

DS 05- Vélo Pro-Form TDF

PTSI

Samedi 16 mars 2024

Table des matières

	Récupération du parcours virtuel sur Internet		4	
II	Résistance au pédalage	X	7	
Ш	Contrôle du freinage - Modélisation et réglage de la boucle de position		13	
IV	Étude du dispositif d'inclinaison		16	
V	Synthèse		19	

Vélo Pro-Form TDF

Contexte

Le vélo Pro-Form TDF (Tour de France), étudié ici, se distingue des vélos d'appartements classiques car il permet une immersion dans un environnement réaliste. Il est ainsi possible de reproduire les tracés réels d'une étape du Tour de France. Les écrans affichent généralement le rythme cardiaque et la distance parcourue sans oublier les calories brûlées à chaque entraînement ou encore la vitesse du cycliste. Grâce à ces statistiques, il est possible de cerner les faiblesses et les forces de l'utilisateur lors d'un parcours afin de permettre une progression continue.

FIGURE 1 - Vélo Pro-Form TDF

Mise en situation

Ce vélo doit permettre de reproduire le plus fidèlement possible l'effort que doit fournir le cycliste en situation réelle. Vingt-quatre étapes du Tour de France ont été filmées et enregistrées avec les informations de dénivelé. Au rythme du défilement des images, le vélo va ajuster son inclinaison ainsi que la résistance au pédalage afin d'être conforme à la sensation et l'effort réel, comme le montre la figure 1.

Aussi il convient d'élaborer une loi de commande du dispositif de freinage qui va dépendre de la vitesse de rotation de la roue arrière et du dénivelé de la route souhaité.

Objectif final

Le sujet a pour but de modéliser et analyser certaines performances du vélo Pro-Form TDF. Pour cela, il comporte deux parties avec comme objectifs :

- modéliser et valider le dispositif de freinage permettant de simuler la résistance au pédalage en conditions réelles,
- modéliser et vérifier le dimensionnement de la structure permettant d'incliner le vélo Pro-Form TDF.

Extrait du cahier des charges

La puissance en dBm est définie comme le rapport logarithmique entre une puissance mesurée en watts et une puissance d'un milliwatt : $P_{dBm} = 10 \cdot log_{10} \left(\frac{P_{mes}}{1mW} \right)$.

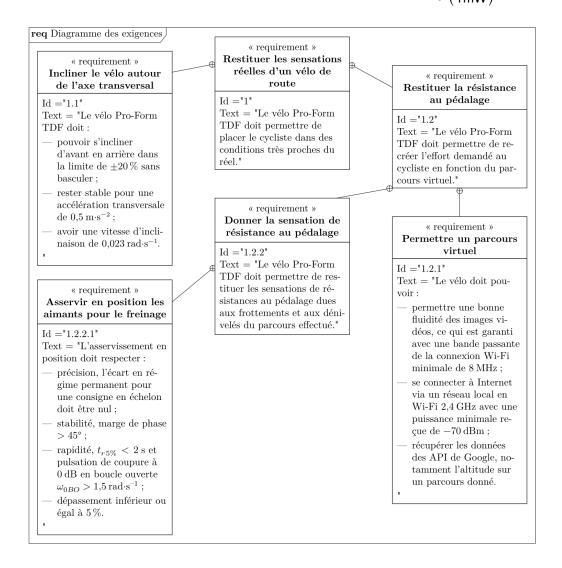


FIGURE 2 – Exigences extraites du cahier des charges

I Récupération du parcours virtuel sur Internet

Le vélo Pro-Form TDF utilise la plateforme en ligne iFit.com permettant d'avoir accès à un éventail de fonctionnalités pour aider à la remise en forme (objectifs de calories, durée, distance ou puissance). Il est notamment possible de définir son propre parcours ou d'avoir accès aux cartes Google Maps à personnaliser. Il est aussi possible de télécharger des entraînements conçus pour aider à atteindre des objectifs personnels. Afin de récupérer ces données, il est nécessaire que le vélo Pro-Form TDF accède à Internet avec une connexion de qualité.

I.1 Paramétrage et communication avec Internet

Objectif

Paramétrer le réseau local pour connecter le vélo à Internet et y récupérer les données d'altitude nécessaires pour suivre une étape du Tour de France.

Le vélo Pro-Form TDF doit pouvoir être utilisé à domicile. Afin de pouvoir suivre un parcours en immersion, le vélo Pro-Form TDF se connecte à Internet via une connexion Wi-Fi. La figure 3 donne l'architecture matérielle du réseau étudié. Le masque du sous-réseau est 255.255.255.0.

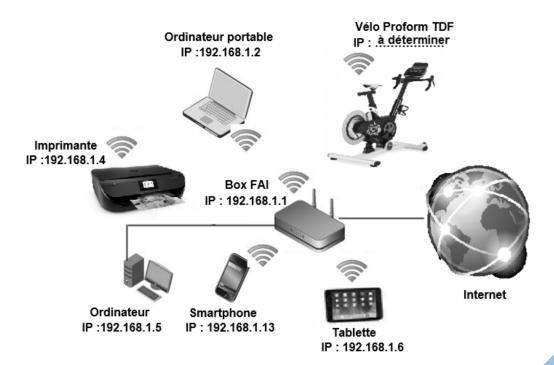


FIGURE 3 - Réseau local à domicile

Question 1 : Compléter le diagramme de contexte du vélo Pro-Form TDF.

Question 2 : Compléter le diagramme des cas d'utilisation du vélo Pro-Form TDF.

I.2 Vérification de la qualité de connexion Wi-Fi du vélo Pro-Form TDF

Objectif

Vérifier que le signal reçu correspond à la norme d'une liaison Wi-Fi 2,4 GHz en France et permet un fonctionnement fluide de l'immersion.

Afin de fonctionner correctement et avec fluidité, la bande passante de la connexion avec le vélo doit au moins être de 8 MHz avec une puissance reçue supérieure à -70 dBm. De plus, la communication Wi-Fi 2,4 GHz, utilisée par le vélo Pro-Form TDF, doit respecter les critères suivants de la norme :

- la communication doit se faire sur un des 13 canaux de 2,412 GHz à 2,472 GHz,
- les fréquences centrales des canaux sont espacées de 5 MHz,
- chaque canal a une bande passante maximale de 22 MHz.

La liste des canaux et fréquences associées autorisés en Wi-Fi est donnée sur la figure 4.

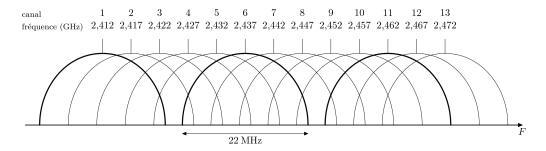


FIGURE 4 – Différents canaux utilisés par le Wi-Fi 2,4 GHz

Le relevé spectral de la puissance du signal reçu d'une transmission Wi-Fi entre le vélo Pro-Form TDF et la Box du fournisseur d'accès à Internet de la figure 3 est donné sur la figure du document réponse des questions 3, 4 et 5.

Question 3 : Sur le document réponse, effectuer les tracés permettant d'estimer la fréquence centrale, notée f_c, du signal Wi-Fi reçu. Identifier le canal utilisé pour la transmission.

Question 4 : Sur le document réponse, effectuer les tracés nécessaires, afin de mesurer la bande passante du signal reçu et indiquer si elle respecte celle définie dans le cahier des charges.

Question 5 : Estimer la valeur de la puissance moyenne reçue dans la bande passante. Conclure, sous forme de tableau, sur la qualité de la connexion Wi-Fi du vélo Pro-Form TDF. Indiquer deux caractéristiques du réseau local et de la connexion qui pourraient impacter les performances de l'immersion.

I.3 Récupération des données d'altitude à partir de Google Maps

Objectif

Évaluer la possibilité de récupérer les pentes d'un parcours afin de commander le système d'inclinaison du vélo Pro-Form TDF.

Lorsque le vélo Pro-Form TDF est connecté à Internet, grâce aux services proposés par Google, il est possible de suivre un parcours en voyant les images de la route défiler comme si l'utilisateur était sur la route avec son vélo. Le vélo utilise pour cela les API (API est un acronyme anglais qui signifie « Application Programming Interface » ou Interface de Programmation d'Application) de Google et notamment l'API Elevation qui permet de récupérer l'altitude à partir de coordonnées géographiques.

Pour cela, une requête contenant les coordonnées géographiques des différents points du parcours est utilisée.

Cette requête renvoie l'altitude de points régulièrement espacés (variable distance) le long du parcours. On s'intéresse, à titre d'exemple, à la montée du mont Ventoux en passant par Bédoin et le chalet Reynard. L'utilisateur du vélo Pro-Form TDF peut afficher le profil du parcours choisi comme illustré sur la figure 5.

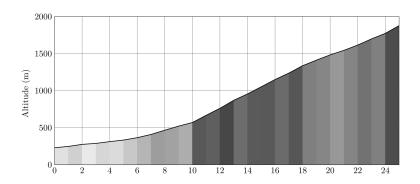


FIGURE 5 – Profil de la montée du mont Ventoux

Afin de commander le dispositif d'élévation du vélo Pro-Form TDF, il est nécessaire de récupérer les différentes pentes, comme illustré sur la figure 6.

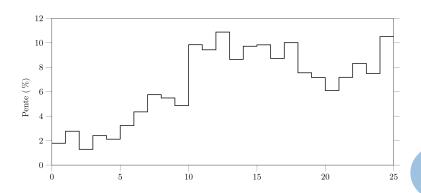


FIGURE 6 – Pente moyenne par kilomètre lors de la montée du mont Ventoux

Question 6 : En utilisant les API Google, on a obtenu l'altitude d'une suite de points $P_0, P_1, ..., P_n$ régulièrement espacés le long du parcours de P_0 à P_n . Écrire en Python une fonction d'entête

def calculerPentes(distance:float, altitude:[float]) -> [float]:

qui prend en argument la distance le long du parcours entre deux points successifs quelconques P_i et P_{i+1} et une liste donnant l'altitude de chaque point P_i . Cette fonction renvoie une liste dont l'élément d'indice i donne la pente, en pourcent, de la portion du parcours située entre les points P_i et P_{i+1} .

Ainsi, si la connexion Internet est bonne, il est possible de récupérer des pentes tous les 100 m le long d'un parcours ce qui permet de suivre le plus fidèlement possible le trajet sur Google Maps. Maintenant que cette information de pente est disponible, il faut la traduire en résistance au pédalage ce qui est l'objet de la prochaine partie.

Il Résistance au pédalage

Objectif

Modéliser l'action mécanique de résistance totale à l'avancement en fonction de la vitesse du cycliste et du dénivelé du terrain. Cette action mécanique servira au réglage de la résistance au pédalage du vélo Pro-Form TDF.

En cyclisme, différentes forces, appelées résistances ici, s'opposent à l'avancement du cycliste et limitent sa vitesse de déplacement. À vitesse élevée (> 40km·h⁻¹), la résistance aérodynamique est la plus importante de toutes ces forces. Pour se représenter son importance, il faut savoir que 90% de la puissance produite par un cycliste sert à vaincre cette résistance sur un terrain plat.

La résistance à l'avancement de l'ensemble cycliste-vélo, se décompose en trois termes (figure 7) :

- la résistance due à la gravité qui s'exerce sur l'ensemble cycliste-vélo \vec{R}_G ,
- la résistance due à la friction \vec{R}_{R} ,
- la résistance aérodynamique \vec{R}_A .

Ainsi la résistance totale à l'avancement \vec{R}_T est donnée par $\vec{R}_T = \vec{R}_A + \vec{R}_R + \vec{R}_G$. Données :

- $-- \vec{R}_R = -R_R \cdot \vec{x}_1,$
- $-- \vec{R}_G = -R_G \cdot \vec{x}_1 = -M \cdot g \cdot \sin(\theta) \cdot \vec{x}_1,$
- $\vec{P} = M \cdot \vec{q}$, avec M la masse totale de l'ensemble cycliste-vélo.

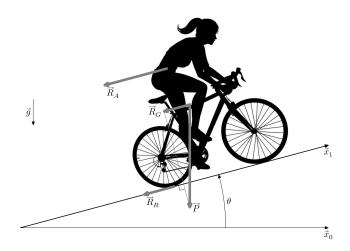


FIGURE 7 – Modélisation de la résistance au pédalage

II.1 Modélisation de la résistance au pédalage

La résistance à la friction $R_R = C_R \cdot M \cdot g$ dépend du contact des roues avec le terrain sur lequel évolue le cycliste.

 C_R dépend essentiellement de la pression de gonflage des pneumatiques (P_R en kPa), des matériaux composant les pneumatiques et de la nature du terrain. Le graphique de la figure 8 donne l'évolution de C_R (sans unité) en fonction de la pression P_R .

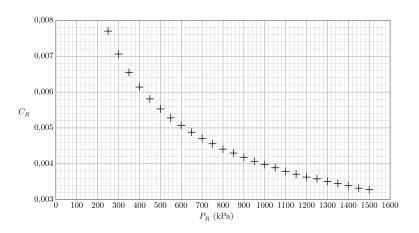


FIGURE 8 - Coefficient de roulement

Question 7: Relever la valeur de C_R pour une pression de pneumatique de 950 kPa.

La résistance aérodynamique R_A est directement proportionnelle à l'aire frontale projetée du cycliste et de son vélo (A_p en m^2), au coefficient de trainée (C_D sans unité), à la masse volumique de l'air (ρ en kg · m^{-3}) et au carré de la vitesse d'écoulement de l'air sur le corps du cycliste (v en $m \cdot s^{-1}$) : $R_A = -\vec{R}_A \cdot \vec{x}_1$.

le corps du cycliste (v en m·s⁻¹) : $R_A = -\vec{R}_A \cdot \vec{x}_1$. $R_A = 0.5 \rho A_p C_D v^2$ avec $\rho = 1.293 e^{-0.124 h} \frac{273}{T}$ où T est la température en kelvins et h'altitude du cycliste en km. On donne $e^{-0.124 \times 2.25} \approx 0.75$.

Question 8 : Calculer R_A pour $A_pC_D = 0.22m^2$, $v = 15m \cdot s^{-1}$, une température de 293K (soit 20 °C) et les altitudes de 0 km et de 2,25 km. Conclure sur l'effet de l'altitude sur la résistance aérodynamique et sur le fait que le vélo ne tient pas compte de cette donnée. Faire les approximations nécessaires.

Question 9 : Donner l'expression totale de R_T.

Plusieurs essais, rassemblés sur la figure 9, ont été réalisés sur une piste horizontale $(\theta = 0)$ à une altitude de 0 km, une température de 293K (20°C) et une pression des roues P_B de 950 kPa.

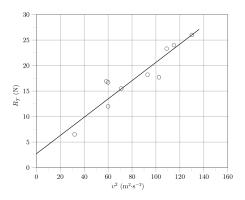


FIGURE 9 - Résistance à l'avancement

Question 10 : Justifier la forme obtenue sur la figure 9. Recaler la valeur du coefficient A_pC_D à partir des essais de cette figure.

Le modèle obtenu a permis de tracer les graphiques de la figure 10.

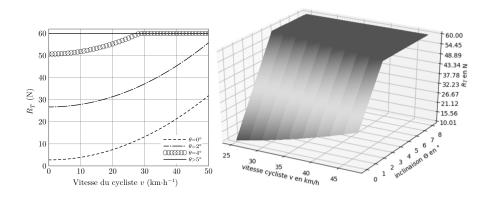


FIGURE 10 - Courbe obtenue à partir du modèle

Question 11 : Conclure sur la résistance maximale à l'avancement que le vélo Pro-Form TDF doit restituer à l'utilisateur.

Le modèle ainsi obtenu constitue la loi de commande du dispositif de freinage du vélo Pro-Form TDF. La partie suivante du sujet va permettre d'étudier la manière dont cet effort est réalisé et piloté.

II.2 Dispositif de freinage

Objectif

Vérifier la capacité du vélo Pro-Form à restituer la sensation de résistance totale à l'avancement et déterminer la commande de déplacement nécessaire au niveau des aimants du dispositif de freinage.

La partie précédente a permis de mettre en évidence la résistance totale à l'avancement R_T (en N) que le cycliste doit vaincre pour avancer. Afin que la sensation soit la plus proche possible de la réalité, un dispositif de freinage magnétique exerce un moment de freinage, noté M_f (en N · m), sur la roue arrière du vélo d'appartement. Pour cela, le moment de freinage doit respecter la relation suivante : $RR_T = M_f$ avec R(35 cm) le rayon de la roue d'un vélo réel et R_T la résistance totale à l'avancement.

FIGURE 11 – Mesure et modélisation du couple de pédalage

La roue arrière du vélo d'appartement est assimilée à un disque métallique de rayon R_d (15 cm), d'épaisseur e (5 mm), de conductivité γ et tournant à une vitesse angulaire ω . Quatre aimants sont placés de chaque côté de la roue arrière. Afin de simplifier l'étude, les quatre aimants sont assimilés à deux aimants produisant un champ magnétique \vec{B} quasi-uniforme perpendiculaire au disque sur un secteur d'angle α situé entre un rayon R_1 variable et $R_2 = R_d$. Le rayon R_1 dépend de la position verticale des aimants Δ_y . L'angle α est supposé constant.

Un élément de volume, noté $dV = e \cdot dS = erdrd\theta$, de la roue arrière est repéré par $\overrightarrow{OP} = r \cdot \vec{x}_2$. La force volumique de Laplace, notée $\vec{f}_L(r)$, s'exerçant sur un élément de volume dV est $\vec{f}_L(r) = \frac{d\vec{F}_L}{dV} = -\gamma r \omega B^2 \vec{y}_2$. Le moment résultant des actions de Laplace au point O se détermine à partir de la relation

$$\vec{M}_{\vec{O},\vec{f}_{l}} = \int_{secteur} \overrightarrow{OP} \wedge \vec{f}_{L}(r) dV$$

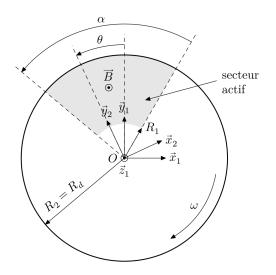


FIGURE 12 - Dispositif de freinage

Question 12 : Déterminer le moment résultant \vec{M}_{O,\vec{f}_L} , l'expression de la norme du moment de freinage, notée M_f . Indiquer à quel type de frottement peut être assimilé ce moment de freinage et s'il peut stopper complètement la roue arrière.

Le modèle pour la résistance totale à l'avancement est donné figure 10. A $25 \text{km} \cdot \text{h}^{-1}$, $M_f = -\vec{M}_{O,\vec{f}_L} \cdot \vec{z}_1 = 0.00038 (R_d^4 - R_1^4)$ (rayons en mm). La caractéristique de freinage pour une vitesse de translation de $25 \text{km} \cdot \text{h}^{-1}$ est donnée figure 13.

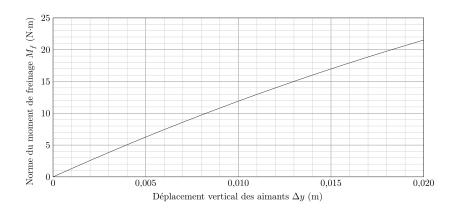


FIGURE 13 – Norme du moment de freinage M_f pour $v = 25 \text{km} \cdot \text{h}^{-1}$

Question 13 : En déduire le déplacement Δ_y nécessaire des aimants pour assurer la résistance maximale R_T à l'avancement de la figure 10.

Cette étude a donc permis de faire le lien entre la résistance à l'avancement en situation réelle et le déplacement Δ_y d'un aimant qui permet de reproduire cet effort sur un vélo d'appartement. La partie suivante permet d'étudier la manière dont est généré et piloté ce déplacement.

II.3 Pilotage du dispositif de freinage

Objectif

Linéariser le modèle entre le déplacement des aimants et la commande du mécanisme de déplacement.

FIGURE 14 - Modèle et paramétrage du système de freinage

Question 14: À partir du modèle figure 14 et à l'aide d'une fermeture géométrique, déterminer une relation sous la forme $f(\theta_3, \theta_5) = 0$.

La résolution numérique de l'équation précédente est réalisée en Python. Le déplacement des aimants étant proportionnel à θ_5 , il est possible de tracer l'évolution du déplacement des aimants en fonction de l'angle de commande du servomoteur θ_3 . Le résultat de la résolution est donné sur la courbe figure 15.

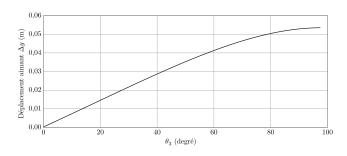


FIGURE 15 - Loi entrée sortie

Question 15 : Proposer, en vous aidant des figures 15 et 13, un modèle linéaire entre la norme du moment de freinage M_f en $N \cdot m$ et l'angle de commande θ_3 en degrés pour une vitesse de $25 \text{km} \cdot \text{h}^{-1}$.

III Contrôle du freinage - Modélisation et réglage de la boucle de position

Le contrôle de la résistance au pédalage se fait en contrôlant la position des biellettes.

Objectif

Modéliser puis régler le correcteur de l'asservissement de position des biellettes permettant un contrôle du dispositif de freinage.

Afin de suivre le plus fidèlement possible le parcours souhaité, il est nécessaire de contrôler parfaitement la position des biellettes du dispositif de freinage. Pour cela, un asservissement de position est réalisé. La structure de cet asservissement est représentée figure 16.

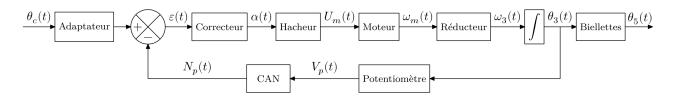


FIGURE 16 – Structure de l'asservissement de position des biellettes

Hypothèses et notations :

- le réducteur est un réducteur roue et vis sans fin, défini par son rapport de réduction $K_{red} = \frac{\omega_3}{\omega_m} = \frac{1}{220}$,
- la mesure de position en sortie du réducteur roue et vis sans fin, notée $\theta_3(p)$, est réalisée par un potentiomètre linéaire de 10kΩ, alimenté en 2,2V et d'une course de 160°,
- la tension image de la position $\theta_3(p)$ est ensuite numérisée par un convertisseur analogique-numérique (CAN) 10bits unipolaire, codé en binaire naturel et alimenté en 0-2,2V,
- le couple résistant ramené sur l'axe moteur est considéré comme négligeable.

Le schéma-bloc de l'asservissement est donné sur la figure 17.

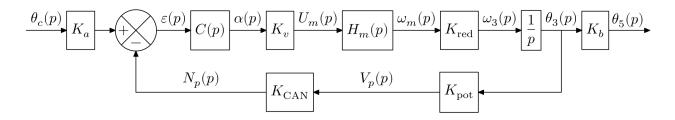


FIGURE 17 – Schéma-bloc de l'asservissement de $\theta_5(p)$ à $\theta_c(p)$

Question 16 : Déterminer les valeurs numériques de K_{CAN} et K_{pot} modélisant respectivement le CAN et le potentiomètre. En déduire la valeur de K_a en rad⁻¹.

Le variateur de vitesse associé au moteur est un hacheur quatre quadrants, alimenté par une tension $U_0 = 12V$, dont la structure de commande est représentée figure 18.

La loi de commande est élaborée à partir d'un rapport cyclique, noté α , compris entre 0 et 255 incréments, et d'un signal, non étudié ici, permettant de déterminer le sens de rotation souhaité. Dans l'étude suivante, les interrupteurs T_1-D_1 et T_4-D_4 sont commandés pour $t \in \left[0, \frac{\alpha}{255}T_d\right]$ puis T_1-D_1 et T_2-D_2 pour $t \in \left[\frac{\alpha}{255}T_d, T_d\right]$. Le chronogramme de la tension moteur correspondant est donné figure 18.

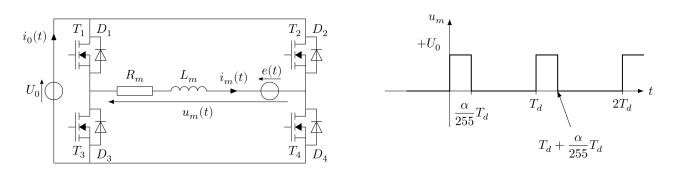


FIGURE 18 – Structure de commande et exemple de tension moteur u_m.

La période de découpage est notée T_d . La résistance R_m , l'inductance L_m et la force électro-motrice e(t) modélisent le moteur qui est une machine à courant continu à aimants permanents.

Question 17 : Justifier l'intérêt d'une telle structure de commande pour la commande du moteur du dispositif de freinage.

Question 18 : Déterminer la relation entre la valeur moyenne de u_m , notée $\langle u_m(t) \rangle$, α et U_0 , puis tracer $\langle u_m(t) \rangle$ en fonction du rapport cyclique α .

Question 19 : En déduire l'expression du gain K_V sachant que dans le modèle adopté $L(\langle u_m(t)\rangle) = U_m(p)$.

Question 20 : Indiquer la non linéarité qui pourrait être prise en compte dans le schémabloc afin de modéliser le comportement du hacheur.

Un essai est réalisé en boucle ouverte, en imposant au moteur une variation en échelon au niveau du rapport cyclique $\alpha(p)$ de 50 incréments (le rapport cyclique est compris entre 0 et 255 incréments) à l'instant t=0,5s.

La mesure de vitesse en sortie du moteur se fait à l'aide d'une génératrice tachymétrique modélisée par un gain de 0, 12V · s comme indiqué sur la figure 19. L'allure de la réponse à l'essai est donnée sur la figure B du document réponse.

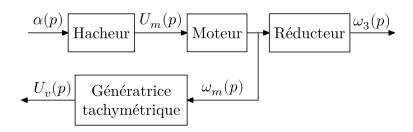


FIGURE 19 - Schéma-bloc de la mesure en boucle ouverte

Question 21 : Identifier un modèle, en détaillant les méthodes utilisées pour identifier les paramètres, et en réalisant les tracés sur la figure du document réponse, pour la fonction de transfert $\frac{U_V(p)}{\alpha(p)}$. En déduire la fonction de transfert $H_V(p) = \frac{\omega_m(p)}{\alpha(p)}$.

Remarque: $H_v(p) = K_v \cdot H_m(p)$.

Le correcteur est un correcteur proportionnel de valeur $C(p) = K_c$.

Question 22 : Déterminer l'expression de la fonction de transfert en boucle ouverte donnée figure 17, puis justifier que le critère de précision du cahier des charges est respecté.

Question 23 : Déterminer, en réalisant les tracés sur la figure du document réponse, la fonction de transfert en boucle ouverte $H_{BO}(p)$ pour $K_C = 1$.

Pour la suite, on prendra
$$H_{BO}(p) = \frac{0.76}{p(1+\frac{p}{10})}$$
 pour $K_C = 1$.

Question 24 : Exprimer la fonction de transfert en boucle fermée $H_{BF}(p) = \frac{\theta_3(p)}{\theta_c(p)}$ et exprimer ses paramètres caractéristiques, son gain statique K_{BF} , sa pulsation propre ω_{0BF} et son amortissement ξ_{BF} .

L'abaque du temps de réponse réduit en fonction de l'amortissement est donné sur la figure 20.

Question 25 : Déterminer la valeur limite du correcteur proportionnel permettant de satisfaire le critère de dépassement du cahier des charges et reporter la valeur dans le tableau du document réponse de la question 27.

Question 26 : Déterminer la valeur limite du correcteur proportionnel permettant de satisfaire le critère de rapidité du cahier des charges et reporter la valeur dans le tableau du document réponse de la question 27. Cette valeur est à déterminer en exploitant le diagramme de Bode de la FTBO.

Question 27 : Conclure sur la plage de valeur du correcteur proportionnel qui permettrait de respecter tous les critères du cahier des charges en complétant le tableau du document réponse. Vous Identifierez K_{cmin} et K_{cmax} sur le tracé du document réponse.

FIGURE 20 – Abaque du temps de réponse réduit en fonction de l'amortissement

IV Étude du dispositif d'inclinaison

IV.1 Problème de non basculement du vélo Pro-Form TDF

Objectif

L'objectif de l'étude est de vérifier que les dimensions du vélo sont suffisantes afin que celui-ci ne bascule pas lorsque le cycliste se met en danseuse.

Lors de l'ascension d'un col ou tout simplement en montée le vélo va s'incliner et la résistance va augmenter. Afin de moins solliciter les muscles des cuisses, le cycliste va se mettre en danseuse c'est à dire qu'il va translater son bassin afin de le mettre à la verticale de la pédale sur laquelle il faut effectuer un effort. Ainsi, le poids de son corps va l'aider à effecteur le mouvement. Le mouvement du bassin va engendrer un transfert de masse sur les appuis qui peut occasionner un décollement.

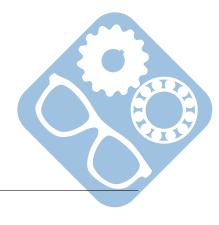
Le schéma qui permet de faire l'étude de modélisation plane est donné figure 21. Il est composé de 3 ensembles :

- le sol 0 qui est le référentiel galiléen,
- le vélo 1 qui est immobile par rapport au sol. Il est en appui sur deux liaisons sphères/plans avec frottement en D et en E. Il a une masse m₁ et de centre de gravité G₁,
- le cycliste c de masse m et un centre de gravité G. Pour cette étude, le mouvement du cycliste est une translation rectiligne suivant \vec{z} qui correspond au mouvement du bassin : $\vec{\gamma}_{G\in C/O} = \gamma \vec{z}$.

$$\overrightarrow{AG} = \overrightarrow{by} + c(t)\overrightarrow{z}, \overrightarrow{AD} = -\overrightarrow{ey} + \overrightarrow{dz}, \overrightarrow{AE} = -\overrightarrow{ey} - \overrightarrow{dz}, \overrightarrow{AG_1} = \overrightarrow{hy}.$$

Les seules actions mécaniques à prendre en compte sont :

$$\begin{split} \left\{ Td_{0 \to 1} \right\} &= \left\{ \begin{array}{c} N_D \vec{y} + T_D \vec{z} \\ \vec{0} \end{array} \right\}_D \\ \left\{ Te_{0 \to 1} \right\} &= \left\{ \begin{array}{c} -m_1 g \vec{y} \\ \vec{0} \end{array} \right\}_{G_1} \\ \left\{ Te_{0 \to 1} \right\} &= \left\{ \begin{array}{c} -mg \vec{y} \\ \vec{0} \end{array} \right\}_G \\ \end{array}$$


Lors de la décélération (γ < 0), il y a un transfert de masse qui peut engendrer le décollement au point E.

Question 28 : Faire un graphe des liaisons et des actions mécaniques. Le graphe ne comporte que deux ensembles $\{0\}$ et $\{1 + c\}$.

Question 29 : Indiquer, puis appliquer une stratégie d'isolements permettant de déterminer N_E en fonction de b, e, m, γ , d, m_1 , g, c.

On rappelle qu'à la limite du basculement, $N_E = 0$.

Question 30 : Calculer γ , l'accélération transversale, pour faire basculer le vélo et conclure sur l'exigence id=1.1. $m_1=56kg$, = 125kg, d = 0.25m, c = 0.2m, h = 0.35m, e = 0.05m, b = 1.1m et g = 9.81m · s⁻².

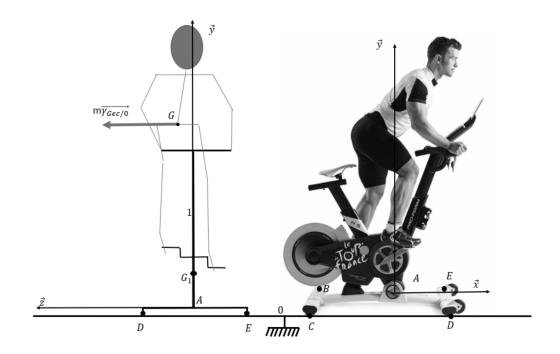


FIGURE 21 - Modélisation adoptée pour l'étude du basculement

IV.2 Dimensionnement du vérin

Objectif

L'objectif est de valider le dimensionnement du vérin qui permet d'incliner le vélo pour un rendu plus réaliste.

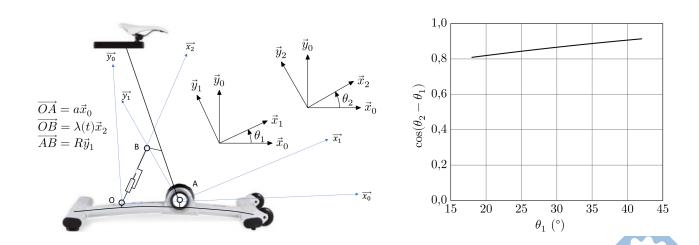


FIGURE 22 - Inclinaison

Question 31 : Déterminer $\vec{V}_{B\in 1/0}$ en fonction de R, $\dot{\theta}_1$ et $\vec{V}_{B\in 2/0}$ en fonction de $\dot{\lambda}$, λ et $\dot{\theta}_2$.

Question 32 : Montrer que $\dot{\lambda} = -R\dot{\theta}_1 \cdot \cos(\theta_2 - \theta_1)$.

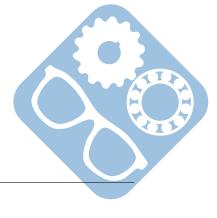
Question 33 : Sachant que le cahier des charges impose une vitesse de rotation $\dot{\theta}_1 = 0.023 \text{rad} \cdot \text{s}^{-1}$ et que R = 250mm en déduire la vitesse maximale de la tige du vérin.

Dans le pire des cas, le vérin électrique doit générer en régime permanent un effort de 1500 N à une vitesse de sortie de tige de 5,2mm \cdot s⁻¹. Il a un rendement de 0,3. Il est alimenté en monophasé 120 V, 50 Hz avec un courant maximal de 0,5 A et un facteur de puissance de $\cos \varphi = 0,8$. On rappelle que la puissance fournie vaut $P_{fmax} = U \cdot I_{max} \cdot \cos \varphi$.

Question 34 : Déterminer la puissance à fournir en régime permanent. Conclure sur la capacité de l'actionneur à pouvoir incliner le vélo pour suivre les étapes du Tour de France.

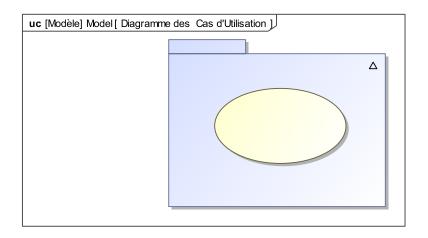
V Synthèse

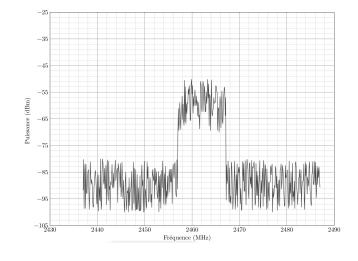
Un vélo d'appartement classique ne dispose ni du système d'inclinaison, ni de l'immersion avec Google Maps permettant de suivre les différentes étapes du Tour de France.

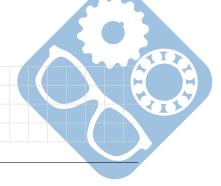

Question 35 : Remplir le tableau du document réponse, en indiquant si les exigences du cahier des charges sont vérifiées et en précisant la démarche utilisée pour les vérifier.

Question 36 : Remplir le tableau du document réponse, afin de comparer le vélo Pro-Form TDF avec un vélo d'appartement traditionnel en citant les avantages et les inconvénients apportés par chacun d'eux du point de vue immersion et complexité.

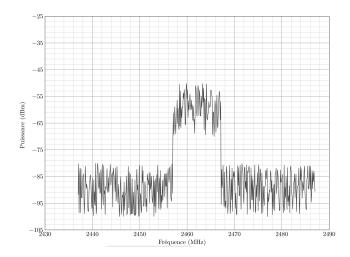
FIN

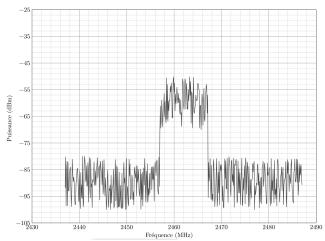



Question 1:



Question 2:


Question 3:


Nom: Prénom: Vélo Pro-Form TDF

Question 4:

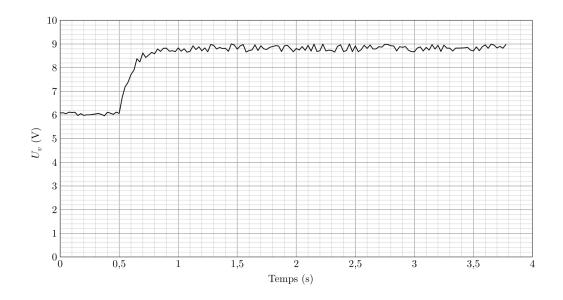
Question 5:

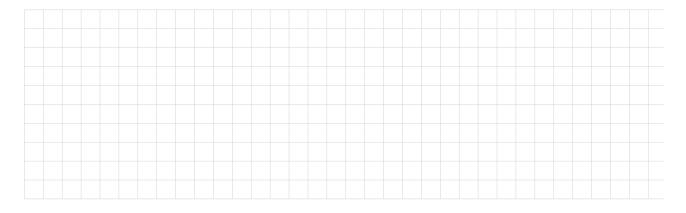
	Fréquence (en GHz)	Puissance	ΔΒΡ
Cahier des charges			
Valeur mesurée			
Bilan			

Nom:	Prénom		Vélo Pro-Form TDF
uestion 6:			
1 2			
3			
4			
5 6			
7			
Question 7:			
Question 8 :			
Question 9 :			
Question 10 :			
			TUP

om: Prenom:				Velo Pro-Form TDF			
Question 11:							
	estion 12 :						
Question 12 :							
Question 13 :							
destion is.							
Question 14:							
Document réponse	Pac	je 24					
•	3	•					

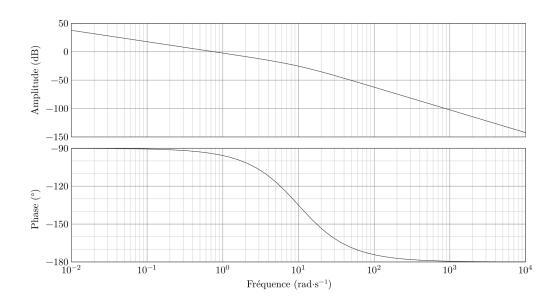
Nom:	Prénom:	Vélo Pro-Form TDF			
Question 15 :					
Question 16:					
Ougation 17.					
Question 17:					
Question 18 :					
Question 19:					


Page 25


Document réponse

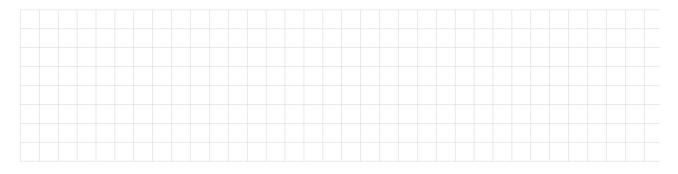
Question 20:

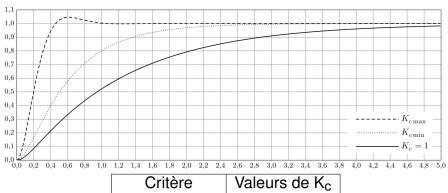
Question 21:



Question 22:

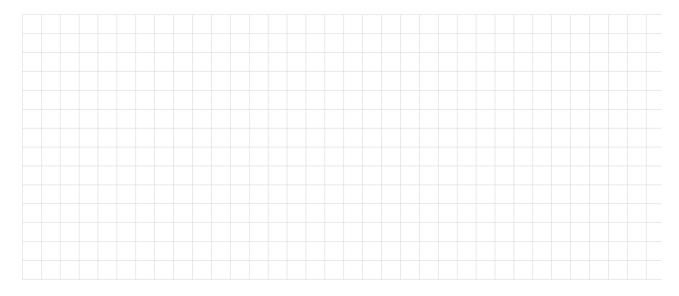
Question 23:

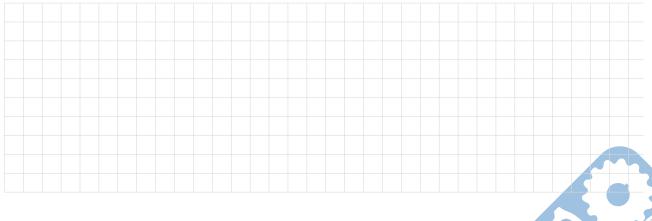

Question 24:

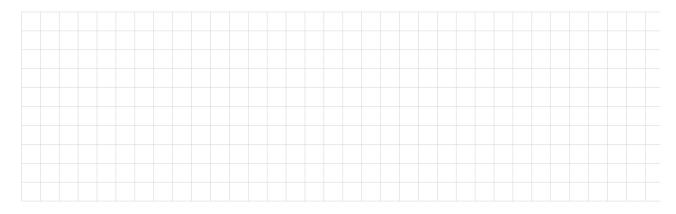

Question 25:

Question 26:

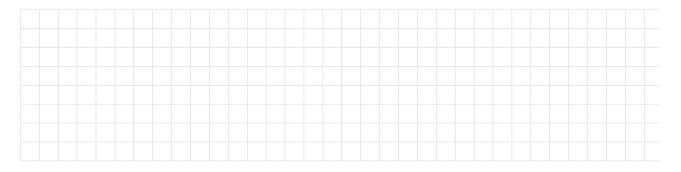
Question 27:

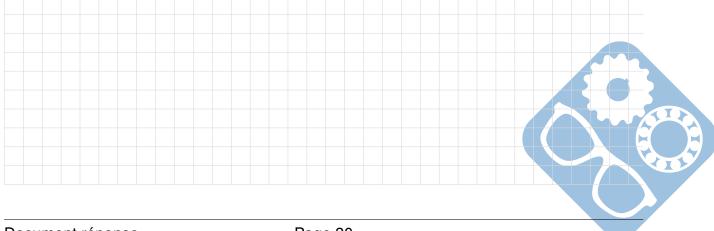

Critere	Valeurs de K _c
Dépassement	
Précision	
Rapidité	
Bilan	


Question 28:


Question 29:

Question 30:


Question 31:


Question 32:

Question 33:

Question 34:

Question 35 :				
Exigence	Validation	Démarche		
id 1.2.1 : Permettre				
un parcours virtuel				
id 1.2.2 : Donner la				
sensation de résis-				
tance au pédalage				
id 1.1 : Incliner le vélo				
autour de l'axe longi-				
tudinal				
Question 36 :	nconvénients		Avantages	
Vélo Pro-Form	Iconvenients		Availlages	
TDF				
\//\				
Vélo traditionnel				
			1	

Page 31

Vélo Pro-Form TDF

Nom: Prénom:

Document réponse