A

BERKELEY LAB

Lawrence Berkeley National Laboratory

rrerrnrnr

%%, U.S. DEPARTMENT OF

'ENERGY

UNIVERSITY OF
CALIFORNIA




~

> BERKELEY LAB

BERKELEY LAB LAWRENCE BERKELEY NATIONAL LABORATORY

U.S. DEPARTMENT OF

ENERGY

G n"(‘r@.
i\ 3
%)

B

Benchmarking C++ Code

Bryce Adelstein Lelbach aka wash <balelbach@lbl.gov>

Computer Architecture Group, Computing Research Division

CppCon 2015



The Problem with Performance

Problem: Code seqg faults

Debuggers and tools A potential fix is
. are used to learn more implemented. Prior

- We solve this type of about the problem. fixes may be reverted.

problem with an iterative _— T

workflow.

Analyze Implement

- We know when we're done; _

we can easily get a “yes/no” Debugging

answer during the testing

phase. -

— Usually, there’s no random est

error when testing for this _

t f bl ludi The test is executed to
ype o prc.). em (exc uding see if the problem has
race conditions). been solved.
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The Problem with Performance

Problem: Code is slow

- Producing a “yes/no”
answer during the testing
phase is more difficult.

- Performance is not a Boolean
guantity.
. It is often unclear when the
problem is “fixed”.
- You never really finish
optimizing.
- Performance data is subject
to random error due to
natural variability.
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A potential fix is
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fixes may be reverted.
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What is Performance?

How do we define performance, anyways?
Not “fast”, but “fast enough”.

Real-world metrics:
- Ex: simulation-years/day

Roofline:
- Ex: FLOPI/s

Deadline:
- Ex: takes 50 milliseconds

You need to be able to come up with meaningful definitions for
performance.
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Sources of Error

Observational Error: The difference between what you
measure and the true result.

- Random Error: Errors caused by natural variance.

- Systemic Error: Errors caused by an inaccuracy — usually
constant or proportional to the true result.

Observational error is unavoidable. Meaningful
performance analysis must account for error.

- E.g. statistical testing approach
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Variance

Computers can reproduce answers, not performance.

- Hardware jitter

— Instruction pipelines: The pipeline fill level has an effect on the
execution time for one instruction.

— Difference in CPU/memory bus clock cycles: The CPU clock cycle is
different from the memory bus clock speed. Your CPU sometimes has
to wait for the synchronization of memory accesses.

- CPU frequency scaling and power management: These features
cause heterogeneities in processing power.

- Shared hardware caches: Caches shared between multiple
cores/threads are subject to variance due to concurrent use.

Source: http://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.html

Copyright (C) 2015 Bryce Adelstein lelbach 7




Variance

Computers can reproduce answers, not performance.

- Larger memory segments may have variance in access times
due to physical distance from the CPU.

- Additionally, OS activities can cause non-determinism.

- Some hardware interrupts require OS handling immediately after
delivery.

— Migration of non-pinned processes can affect the performance of CPU
heuristics.

Observer Effect: all forms of instrumentation change the
results.

Source: http://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.html
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Variance
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Statistical Best Practices

Statistics: A great way to lie to yourself.




Statistical Best Practices

Statistics: A way to extract conclusions from your data




Statistical Best Practices

Statistics: The science of data...

collection
analysis
Interpretation

presentation
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Case Study: CFD AMR Scaling
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Case Study: CFD AMR Scaling

AMR Test, Strong-Scaling (with uncertainty)
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Case Study: CFD AMR Scaling

AMR Test, Strong-Scaling (with uncertainty)
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Statistical Best Practices

Process:

- Form a hypothesis: how do you expect performance to change?
- Come up with a test to determine if your hypothesis is right.

- Gather data.

- Statistically analyze data.

- Draw conclusions.




Statistical Best Practices

Come up with a test to determine if your hypothesis is
right.
- ldentify independent/dependent/control variables.

- Determine what relevant metric you’ll use (metric will be derived
from dependent variables).

- Consider the assumptions you’re making:
— Assumptions about independence of variables.

— Assumptions about distribution of samples.
- Usually we assume a normal distribution.

Copyright (C) 2015 Bryce Adelstein lelbach 19



Gathering Data

Amortizing: When measuring “small” events, we often
measure by amortization to reduce the observer effect.

- E.g. time an N-iteration for loop and divide by N to get the
amortized time per iteration.

high resolution timer t; // Start timing.
for (std::size t 1 = 0; 1 < N; ++1)
A[i] = A[i] + B[i] * C[i]l~

double time per iteration = t.elapsed() / N;

- We treat this as one sample, not N samples.
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Gathering Data

Sampling: Each independent measurement we take is a
sample.

- Samples are representative of the “population” (AKA the true
performance).

- Our goal is to gather samples in sufficient quantity and quality to
be representative of the population.

It's crucial to both sample within one execution of the
test and across multiple executions of the test.

- Gathering data across multiple executions gives a better
representation of system noise.




Gathering Data

Running “hot” vs “cold”.

- Often, you need to make sure that both your test as a whole (e.qg.
each execution), and the particular region your measuring (e.g.
each sample) are not running “cold” on the CPU.

- 1/0, caching and branch prediction may be off if you're running cold.

You can do this by doing some warmup executions/runs
before you start measuring.

- E.g. don’t measure first execution or first few iterations.
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Uncertainty

Uncertainty: representation of the amount of error in a
certain measurement.

- Instrument uncertainty: the inherent amount of uncertainty in an
Instrument.

— Ex: if your clock ticks in microseconds, it would have an instrument
uncertainty of +/- 500 nanoseconds (1/2th the unit of measurement).

- The sample standard deviation of a set of samples is a

frequently used method for estimating the uncertainty of the
average of the samples.

When dealing with derived metrics that use averaged

data, you can formulate a derived uncertainty based on
the uncertainties of the averaged data.
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Uncertainty

Given uncorrelated averaged data A and B with
standard deviations g, and oy, and constants a and b.

Standard Deviation

f=aA Of = A0y

f=aA+bB oF = \/azaj + b%0}

()

2 2

f=ABorf=A/B alefl\/(%)
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Case Study: CFD AMR Scaling

AMR Test, Strong-Scaling (with uncertainty)
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Case Study: CFD AMR Scaling

AMR Test, Walltime
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Example: Boost.Accumulators

“Boost.Accumulators provides accumulators to which
numbers can be added to get, for example, the mean or
the standard deviation.”

The Boost C++ Libraries, Boris Schaling




Example: Boost.Accumulators

using namespace boost::accumulators;

int main ()

{
accumulator set<
double, stats<tag::count, tag::mean,
> acc;
acc(42);
// ... Accumulate data
auto stdev = std::sqrt(variance (acc));
std::cout << "Mean: " << mean (acc) <<
<< "Median: " << median(acc) << "\n"
<< "Stdev: " K<L stdev <<
}
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Example: Boost.Accumulators

Onlan 17, 2012, at 3:38 PM, Victor Yankee wrote:

= How can I calculate the Sample Standard Deviation over a std::vector of doubles using accumulators?
=
= Or is there a faster way in boost math or some such?

Google is your friend (second hit for "boost accumulator standard deviation™):
http://stackoverflow.com/questions/761651 1/calculate-mean-and-standard-deviation-from-a-vectar-of-samples-in-c-using-boos
and http://stackoverflow.com/questions/43167 16/is-it-possible-to-use-boost-accumulators-with-vectors

accumulator_set<double, stats<tag::variance= = acc;
for_each(a_vec.begin(), a_vec.end(), bind<void={ref{acc), _1));

cout << meaniacc) << endl;
cout << sgrit{variance(acc)) << endl;

-- Marshall
Marshall Clow Idio Software <mailto:mclow.lists_at_[hidden]=

AD. 1517 Martin Luther nails his 95 Theses to the church door and is promptly moderated down to (-1, Flamebait).
-- Yu Suzuki

- /
frrereeee o
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Example: Boost.Accumulators

But this is the POPULATION standard deviation {(varnance divided by N) I
think.

What I was asking for was how to calculated the SAMPLE standard deviation
ivariance devided by MN-1).

Thanks,
Vic
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Example: Boost.Accumulators

Two different forms of standard deviation

- Uncorrected, takes the standard deviation of an entire
population:

0 = EZ? 1(xl #)2

- Corrected, takes the standard deviation of a sample of a
population:

1
0o = TZ? 1(xl H)Z




Example: Boost.Accumulators

using namespace boost::accumulators;

int main ()

{
accumulator set<
double, stats<tag::count, tag::mean, tag::median, tag::variance>
> acc;
acc(42);
// ... Accumulate data
auto n = count (acc);
auto stdev = std::sgrt(variance (acc)*(n/(n-1.0)));
std::cout << "Mean: " << mean (acc) << "\n"
<< "Median: " << median(acc) << "\n"
<< "Stdev: " << stdev << "\n'";
}
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Gathering Data

Process for collecting good data:

- Take individual measurements in your code. Use amortization if
relevant.

- Accumulate multiple measurements and uncertainty estimations
In code.

- Gather results from multiple executions of the test, and
recompute uncertainty estimations.

- Given two averages, 1, and u, (and a combined average u), of n, and
n, data points, with sample standard deviations g; and o,, the
combined sample standard deviation of both datasets is:

242 242 2 2 2 2 2 2 2

(n1+ny—-1)(n1+ny)

Copyright (C) 2015 Bryce Adelstein lelbach 35




Confidence Intervals

Confidence Interval: a way to describe the amount of
uncertainty associated with a sample of a population.

- Constructed from three pieces of information:
- Confidence level (r) - e.g. 90%, 95%, 99%.
— Statistical data, including sample size (n).
— Uncertainty for the data (o).
Z0
Cl =—
NG

- z IS the critical value. For large sample sizes, you can look this
up in a table. For small sample sizes, use the Student's t inverse

cumulative distribution function:

Z=Ti,(1—7r,n—1)
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Confidence Intervals

One of the useful things you can do with confidence
Intervals is determine the correct sample size, based on
an initial “pilot” set of samples.

- Given a margin of error e,,, a critical value z, an uncertainty o,
and a mean u:

- If this calculation indicates an unreasonable large sample size is
needed, the experiment may need to be redesigned.

- Typically, if your uncertainties are big relative to your data (mean
and standard deviation have the same magnitude), there is too
much noise to get meaningful results from your data.
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Confidence Intervals

Meaning of confidence intervals

- If the true performance lies outside of the 95% confidence
Interval, then an event occurred which had a probability of 5% or

less of happening.

« A 95% confidence interval does not mean that 95% of the data
lies within the interval.

- A confidence interval isn’t a range of plausible values for a
sample mean. It can be interpreted as an estimate of plausible

values for the population.
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Case Study: HPX CS Overhead
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Case Study: HPX CS Overhead
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Mean-Median Test

Normality test: Tests to determine if a data-set fits a
normal distribution well.

- There are graphical (QQ plot), informal/back-of-the-envelope and
rigorous normality tests.

The mean (u), median (m) and mode of normally
distributed data should be the same, so...

lju—m|
max(u,m)
- This will give you the relative difference between the mean and

median (a percentage represented as a decimal). If this is larger
than 1%, your data is probably not normally distributed.
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Case Study: HPX CS Overhead

Context Switching Overhead (Mean-Median Test), Intel Sandybridge
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Case Study: HPX CS Overhead
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Time-Based Benchmarking

We have access to a few different clocksources for
benchmarking on modern (x86) CPUS:

- System-wide high-resolution clock:
- Monotonic, frequency-stable, higher latency and overhead.
— Resolution is in hanoseconds.

— Times can be passed between threads.
— *nix, this is accessed via clock_gettime reading CLOCK_MONOTONIC.

— Windows, this is accessed via QueryPerformanceCounter/Frequency.
— Suitable for measuring most events (microseconds and up).
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Time-Based Benchmarking

We have access to three different clocksources for
benchmarking on modern (x86) CPUS:

- Timestamp Counter (TSC):
— Monotonic, lower latency and overhead.

- Resolution is in CPU cycles (with caveats), tick is in base clock cycles.

- All newer (4-5 year old) CPUs guarantee a constant TSC frequency, even if
the CPU frequency changes (e.g. frequency scaling, Intel Turbo mode).

- Constant TSC frequency == timing data is not representative of # of cycles
executed.

- Ticks with the base clock, which runs at 100 or 133 Mhz (depending on
microarchitecture).

- Assembly instruction(s) for reading this counter.
- Cycle counts are thread-specific.
— Suitable for measuring short events (cycles to minutes).
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<chrono>

Standard facilities for manipulating dates and times,
Introduced in C++11
- Three types:
— Duration: A span of time, defined as some number of ticks of some
time unit.

- Time Point: A duration of time that has passed since the epoch of
specific clock.

— Clocks: An object with a starting point and a tick rate, which can be
gueried for the current time.

<chrono> is the best way to measure durations that are
microsecond magnitude or large.

Source: cppreference.com
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<chrono>

system_clock
steady_clock

high_resolution_clock
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Wall clock time from the system-
wide realtime clock.

Monotonic clock that will never be
adjusted.

The clock with the shortest tick
period available.
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Example: high_resolution_timer
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Example: high _resolution_timer

struct high resolution timer

{
high resolution timer() : start time (take time stamp()) {}
void restart ()
{ start time = take time stamp(); }
double elapsed() const // Return elapsed time in seconds.
{ return double(take time stamp() - start time ) * 1e-9; }
std::uint64 t elapsed nanoseconds () const
{ return take time stamp() - start time ; }
protected:
static std::uint64 t take time stamp ()
{
return std::chrono::duration cast<std::chrono::nanoseconds>
(std::chrono::steady clock::now().time since epoch()) .count();
}
private:
std::uint64 t start time ;
};
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Memory Benchmarking

Approaches to instrumenting memory allocation:

- What do we want to look at?
— Objects (allocated/deallocated)
- Memory (total, per object size, per object type)

- External tools:
— googleperftools/TCMalloc (MALLOCSTATS)

- MemTrack

- Overload operator new/delete

- Writing a member operator new/delete is a great technique for tracking
memory performance for a specific object.

— | suggest a static member variable to store the performance data; if
you need thread safety, use thread-local storage and accumulate
afterwards.
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Example: Instrumenting operator new

Non-Time-Based Benchmarking




Example: Instrumenting operator new

struct A {
static std::size t allocated;

static void* operator new(std::size t sz)

{
allocated += sz/sizeof (2);
return ::operator new(sz);
}
static void* operator new[] (std::size t sz)
{
allocated += sz/sizeof (2);
return ::operator new(sz);
}

};

std::size t A::allocated = 0;

,:fﬁﬁﬂ
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Counting Copies/Moves

When we started transition the HPX codebase to
support move semantics a few years ago, we wrote
some tests to make sure we got it right.

- We passed mock objects that count copies/moves through our
framework and looked at the results.

- Once we were confident our interfaces were doing things right
(minimizing the number of copies, etc), we wrote unit tests to
verify the move/copy counts wouldn’t change.

- Especially important for us — HPX is an asynchronous
programming framework, so there are places where we duplicate
data to facilitate asynchrony.

- We wanted to ensure we only copied async() arguments once.
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Hardware Performance Counters

X86 processors have a diverse set of hardware
performance counters.

« Pros:
- Low overhead.
- Very diverse and descriptive information.

- Cons:
— Microarchitecture specific.

— Some counters are estimations, or suffer from inaccuracies
(overcounting, etc).

- You need very specialized knowledge to use these for performance
analysis.

- Fortunately, there’s an awesome tool which has this knowledge baked into it.
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Hardware Performance Counters

Low-level frameworks for accessing hardware counters
from within your code:

« Linux: PAPI framework
« Windows: Performance Counter framework

- Mac: kpc.h

There are some external sampling-based profiling tools
that provide access to this information.

- EX: Intel VTune Amplifier.




Performance Analysis Tools




Intel VTune Amplifier

Sampling-based profiling tool: runs your application,
and collects “snapshots” of performance metrics while

your program is running.

- Works on Intel processors, Windows/Linux/Mac OS X/Android,
not tied to any particular compiler.

- Requires no code changes to use.

- Multiple data sources: timers, hardware performance counters
and operating system metrics.

- Performance data can be viewed per function or at
assembly/source code granularity.

- Analyzes everything: kernel calls, sub-processes, threads, etc.
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Intel VTune Amplifier

Sampling-based profiling tool: runs your application,
and collects “snapshots” of performance metrics while

your program is running.
- Provides built-in analysis passes which derive useful, higher-

level performance metrics from micro-architecture specific raw
hardware counters.

- Also supports user-defined analysis passes.

- Support for instrumenting parallel and distributed code.
— Built-in support for OS-threading frameworks.
— Built-in support for OpenMP, MPI and Intel TBB.

- Provides an instrumentation API which parallel programming
frameworks can use to inform the profiler about their threading and

concurrency data structures.
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Intel VTune Amplifier

Sampling-based profiling tool: runs your application,
and collects “snapshots” of performance metrics while

your program is running.

- Powerful GUI.

- Standalone Windows/Linux/Mac GUI as well as integration with Visual
Studio and Eclipse.

- Data can be collected remotely via the command line interface and
then fed into the GUI.

— Great interface for filtering data (e.g. focusing in on just one section of
the program’s execution).

- Built-in analysis passes contain a lot of information about how to
interpret results.
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Intel VTune Amplifier
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Intel VTune Amplifier
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* FArrayBox::performCopy 0.056 0.015 0.985 0.003
* [MKL BLAS]@dtbsv 0.468 0.000 0.061 0.401 0.150
* climate_mini_app::advection_diffusion_ 0.509 0.069 0.132
* climate mini app::imex per box operal 0.561 0.000 1.000 0.124
Highlighted O row(s): o
. [4] [+]
Geice | 05s 1s 15s 2 255  3s 355 4s 455 5s 65 655 7s 755 8s . 9s 955 10s 10,55 1ls 11,55 12s 1255 @ Thread -]
Clima... [ ‘ ) ] e o |4 =®@Run...
FHardw...
i NS |
Y Hardwa...
- Hardwar...
g ik ST |
=
=
Hardw. bt hbiiinl whtiielid Albebl A ool
! T i kS
Bl Filter:. . shown LTI Any Process ~ ARICEER Any Thread ~ WULGINER Any Module v |Fv

MRS QYL User functions + 1 Inline Mode: EJIEd Loop Mode: ISR hd

e
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Intel VTune Amplifier

s & o b B @@ @) roolge r003macc roodge X
= General Exploration General Exploration viewpoint (change) @ [T TR 2 = G

= Collection Log| @ Analysis Target | © Analysis Type # Summary| « Bottom-up |« Event Count E Platform |EXeiINIn|S<(eNEE = CMAIMEXOp...

Source Assembly|(| | | ®| | ®| ®| %] a| Assembly grouping: Address 3|
w Unfilled Pipeline Slots (52
S . Back-End Bound
a Source Clockticks
L. Memory Latency Memory Replace... Memory R
LLC.../LLC .. LLC ..|DTL...|Con.. Dat...[L1D..| L2 ... LLC ../ Loa.. Spli... 5§
133
134 ke0O = profile.horizontal_stencil (h0O, FY, FZ, inv_dh_c);
135 kel = prefile.horizontal_stencil (hl, FY, FZ, inv_dh_c);
136 ke2 = profile.horizontal stencil (h2, FY, FZ, inv_dh_c);
137 ke3 = profile.horizontal_ stencil (h3 FY, FZ, inv_dh_c);
138 0.0%
139 kE (h0O) = keO; 0.1% 0.005
140 kE (hl) = kel; 3
141 kE (h2) = ke2; 0.0% J_
142 KE (h3) = ke3; =
143 }
144
145 // Handle the remainder, 1if there is one.
146 for (; k <= upper[2]; ++k)
147 {
148 IntVect hO(i, 3, k );
149
150 kE (h0O) = profile.horizontal_stencil (hO, FY, FZ, inv_dh_c); 0.1%
151 } 1.9% 0.144 0.2x8 0.249 0.069 0.040

A significant proportion of cycles is being spent on data fetches that miss in the L2 but hit in the LLC. This metric includes coherence penalties for shared data. If contested accesses or
data sharing are indicated as likely issues, address them first. Otherwise, consider the same performance tuning as you would apply for an LLC-missing workload - reduce the data
working set size, improve data access locality, consider blocking or otherwise partitioning your working set so that it fits in the L2, or better exploit hardware prefetchers. Consider using
software prefetchers, but note that they can interfere with normal loads, potentially increasing latency, and that they increase pressure on the memory system.

Threshold: ( ( ( ( ( (40 * MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_NONE ) + ( 88 * MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HIT ) } + ( 99 * MEM_LOAD_UOPS_LLC_HIT_RETIRED.XSNP_HITM
) ) / CPU_CLK_UNHALTED.THREAD ) > 0.2 ) * { CPU_CLK_UNHALTED.THREAD / > 0.05 ) )

Selected 1 row(s):H 0.1% 0.150 0.000 1.000 0.390 0.000 0.000 0.000 0.019 0.000 0.000 0.000 q;l
K| 0| KTl [ o]
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Intel VTune Amplifier

&l b sasE @

r003macc

roosbw X

= Bandwidth Memory Usage viewpoint (change)

Coqeo-ce . 05s  1s  15s  2s  25s  3s 3.5s 4s 455 55 55s 6s 6.5s 7s /.5s B8 85s 9s 95s 10s 105s 1ls 11,
Y K , 338 ‘
b package 1 459 [+ Read...
] 338 Ees Writ...
) package_ 0 359 Y CPU Time
= dwk CPU Ti...
=}
H
©
c
1]
m
=
=
= : ik
T ————————————— ANk At A
L
[
E
=
)
o
o
, B
Grouping: Function / Call Stack I: Ll il 1‘
Function / Call Stack CPU Timew *‘ LLC Mis... Module =
* [MKL BLAS]@xdger 23.141s[ 0 ClimateMiniApp3d.Linux.64.icpc.ifort.OPT.HPX.XEON.ex mkl_blas_avx_xdger
* climate_mini_app::imex_per_box_operators<cli| 19.124s [N 500,035 ClimateMiniApp3d.Linux.64.icpc.ifort. OPT.HPX.XEON.ex void climate_mini_app::imex_per_box_operators
» _intel_memset 13.330s [ 0 ClimateMiniApp3d.Linux.64.icpc.ifort. OPT.HPX XEON.ex __intel_memset
* FArrayBox::plus 11.4095- 1,000,070 ClimateMiniApp3d.Linux.64.icpc.ifort. OPT.HPX.XEON.ex FArrayBox::plus(FArrayBox const&, double consté
* [MKL BLASI@dgbmv 11.037s[ 0 ClimateMiniApp3d.Linux.64.icpc.ifort. OPT.HPX.XEON.ex mkl_blas_avx_dgbmv
» [MKL LAPACK]@dgbtf2 9.07ss[ 0 ClimateMiniApp3d.Linux.64.icpc.ifort. OPT.HPX . XEON.ex mkl_lapack_dgbtf2
» [Outside any known module] 7.978s[ 0 [Outside any known module]
* BaseFab<double>::performCopy 7.8605- 2,600,182 ClimateMiniApp3d.Linux.64.icpc.ifort. OPT.HPX.XEON.ex BaseFab<double>::performCopy(BaseFab<doub
Selected 1 row(s): 23.141s 0
< o

No filt...plied. Any Process

~JAny Thread

~ | Any Module

\LIOH

id
i
ommEmTE
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Intel Vectorization Adviser

New tool in Intel Parallel Studio XE 2016: Vectorization
Adviser.

- Integrates the Intel compiler’s vectorization reports into the GUI
performance profiling framework.

" Where should | add vectorization and/or threading parallelism? D Intel Advisor XE 2016
Surnmary m SICTEL LT 7 Refinernent Reports & Annotation Report | Suitability Report
Elapsed tirme: 54.44s || Wectorized Mot Wectorized FILTER: | All Madules v Al Sources hd =
i Wectarized Loops 6
i i Self Tatal | Trip ST p
Function Call Sites and Loops & | @ vector ssues Timew | Time | Counts Loop Type | Why Mo Vectorization? Vecto..| Efficiancy
150 [loop at st_algo.hd7d0in stdutr ., [ 0.170:1  0170s1 Scalar B non-vectorizable loop ins ...
El [loop at loopstl.cpp:2449 in 5234_] g 2 Ineffective peeledfrerm ., Q170: 1 Q170s1 12 4 Collapse Collapse A !EE_
i+ [loop at loopsthopp2ddQin s, [ 0150: 1 0150s1 12 Wectorized (B A0
3+O [loop at loopsthopp2ddQin s, [ 0.020: 1 002051 4 Rermainder
i [loop at loopstl.cpp 900 invas_ ] [ 01701 0170s1 500 Scalar & vectorization possible but,.,
[loop at loopstl.cpp:3509 in 52 ... ‘g’ 1 High vector register ... 0.160s| 0.160s| 12 Expand Expand AvX  [eB% ]
[loop at loopstl.cpp:3891 in 5279 @ 7 Ineffective peeled/rern.. 015051 0150s1 1254 Expand Expand A
[loop at loopstl.cpp:E249 in s414_] 0.150s1 015051 12 Expand Expand It ST
12 (0 [loop at st_nurmeric.hi247 instd... ] % 1 Assurned dependency... 0.150s1 | 015051 489 Scalar & vector dependence preve ... v

L4

Source: https://software.intel.com/en-us/intel-advisor-xe/

frereee |I'ﬂ
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Intel Vectorization Adviser

<+— \/ectorized

140,000

&

o
w
g . 120000 Threaded
E % 100,000
w O
5 2 30,000
¥ 179X
9 20 60,000
=L
E 40,000
c
@ 20,000 ] — Thread_ed
I —— ) Vectorized
e e e T — < :
0 —= ¥ «—Serial

Intel® Xeon™ Intel® Xeon™ Intel® Xeon™ Intel® Xeon™ Intel® Xeon™ Intel® Xeon™
Processor Processor Processor Processor Processor Processor
Xo472 X5570 X5680 ES-2600 E5-2600 v2 ES5-2600 v3
formerly formerly formerly family formerly family formerly family formerly

codenamed codenamed codenamed codenamed codenamed codenamed

Harpertown Nehalem Westmere  Sandy Bridge  Ivy Bridge Haswell
L ] | ] | ] |
| 11 11 11
SSE4.1 SSE4.2 AVX AVX2
Source: https://software.intel.com/en-us/intel-advisor-xe/
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Write Performance Tests




Write Performance Tests

|ldea: Let’s write unit and regression tests for
performance, just like we do for correctness.

Challenges:

- Implementing automated performance testing that follow the kind
of best practices we've been talking about requires a lot of
machinery.

- If your performance tests are stateful (rely on the results of
previous automated tests), you need even more machinery.

- You need more than just the machinery to run the tests - you
also need automated analysis to determine whether the test has

failed.
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Write Performance Tests
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Debuggers and tools
are used to learn more
about the problem.

JE——

A potential fix is
implemented. Prior

fixes may be reverted.

Analyze

Debugging

"

Implement

Test

- g

The test is executed to
see if the problem has
been solved.

72

— /
frrereeee o

BERKELEY LAB




Write Performance Tests
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Statistical data is

analyzed to determine

if the test passed.

A potential fix is
implemented. Prior

fixes may be reverted.

Analyze

Optimization

"

Implement

Test

The test is executed,
and statistical data is
recorded.
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Stateful Performance Tests

Stateful performance tests: performance benchmarks
which yield results that cannot be interpreted without
contextual information.

- Output: absolute values.
- Most of your existing benchmarks are already stateful.

- To automate these tests, the current performance (e.g. trunk)
needs to be compared against some prior results. There’s two

options for doing this:

— Automated build system stores prior results for comparison. Requires
more machinery, but allows you to track performance over time.

— Automated build system checks out and builds an older version of the
code to compare against.
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Stateful Performance Tests

Perfherder v Graphs  Compare
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Stateless Performance Tests

Stateless performance tests: performance benchmarks
which test for a performance “failure”, and can provide a
“yes/no” answer without external data.

- Output: relative values.

The idea Is to compare different implementation options
which you believe to have a performance impact.

- EX: Lockfree queue vs lock-based queue.
- Ex: Recomputing data locally vs overhead for sharing.
- EXx: Algorithmic complexity testing.




Stateless Performance Tests

Whenever you face a design trade-off
with performance implications,

write a stateless test!




Summary

Take a scientific approach to performance benchmarking.
- Hypothesize, design a test, run the test, analyze, draw conclusions.

Manage and test your assumptions about your tests.

Collect a statistically significant quantity of data.

Measure and propagate error.

Develop unit and regression tests for performance.
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