\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.7238977951928973\n", "The running loss is:\n", "13.994047820568085\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.1661706517140071\n", "The running loss is:\n", "11.97829656675458\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.9981913805628816\n", "The running loss is:\n", "11.18816128000617\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9323467733338475\n", "The running loss is:\n", "14.145705461502075\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.1788087884585063\n", "The running loss is:\n", "11.821292378008366\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9851076981673638\n", "The running loss is:\n", "12.026786141097546\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "1.0022321784247954\n", "The running loss is:\n", "11.274334587156773\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9395278822630644\n", "The running loss is:\n", "10.756500020623207\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8963750017186006\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 3.249136\n", "47 30819 ... 7.751321\n", "48 30820 ... 12.270601\n", "49 30821 ... 5.888708\n", "50 30822 ... 4.762325\n", "51 30823 ... 5.235315\n", "52 30824 ... 7.638667\n", "53 30825 ... 10.344776\n", "54 30826 ... 10.507303\n", "55 30827 ... 10.673805\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: s1h956bq \n", "\n", "wandb: Agent Starting Run: vo80oil3 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 6\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: vo80oil3\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vo80oil3
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 6\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 6\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 6\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "45.60368609428406\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "3.8003071745236716\n", "The running loss is:\n", "18.71952261030674\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.5599602175255616\n", "The running loss is:\n", "14.976400405168533\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.2480333670973778\n", "The running loss is:\n", "12.58779701590538\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0489830846587818\n", "The running loss is:\n", "13.024215057492256\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0853512547910213\n", "The running loss is:\n", "12.297743678092957\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.024811973174413\n", "The running loss is:\n", "12.213317602872849\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "1.0177764669060707\n", "The running loss is:\n", "12.347241327166557\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "1.0289367772638798\n", "The running loss is:\n", "12.762004941701889\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "1.0635004118084908\n", "The running loss is:\n", "12.372626543045044\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "1.0310522119204204\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 6, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 11.393170\n", "47 30819 ... 11.193472\n", "48 30820 ... 11.361673\n", "49 30821 ... 11.471720\n", "50 30822 ... 11.755054\n", "51 30823 ... 11.518402\n", "52 30824 ... 11.129681\n", "53 30825 ... 11.483230\n", "54 30826 ... 12.134523\n", "55 30827 ... 13.660666\n", "\n", "[16 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vo80oil3 \n", "\n", "wandb: Agent Starting Run: ubv4ystc with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: ubv4ystc\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ubv4ystc
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.101865265518427\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.1751554387932022\n", "The running loss is:\n", "26.686464205384254\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.2238720171153545\n", "The running loss is:\n", "13.082868907600641\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.0902390756333868\n", "The running loss is:\n", "12.054546843282878\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0045455702735733\n", "The running loss is:\n", "11.357063516043127\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9464219596702605\n", "The running loss is:\n", "10.975450985133648\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.914620915427804\n", "The running loss is:\n", "10.746945226565003\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.895578768880417\n", "The running loss is:\n", "10.431892652064562\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8693243876720468\n", "The running loss is:\n", "10.116163417696953\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.8430136181414127\n", "The running loss is:\n", "9.563586957752705\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.7969655798127254\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.468307\n", "47 30819 ... 6.544013\n", "48 30820 ... 5.728243\n", "49 30821 ... 5.464718\n", "50 30822 ... 5.680757\n", "51 30823 ... 6.046756\n", "52 30824 ... 6.474231\n", "53 30825 ... 9.770175\n", "54 30826 ... 10.915289\n", "55 30827 ... 11.168087\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ubv4ystc \n", "\n", "wandb: Agent Starting Run: gz2rrs14 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: gz2rrs14\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gz2rrs14
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.668365709483624\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.139030475790302\n", "The running loss is:\n", "22.000758349895477\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.8333965291579564\n", "The running loss is:\n", "12.867923766374588\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.0723269805312157\n", "The running loss is:\n", "12.467137441039085\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0389281200865905\n", "The running loss is:\n", "12.045014038681984\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0037511698901653\n", "The running loss is:\n", "11.449671164155006\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9541392636795839\n", "The running loss is:\n", "11.364717662334442\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9470598051945368\n", "The running loss is:\n", "11.024014353752136\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.918667862812678\n", "The running loss is:\n", "10.835795931518078\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9029829942931732\n", "The running loss is:\n", "10.63074404746294\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8858953372885784\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.082046\n", "47 30819 ... 5.716176\n", "48 30820 ... 4.953457\n", "49 30821 ... 5.225757\n", "50 30822 ... 5.296615\n", "51 30823 ... 5.834962\n", "52 30824 ... 6.323007\n", "53 30825 ... 9.013754\n", "54 30826 ... 9.816219\n", "55 30827 ... 10.285398\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gz2rrs14 \n", "\n", "wandb: Agent Starting Run: c7r3et8o with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: c7r3et8o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c7r3et8o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.087084546685219\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2806440496986562\n", "The running loss is:\n", "15.108550131320953\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.373504557392814\n", "The running loss is:\n", "11.57915723323822\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.0526506575671108\n", "The running loss is:\n", "11.622581869363785\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.0565983517603441\n", "The running loss is:\n", "11.423680514097214\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.038516410372474\n", "The running loss is:\n", "11.086277157068253\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0078433779152958\n", "The running loss is:\n", "10.852890878915787\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9866264435377988\n", "The running loss is:\n", "10.427777409553528\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9479797645048662\n", "The running loss is:\n", "10.2155372351408\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9286852031946182\n", "The running loss is:\n", "9.269150421023369\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.8426500382748517\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.902751\n", "47 30819 ... 6.116383\n", "48 30820 ... 5.196961\n", "49 30821 ... 6.538588\n", "50 30822 ... 6.004770\n", "51 30823 ... 7.052540\n", "52 30824 ... 7.391847\n", "53 30825 ... 11.100878\n", "54 30826 ... 12.244072\n", "55 30827 ... 14.028635\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c7r3et8o \n", "\n", "wandb: Agent Starting Run: 2btvbagt with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 2btvbagt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/2btvbagt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.820672918111086\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.1517227431759238\n", "The running loss is:\n", "26.606332644820213\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.2171943870683513\n", "The running loss is:\n", "19.74119022488594\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.6450991854071617\n", "The running loss is:\n", "13.292974773794413\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.107747897816201\n", "The running loss is:\n", "12.035850204527378\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0029875170439482\n", "The running loss is:\n", "10.859765394590795\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.904980449549233\n", "The running loss is:\n", "10.321846425533295\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.8601538687944412\n", "The running loss is:\n", "10.080843094736338\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8400702578946948\n", "The running loss is:\n", "9.47326545137912\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.7894387876149267\n", "The running loss is:\n", "9.196296703070402\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.7663580585892001\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.013854\n", "47 30819 Eagle County, Colorado, United States ... 47 4.551272\n", "48 30820 Eagle County, Colorado, United States ... 48 3.015524\n", "49 30821 Eagle County, Colorado, United States ... 49 1.243749\n", "50 30822 Eagle County, Colorado, United States ... 50 1.685084\n", "51 30823 Eagle County, Colorado, United States ... 51 2.245061\n", "52 30824 Eagle County, Colorado, United States ... 52 3.145492\n", "53 30825 Eagle County, Colorado, United States ... 53 5.108663\n", "54 30826 Eagle County, Colorado, United States ... 54 6.053539\n", "55 30827 Eagle County, Colorado, United States ... 55 5.009378\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 2btvbagt \n", "\n", "wandb: Agent Starting Run: vf9yil9d with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: vf9yil9d\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vf9yil9d
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.319420583546162\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.1099517152955134\n", "The running loss is:\n", "23.99860054254532\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.9998833785454433\n", "The running loss is:\n", "16.226833522319794\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.3522361268599827\n", "The running loss is:\n", "13.81850466877222\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1515420557310183\n", "The running loss is:\n", "12.647154584527016\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0539295487105846\n", "The running loss is:\n", "11.547047853469849\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.962253987789154\n", "The running loss is:\n", "10.53432285785675\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.8778602381547292\n", "The running loss is:\n", "10.211327746510506\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.8509439788758755\n", "The running loss is:\n", "10.368523627519608\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.864043635626634\n", "The running loss is:\n", "9.499119475483894\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.7915932896236578\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.554091\n", "47 30819 Eagle County, Colorado, United States ... 47 4.430425\n", "48 30820 Eagle County, Colorado, United States ... 48 3.866688\n", "49 30821 Eagle County, Colorado, United States ... 49 4.931254\n", "50 30822 Eagle County, Colorado, United States ... 50 4.549019\n", "51 30823 Eagle County, Colorado, United States ... 51 5.059370\n", "52 30824 Eagle County, Colorado, United States ... 52 5.614854\n", "53 30825 Eagle County, Colorado, United States ... 53 6.800270\n", "54 30826 Eagle County, Colorado, United States ... 54 6.520226\n", "55 30827 Eagle County, Colorado, United States ... 55 6.729157\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vf9yil9d \n", "\n", "wandb: Agent Starting Run: 95ntbs64 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 95ntbs64\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/95ntbs64
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "12.921886771917343\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.174716979265213\n", "The running loss is:\n", "19.92188435792923\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.8110803961753845\n", "The running loss is:\n", "13.59029796719551\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.23548163338141\n", "The running loss is:\n", "13.310383319854736\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2100348472595215\n", "The running loss is:\n", "11.705954015254974\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0641776377504522\n", "The running loss is:\n", "11.907550156116486\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0825045596469531\n", "The running loss is:\n", "11.72386035323143\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0658054866574027\n", "The running loss is:\n", "11.24789434671402\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0225358497012744\n", "The running loss is:\n", "10.430751740932465\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9482501582665877\n", "The running loss is:\n", "9.527582883834839\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.8661438985304399\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.573842\n", "47 30819 Eagle County, Colorado, United States ... 47 5.654085\n", "48 30820 Eagle County, Colorado, United States ... 48 5.214627\n", "49 30821 Eagle County, Colorado, United States ... 49 6.999577\n", "50 30822 Eagle County, Colorado, United States ... 50 6.205671\n", "51 30823 Eagle County, Colorado, United States ... 51 7.371466\n", "52 30824 Eagle County, Colorado, United States ... 52 8.793597\n", "53 30825 Eagle County, Colorado, United States ... 53 9.819304\n", "54 30826 Eagle County, Colorado, United States ... 54 9.304229\n", "55 30827 Eagle County, Colorado, United States ... 55 9.831146\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 95ntbs64 \n", "\n", "wandb: Agent Starting Run: 1x40zbqa with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 1x40zbqa\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1x40zbqa
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "22.54161025211215\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.8784675210093458\n", "The running loss is:\n", "17.038389161229134\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.4198657634357612\n", "The running loss is:\n", "31.379464015364647\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "2.6149553346137204\n", "The running loss is:\n", "13.966453918255866\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1638711598546554\n", "The running loss is:\n", "15.581669982522726\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.2984724985435605\n", "The running loss is:\n", "11.612488612532616\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.967707384377718\n", "The running loss is:\n", "11.270859359763563\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9392382799802969\n", "The running loss is:\n", "9.403395362198353\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.7836162801831961\n", "The running loss is:\n", "8.220736034214497\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.6850613361845413\n", "The running loss is:\n", "9.775267072021961\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8146055893351635\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.412656\n", "47 30819 Eagle County, Colorado, United States ... 47 5.343231\n", "48 30820 Eagle County, Colorado, United States ... 48 4.858974\n", "49 30821 Eagle County, Colorado, United States ... 49 4.976553\n", "50 30822 Eagle County, Colorado, United States ... 50 4.848750\n", "51 30823 Eagle County, Colorado, United States ... 51 4.915821\n", "52 30824 Eagle County, Colorado, United States ... 52 5.174218\n", "53 30825 Eagle County, Colorado, United States ... 53 7.864298\n", "54 30826 Eagle County, Colorado, United States ... 54 7.851389\n", "55 30827 Eagle County, Colorado, United States ... 55 7.985761\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1x40zbqa \n", "\n", "wandb: Agent Starting Run: 0xhh0dml with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 0xhh0dml\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0xhh0dml
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "18.429566003382206\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.535797166948517\n", "The running loss is:\n", "18.622036963701248\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.5518364136417706\n", "The running loss is:\n", "28.973867908120155\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "2.414488992343346\n", "The running loss is:\n", "16.044194497168064\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.3370162080973387\n", "The running loss is:\n", "16.122961774468422\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.3435801478723686\n", "The running loss is:\n", "12.899257555603981\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.074938129633665\n", "The running loss is:\n", "12.557156592607498\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "1.0464297160506248\n", "The running loss is:\n", "12.619301199913025\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "1.0516084333260853\n", "The running loss is:\n", "12.38354542851448\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "1.0319621190428734\n", "The running loss is:\n", "11.681083425879478\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.9734236188232899\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.246218\n", "47 30819 ... 14.066824\n", "48 30820 ... 12.973879\n", "49 30821 ... 10.188002\n", "50 30822 ... 10.609279\n", "51 30823 ... 10.523514\n", "52 30824 ... 11.179653\n", "53 30825 ... 12.925735\n", "54 30826 ... 13.551861\n", "55 30827 ... 13.512096\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0xhh0dml \n", "\n", "wandb: Agent Starting Run: ye5e1j66 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ye5e1j66\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ye5e1j66
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.376830667257309\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.306984606114301\n", "The running loss is:\n", "16.50704401731491\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.5006403652104465\n", "The running loss is:\n", "18.80806991457939\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.7098245376890355\n", "The running loss is:\n", "12.212967872619629\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.1102698066017844\n", "The running loss is:\n", "12.07007920742035\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0972799279473044\n", "The running loss is:\n", "11.875926405191422\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.07962967319922\n", "The running loss is:\n", "11.825728297233582\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0750662088394165\n", "The running loss is:\n", "11.659875005483627\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0599886368621478\n", "The running loss is:\n", "11.533598870038986\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0485089881853624\n", "The running loss is:\n", "10.735102593898773\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9759184176271612\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 7.420413\n", "47 30819 ... 8.245983\n", "48 30820 ... 7.171728\n", "49 30821 ... 7.246099\n", "50 30822 ... 6.445683\n", "51 30823 ... 7.200696\n", "52 30824 ... 8.086080\n", "53 30825 ... 11.314844\n", "54 30826 ... 12.178420\n", "55 30827 ... 12.283268\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ye5e1j66 \n", "\n", "wandb: Agent Starting Run: 62zrpq21 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 62zrpq21\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/62zrpq21
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "103.22703457251191\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "8.60225288104266\n", "The running loss is:\n", "29.94053180515766\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.495044317096472\n", "The running loss is:\n", "16.690219312906265\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.3908516094088554\n", "The running loss is:\n", "13.111681044101715\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0926400870084763\n", "The running loss is:\n", "15.997931838035583\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.3331609865029652\n", "The running loss is:\n", "11.851074589183554\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9875895490986295\n", "The running loss is:\n", "10.893377058207989\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9077814215173324\n", "The running loss is:\n", "11.342389456927776\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.945199121410648\n", "The running loss is:\n", "10.936100173741579\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9113416811451316\n", "The running loss is:\n", "10.374511506408453\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8645426255340377\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 2.288023\n", "47 30819 Eagle County, Colorado, United States ... 47 2.294388\n", "48 30820 Eagle County, Colorado, United States ... 48 2.283244\n", "49 30821 Eagle County, Colorado, United States ... 49 2.281832\n", "50 30822 Eagle County, Colorado, United States ... 50 2.283400\n", "51 30823 Eagle County, Colorado, United States ... 51 2.285488\n", "52 30824 Eagle County, Colorado, United States ... 52 2.234835\n", "53 30825 Eagle County, Colorado, United States ... 53 3.238281\n", "54 30826 Eagle County, Colorado, United States ... 54 3.240119\n", "55 30827 Eagle County, Colorado, United States ... 55 3.236318\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 62zrpq21 \n", "\n", "wandb: Agent Starting Run: 4hwszs1n with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 4hwszs1n\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/4hwszs1n
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "81.03642698377371\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "6.753035581981142\n", "The running loss is:\n", "20.14825175702572\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.6790209797521432\n", "The running loss is:\n", "21.776003628969193\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.814666969080766\n", "The running loss is:\n", "12.587840363383293\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.0489866969486077\n", "The running loss is:\n", "13.271085634827614\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.105923802902301\n", "The running loss is:\n", "15.132914364337921\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.26107619702816\n", "The running loss is:\n", "12.673068717122078\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "1.056089059760173\n", "The running loss is:\n", "13.078043937683105\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "1.0898369948069255\n", "The running loss is:\n", "12.038839250802994\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "1.0032366042335827\n", "The running loss is:\n", "13.619364827871323\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "1.1349470689892769\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.130917\n", "47 30819 Eagle County, Colorado, United States ... 47 6.415527\n", "48 30820 Eagle County, Colorado, United States ... 48 7.077496\n", "49 30821 Eagle County, Colorado, United States ... 49 6.234654\n", "50 30822 Eagle County, Colorado, United States ... 50 6.276112\n", "51 30823 Eagle County, Colorado, United States ... 51 6.861938\n", "52 30824 Eagle County, Colorado, United States ... 52 7.286839\n", "53 30825 Eagle County, Colorado, United States ... 53 9.426314\n", "54 30826 Eagle County, Colorado, United States ... 54 9.667464\n", "55 30827 Eagle County, Colorado, United States ... 55 9.229389\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 4hwszs1n \n", "\n", "wandb: Agent Starting Run: cy9snt8t with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 7\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: cy9snt8t\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cy9snt8t
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 7\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 7\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 7\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "54.83278104662895\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "4.984798276966268\n", "The running loss is:\n", "15.510921031236649\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.4100837301124225\n", "The running loss is:\n", "15.879859685897827\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.4436236078088933\n", "The running loss is:\n", "12.013406425714493\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.0921278568831356\n", "The running loss is:\n", "13.37919408082962\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.216290370984511\n", "The running loss is:\n", "11.679980754852295\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0618164322592996\n", "The running loss is:\n", "11.539081782102585\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0490074347365985\n", "The running loss is:\n", "11.794884741306305\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.072262249209664\n", "The running loss is:\n", "11.983941286802292\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0894492078911175\n", "The running loss is:\n", "11.315197944641113\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.0286543586037376\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 7, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 13.684507\n", "47 30819 ... 13.638751\n", "48 30820 ... 13.938817\n", "49 30821 ... 15.181535\n", "50 30822 ... 15.354393\n", "51 30823 ... 14.973742\n", "52 30824 ... 14.617647\n", "53 30825 ... 19.675823\n", "54 30826 ... 19.256590\n", "55 30827 ... 20.088932\n", "\n", "[17 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cy9snt8t \n", "\n", "wandb: Agent Starting Run: gllvj7he with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: gllvj7he\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/gllvj7he
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.211308494210243\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.4342757078508537\n", "The running loss is:\n", "16.233859598636627\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.352821633219719\n", "The running loss is:\n", "12.66020293906331\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.0550169115886092\n", "The running loss is:\n", "11.963709861040115\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "0.996975821753343\n", "The running loss is:\n", "11.758347198367119\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "0.9798622665305933\n", "The running loss is:\n", "11.206863448023796\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9339052873353163\n", "The running loss is:\n", "11.012989409267902\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9177491174389919\n", "The running loss is:\n", "10.944889828562737\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.912074152380228\n", "The running loss is:\n", "11.287752538919449\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9406460449099541\n", "The running loss is:\n", "10.014553174376488\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.8345460978647073\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.422697\n", "47 30819 ... 7.106028\n", "48 30820 ... 9.759746\n", "49 30821 ... 8.222320\n", "50 30822 ... 4.610928\n", "51 30823 ... 6.268315\n", "52 30824 ... 6.628915\n", "53 30825 ... 6.769064\n", "54 30826 ... 9.233932\n", "55 30827 ... 12.926121\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: gllvj7he \n", "\n", "wandb: Agent Starting Run: 11cp523e with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 11cp523e\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/11cp523e
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.0985167324543\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.3725924302231183\n", "The running loss is:\n", "16.43994829058647\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.4945407536896793\n", "The running loss is:\n", "12.457493215799332\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.1324993832544847\n", "The running loss is:\n", "12.50855478644371\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.1371413442221554\n", "The running loss is:\n", "12.073927566409111\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0976297787644647\n", "The running loss is:\n", "11.802223101258278\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0729293728416616\n", "The running loss is:\n", "11.131017163395882\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0119106512178073\n", "The running loss is:\n", "10.766869887709618\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.978806353428147\n", "The running loss is:\n", "10.445338189601898\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.949576199054718\n", "The running loss is:\n", "10.062777064740658\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9147979149764235\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.078831\n", "47 30819 ... 11.039064\n", "48 30820 ... 16.357121\n", "49 30821 ... 13.192023\n", "50 30822 ... 6.326085\n", "51 30823 ... 9.873568\n", "52 30824 ... 10.910859\n", "53 30825 ... 11.316805\n", "54 30826 ... 15.975700\n", "55 30827 ... 22.182123\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 11cp523e \n", "\n", "wandb: Agent Starting Run: 5qrg143a with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 5qrg143a\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/5qrg143a
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.156650215387344\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2869682013988495\n", "The running loss is:\n", "16.89894598722458\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.5362678170204163\n", "The running loss is:\n", "11.663092344999313\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.060281122272665\n", "The running loss is:\n", "11.744797706604004\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.067708882418546\n", "The running loss is:\n", "11.475342273712158\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0432129339738325\n", "The running loss is:\n", "11.35976918041706\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0327062891288237\n", "The running loss is:\n", "11.192541688680649\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.017503789880059\n", "The running loss is:\n", "11.171793431043625\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0156175846403295\n", "The running loss is:\n", "10.933511719107628\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9939556108279661\n", "The running loss is:\n", "10.853802099823952\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9867092818021774\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 7.104875\n", "47 30819 Eagle County, Colorado, United States ... 47 7.535665\n", "48 30820 Eagle County, Colorado, United States ... 48 7.494577\n", "49 30821 Eagle County, Colorado, United States ... 49 6.863788\n", "50 30822 Eagle County, Colorado, United States ... 50 6.753548\n", "51 30823 Eagle County, Colorado, United States ... 51 6.998057\n", "52 30824 Eagle County, Colorado, United States ... 52 7.178608\n", "53 30825 Eagle County, Colorado, United States ... 53 7.816975\n", "54 30826 Eagle County, Colorado, United States ... 54 8.525613\n", "55 30827 Eagle County, Colorado, United States ... 55 8.816086\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 5qrg143a \n", "\n", "wandb: Agent Starting Run: xml2wk55 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: xml2wk55\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xml2wk55
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.242870450019836\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.103572537501653\n", "The running loss is:\n", "26.00589569658041\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "2.167157974715034\n", "The running loss is:\n", "16.079134315252304\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.3399278596043587\n", "The running loss is:\n", "14.295495130121708\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.1912912608434756\n", "The running loss is:\n", "12.250516004860401\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0208763337383668\n", "The running loss is:\n", "12.25134564191103\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.0209454701592524\n", "The running loss is:\n", "11.315909065306187\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "0.9429924221088489\n", "The running loss is:\n", "12.214250043034554\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "1.0178541702528794\n", "The running loss is:\n", "11.34765262156725\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "0.9456377184639374\n", "The running loss is:\n", "11.16403116285801\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "0.9303359302381674\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.780159\n", "47 30819 ... 7.524302\n", "48 30820 ... 8.775655\n", "49 30821 ... 7.754395\n", "50 30822 ... 4.720078\n", "51 30823 ... 6.290050\n", "52 30824 ... 6.727722\n", "53 30825 ... 5.912613\n", "54 30826 ... 8.422699\n", "55 30827 ... 11.214253\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xml2wk55 \n", "\n", "wandb: Agent Starting Run: 57qin94v with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 57qin94v\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/57qin94v
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.26663488149643\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2969668074087664\n", "The running loss is:\n", "20.902589723467827\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.900235429406166\n", "The running loss is:\n", "13.939648985862732\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.267240816896612\n", "The running loss is:\n", "13.26231038570404\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.205664580518549\n", "The running loss is:\n", "12.16365271806717\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.105786610733379\n", "The running loss is:\n", "11.990179777145386\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0900163433768533\n", "The running loss is:\n", "10.77952553331852\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.97995686666532\n", "The running loss is:\n", "9.914591431617737\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9013264937834307\n", "The running loss is:\n", "9.7501370459795\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.8863760950890455\n", "The running loss is:\n", "10.100802019238472\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9182547290216793\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 6.128566\n", "47 30819 ... 8.571231\n", "48 30820 ... 13.003282\n", "49 30821 ... 10.600195\n", "50 30822 ... 3.180500\n", "51 30823 ... 5.083227\n", "52 30824 ... 6.587037\n", "53 30825 ... 6.724599\n", "54 30826 ... 10.925661\n", "55 30827 ... 15.574051\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 57qin94v \n", "\n", "wandb: Agent Starting Run: c9vklx84 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: c9vklx84\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/c9vklx84
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.399442881345749\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2181311710314318\n", "The running loss is:\n", "21.727802246809006\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.9752547497099096\n", "The running loss is:\n", "14.162266343832016\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.2874787585301832\n", "The running loss is:\n", "13.402291283011436\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2183901166374034\n", "The running loss is:\n", "11.804574847221375\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0731431679292158\n", "The running loss is:\n", "11.677122816443443\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0615566196766766\n", "The running loss is:\n", "11.409079656004906\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0371890596368096\n", "The running loss is:\n", "11.398159816861153\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0361963469873776\n", "The running loss is:\n", "11.29641242325306\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0269465839320964\n", "The running loss is:\n", "11.140063360333443\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.0127330327575856\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.260872\n", "47 30819 Eagle County, Colorado, United States ... 47 8.526230\n", "48 30820 Eagle County, Colorado, United States ... 48 8.849753\n", "49 30821 Eagle County, Colorado, United States ... 49 8.448010\n", "50 30822 Eagle County, Colorado, United States ... 50 8.209758\n", "51 30823 Eagle County, Colorado, United States ... 51 8.382380\n", "52 30824 Eagle County, Colorado, United States ... 52 8.583577\n", "53 30825 Eagle County, Colorado, United States ... 53 8.607120\n", "54 30826 Eagle County, Colorado, United States ... 54 9.303979\n", "55 30827 Eagle County, Colorado, United States ... 55 9.497848\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: c9vklx84 \n", "\n", "wandb: Agent Starting Run: i5gtlelt with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: i5gtlelt\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/i5gtlelt
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.092710718512535\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "1.257725893209378\n", "The running loss is:\n", "20.450885623693466\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.704240468641122\n", "The running loss is:\n", "21.794561214745045\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.816213434562087\n", "The running loss is:\n", "12.902893766760826\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.075241147230069\n", "The running loss is:\n", "12.682588957250118\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.0568824131041765\n", "The running loss is:\n", "11.801365286111832\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "0.9834471071759859\n", "The running loss is:\n", "12.599437983706594\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "1.0499531653088827\n", "The running loss is:\n", "12.43399265408516\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "1.0361660545070965\n", "The running loss is:\n", "12.696432754397392\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "1.0580360628664494\n", "The running loss is:\n", "12.389419689774513\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "1.0324516408145428\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 7.582536\n", "47 30819 ... 9.944989\n", "48 30820 ... 11.621634\n", "49 30821 ... 10.119394\n", "50 30822 ... 6.626044\n", "51 30823 ... 9.020576\n", "52 30824 ... 9.057504\n", "53 30825 ... 7.155132\n", "54 30826 ... 9.989118\n", "55 30827 ... 12.453584\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: i5gtlelt \n", "\n", "wandb: Agent Starting Run: o7duvp7g with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: o7duvp7g\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/o7duvp7g
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.42051613330841\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.3109560121189465\n", "The running loss is:\n", "21.608804553747177\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.9644367776133798\n", "The running loss is:\n", "19.04217305779457\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.7311066416176883\n", "The running loss is:\n", "12.788259238004684\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.1625690216367894\n", "The running loss is:\n", "12.244571149349213\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.1131428317590193\n", "The running loss is:\n", "11.830523952841759\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.075502177531069\n", "The running loss is:\n", "10.642112955451012\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9674648141319101\n", "The running loss is:\n", "10.170588843524456\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9245989857749506\n", "The running loss is:\n", "11.671000733971596\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0610000667246906\n", "The running loss is:\n", "10.027777716517448\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9116161560470407\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 5.864102\n", "47 30819 ... 8.607596\n", "48 30820 ... 17.503693\n", "49 30821 ... 15.386040\n", "50 30822 ... 8.010992\n", "51 30823 ... 12.374982\n", "52 30824 ... 12.264388\n", "53 30825 ... 6.375187\n", "54 30826 ... 10.301676\n", "55 30827 ... 19.392179\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: o7duvp7g \n", "\n", "wandb: Agent Starting Run: 52mcezh5 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 52mcezh5\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/52mcezh5
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.35429021716118\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.4867536561055616\n", "The running loss is:\n", "16.922948479652405\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.5384498617865823\n", "The running loss is:\n", "17.590839356184006\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.599167214198546\n", "The running loss is:\n", "13.326302886009216\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2114820805462925\n", "The running loss is:\n", "12.184310719370842\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.1076646108518948\n", "The running loss is:\n", "11.508990198373795\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0462718362157994\n", "The running loss is:\n", "11.508930832147598\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0462664392861454\n", "The running loss is:\n", "11.157640248537064\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0143309316851876\n", "The running loss is:\n", "11.021537959575653\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0019579963250593\n", "The running loss is:\n", "11.048202827572823\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.004382075233893\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.469040\n", "47 30819 Eagle County, Colorado, United States ... 47 6.957081\n", "48 30820 Eagle County, Colorado, United States ... 48 9.914102\n", "49 30821 Eagle County, Colorado, United States ... 49 7.646966\n", "50 30822 Eagle County, Colorado, United States ... 50 6.059446\n", "51 30823 Eagle County, Colorado, United States ... 51 6.762846\n", "52 30824 Eagle County, Colorado, United States ... 52 6.450365\n", "53 30825 Eagle County, Colorado, United States ... 53 5.381968\n", "54 30826 Eagle County, Colorado, United States ... 54 6.979038\n", "55 30827 Eagle County, Colorado, United States ... 55 7.752284\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 52mcezh5 \n", "\n", "wandb: Agent Starting Run: a971extu with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: a971extu\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/a971extu
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "62.512909442186356\n", "The number of items in train is: \n", "12\n", "The loss for epoch 0\n", "5.209409120182197\n", "The running loss is:\n", "17.651342948898673\n", "The number of items in train is: \n", "12\n", "The loss for epoch 1\n", "1.4709452457415562\n", "The running loss is:\n", "16.37899762019515\n", "The number of items in train is: \n", "12\n", "The loss for epoch 2\n", "1.3649164683495958\n", "The running loss is:\n", "15.15978118032217\n", "The number of items in train is: \n", "12\n", "The loss for epoch 3\n", "1.2633150983601809\n", "The running loss is:\n", "12.805925235152245\n", "The number of items in train is: \n", "12\n", "The loss for epoch 4\n", "1.067160436262687\n", "The running loss is:\n", "13.833072826266289\n", "The number of items in train is: \n", "12\n", "The loss for epoch 5\n", "1.152756068855524\n", "The running loss is:\n", "12.69072575867176\n", "The number of items in train is: \n", "12\n", "The loss for epoch 6\n", "1.0575604798893135\n", "The running loss is:\n", "11.099541798233986\n", "The number of items in train is: \n", "12\n", "The loss for epoch 7\n", "0.9249618165194988\n", "The running loss is:\n", "14.725254192948341\n", "The number of items in train is: \n", "12\n", "The loss for epoch 8\n", "1.2271045160790284\n", "The running loss is:\n", "13.127574309706688\n", "The number of items in train is: \n", "12\n", "The loss for epoch 9\n", "1.0939645258088906\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.151128\n", "47 30819 ... 10.103148\n", "48 30820 ... 8.635044\n", "49 30821 ... 8.976196\n", "50 30822 ... 11.631431\n", "51 30823 ... 10.928533\n", "52 30824 ... 10.460353\n", "53 30825 ... 9.690262\n", "54 30826 ... 9.819814\n", "55 30827 ... 9.771276\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: a971extu \n", "\n", "wandb: Agent Starting Run: r5j5ub0k with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: r5j5ub0k\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/r5j5ub0k
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "56.22648885846138\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "5.111498987132853\n", "The running loss is:\n", "16.17362278699875\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.4703293442726135\n", "The running loss is:\n", "12.739032804965973\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.158093891360543\n", "The running loss is:\n", "12.801687873899937\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.163789806718176\n", "The running loss is:\n", "11.013139143586159\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0011944675987416\n", "The running loss is:\n", "11.208409741520882\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.018946340138262\n", "The running loss is:\n", "11.521547451615334\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0474134046923032\n", "The running loss is:\n", "12.145481154322624\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.1041346503929659\n", "The running loss is:\n", "11.915283277630806\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0832075706937097\n", "The running loss is:\n", "10.81276260316372\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.982978418469429\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 8.238698\n", "47 30819 ... 15.917160\n", "48 30820 ... 18.836643\n", "49 30821 ... 15.165972\n", "50 30822 ... 7.579820\n", "51 30823 ... 11.474918\n", "52 30824 ... 10.543474\n", "53 30825 ... 3.774284\n", "54 30826 ... 13.712145\n", "55 30827 ... 21.918915\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: r5j5ub0k \n", "\n", "wandb: Agent Starting Run: auiqco3o with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 8\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: auiqco3o\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/auiqco3o
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 8\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 8\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 8\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "68.5550007224083\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "6.232272792946208\n", "The running loss is:\n", "17.13252791762352\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.5575025379657745\n", "The running loss is:\n", "21.412274941802025\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.9465704492547296\n", "The running loss is:\n", "18.478636503219604\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.6798760457472368\n", "The running loss is:\n", "13.234049081802368\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.2030953710729426\n", "The running loss is:\n", "12.859165400266647\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.169015036387877\n", "The running loss is:\n", "12.60863396525383\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.1462394513867118\n", "The running loss is:\n", "11.726247698068619\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0660225180062382\n", "The running loss is:\n", "11.967080354690552\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0879163958809592\n", "The running loss is:\n", "11.622294649481773\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.0565722408619793\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 8, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 11.041265\n", "47 30819 ... 11.052490\n", "48 30820 ... 11.052483\n", "49 30821 ... 11.052554\n", "50 30822 ... 11.196361\n", "51 30823 ... 11.056916\n", "52 30824 ... 11.044400\n", "53 30825 ... 11.057491\n", "54 30826 ... 11.101706\n", "55 30827 ... 11.101956\n", "\n", "[18 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: auiqco3o \n", "\n", "wandb: Agent Starting Run: somsettb with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: somsettb\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/somsettb
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.22938135266304\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2935801229693673\n", "The running loss is:\n", "19.941050857305527\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.8128228052095934\n", "The running loss is:\n", "11.153500378131866\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.0139545798301697\n", "The running loss is:\n", "11.50929357111454\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.0462994155558674\n", "The running loss is:\n", "10.824358247220516\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.9840325679291378\n", "The running loss is:\n", "10.066967114806175\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.9151788286187432\n", "The running loss is:\n", "10.130360662937164\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9209418784488331\n", "The running loss is:\n", "9.796619072556496\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.8906017338687723\n", "The running loss is:\n", "9.525743946433067\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.8659767224030062\n", "The running loss is:\n", "9.004187449812889\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.8185624954375353\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 1.641901\n", "47 30819 Eagle County, Colorado, United States ... 47 0.659750\n", "48 30820 Eagle County, Colorado, United States ... 48 0.145355\n", "49 30821 Eagle County, Colorado, United States ... 49 -1.664633\n", "50 30822 Eagle County, Colorado, United States ... 50 -3.271421\n", "51 30823 Eagle County, Colorado, United States ... 51 -3.226503\n", "52 30824 Eagle County, Colorado, United States ... 52 -4.404780\n", "53 30825 Eagle County, Colorado, United States ... 53 -4.431837\n", "54 30826 Eagle County, Colorado, United States ... 54 -3.693761\n", "55 30827 Eagle County, Colorado, United States ... 55 -5.035707\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: somsettb \n", "\n", "wandb: Agent Starting Run: ahdp4ztj with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: ahdp4ztj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ahdp4ztj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.904565572738647\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2640514157035134\n", "The running loss is:\n", "14.439204514026642\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.3126549558206038\n", "The running loss is:\n", "11.414902299642563\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.0377183908765966\n", "The running loss is:\n", "11.388078331947327\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.035279848358848\n", "The running loss is:\n", "10.855302773416042\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.9868457066741857\n", "The running loss is:\n", "10.968083716928959\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.9970985197208144\n", "The running loss is:\n", "10.221406817436218\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9292188015851107\n", "The running loss is:\n", "10.399505764245987\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9454096149314534\n", "The running loss is:\n", "9.819108434021473\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.8926462212746794\n", "The running loss is:\n", "10.10106372833252\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9182785207575018\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 0.993636\n", "47 30819 Eagle County, Colorado, United States ... 47 0.337607\n", "48 30820 Eagle County, Colorado, United States ... 48 -0.410252\n", "49 30821 Eagle County, Colorado, United States ... 49 -2.278395\n", "50 30822 Eagle County, Colorado, United States ... 50 -3.970787\n", "51 30823 Eagle County, Colorado, United States ... 51 -4.415275\n", "52 30824 Eagle County, Colorado, United States ... 52 -5.037481\n", "53 30825 Eagle County, Colorado, United States ... 53 -4.421631\n", "54 30826 Eagle County, Colorado, United States ... 54 -4.119612\n", "55 30827 Eagle County, Colorado, United States ... 55 -5.898763\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ahdp4ztj \n", "\n", "wandb: Agent Starting Run: x81o8l78 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: x81o8l78\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/x81o8l78
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.101940542459488\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.3729036856781354\n", "The running loss is:\n", "23.97471283376217\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.1795193485238333\n", "The running loss is:\n", "11.563013285398483\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.0511830259453168\n", "The running loss is:\n", "11.633486792445183\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.0575897084041075\n", "The running loss is:\n", "11.537669107317924\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0488790097561749\n", "The running loss is:\n", "10.989692643284798\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.9990629675713453\n", "The running loss is:\n", "10.99491299688816\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9995375451716509\n", "The running loss is:\n", "10.651772901415825\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9683429910378023\n", "The running loss is:\n", "10.3761787712574\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9432889792052183\n", "The running loss is:\n", "10.486194789409637\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9532904354008761\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.549189\n", "47 30819 Eagle County, Colorado, United States ... 47 5.238999\n", "48 30820 Eagle County, Colorado, United States ... 48 5.157782\n", "49 30821 Eagle County, Colorado, United States ... 49 4.296832\n", "50 30822 Eagle County, Colorado, United States ... 50 3.588796\n", "51 30823 Eagle County, Colorado, United States ... 51 3.961380\n", "52 30824 Eagle County, Colorado, United States ... 52 3.981963\n", "53 30825 Eagle County, Colorado, United States ... 53 4.519014\n", "54 30826 Eagle County, Colorado, United States ... 54 5.010921\n", "55 30827 Eagle County, Colorado, United States ... 55 4.995728\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: x81o8l78 \n", "\n", "wandb: Agent Starting Run: a8gs6fcn with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: a8gs6fcn\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/a8gs6fcn
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.293268650770187\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2993880591609261\n", "The running loss is:\n", "25.236984327435493\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.2942713024941357\n", "The running loss is:\n", "15.248826995491982\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.3862569995901801\n", "The running loss is:\n", "13.369037687778473\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2153670625253157\n", "The running loss is:\n", "11.280201107263565\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0254728279330514\n", "The running loss is:\n", "10.680228557437658\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.970929868857969\n", "The running loss is:\n", "10.887261852622032\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9897510775110938\n", "The running loss is:\n", "10.184634555131197\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9258758686482906\n", "The running loss is:\n", "10.048418715596199\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9134926105087454\n", "The running loss is:\n", "9.457138307392597\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.8597398461265997\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.523421\n", "47 30819 Eagle County, Colorado, United States ... 47 5.732596\n", "48 30820 Eagle County, Colorado, United States ... 48 5.351936\n", "49 30821 Eagle County, Colorado, United States ... 49 4.316126\n", "50 30822 Eagle County, Colorado, United States ... 50 3.560244\n", "51 30823 Eagle County, Colorado, United States ... 51 4.253401\n", "52 30824 Eagle County, Colorado, United States ... 52 3.771999\n", "53 30825 Eagle County, Colorado, United States ... 53 3.702273\n", "54 30826 Eagle County, Colorado, United States ... 54 4.884375\n", "55 30827 Eagle County, Colorado, United States ... 55 4.741635\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: a8gs6fcn \n", "\n", "wandb: Agent Starting Run: vu8mseek with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: vu8mseek\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/vu8mseek
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.480009138584137\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.2254553762349216\n", "The running loss is:\n", "18.653071716427803\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.6957337924025275\n", "The running loss is:\n", "12.810831904411316\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.1646210822192105\n", "The running loss is:\n", "12.394441686570644\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.1267674260518767\n", "The running loss is:\n", "11.051628254354\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0046934776685454\n", "The running loss is:\n", "11.096481785178185\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.008771071379835\n", "The running loss is:\n", "10.40086854994297\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9455335045402701\n", "The running loss is:\n", "10.105966605246067\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9187242368405516\n", "The running loss is:\n", "9.457882694900036\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.8598075177181851\n", "The running loss is:\n", "9.17867822945118\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.8344252935864709\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 0.126443\n", "47 30819 Eagle County, Colorado, United States ... 47 1.472562\n", "48 30820 Eagle County, Colorado, United States ... 48 0.837418\n", "49 30821 Eagle County, Colorado, United States ... 49 -0.418314\n", "50 30822 Eagle County, Colorado, United States ... 50 -1.061832\n", "51 30823 Eagle County, Colorado, United States ... 51 -0.909486\n", "52 30824 Eagle County, Colorado, United States ... 52 -1.210210\n", "53 30825 Eagle County, Colorado, United States ... 53 -1.402265\n", "54 30826 Eagle County, Colorado, United States ... 54 -1.178178\n", "55 30827 Eagle County, Colorado, United States ... 55 -2.296195\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: vu8mseek \n", "\n", "wandb: Agent Starting Run: ypnfalp7 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: ypnfalp7\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/ypnfalp7
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.256483346223831\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.3869530314748937\n", "The running loss is:\n", "20.161068454384804\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.8328244049440732\n", "The running loss is:\n", "21.77994852513075\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.9799953204664318\n", "The running loss is:\n", "14.009808540344238\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2736189582131126\n", "The running loss is:\n", "11.812053754925728\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0738230686296115\n", "The running loss is:\n", "11.489768326282501\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0445243932984092\n", "The running loss is:\n", "11.18503075838089\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0168209780346265\n", "The running loss is:\n", "10.996993936598301\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9997267215089365\n", "The running loss is:\n", "10.645965211093426\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9678150191903114\n", "The running loss is:\n", "10.70228710025549\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9729351909323172\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.941140\n", "47 30819 Eagle County, Colorado, United States ... 47 5.203240\n", "48 30820 Eagle County, Colorado, United States ... 48 5.400292\n", "49 30821 Eagle County, Colorado, United States ... 49 5.070734\n", "50 30822 Eagle County, Colorado, United States ... 50 4.472741\n", "51 30823 Eagle County, Colorado, United States ... 51 4.626699\n", "52 30824 Eagle County, Colorado, United States ... 52 4.676058\n", "53 30825 Eagle County, Colorado, United States ... 53 4.822545\n", "54 30826 Eagle County, Colorado, United States ... 54 4.917575\n", "55 30827 Eagle County, Colorado, United States ... 55 5.222575\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: ypnfalp7 \n", "\n", "wandb: Agent Starting Run: fhuyeb8k with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: fhuyeb8k\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fhuyeb8k
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.009724855422974\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.819065895947543\n", "The running loss is:\n", "17.003920286893845\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.5458109351721676\n", "The running loss is:\n", "24.95011392235756\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "2.268192174759778\n", "The running loss is:\n", "14.320160880684853\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.3018328073349865\n", "The running loss is:\n", "13.634816728532314\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.2395287935029378\n", "The running loss is:\n", "11.614453293383121\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0558593903075566\n", "The running loss is:\n", "10.36690553277731\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.94244595752521\n", "The running loss is:\n", "11.941105760633945\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0855550691485405\n", "The running loss is:\n", "11.603152967989445\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0548320879990405\n", "The running loss is:\n", "10.878066308796406\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9889151189814914\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.755946\n", "47 30819 Eagle County, Colorado, United States ... 47 3.948533\n", "48 30820 Eagle County, Colorado, United States ... 48 4.109846\n", "49 30821 Eagle County, Colorado, United States ... 49 3.798323\n", "50 30822 Eagle County, Colorado, United States ... 50 3.180298\n", "51 30823 Eagle County, Colorado, United States ... 51 3.435037\n", "52 30824 Eagle County, Colorado, United States ... 52 3.290437\n", "53 30825 Eagle County, Colorado, United States ... 53 3.229304\n", "54 30826 Eagle County, Colorado, United States ... 54 3.526299\n", "55 30827 Eagle County, Colorado, United States ... 55 3.496862\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fhuyeb8k \n", "\n", "wandb: Agent Starting Run: o12nxwrs with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: o12nxwrs\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/o12nxwrs
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.3218465000391\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.483804227276282\n", "The running loss is:\n", "15.315989192575216\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.3923626538704743\n", "The running loss is:\n", "14.728986725211143\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.338998793201013\n", "The running loss is:\n", "11.862384408712387\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.078398582610217\n", "The running loss is:\n", "11.441317409276962\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0401197644797238\n", "The running loss is:\n", "11.3860694617033\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.035097223791209\n", "The running loss is:\n", "10.910162702202797\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.991832972927527\n", "The running loss is:\n", "10.58010609447956\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9618278267708692\n", "The running loss is:\n", "10.980321384966373\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9982110349969431\n", "The running loss is:\n", "10.795635655522346\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9814214232293043\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.697867\n", "47 30819 Eagle County, Colorado, United States ... 47 6.948792\n", "48 30820 Eagle County, Colorado, United States ... 48 7.443105\n", "49 30821 Eagle County, Colorado, United States ... 49 7.463962\n", "50 30822 Eagle County, Colorado, United States ... 50 6.714512\n", "51 30823 Eagle County, Colorado, United States ... 51 6.026889\n", "52 30824 Eagle County, Colorado, United States ... 52 6.382638\n", "53 30825 Eagle County, Colorado, United States ... 53 7.221634\n", "54 30826 Eagle County, Colorado, United States ... 54 7.065754\n", "55 30827 Eagle County, Colorado, United States ... 55 7.099236\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: o12nxwrs \n", "\n", "wandb: Agent Starting Run: xvue9u7r with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: xvue9u7r\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xvue9u7r
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "23.463824197649956\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "2.133074927059087\n", "The running loss is:\n", "15.782015278935432\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.434728661721403\n", "The running loss is:\n", "18.047666788101196\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.6406969807364724\n", "The running loss is:\n", "15.659799247980118\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.423618113452738\n", "The running loss is:\n", "12.579364575445652\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.1435785977677866\n", "The running loss is:\n", "11.840390399098396\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0763991271907634\n", "The running loss is:\n", "11.462177857756615\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.042016168886965\n", "The running loss is:\n", "11.036812007427216\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0033465461297468\n", "The running loss is:\n", "11.114317834377289\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0103925303979353\n", "The running loss is:\n", "10.485807582736015\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9532552347941832\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.167429\n", "47 30819 Eagle County, Colorado, United States ... 47 5.274903\n", "48 30820 Eagle County, Colorado, United States ... 48 5.347121\n", "49 30821 Eagle County, Colorado, United States ... 49 5.224376\n", "50 30822 Eagle County, Colorado, United States ... 50 4.545171\n", "51 30823 Eagle County, Colorado, United States ... 51 4.629979\n", "52 30824 Eagle County, Colorado, United States ... 52 4.639435\n", "53 30825 Eagle County, Colorado, United States ... 53 4.866332\n", "54 30826 Eagle County, Colorado, United States ... 54 4.865740\n", "55 30827 Eagle County, Colorado, United States ... 55 5.358328\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xvue9u7r \n", "\n", "wandb: Agent Starting Run: 3k2gj89q with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 3k2gj89q\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/3k2gj89q
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "90.29608756303787\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "8.208735233003443\n", "The running loss is:\n", "16.856530398130417\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.5324118543754925\n", "The running loss is:\n", "21.56619629263878\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.960563299330798\n", "The running loss is:\n", "15.163192972540855\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.378472088412805\n", "The running loss is:\n", "16.831146404147148\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.5301042185588316\n", "The running loss is:\n", "13.869851365685463\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.2608955786986784\n", "The running loss is:\n", "14.04520610626787\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.2768369187516244\n", "The running loss is:\n", "12.467475153505802\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.133406832136891\n", "The running loss is:\n", "11.837162591516972\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0761056901379065\n", "The running loss is:\n", "11.645600214600563\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.0586909286000512\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 12.232118\n", "47 30819 ... 11.285740\n", "48 30820 ... 11.412394\n", "49 30821 ... 11.406689\n", "50 30822 ... 11.396914\n", "51 30823 ... 11.609783\n", "52 30824 ... 11.633080\n", "53 30825 ... 11.424625\n", "54 30826 ... 11.864182\n", "55 30827 ... 11.468259\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 3k2gj89q \n", "\n", "wandb: Agent Starting Run: 1tgk2elj with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: 1tgk2elj\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/1tgk2elj
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "59.00660365819931\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "5.364236696199938\n", "The running loss is:\n", "14.09033265709877\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.2809393324635245\n", "The running loss is:\n", "13.665505439043045\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.2423186762766405\n", "The running loss is:\n", "15.05822366476059\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.3689294240691445\n", "The running loss is:\n", "13.959211483597755\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.2690192257816142\n", "The running loss is:\n", "12.256061419844627\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.114187401804057\n", "The running loss is:\n", "12.423433378338814\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.1294030343944377\n", "The running loss is:\n", "12.089040637016296\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0990036942742087\n", "The running loss is:\n", "12.20865024626255\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.1098772951147773\n", "The running loss is:\n", "12.115084633231163\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.101371330293742\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 9.465091\n", "47 30819 Eagle County, Colorado, United States ... 47 9.144346\n", "48 30820 Eagle County, Colorado, United States ... 48 9.144058\n", "49 30821 Eagle County, Colorado, United States ... 49 8.759192\n", "50 30822 Eagle County, Colorado, United States ... 50 8.681924\n", "51 30823 Eagle County, Colorado, United States ... 51 8.518374\n", "52 30824 Eagle County, Colorado, United States ... 52 8.642056\n", "53 30825 Eagle County, Colorado, United States ... 53 8.642455\n", "54 30826 Eagle County, Colorado, United States ... 54 8.403084\n", "55 30827 Eagle County, Colorado, United States ... 55 9.770735\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 1tgk2elj \n", "\n", "wandb: Agent Starting Run: u0l4gkbl with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 9\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: u0l4gkbl\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/u0l4gkbl
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 9\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 9\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 9\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "88.96907395124435\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "8.088097631931305\n", "The running loss is:\n", "28.60553839802742\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.6005034907297655\n", "The running loss is:\n", "36.84468446671963\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "3.3495167697017845\n", "The running loss is:\n", "12.81296344101429\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.1648148582740263\n", "The running loss is:\n", "12.78886991739273\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.1626245379447937\n", "The running loss is:\n", "12.014240890741348\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0922037173401227\n", "The running loss is:\n", "11.263784617185593\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0239804197441449\n", "The running loss is:\n", "11.543391533195972\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.049399230290543\n", "The running loss is:\n", "11.280034869909286\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0254577154462987\n", "The running loss is:\n", "11.284744039177895\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.025885821743445\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 9, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 8.673812\n", "47 30819 Eagle County, Colorado, United States ... 47 7.985293\n", "48 30820 Eagle County, Colorado, United States ... 48 8.133834\n", "49 30821 Eagle County, Colorado, United States ... 49 7.933124\n", "50 30822 Eagle County, Colorado, United States ... 50 7.829472\n", "51 30823 Eagle County, Colorado, United States ... 51 7.938765\n", "52 30824 Eagle County, Colorado, United States ... 52 7.902779\n", "53 30825 Eagle County, Colorado, United States ... 53 8.302330\n", "54 30826 Eagle County, Colorado, United States ... 54 8.484731\n", "55 30827 Eagle County, Colorado, United States ... 55 8.491733\n", "\n", "[19 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: u0l4gkbl \n", "\n", "wandb: Agent Starting Run: l929ks1j with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: l929ks1j\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l929ks1j
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.92371991276741\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.3567018102515827\n", "The running loss is:\n", "16.43264576792717\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.493876887993379\n", "The running loss is:\n", "11.552073381841183\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.0501884892582893\n", "The running loss is:\n", "11.72037386894226\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.0654885335402056\n", "The running loss is:\n", "11.173139587044716\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0157399624586105\n", "The running loss is:\n", "10.70702352002263\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.9733657745475118\n", "The running loss is:\n", "10.8629803173244\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9875436652113091\n", "The running loss is:\n", "10.56940308585763\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9608548259870573\n", "The running loss is:\n", "10.278399351984262\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9343999410894784\n", "The running loss is:\n", "9.92225181683898\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9020228924399073\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.548505\n", "47 30819 Eagle County, Colorado, United States ... 47 6.799479\n", "48 30820 Eagle County, Colorado, United States ... 48 7.248922\n", "49 30821 Eagle County, Colorado, United States ... 49 6.497251\n", "50 30822 Eagle County, Colorado, United States ... 50 5.649336\n", "51 30823 Eagle County, Colorado, United States ... 51 4.337851\n", "52 30824 Eagle County, Colorado, United States ... 52 3.793358\n", "53 30825 Eagle County, Colorado, United States ... 53 4.435680\n", "54 30826 Eagle County, Colorado, United States ... 54 5.779097\n", "55 30827 Eagle County, Colorado, United States ... 55 6.433308\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l929ks1j \n", "\n", "wandb: Agent Starting Run: uz1ls2ow with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: uz1ls2ow\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/uz1ls2ow
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.075268387794495\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.370478944344954\n", "The running loss is:\n", "18.250104278326035\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.6591003889387304\n", "The running loss is:\n", "11.863716915249825\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.078519719568166\n", "The running loss is:\n", "11.809837684035301\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.0736216076395728\n", "The running loss is:\n", "11.555817887187004\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0505288988351822\n", "The running loss is:\n", "11.156246989965439\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.01420427181504\n", "The running loss is:\n", "11.147064179182053\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.013369470834732\n", "The running loss is:\n", "10.738830104470253\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9762572822245684\n", "The running loss is:\n", "10.667878225445747\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9698071114041589\n", "The running loss is:\n", "10.60825464129448\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9643867855722253\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 4.673477\n", "47 30819 Eagle County, Colorado, United States ... 47 5.280448\n", "48 30820 Eagle County, Colorado, United States ... 48 6.011500\n", "49 30821 Eagle County, Colorado, United States ... 49 4.960355\n", "50 30822 Eagle County, Colorado, United States ... 50 3.920301\n", "51 30823 Eagle County, Colorado, United States ... 51 2.750020\n", "52 30824 Eagle County, Colorado, United States ... 52 2.592566\n", "53 30825 Eagle County, Colorado, United States ... 53 2.902614\n", "54 30826 Eagle County, Colorado, United States ... 54 3.555806\n", "55 30827 Eagle County, Colorado, United States ... 55 4.717776\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: uz1ls2ow \n", "\n", "wandb: Agent Starting Run: 54fe3ak1 with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 54fe3ak1\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/54fe3ak1
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "13.83226963877678\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.383226963877678\n", "The running loss is:\n", "15.266054153442383\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.5266054153442383\n", "The running loss is:\n", "11.117882281541824\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.1117882281541824\n", "The running loss is:\n", "11.215152770280838\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.1215152770280838\n", "The running loss is:\n", "10.989554300904274\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.0989554300904274\n", "The running loss is:\n", "10.816273152828217\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.0816273152828217\n", "The running loss is:\n", "10.548416331410408\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.0548416331410408\n", "The running loss is:\n", "10.31107048690319\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.031107048690319\n", "The running loss is:\n", "10.179565638303757\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "1.0179565638303756\n", "The running loss is:\n", "9.991168916225433\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.9991168916225434\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.514035\n", "47 30819 Eagle County, Colorado, United States ... 47 7.254191\n", "48 30820 Eagle County, Colorado, United States ... 48 6.290533\n", "49 30821 Eagle County, Colorado, United States ... 49 6.119982\n", "50 30822 Eagle County, Colorado, United States ... 50 6.080837\n", "51 30823 Eagle County, Colorado, United States ... 51 4.723925\n", "52 30824 Eagle County, Colorado, United States ... 52 3.630096\n", "53 30825 Eagle County, Colorado, United States ... 53 4.117791\n", "54 30826 Eagle County, Colorado, United States ... 54 5.901507\n", "55 30827 Eagle County, Colorado, United States ... 55 5.877332\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 54fe3ak1 \n", "\n", "wandb: Agent Starting Run: xlo78q8b with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: xlo78q8b\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/xlo78q8b
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.106579810380936\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.3733254373073578\n", "The running loss is:\n", "22.456708751618862\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.0415189774198965\n", "The running loss is:\n", "14.402357146143913\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.309305195103992\n", "The running loss is:\n", "13.298728570342064\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.2089753245765513\n", "The running loss is:\n", "11.133810125291348\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.012164556844668\n", "The running loss is:\n", "11.0093739554286\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0008521777662365\n", "The running loss is:\n", "10.6600153259933\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9690923023630272\n", "The running loss is:\n", "10.412130199372768\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9465572908520699\n", "The running loss is:\n", "10.362909991294146\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.942082726481286\n", "The running loss is:\n", "10.477576583623886\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.952506962147626\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 7.556224\n", "47 30819 Eagle County, Colorado, United States ... 47 8.307045\n", "48 30820 Eagle County, Colorado, United States ... 48 8.447693\n", "49 30821 Eagle County, Colorado, United States ... 49 8.431895\n", "50 30822 Eagle County, Colorado, United States ... 50 8.247824\n", "51 30823 Eagle County, Colorado, United States ... 51 7.643862\n", "52 30824 Eagle County, Colorado, United States ... 52 7.295239\n", "53 30825 Eagle County, Colorado, United States ... 53 7.528549\n", "54 30826 Eagle County, Colorado, United States ... 54 8.345770\n", "55 30827 Eagle County, Colorado, United States ... 55 8.461617\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: xlo78q8b \n", "\n", "wandb: Agent Starting Run: l9ce7gon with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: l9ce7gon\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/l9ce7gon
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.394998997449875\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.399545363404534\n", "The running loss is:\n", "23.997811377048492\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.1816192160953176\n", "The running loss is:\n", "14.285172209143639\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.2986520190130582\n", "The running loss is:\n", "12.942523777484894\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.1765930706804448\n", "The running loss is:\n", "11.262697920203209\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0238816291093826\n", "The running loss is:\n", "11.160549372434616\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.014595397494056\n", "The running loss is:\n", "11.12978708744049\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0117988261309536\n", "The running loss is:\n", "10.566879317164421\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9606253924694929\n", "The running loss is:\n", "10.78386503458023\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.980351366780021\n", "The running loss is:\n", "10.294064745306969\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.935824067755179\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.395967\n", "47 30819 Eagle County, Colorado, United States ... 47 5.880879\n", "48 30820 Eagle County, Colorado, United States ... 48 6.679946\n", "49 30821 Eagle County, Colorado, United States ... 49 5.419914\n", "50 30822 Eagle County, Colorado, United States ... 50 4.428827\n", "51 30823 Eagle County, Colorado, United States ... 51 3.509271\n", "52 30824 Eagle County, Colorado, United States ... 52 4.432165\n", "53 30825 Eagle County, Colorado, United States ... 53 4.058541\n", "54 30826 Eagle County, Colorado, United States ... 54 4.401000\n", "55 30827 Eagle County, Colorado, United States ... 55 5.193408\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: l9ce7gon \n", "\n", "wandb: Agent Starting Run: r358t16w with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: r358t16w\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/r358t16w
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.527101278305054\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.4527101278305055\n", "The running loss is:\n", "22.141034603118896\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.2141034603118896\n", "The running loss is:\n", "12.012695848941803\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.2012695848941803\n", "The running loss is:\n", "12.097595125436783\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.2097595125436782\n", "The running loss is:\n", "11.048981189727783\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.1048981189727782\n", "The running loss is:\n", "11.015377283096313\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.1015377283096313\n", "The running loss is:\n", "10.59331339597702\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.059331339597702\n", "The running loss is:\n", "10.057495325803757\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.0057495325803756\n", "The running loss is:\n", "9.739617317914963\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.9739617317914963\n", "The running loss is:\n", "9.51185992360115\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "0.951185992360115\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 3.109675\n", "47 30819 Eagle County, Colorado, United States ... 47 7.202462\n", "48 30820 Eagle County, Colorado, United States ... 48 6.471476\n", "49 30821 Eagle County, Colorado, United States ... 49 6.885487\n", "50 30822 Eagle County, Colorado, United States ... 50 8.134160\n", "51 30823 Eagle County, Colorado, United States ... 51 5.623744\n", "52 30824 Eagle County, Colorado, United States ... 52 2.716154\n", "53 30825 Eagle County, Colorado, United States ... 53 2.542940\n", "54 30826 Eagle County, Colorado, United States ... 54 5.271421\n", "55 30827 Eagle County, Colorado, United States ... 55 3.604456\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: r358t16w \n", "\n", "wandb: Agent Starting Run: 0n7rpkqi with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: 0n7rpkqi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/0n7rpkqi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "20.287513837218285\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.8443194397471168\n", "The running loss is:\n", "17.763389602303505\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.6148536002094096\n", "The running loss is:\n", "18.308134004473686\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.664375818588517\n", "The running loss is:\n", "13.646052297204733\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.240550208836794\n", "The running loss is:\n", "11.77882007136941\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0708018246699462\n", "The running loss is:\n", "11.554875448346138\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0504432225769216\n", "The running loss is:\n", "10.891038347035646\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9900943951850588\n", "The running loss is:\n", "10.527192924171686\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9570175385610624\n", "The running loss is:\n", "10.677618101239204\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9706925546581094\n", "The running loss is:\n", "9.92277317494154\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9020702886310491\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.662254\n", "47 30819 Eagle County, Colorado, United States ... 47 8.584000\n", "48 30820 Eagle County, Colorado, United States ... 48 8.154727\n", "49 30821 Eagle County, Colorado, United States ... 49 7.953487\n", "50 30822 Eagle County, Colorado, United States ... 50 9.607455\n", "51 30823 Eagle County, Colorado, United States ... 51 7.888170\n", "52 30824 Eagle County, Colorado, United States ... 52 4.632975\n", "53 30825 Eagle County, Colorado, United States ... 53 4.524205\n", "54 30826 Eagle County, Colorado, United States ... 54 7.611029\n", "55 30827 Eagle County, Colorado, United States ... 55 6.325020\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 0n7rpkqi \n", "\n", "wandb: Agent Starting Run: sm1667zy with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: sm1667zy\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/sm1667zy
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "21.04368895292282\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.9130626320838928\n", "The running loss is:\n", "17.420522198081017\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.5836838361891834\n", "The running loss is:\n", "18.03695920109749\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.6397235637361354\n", "The running loss is:\n", "12.567854255437851\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.1425322050398046\n", "The running loss is:\n", "11.904003366827965\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0821821242570877\n", "The running loss is:\n", "11.364094316959381\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0330994833599438\n", "The running loss is:\n", "11.217663764953613\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.019787614995783\n", "The running loss is:\n", "10.618583157658577\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.9653257416053251\n", "The running loss is:\n", "10.280679374933243\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "0.9346072159030221\n", "The running loss is:\n", "10.05563603155315\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "0.9141487301411954\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 5.821763\n", "47 30819 Eagle County, Colorado, United States ... 47 7.734202\n", "48 30820 Eagle County, Colorado, United States ... 48 7.385605\n", "49 30821 Eagle County, Colorado, United States ... 49 6.645911\n", "50 30822 Eagle County, Colorado, United States ... 50 5.434975\n", "51 30823 Eagle County, Colorado, United States ... 51 4.449950\n", "52 30824 Eagle County, Colorado, United States ... 52 4.956104\n", "53 30825 Eagle County, Colorado, United States ... 53 4.387439\n", "54 30826 Eagle County, Colorado, United States ... 54 4.889442\n", "55 30827 Eagle County, Colorado, United States ... 55 4.947524\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: sm1667zy \n", "\n", "wandb: Agent Starting Run: fxx2bd2s with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: fxx2bd2s\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fxx2bd2s
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.389306485652924\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.7389306485652924\n", "The running loss is:\n", "17.50364814698696\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.750364814698696\n", "The running loss is:\n", "12.744259268045425\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.2744259268045426\n", "The running loss is:\n", "11.429000854492188\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.1429000854492188\n", "The running loss is:\n", "11.428666561841965\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.1428666561841965\n", "The running loss is:\n", "11.07622879743576\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.107622879743576\n", "The running loss is:\n", "10.732758343219757\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.0732758343219757\n", "The running loss is:\n", "10.29849573969841\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.029849573969841\n", "The running loss is:\n", "9.432255893945694\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "0.9432255893945694\n", "The running loss is:\n", "10.343920201063156\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "1.0343920201063157\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "36 30808 ... 0.000000\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 3.357261\n", "47 30819 ... 10.925328\n", "48 30820 ... 7.806000\n", "49 30821 ... 7.145774\n", "50 30822 ... 8.982411\n", "51 30823 ... 6.517039\n", "52 30824 ... 1.144588\n", "53 30825 ... 2.173529\n", "54 30826 ... 7.736863\n", "55 30827 ... 6.227529\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fxx2bd2s \n", "\n", "wandb: Agent Starting Run: w6g5blue with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: w6g5blue\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/w6g5blue
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "90.27539926767349\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "8.206854478879409\n", "The running loss is:\n", "17.084474243223667\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.5531340221112424\n", "The running loss is:\n", "31.057914689183235\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "2.8234467899257485\n", "The running loss is:\n", "12.706370091997087\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.155124553817917\n", "The running loss is:\n", "13.30304903909564\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.2093680944632401\n", "The running loss is:\n", "11.941582351922989\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0855983956293627\n", "The running loss is:\n", "11.729828983545303\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0663480894132094\n", "The running loss is:\n", "11.54419081658125\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0494718924164772\n", "The running loss is:\n", "11.445036083459854\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0404578257690777\n", "The running loss is:\n", "12.198932491242886\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.1089938628402622\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 9.059834\n", "47 30819 Eagle County, Colorado, United States ... 47 9.635443\n", "48 30820 Eagle County, Colorado, United States ... 48 8.613738\n", "49 30821 Eagle County, Colorado, United States ... 49 8.764878\n", "50 30822 Eagle County, Colorado, United States ... 50 9.000231\n", "51 30823 Eagle County, Colorado, United States ... 51 8.862867\n", "52 30824 Eagle County, Colorado, United States ... 52 8.921799\n", "53 30825 Eagle County, Colorado, United States ... 53 8.708253\n", "54 30826 Eagle County, Colorado, United States ... 54 8.750038\n", "55 30827 Eagle County, Colorado, United States ... 55 8.904809\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: w6g5blue \n", "\n", "wandb: Agent Starting Run: k5yt9z6i with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: k5yt9z6i\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/k5yt9z6i
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "79.64415696263313\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "7.240377905693921\n", "The running loss is:\n", "15.614883661270142\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.4195348782972856\n", "The running loss is:\n", "31.27257139980793\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "2.8429610363461753\n", "The running loss is:\n", "12.299777299165726\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.1181615726514296\n", "The running loss is:\n", "12.365853264927864\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.1241684786298058\n", "The running loss is:\n", "11.874301999807358\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "1.0794819999824872\n", "The running loss is:\n", "11.15727785974741\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0142979872497646\n", "The running loss is:\n", "12.789401710033417\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.1626728827303106\n", "The running loss is:\n", "12.836177736520767\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.1669252487746151\n", "The running loss is:\n", "12.494936317205429\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.13590330156413\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "36 30808 Eagle County, Colorado, United States ... 36 0.000000\n", "37 30809 Eagle County, Colorado, United States ... 37 0.000000\n", "38 30810 Eagle County, Colorado, United States ... 38 0.000000\n", "39 30811 Eagle County, Colorado, United States ... 39 0.000000\n", "40 30812 Eagle County, Colorado, United States ... 40 0.000000\n", "41 30813 Eagle County, Colorado, United States ... 41 0.000000\n", "42 30814 Eagle County, Colorado, United States ... 42 0.000000\n", "43 30815 Eagle County, Colorado, United States ... 43 0.000000\n", "44 30816 Eagle County, Colorado, United States ... 44 0.000000\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 9.161367\n", "47 30819 Eagle County, Colorado, United States ... 47 7.209705\n", "48 30820 Eagle County, Colorado, United States ... 48 7.124010\n", "49 30821 Eagle County, Colorado, United States ... 49 6.953374\n", "50 30822 Eagle County, Colorado, United States ... 50 6.195547\n", "51 30823 Eagle County, Colorado, United States ... 51 6.672840\n", "52 30824 Eagle County, Colorado, United States ... 52 8.153156\n", "53 30825 Eagle County, Colorado, United States ... 53 8.977440\n", "54 30826 Eagle County, Colorado, United States ... 54 7.785304\n", "55 30827 Eagle County, Colorado, United States ... 55 7.588449\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: k5yt9z6i \n", "\n", "wandb: Agent Starting Run: 9x1zyi9m with config:\n", "\tbatch_size: 3\n", "\tforecast_history: 10\n", "\tlr: 0.01\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 9x1zyi9m\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/9x1zyi9m
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 3\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " class: default\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 10\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 10\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.01\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 10\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 3\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.01\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "64.2933794260025\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "6.429337942600251\n", "The running loss is:\n", "12.211681365966797\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.2211681365966798\n", "The running loss is:\n", "21.949569940567017\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "2.1949569940567017\n", "The running loss is:\n", "11.897155582904816\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.1897155582904815\n", "The running loss is:\n", "11.937202170491219\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.193720217049122\n", "The running loss is:\n", "11.373739659786224\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.1373739659786224\n", "The running loss is:\n", "11.289853632450104\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.1289853632450104\n", "The running loss is:\n", "12.61861452460289\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.261861452460289\n", "The running loss is:\n", "11.258632987737656\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "1.1258632987737656\n", "The running loss is:\n", "11.705809533596039\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "1.1705809533596039\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 10, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "36 30808 ... 0.000000\n", "37 30809 ... 0.000000\n", "38 30810 ... 0.000000\n", "39 30811 ... 0.000000\n", "40 30812 ... 0.000000\n", "41 30813 ... 0.000000\n", "42 30814 ... 0.000000\n", "43 30815 ... 0.000000\n", "44 30816 ... 0.000000\n", "45 30817 ... 0.000000\n", "46 30818 ... 10.613785\n", "47 30819 ... 10.972606\n", "48 30820 ... 9.573963\n", "49 30821 ... 10.296286\n", "50 30822 ... 11.664459\n", "51 30823 ... 11.187622\n", "52 30824 ... 10.221498\n", "53 30825 ... 9.448482\n", "54 30826 ... 11.003543\n", "55 30827 ... 10.186419\n", "\n", "[20 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 9x1zyi9m \n", "\n", "wandb: Agent Starting Run: cnj2rij2 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: cnj2rij2\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/cnj2rij2
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.563437849283218\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.4148579862984745\n", "The running loss is:\n", "11.875256389379501\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.0795687626708637\n", "The running loss is:\n", "11.802671521902084\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.072970138354735\n", "The running loss is:\n", "10.889880567789078\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "0.9899891425262798\n", "The running loss is:\n", "10.882348626852036\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "0.9893044206229124\n", "The running loss is:\n", "10.595496848225594\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.9632269862023267\n", "The running loss is:\n", "11.13110238313675\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0119183984669773\n", "The running loss is:\n", "11.167180925607681\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0151982659643346\n", "The running loss is:\n", "11.299386888742447\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.027216989885677\n", "The running loss is:\n", "11.52681016921997\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.047891833565452\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.068464\n", "47 30819 Eagle County, Colorado, United States ... 47 7.053399\n", "48 30820 Eagle County, Colorado, United States ... 48 7.034788\n", "49 30821 Eagle County, Colorado, United States ... 49 6.769552\n", "50 30822 Eagle County, Colorado, United States ... 50 6.443708\n", "51 30823 Eagle County, Colorado, United States ... 51 6.102969\n", "52 30824 Eagle County, Colorado, United States ... 52 5.758569\n", "53 30825 Eagle County, Colorado, United States ... 53 7.237902\n", "54 30826 Eagle County, Colorado, United States ... 54 7.340793\n", "55 30827 Eagle County, Colorado, United States ... 55 7.105416\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: cnj2rij2 \n", "\n", "wandb: Agent Starting Run: j0ahel1n with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: j0ahel1n\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/j0ahel1n
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "17.160024404525757\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.7160024404525758\n", "The running loss is:\n", "14.127461165189743\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.4127461165189743\n", "The running loss is:\n", "14.144697785377502\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.4144697785377502\n", "The running loss is:\n", "13.568500280380249\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.356850028038025\n", "The running loss is:\n", "13.604806244373322\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.3604806244373322\n", "The running loss is:\n", "13.699465811252594\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.3699465811252594\n", "The running loss is:\n", "13.266174376010895\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.3266174376010895\n", "The running loss is:\n", "13.102667212486267\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.3102667212486268\n", "The running loss is:\n", "13.137517273426056\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "1.3137517273426056\n", "The running loss is:\n", "13.256415218114853\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "1.3256415218114852\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 17.149412\n", "47 30819 ... 21.162560\n", "48 30820 ... 21.526651\n", "49 30821 ... 20.793573\n", "50 30822 ... 19.730604\n", "51 30823 ... 18.568447\n", "52 30824 ... 17.376465\n", "53 30825 ... 22.073378\n", "54 30826 ... 22.643063\n", "55 30827 ... 21.971800\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: j0ahel1n \n", "\n", "wandb: Agent Starting Run: fp31d2fi with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.001\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: fp31d2fi\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/fp31d2fi
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.001\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.001\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.85852700471878\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.685852700471878\n", "The running loss is:\n", "14.15521228313446\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "1.415521228313446\n", "The running loss is:\n", "14.270996749401093\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.4270996749401093\n", "The running loss is:\n", "13.61488264799118\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.361488264799118\n", "The running loss is:\n", "13.466632664203644\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.3466632664203644\n", "The running loss is:\n", "13.480274975299835\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.3480274975299835\n", "The running loss is:\n", "13.14782440662384\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.314782440662384\n", "The running loss is:\n", "13.135575473308563\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.3135575473308563\n", "The running loss is:\n", "13.177307307720184\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "1.3177307307720185\n", "The running loss is:\n", "13.156183660030365\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "1.3156183660030365\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 1.945907\n", "47 30819 Eagle County, Colorado, United States ... 47 1.576598\n", "48 30820 Eagle County, Colorado, United States ... 48 1.056971\n", "49 30821 Eagle County, Colorado, United States ... 49 0.520163\n", "50 30822 Eagle County, Colorado, United States ... 50 -0.018607\n", "51 30823 Eagle County, Colorado, United States ... 51 -0.557603\n", "52 30824 Eagle County, Colorado, United States ... 52 -1.096623\n", "53 30825 Eagle County, Colorado, United States ... 53 1.706281\n", "54 30826 Eagle County, Colorado, United States ... 54 1.549211\n", "55 30827 Eagle County, Colorado, United States ... 55 1.053840\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: fp31d2fi \n", "\n", "wandb: Agent Starting Run: rs828r4n with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: rs828r4n\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/rs828r4n
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "14.697568587958813\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.3361425989053466\n", "The running loss is:\n", "21.38100452721119\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "1.9437276842919262\n", "The running loss is:\n", "12.067806363105774\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.0970733057368884\n", "The running loss is:\n", "11.344721049070358\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.0313382771882145\n", "The running loss is:\n", "11.251488268375397\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.0228625698523088\n", "The running loss is:\n", "10.448600202798843\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.9498727457089857\n", "The running loss is:\n", "10.87918820977211\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "0.9890171099792827\n", "The running loss is:\n", "10.925427049398422\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "0.993220640854402\n", "The running loss is:\n", "11.275335520505905\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0250305018641732\n", "The running loss is:\n", "11.531207740306854\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.0482916127551685\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 6.516066\n", "47 30819 Eagle County, Colorado, United States ... 47 7.549709\n", "48 30820 Eagle County, Colorado, United States ... 48 7.593652\n", "49 30821 Eagle County, Colorado, United States ... 49 7.419073\n", "50 30822 Eagle County, Colorado, United States ... 50 7.196244\n", "51 30823 Eagle County, Colorado, United States ... 51 6.962763\n", "52 30824 Eagle County, Colorado, United States ... 52 6.726929\n", "53 30825 Eagle County, Colorado, United States ... 53 7.780549\n", "54 30826 Eagle County, Colorado, United States ... 54 7.828902\n", "55 30827 Eagle County, Colorado, United States ... 55 7.655297\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: rs828r4n \n", "\n", "wandb: Agent Starting Run: tvqwisfk with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: tvqwisfk\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/tvqwisfk
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 2\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 2\n", " number_time_series: 3\n", " output_seq_len: 2\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 2\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "16.14820921421051\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.614820921421051\n", "The running loss is:\n", "20.01530832052231\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.001530832052231\n", "The running loss is:\n", "13.697478771209717\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.3697478771209717\n", "The running loss is:\n", "13.846294492483139\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.384629449248314\n", "The running loss is:\n", "13.398303747177124\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.3398303747177125\n", "The running loss is:\n", "13.124554067850113\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.3124554067850114\n", "The running loss is:\n", "12.877797603607178\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.2877797603607177\n", "The running loss is:\n", "12.75420868396759\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.275420868396759\n", "The running loss is:\n", "12.53428190946579\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "1.253428190946579\n", "The running loss is:\n", "12.539280235767365\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "1.2539280235767365\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 ... preds\n", "45 30817 ... 0.000000\n", "46 30818 ... 16.437286\n", "47 30819 ... 19.616352\n", "48 30820 ... 19.625738\n", "49 30821 ... 18.815519\n", "50 30822 ... 17.793373\n", "51 30823 ... 16.716425\n", "52 30824 ... 15.625306\n", "53 30825 ... 20.219040\n", "54 30826 ... 20.594223\n", "55 30827 ... 19.878592\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: tvqwisfk \n", "\n", "wandb: Agent Starting Run: 8ncbbnk0 with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.002\n", "\toptimizer: Adam\n", "\tout_seq_length: 3\n", "wandb: Agent Started Run: 8ncbbnk0\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/8ncbbnk0
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 3\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.002\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 3\n", " number_time_series: 3\n", " output_seq_len: 3\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 3\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.002\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "15.368807047605515\n", "The number of items in train is: \n", "10\n", "The loss for epoch 0\n", "1.5368807047605515\n", "The running loss is:\n", "20.804774045944214\n", "The number of items in train is: \n", "10\n", "The loss for epoch 1\n", "2.080477404594421\n", "The running loss is:\n", "13.8933824300766\n", "The number of items in train is: \n", "10\n", "The loss for epoch 2\n", "1.38933824300766\n", "The running loss is:\n", "13.693770349025726\n", "The number of items in train is: \n", "10\n", "The loss for epoch 3\n", "1.3693770349025727\n", "The running loss is:\n", "13.354897767305374\n", "The number of items in train is: \n", "10\n", "The loss for epoch 4\n", "1.3354897767305374\n", "The running loss is:\n", "13.140376150608063\n", "The number of items in train is: \n", "10\n", "The loss for epoch 5\n", "1.3140376150608062\n", "The running loss is:\n", "12.762926369905472\n", "The number of items in train is: \n", "10\n", "The loss for epoch 6\n", "1.2762926369905472\n", "The running loss is:\n", "12.811955034732819\n", "The number of items in train is: \n", "10\n", "The loss for epoch 7\n", "1.2811955034732818\n", "The running loss is:\n", "12.677973330020905\n", "The number of items in train is: \n", "10\n", "The loss for epoch 8\n", "1.2677973330020904\n", "The running loss is:\n", "12.525837749242783\n", "The number of items in train is: \n", "10\n", "The loss for epoch 9\n", "1.2525837749242783\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 2.510345\n", "47 30819 Eagle County, Colorado, United States ... 47 2.237988\n", "48 30820 Eagle County, Colorado, United States ... 48 1.784898\n", "49 30821 Eagle County, Colorado, United States ... 49 1.313485\n", "50 30822 Eagle County, Colorado, United States ... 50 0.840213\n", "51 30823 Eagle County, Colorado, United States ... 51 0.366755\n", "52 30824 Eagle County, Colorado, United States ... 52 -0.106724\n", "53 30825 Eagle County, Colorado, United States ... 53 2.398144\n", "54 30826 Eagle County, Colorado, United States ... 54 2.226613\n", "55 30827 Eagle County, Colorado, United States ... 55 1.783744\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: 8ncbbnk0 \n", "\n", "wandb: Agent Starting Run: p9hz0mzs with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 1\n", "wandb: Agent Started Run: p9hz0mzs\n" ], "name": "stdout" }, { "output_type": "display_data", "data": { "text/html": [ "\n", " Logging results to Weights & Biases (Documentation).
\n", " Project page: https://app.wandb.ai/igodfried/covid-forecast
\n", " Sweep page: https://app.wandb.ai/igodfried/covid-forecast/sweeps/izk6f8yh
\n", "Run page: https://app.wandb.ai/igodfried/covid-forecast/runs/p9hz0mzs
\n", " " ], "text/plain": [ "" ] }, "metadata": { "tags": [] } }, { "output_type": "stream", "text": [ "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "Using Wandb config:\n", "wandb_version: 1\n", "\n", "GCS:\n", " desc: null\n", " value: false\n", "_wandb:\n", " desc: null\n", " value:\n", " cli_version: 0.8.35\n", " framework: torch\n", " is_jupyter_run: true\n", " is_kaggle_kernel: false\n", " python_version: 3.6.9\n", "batch_size:\n", " desc: null\n", " value: 4\n", "dataset_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " class: default\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaler: StandardScaler\n", " target_col:\n", " - new_cases\n", " test_path: Colorado_Eagle County.csv\n", " train_end: 44\n", " training_path: Colorado_Eagle County.csv\n", " valid_end: 57\n", " valid_start: 45\n", " validation_path: Colorado_Eagle County.csv\n", "forecast_history:\n", " desc: null\n", " value: 1\n", "forward_params:\n", " desc: null\n", " value: {}\n", "inference_params:\n", " desc: null\n", " value:\n", " dataset_params:\n", " file_path: Colorado_Eagle County.csv\n", " forecast_history: 1\n", " forecast_length: 1\n", " interpolate_param: false\n", " relevant_cols:\n", " - new_cases\n", " - month\n", " - weekday\n", " scaling: StandardScaler\n", " target_col:\n", " - new_cases\n", " datetime_start: '2020-04-21'\n", " decoder_params:\n", " decoder_function: simple_decode\n", " unsqueeze_dim: 1\n", " hours_to_forecast: 10\n", " test_csv_path: Colorado_Eagle County.csv\n", "lr:\n", " desc: null\n", " value: 0.004\n", "metrics:\n", " desc: null\n", " value:\n", " - MSE\n", "model_name:\n", " desc: null\n", " value: MultiAttnHeadSimple\n", "model_params:\n", " desc: null\n", " value:\n", " forecast_length: 1\n", " number_time_series: 3\n", " output_seq_len: 1\n", " seq_len: 1\n", "model_type:\n", " desc: null\n", " value: PyTorch\n", "optimizer:\n", " desc: null\n", " value: Adam\n", "out_seq_length:\n", " desc: null\n", " value: 1\n", "sweep:\n", " desc: null\n", " value: true\n", "training_params:\n", " desc: null\n", " value:\n", " batch_size: 4\n", " criterion: MSE\n", " epochs: 10\n", " optim_params:\n", " lr: 0.004\n", " optimizer: Adam\n", "wandb:\n", " desc: null\n", " value: false\n", "\n", "Torch is using cpu\n", "The running loss is:\n", "11.638315871357918\n", "The number of items in train is: \n", "11\n", "The loss for epoch 0\n", "1.0580287155779926\n", "The running loss is:\n", "27.962097346782684\n", "The number of items in train is: \n", "11\n", "The loss for epoch 1\n", "2.542008849707517\n", "The running loss is:\n", "18.45736888051033\n", "The number of items in train is: \n", "11\n", "The loss for epoch 2\n", "1.677942625500939\n", "The running loss is:\n", "12.270208045840263\n", "The number of items in train is: \n", "11\n", "The loss for epoch 3\n", "1.1154734587127513\n", "The running loss is:\n", "12.896877467632294\n", "The number of items in train is: \n", "11\n", "The loss for epoch 4\n", "1.1724434061483904\n", "The running loss is:\n", "10.983336746692657\n", "The number of items in train is: \n", "11\n", "The loss for epoch 5\n", "0.9984851587902416\n", "The running loss is:\n", "11.255826324224472\n", "The number of items in train is: \n", "11\n", "The loss for epoch 6\n", "1.0232569385658612\n", "The running loss is:\n", "11.209508925676346\n", "The number of items in train is: \n", "11\n", "The loss for epoch 7\n", "1.0190462659705768\n", "The running loss is:\n", "11.425876408815384\n", "The number of items in train is: \n", "11\n", "The loss for epoch 8\n", "1.0387160371650348\n", "The running loss is:\n", "11.56713530421257\n", "The number of items in train is: \n", "11\n", "The loss for epoch 9\n", "1.0515577549284154\n", "interpolate should be below\n", "Now loading and scaling Colorado_Eagle County.csv\n", "CSV Path below\n", "Colorado_Eagle County.csv\n", "torch.Size([1, 1, 3])\n", "Add debugging crap below\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:134: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame.\n", "Try using .loc[row_indexer,col_indexer] = value instead\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'] = 0\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:135: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor.numpy().tolist()\n", "/usr/local/lib/python3.6/dist-packages/pandas/core/series.py:1042: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " self._set_with(key, value)\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:59: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df, end_tensor, forecast_history, junk, test_data = infer_on_torch_model(model, **inference_params)\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "torch.Size([10])\n", "test_data scale\n", "Un-transforming data\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/content/github_aistream-peelout_flow-forecast/flood_forecast/evaluator.py:67: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " df['preds'][history_length:] = end_tensor_list\n", "/content/github_aistream-peelout_flow-forecast/flood_forecast/trainer.py:30: SettingWithCopyWarning: \n", "A value is trying to be set on a copy of a slice from a DataFrame\n", "\n", "See the caveats in the documentation: https://pandas.pydata.org/pandas-docs/stable/user_guide/indexing.html#returning-a-view-versus-a-copy\n", " test_acc = evaluate_model(trained_model, model_type, params[\"dataset_params\"][\"target_col\"], params[\"metrics\"], params[\"inference_params\"], {})\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "Current historical dataframe\n", " Unnamed: 0 name ... original_index preds\n", "45 30817 Eagle County, Colorado, United States ... 45 0.000000\n", "46 30818 Eagle County, Colorado, United States ... 46 7.352677\n", "47 30819 Eagle County, Colorado, United States ... 47 8.552509\n", "48 30820 Eagle County, Colorado, United States ... 48 8.681703\n", "49 30821 Eagle County, Colorado, United States ... 49 8.588442\n", "50 30822 Eagle County, Colorado, United States ... 50 8.448961\n", "51 30823 Eagle County, Colorado, United States ... 51 8.299876\n", "52 30824 Eagle County, Colorado, United States ... 52 8.148796\n", "53 30825 Eagle County, Colorado, United States ... 53 8.838028\n", "54 30826 Eagle County, Colorado, United States ... 54 8.861131\n", "55 30827 Eagle County, Colorado, United States ... 55 8.745827\n", "\n", "[11 rows x 32 columns]\n" ], "name": "stdout" }, { "output_type": "stream", "text": [ "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mplexporter/exporter.py:84: UserWarning:\n", "\n", "Blended transforms not yet supported. Zoom behavior may not work as expected.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/mpltools.py:368: MatplotlibDeprecationWarning:\n", "\n", "\n", "The is_frame_like function was deprecated in Matplotlib 3.1 and will be removed in 3.3.\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:410: UserWarning:\n", "\n", "Bummer! Plotly can currently only draw Line2D objects from matplotlib that are in 'data' coordinates!\n", "\n", "/usr/local/lib/python3.6/dist-packages/plotly/matplotlylib/renderer.py:512: UserWarning:\n", "\n", "I found a path object that I don't think is part of a bar chart. Ignoring.\n", "\n" ], "name": "stderr" }, { "output_type": "stream", "text": [ "wandb: Agent Finished Run: p9hz0mzs \n", "\n", "wandb: Agent Starting Run: uz3tntwz with config:\n", "\tbatch_size: 4\n", "\tforecast_history: 1\n", "\tlr: 0.004\n", "\toptimizer: Adam\n", "\tout_seq_length: 2\n", "wandb: Agent Started Run: uz3tntwz\n", "Buffered data was truncated after reaching the output size limit." ], "name": "stdout" } ] }, { "cell_type": "markdown", "metadata": { "id": "cFE0IwDEiANe", "colab_type": "text" }, "source": [ "## Training on all regions" ] }, { "cell_type": "code", "metadata": { "id": "BF923w5JiSzL", "colab_type": "code", "colab": {} }, "source": [ "reduced_config = {\n", " \"name\": \"Default sweep\",\n", " \"method\": \"grid\",\n", " \"parameters\": {\n", " \"batch_size\": {\n", " \"values\": [2, 3]\n", " },\n", " \"lr\":{\n", " \"values\":[0.002, 0.001]\n", " },\n", " \"forecast_history\":{\n", " \"values\":[5]\n", " },\n", " \"out_seq_length\":{\n", " \"values\":[3]\n", " }\n", " }\n", "}" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "6I5nq_nTw7J-", "colab_type": "code", "colab": {} }, "source": [ "for region_df in df_list:\n", " region_df, len_region, file_path = format_corona_data(region_df, \"county\")\n", " sweep_id = wandb.sweep(reduced_config, project=\"covid-forecast\")\n", " paths = []\n", " if len(os.listdir(\"model_save\"))>1:\n", " weight_files = filter(lambda x: x.endswith(\".pth\"), os.listdir(\"model_save\"))\n", " for weight_file in weight_files:\n", " paths.append(os.path.join(\"model_save\", weight_file)) \n", " correct_file = max(paths, key = os.path.getctime)\n", " print(correct_file) \n", " wandb.agent(sweep_id, lambda:train_function(\"PyTorch\", make_config_file(file_path, len_region, correct_file)))\n", " else:\n", " wandb.agent(sweep_id, lambda:train_function(\"PyTorch\", make_config_file(file_path, len_region))\n", " print(\"sucessfully completed sweep for: \" + file_path)\n" ], "execution_count": 0, "outputs": [] }, { "cell_type": "code", "metadata": { "id": "ogpjOr6JiBe_", "colab_type": "code", "colab": {} }, "source": [ "" ], "execution_count": 0, "outputs": [] } ] }