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The Problem with Performance

3

Problem: Code seg faults

• We solve this type of 

problem with an iterative 

workflow.

• We know when we’re done; 

we can easily get a “yes/no”

answer during the testing 

phase.

– Usually, there’s no random 

error when testing for this 

type of problem (excluding 

race conditions).

Test

ImplementAnalyze

Debuggers and tools 

are used to learn more 

about the problem.

The test is executed to 

see if the problem has 

been solved.

A potential fix is 

implemented. Prior 

fixes may be reverted.

Debugging
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The Problem with Performance
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???

Test

ImplementAnalyze

???
A potential fix is 

implemented. Prior 

fixes may be reverted.

Problem: Code is slow

• Producing a “yes/no”

answer during the testing 

phase is more difficult.

– Performance is not a Boolean 

quantity.

 It is often unclear when the 

problem is “fixed”.

 You never really finish 

optimizing.

– Performance data is subject 

to random error due to 

natural variability.

Optimization
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What is Performance?

How do we define performance, anyways?

• Not “fast”, but “fast enough”.

• Real-world metrics:

– Ex: simulation-years/day

• Roofline:

– Ex: FLOP/s

• Deadline:

– Ex: takes 50 milliseconds

You need to be able to come up with meaningful definitions for 

performance.
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Sources of Error

Observational Error: The difference between what you 

measure and the true result.

• Random Error: Errors caused by natural variance.

• Systemic Error: Errors caused by an inaccuracy – usually 

constant or proportional to the true result.

Observational error is unavoidable. Meaningful 

performance analysis must account for error.

• E.g. statistical testing approach
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Variance
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Computers can reproduce answers, not performance.

• Hardware jitter

– Instruction pipelines: The pipeline fill level has an effect on the 

execution time for one instruction.

– Difference in CPU/memory bus clock cycles: The CPU clock cycle is 

different from the memory bus clock speed. Your CPU sometimes has 

to wait for the synchronization of memory accesses.

– CPU frequency scaling and power management: These features 

cause heterogeneities in processing power.

– Shared hardware caches: Caches shared between multiple 

cores/threads are subject to variance due to concurrent use.

Source: http://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.html
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Variance
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Computers can reproduce answers, not performance.

• Larger memory segments may have variance in access times 

due to physical distance from the CPU.

• Additionally, OS activities can cause non-determinism.

– Some hardware interrupts require OS handling immediately after 

delivery.

– Migration of non-pinned processes can affect the performance of CPU 

heuristics.

Observer Effect: all forms of instrumentation change the 

results.

Source: http://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.html
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Variance
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Source: Cy Chan, John Bachan
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Statistical Best Practices
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Statistical Best Practices

Statistics: A great way to lie to yourself.
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Statistical Best Practices

Statistics: A way to extract conclusions from your data
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Statistical Best Practices

Statistics: The science of data…

collection

analysis

interpretation

presentation 
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Statistical Best Practices

Case Study: CFD AMR Scaling
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Case Study: CFD AMR Scaling
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AMR Test, Strong-Scaling
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Case Study: CFD AMR Scaling
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AMR Test, Strong-Scaling (with uncertainty)
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Case Study: CFD AMR Scaling
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AMR Test, Strong-Scaling (with uncertainty)
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Statistical Best Practices

Process:

• Form a hypothesis: how do you expect performance to change?

• Come up with a test to determine if your hypothesis is right.

• Gather data.

• Statistically analyze data.

• Draw conclusions.
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Statistical Best Practices

Come up with a test to determine if your hypothesis is 

right.

• Identify independent/dependent/control variables.

• Determine what relevant metric you’ll use (metric will be derived 

from dependent variables).

• Consider the assumptions you’re making:

– Assumptions about independence of variables.

– Assumptions about distribution of samples.

 Usually we assume a normal distribution.
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Gathering Data

Amortizing: When measuring “small” events, we often 

measure by amortization to reduce the observer effect.

• E.g. time an N-iteration for loop and divide by N to get the 

amortized time per iteration.

high_resolution_timer t; // Start timing.

for (std::size_t i = 0; i < N; ++i)

A[i] = A[i] + B[i] * C[i];

double time_per_iteration = t.elapsed() / N;

• We treat this as one sample, not N samples.
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Gathering Data

Sampling: Each independent measurement we take is a 

sample.

• Samples are representative of the “population” (AKA the true 

performance).

• Our goal is to gather samples in sufficient quantity and quality to 

be representative of the population.

It’s crucial to both sample within one execution of the 

test and across multiple executions of the test.

• Gathering data across multiple executions gives a better 

representation of system noise.
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Gathering Data

Running “hot” vs “cold”.

• Often, you need to make sure that both your test as a whole (e.g. 

each execution), and the particular region your measuring (e.g. 

each sample) are not running “cold” on the CPU.

– I/O, caching and branch prediction may be off if you’re running cold.

You can do this by doing some warmup executions/runs 

before you start measuring.

• E.g. don’t measure first execution or first few iterations.
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Uncertainty

Uncertainty: representation of the amount of error in a 

certain measurement.

• Instrument uncertainty: the inherent amount of uncertainty in an 

instrument.

– Ex: if your clock ticks in microseconds, it would have an instrument 

uncertainty of +/- 500 nanoseconds (1/2th the unit of measurement).

• The sample standard deviation of a set of samples is a 

frequently used method for estimating the uncertainty of the 

average of the samples.

When dealing with derived metrics that use averaged 

data, you can formulate a derived uncertainty based on 

the uncertainties of the averaged data. 
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Uncertainty

Function Standard Deviation

𝑓 = 𝑎𝐴 𝜎𝑓 = 𝑎𝜎𝐴

𝑓 = 𝑎𝐴 ± 𝑏𝐵 𝜎𝑓 = 𝑎2𝜎𝐴
2 + 𝑏2𝜎𝐵

2

𝑓 = 𝐴𝐵 or 𝑓 = 𝐴/𝐵 𝜎𝑓 ≈ 𝑓
𝜎𝐴
𝐴

2

+
𝜎𝐵
𝐵

2

24

Given uncorrelated averaged data 𝐴 and 𝐵 with 

standard deviations 𝜎𝐴 and 𝜎𝐵, and constants 𝑎 and 𝑏.
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Statistical Best Practices

Case Study: CFD AMR Scaling
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Case Study: CFD AMR Scaling
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AMR Test, Strong-Scaling (with uncertainty)
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Case Study: CFD AMR Scaling
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AMR Test, Walltime
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Statistical Best Practices

Example: Boost.Accumulators

28



Example: Boost.Accumulators

“Boost.Accumulators provides accumulators to which 

numbers can be added to get, for example, the mean or 

the standard deviation.”

The Boost C++ Libraries, Boris Schäling
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Example: Boost.Accumulators

using namespace boost::accumulators;

int main()

{

accumulator_set<

double, stats<tag::count, tag::mean, tag::median, tag::variance>

> acc;

acc(42);

// ... Accumulate data ...

auto stdev = std::sqrt(variance(acc));

std::cout << "Mean:   " << mean(acc) << "\n"

<< "Median: " << median(acc) << "\n"

<< "Stdev:  " << stdev << "\n";

}
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Example: Boost.Accumulators
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Example: Boost.Accumulators
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Example: Boost.Accumulators

Two different forms of standard deviation

• Uncorrected, takes the standard deviation of an entire 

population:

𝜎 =
1

𝑛
 𝑖=1
𝑛 𝑥𝑖 − 𝜇

2

• Corrected, takes the standard deviation of a sample of a 

population:

𝜎 =
1

𝑛−1
 𝑖=1
𝑛 𝑥𝑖 − 𝜇

2
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Example: Boost.Accumulators

using namespace boost::accumulators;

int main()

{

accumulator_set<

double, stats<tag::count, tag::mean, tag::median, tag::variance>

> acc;

acc(42);

// ... Accumulate data ...

auto n = count(acc);

auto stdev = std::sqrt(variance(acc)*(n/(n-1.0)));

std::cout << "Mean:   " << mean(acc) << "\n"

<< "Median: " << median(acc) << "\n"

<< "Stdev:  " << stdev << "\n";

}

34Copyright (C) 2015 Bryce Adelstein lelbach



Gathering Data

Process for collecting good data:

• Take individual measurements in your code. Use amortization if 

relevant.

• Accumulate multiple measurements and uncertainty estimations 

in code.

• Gather results from multiple executions of the test, and 

recompute uncertainty estimations.

– Given two averages, 𝜇1 and 𝜇2 (and a combined average 𝜇), of 𝑛1 and 

𝑛2 data points, with sample standard deviations 𝜎1 and 𝜎2, the 

combined sample standard deviation of both datasets is:

𝜎 =
𝑛1
2𝜎1

2+𝑛2
2𝜎2

2−𝑛2𝜎1
2−𝑛2𝜎2

2−𝑛1𝜎1
2−𝑛1𝜎2

2+𝑛𝑦𝑛𝑥𝜎1
2+𝑛𝑦𝑛𝑥𝜎2

2+𝑛1𝑛2 𝜇1−𝜇2
2

(𝑛1+𝑛2−1)(𝑛1+𝑛2)
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Confidence Intervals

Confidence Interval: a way to describe the amount of 

uncertainty associated with a sample of a population.

• Constructed from three pieces of information:

– Confidence level (𝑟) - e.g. 90%, 95%, 99%.

– Statistical data, including sample size (𝑛).

– Uncertainty for the data (𝜎).

𝐶𝐼 =
𝑧𝜎

𝑛

• 𝑧 is the critical value. For large sample sizes, you can look this 

up in a table. For small sample sizes, use the Student's t inverse 

cumulative distribution function:

z = 𝑇𝑖𝑛𝑣(1 − 𝑟, 𝑛 − 1)
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Confidence Intervals

One of the useful things you can do with confidence 

intervals is determine the correct sample size, based on 

an initial “pilot” set of samples.

• Given a margin of error 𝑒𝑚, a critical value 𝑧, an uncertainty 𝜎, 

and a mean 𝜇: 

𝑛 =
𝑧𝜎
𝑒𝑚
2
𝜇

2

• If this calculation indicates an unreasonable large sample size is 

needed, the experiment may need to be redesigned.

• Typically, if your uncertainties are big relative to your data (mean 

and standard deviation have the same magnitude), there is too 

much noise to get meaningful results from your data.
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Confidence Intervals

Meaning of confidence intervals

• If the true performance lies outside of the 95% confidence 

interval, then an event occurred which had a probability of 5% or 

less of happening.

• A 95% confidence interval does not mean that 95% of the data 

lies within the interval.

• A confidence interval isn’t a range of plausible values for a 

sample mean. It can be interpreted as an estimate of plausible 

values for the population.
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Confidence Intervals
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Statistical Best Practices

Case Study: HPX CS Overhead
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Case Study: HPX CS Overhead
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Context Switching Overhead (95% CI), Intel Sandybridge
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Case Study: HPX CS Overhead
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Context Switching Overhead (UNC), Intel Sandybridge
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Mean-Median Test

Normality test: Tests to determine if a data-set fits a 

normal distribution well.

• There are graphical (QQ plot), informal/back-of-the-envelope and 

rigorous normality tests.

The mean (μ), median (m) and mode of normally 

distributed data should be the same, so…

𝜇−𝑚

max(𝜇,𝑚)

• This will give you the relative difference between the mean and 

median (a percentage represented as a decimal). If this is larger 

than 1%, your data is probably not normally distributed.
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Case Study: HPX CS Overhead
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Context Switching Overhead (Mean-Median Test), Intel Sandybridge
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Case Study: HPX CS Overhead
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Context Switching Overhead (Scatter), Intel Sandybridge
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Time-Based Benchmarking
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Time-Based Benchmarking

We have access to a few different clocksources for 

benchmarking on modern (x86) CPUS:

• System-wide high-resolution clock:

– Monotonic, frequency-stable, higher latency and overhead.

– Resolution is in nanoseconds.

– Times can be passed between threads.

– *nix, this is accessed via clock_gettime reading CLOCK_MONOTONIC.

– Windows, this is accessed via QueryPerformanceCounter/Frequency.

– Suitable for measuring most events (microseconds and up).
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Time-Based Benchmarking

We have access to three different clocksources for 

benchmarking on modern (x86) CPUS:

• Timestamp Counter (TSC):

– Monotonic, lower latency and overhead.

– Resolution is in CPU cycles (with caveats), tick is in base clock cycles.

 All newer (4-5 year old) CPUs guarantee a constant TSC frequency, even if 

the CPU frequency changes (e.g. frequency scaling, Intel Turbo mode).

 Constant TSC frequency == timing data is not representative of # of cycles 

executed.

 Ticks with the base clock, which runs at 100 or 133 Mhz (depending on 

microarchitecture).

– Assembly instruction(s) for reading this counter.

– Cycle counts are thread-specific.

– Suitable for measuring short events (cycles to minutes).
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<chrono>

Standard facilities for manipulating dates and times, 

introduced in C++11

• Three types:

– Duration: A span of time, defined as some number of ticks of some 

time unit. 

– Time Point: A duration of time that has passed since the epoch of 

specific clock. 

– Clocks: An object with a starting point and a tick rate, which can be 

queried for the current time.

<chrono> is the best way to measure durations that are 

microsecond magnitude or large.

49

Source: cppreference.com
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<chrono>

Clock Description

system_clock Wall clock time from the system-

wide realtime clock.

steady_clock Monotonic clock that will never be 

adjusted.

high_resolution_clock The clock with the shortest tick 

period available.
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Time-Based Benchmarking

Example: high_resolution_timer
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Example: high_resolution_timer

struct high_resolution_timer

{

high_resolution_timer() : start_time_(take_time_stamp()) {}

void restart()

{ start_time_ = take_time_stamp(); }

double elapsed() const // Return elapsed time in seconds.

{ return double(take_time_stamp() - start_time_) * 1e-9; }

std::uint64_t elapsed_nanoseconds() const

{ return take_time_stamp() - start_time_; }

protected:

static std::uint64_t take_time_stamp()

{

return std::chrono::duration_cast<std::chrono::nanoseconds>

(std::chrono::steady_clock::now().time_since_epoch()).count();

}

private:

std::uint64_t start_time_;

};
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Non-Time-Based Benchmarking
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Memory Benchmarking

Approaches to instrumenting memory allocation:

• What do we want to look at?

– Objects (allocated/deallocated)

– Memory (total, per object size, per object type)

• External tools:

– googleperftools/TCMalloc (MALLOCSTATS)

– MemTrack

• Overload operator new/delete

– Writing a member operator new/delete is a great technique for tracking 

memory performance for a specific object.

– I suggest a static member variable to store the performance data; if 

you need thread safety, use thread-local storage and accumulate 

afterwards.
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Non-Time-Based Benchmarking

Example: Instrumenting operator new
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Example: Instrumenting operator new

struct A {

static std::size_t allocated;

static void* operator new(std::size_t sz)

{

allocated += sz/sizeof(A);

return ::operator new(sz);

}

static void* operator new[](std::size_t sz)

{

allocated += sz/sizeof(A);

return ::operator new(sz);

}

};

std::size_t A::allocated = 0;
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Counting Copies/Moves

When we started transition the HPX codebase to 

support move semantics a few years ago, we wrote 

some tests to make sure we got it right.

• We passed mock objects that count copies/moves through our 

framework and looked at the results.

• Once we were confident our interfaces were doing things right 

(minimizing the number of copies, etc), we wrote unit tests to 

verify the move/copy counts wouldn’t change.

• Especially important for us – HPX is an asynchronous 

programming framework, so there are places where we duplicate 

data to facilitate asynchrony.

– We wanted to ensure we only copied async() arguments once.

57Copyright (C) 2015 Bryce Adelstein lelbach



Hardware Performance Counters

X86 processors have a diverse set of hardware 

performance counters.

• Pros:

– Low overhead.

– Very diverse and descriptive information.

• Cons:

– Microarchitecture specific.

– Some counters are estimations, or suffer from inaccuracies 

(overcounting, etc).

– You need very specialized knowledge to use these for performance 

analysis.

 Fortunately, there’s an awesome tool which has this knowledge baked into it.

58Copyright (C) 2015 Bryce Adelstein lelbach



Hardware Performance Counters

Low-level frameworks for accessing hardware counters 

from within your code:

• Linux: PAPI framework

• Windows: Performance Counter framework

• Mac: kpc.h

There are some external sampling-based profiling tools 

that provide access to this information.

• Ex: Intel VTune Amplifier.
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Performance Analysis Tools
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Intel VTune Amplifier

Sampling-based profiling tool: runs your application, 

and collects “snapshots” of performance metrics while 

your program is running.

• Works on Intel processors, Windows/Linux/Mac OS X/Android, 

not tied to any particular compiler.

• Requires no code changes to use.

• Multiple data sources: timers, hardware performance counters 

and operating system metrics.

• Performance data can be viewed per function or at 

assembly/source code granularity.

• Analyzes everything: kernel calls, sub-processes, threads, etc.
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Intel VTune Amplifier

Sampling-based profiling tool: runs your application, 

and collects “snapshots” of performance metrics while 

your program is running.

• Provides built-in analysis passes which derive useful, higher-

level performance metrics from micro-architecture specific raw 

hardware counters.

• Also supports user-defined analysis passes.

• Support for instrumenting parallel and distributed code.

– Built-in support for OS-threading frameworks.

– Built-in support for OpenMP, MPI and Intel TBB.

– Provides an instrumentation API which parallel programming 

frameworks can use to inform the profiler about their threading and 

concurrency data structures.
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Intel VTune Amplifier

Sampling-based profiling tool: runs your application, 

and collects “snapshots” of performance metrics while 

your program is running.

• Powerful GUI.

– Standalone Windows/Linux/Mac GUI as well as integration with Visual 

Studio and Eclipse.

– Data can be collected remotely via the command line interface and 

then fed into the GUI.

– Great interface for filtering data (e.g. focusing in on just one section of 

the program’s execution).

– Built-in analysis passes contain a lot of information about how to 

interpret results.
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Intel VTune Amplifier
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Intel VTune Amplifier
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Intel VTune Amplifier
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Intel VTune Amplifier
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Intel Vectorization Adviser

New tool in Intel Parallel Studio XE 2016: Vectorization 

Adviser.

• Integrates the Intel compiler’s vectorization reports into the GUI 

performance profiling framework.

68

Source: https://software.intel.com/en-us/intel-advisor-xe/
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Intel Vectorization Adviser
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SSE4.1 SSE4.2 AVX AVX2

Source: https://software.intel.com/en-us/intel-advisor-xe/

Copyright (C) 2015 Bryce Adelstein lelbach



Write Performance Tests
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Write Performance Tests

Idea: Let’s write unit and regression tests for 

performance, just like we do for correctness.

Challenges:

• Implementing automated performance testing that follow the kind 

of best practices we’ve been talking about requires a lot of 

machinery.

• If your performance tests are stateful (rely on the results of 

previous automated tests), you need even more machinery.

• You need more than just the machinery to run the tests - you 

also need automated analysis to determine whether the test has 

failed.
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Write Performance Tests
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Test

ImplementAnalyze

Debuggers and tools 

are used to learn more 

about the problem.

The test is executed to 

see if the problem has 

been solved.

A potential fix is 

implemented. Prior 

fixes may be reverted.

Debugging

Copyright (C) 2015 Bryce Adelstein lelbach



Write Performance Tests
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The test is executed, 

and statistical data is 

recorded.

Test

ImplementAnalyze

Statistical data is 

analyzed to determine 

if the test passed.

A potential fix is 

implemented. Prior 

fixes may be reverted.

Optimization
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Stateful Performance Tests

Stateful performance tests: performance benchmarks 

which yield results that cannot be interpreted without 

contextual information.

• Output: absolute values.

• Most of your existing benchmarks are already stateful.

• To automate these tests, the current performance (e.g. trunk) 

needs to be compared against some prior results. There’s two 

options for doing this:

– Automated build system stores prior results for comparison. Requires 

more machinery, but allows you to track performance over time.

– Automated build system checks out and builds an older version of the 

code to compare against.
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Stateful Performance Tests
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Stateless Performance Tests

Stateless performance tests: performance benchmarks 

which test for a performance “failure”, and can provide a 

“yes/no” answer without external data.

• Output: relative values.

The idea is to compare different implementation options 

which you believe to have a performance impact.

• Ex: Lockfree queue vs lock-based queue.

• Ex: Recomputing data locally vs overhead for sharing.

• Ex: Algorithmic complexity testing.
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Stateless Performance Tests

Whenever you face a design trade-off

with performance implications,

write a stateless test!
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Summary

• Take a scientific approach to performance benchmarking.

– Hypothesize, design a test, run the test, analyze, draw conclusions.

• Manage and test your assumptions about your tests.

• Collect a statistically significant quantity of data.

• Measure and propagate error.

• Develop unit and regression tests for performance.
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