
UNIVERSITY OF

CALIFORNIA

Benchmarking C++ Code

Bryce Adelstein Lelbach aka wash <balelbach@lbl.gov>

Computer Architecture Group, Computing Research Division

CppCon 2015

The Problem with Performance

3

Problem: Code seg faults

• We solve this type of

problem with an iterative

workflow.

• We know when we’re done;

we can easily get a “yes/no”

answer during the testing

phase.

– Usually, there’s no random

error when testing for this

type of problem (excluding

race conditions).

Test

ImplementAnalyze

Debuggers and tools

are used to learn more

about the problem.

The test is executed to

see if the problem has

been solved.

A potential fix is

implemented. Prior

fixes may be reverted.

Debugging

Copyright (C) 2015 Bryce Adelstein lelbach

The Problem with Performance

4

???

Test

ImplementAnalyze

???
A potential fix is

implemented. Prior

fixes may be reverted.

Problem: Code is slow

• Producing a “yes/no”

answer during the testing

phase is more difficult.

– Performance is not a Boolean

quantity.

 It is often unclear when the

problem is “fixed”.

 You never really finish

optimizing.

– Performance data is subject

to random error due to

natural variability.

Optimization

Copyright (C) 2015 Bryce Adelstein lelbach

What is Performance?

How do we define performance, anyways?

• Not “fast”, but “fast enough”.

• Real-world metrics:

– Ex: simulation-years/day

• Roofline:

– Ex: FLOP/s

• Deadline:

– Ex: takes 50 milliseconds

You need to be able to come up with meaningful definitions for

performance.

5Copyright (C) 2015 Bryce Adelstein lelbach

Sources of Error

Observational Error: The difference between what you

measure and the true result.

• Random Error: Errors caused by natural variance.

• Systemic Error: Errors caused by an inaccuracy – usually

constant or proportional to the true result.

Observational error is unavoidable. Meaningful

performance analysis must account for error.

• E.g. statistical testing approach

6Copyright (C) 2015 Bryce Adelstein lelbach

Variance

7

Computers can reproduce answers, not performance.

• Hardware jitter

– Instruction pipelines: The pipeline fill level has an effect on the

execution time for one instruction.

– Difference in CPU/memory bus clock cycles: The CPU clock cycle is

different from the memory bus clock speed. Your CPU sometimes has

to wait for the synchronization of memory accesses.

– CPU frequency scaling and power management: These features

cause heterogeneities in processing power.

– Shared hardware caches: Caches shared between multiple

cores/threads are subject to variance due to concurrent use.

Source: http://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.html

Copyright (C) 2015 Bryce Adelstein lelbach

Variance

8

Computers can reproduce answers, not performance.

• Larger memory segments may have variance in access times

due to physical distance from the CPU.

• Additionally, OS activities can cause non-determinism.

– Some hardware interrupts require OS handling immediately after

delivery.

– Migration of non-pinned processes can affect the performance of CPU

heuristics.

Observer Effect: all forms of instrumentation change the

results.

Source: http://www.chronox.de/jent/doc/CPU-Jitter-NPTRNG.html

Copyright (C) 2015 Bryce Adelstein lelbach

Variance

9

Source: Cy Chan, John Bachan

Copyright (C) 2015 Bryce Adelstein lelbach

Statistical Best Practices

10

Statistical Best Practices

Statistics: A great way to lie to yourself.

11Copyright (C) 2015 Bryce Adelstein lelbach

Statistical Best Practices

Statistics: A way to extract conclusions from your data

12Copyright (C) 2015 Bryce Adelstein lelbach

Statistical Best Practices

Statistics: The science of data…

collection

analysis

interpretation

presentation

13Copyright (C) 2015 Bryce Adelstein lelbach

Statistical Best Practices

Case Study: CFD AMR Scaling

14

Case Study: CFD AMR Scaling

15

AMR Test, Strong-Scaling

Copyright (C) 2015 Bryce Adelstein lelbach

Case Study: CFD AMR Scaling

16

AMR Test, Strong-Scaling (with uncertainty)

Copyright (C) 2015 Bryce Adelstein lelbach

Case Study: CFD AMR Scaling

17

AMR Test, Strong-Scaling (with uncertainty)

Copyright (C) 2015 Bryce Adelstein lelbach

Statistical Best Practices

Process:

• Form a hypothesis: how do you expect performance to change?

• Come up with a test to determine if your hypothesis is right.

• Gather data.

• Statistically analyze data.

• Draw conclusions.

18Copyright (C) 2015 Bryce Adelstein lelbach

Statistical Best Practices

Come up with a test to determine if your hypothesis is

right.

• Identify independent/dependent/control variables.

• Determine what relevant metric you’ll use (metric will be derived

from dependent variables).

• Consider the assumptions you’re making:

– Assumptions about independence of variables.

– Assumptions about distribution of samples.

 Usually we assume a normal distribution.

19Copyright (C) 2015 Bryce Adelstein lelbach

Gathering Data

Amortizing: When measuring “small” events, we often

measure by amortization to reduce the observer effect.

• E.g. time an N-iteration for loop and divide by N to get the

amortized time per iteration.

high_resolution_timer t; // Start timing.

for (std::size_t i = 0; i < N; ++i)

A[i] = A[i] + B[i] * C[i];

double time_per_iteration = t.elapsed() / N;

• We treat this as one sample, not N samples.

20Copyright (C) 2015 Bryce Adelstein lelbach

Gathering Data

Sampling: Each independent measurement we take is a

sample.

• Samples are representative of the “population” (AKA the true

performance).

• Our goal is to gather samples in sufficient quantity and quality to

be representative of the population.

It’s crucial to both sample within one execution of the

test and across multiple executions of the test.

• Gathering data across multiple executions gives a better

representation of system noise.

21Copyright (C) 2015 Bryce Adelstein lelbach

Gathering Data

Running “hot” vs “cold”.

• Often, you need to make sure that both your test as a whole (e.g.

each execution), and the particular region your measuring (e.g.

each sample) are not running “cold” on the CPU.

– I/O, caching and branch prediction may be off if you’re running cold.

You can do this by doing some warmup executions/runs

before you start measuring.

• E.g. don’t measure first execution or first few iterations.

22Copyright (C) 2015 Bryce Adelstein lelbach

Uncertainty

Uncertainty: representation of the amount of error in a

certain measurement.

• Instrument uncertainty: the inherent amount of uncertainty in an

instrument.

– Ex: if your clock ticks in microseconds, it would have an instrument

uncertainty of +/- 500 nanoseconds (1/2th the unit of measurement).

• The sample standard deviation of a set of samples is a

frequently used method for estimating the uncertainty of the

average of the samples.

When dealing with derived metrics that use averaged

data, you can formulate a derived uncertainty based on

the uncertainties of the averaged data.

23Copyright (C) 2015 Bryce Adelstein lelbach

Uncertainty

Function Standard Deviation

𝑓 = 𝑎𝐴 𝜎𝑓 = 𝑎𝜎𝐴

𝑓 = 𝑎𝐴 ± 𝑏𝐵 𝜎𝑓 = 𝑎2𝜎𝐴
2 + 𝑏2𝜎𝐵

2

𝑓 = 𝐴𝐵 or 𝑓 = 𝐴/𝐵 𝜎𝑓 ≈ 𝑓
𝜎𝐴
𝐴

2

+
𝜎𝐵
𝐵

2

24

Given uncorrelated averaged data 𝐴 and 𝐵 with

standard deviations 𝜎𝐴 and 𝜎𝐵, and constants 𝑎 and 𝑏.

Copyright (C) 2015 Bryce Adelstein lelbach

Statistical Best Practices

Case Study: CFD AMR Scaling

25

Case Study: CFD AMR Scaling

26

AMR Test, Strong-Scaling (with uncertainty)

Copyright (C) 2015 Bryce Adelstein lelbach

Case Study: CFD AMR Scaling

27

AMR Test, Walltime

Copyright (C) 2015 Bryce Adelstein lelbach

Statistical Best Practices

Example: Boost.Accumulators

28

Example: Boost.Accumulators

“Boost.Accumulators provides accumulators to which

numbers can be added to get, for example, the mean or

the standard deviation.”

The Boost C++ Libraries, Boris Schäling

29Copyright (C) 2015 Bryce Adelstein lelbach

Example: Boost.Accumulators

using namespace boost::accumulators;

int main()

{

accumulator_set<

double, stats<tag::count, tag::mean, tag::median, tag::variance>

> acc;

acc(42);

// ... Accumulate data ...

auto stdev = std::sqrt(variance(acc));

std::cout << "Mean: " << mean(acc) << "\n"

<< "Median: " << median(acc) << "\n"

<< "Stdev: " << stdev << "\n";

}

30Copyright (C) 2015 Bryce Adelstein lelbach

Example: Boost.Accumulators

31Copyright (C) 2015 Bryce Adelstein lelbach

Example: Boost.Accumulators

32Copyright (C) 2015 Bryce Adelstein lelbach

Example: Boost.Accumulators

Two different forms of standard deviation

• Uncorrected, takes the standard deviation of an entire

population:

𝜎 =
1

𝑛
 𝑖=1
𝑛 𝑥𝑖 − 𝜇

2

• Corrected, takes the standard deviation of a sample of a

population:

𝜎 =
1

𝑛−1
 𝑖=1
𝑛 𝑥𝑖 − 𝜇

2

33Copyright (C) 2015 Bryce Adelstein lelbach

Example: Boost.Accumulators

using namespace boost::accumulators;

int main()

{

accumulator_set<

double, stats<tag::count, tag::mean, tag::median, tag::variance>

> acc;

acc(42);

// ... Accumulate data ...

auto n = count(acc);

auto stdev = std::sqrt(variance(acc)*(n/(n-1.0)));

std::cout << "Mean: " << mean(acc) << "\n"

<< "Median: " << median(acc) << "\n"

<< "Stdev: " << stdev << "\n";

}

34Copyright (C) 2015 Bryce Adelstein lelbach

Gathering Data

Process for collecting good data:

• Take individual measurements in your code. Use amortization if

relevant.

• Accumulate multiple measurements and uncertainty estimations

in code.

• Gather results from multiple executions of the test, and

recompute uncertainty estimations.

– Given two averages, 𝜇1 and 𝜇2 (and a combined average 𝜇), of 𝑛1 and

𝑛2 data points, with sample standard deviations 𝜎1 and 𝜎2, the

combined sample standard deviation of both datasets is:

𝜎 =
𝑛1
2𝜎1

2+𝑛2
2𝜎2

2−𝑛2𝜎1
2−𝑛2𝜎2

2−𝑛1𝜎1
2−𝑛1𝜎2

2+𝑛𝑦𝑛𝑥𝜎1
2+𝑛𝑦𝑛𝑥𝜎2

2+𝑛1𝑛2 𝜇1−𝜇2
2

(𝑛1+𝑛2−1)(𝑛1+𝑛2)

35Copyright (C) 2015 Bryce Adelstein lelbach

Confidence Intervals

Confidence Interval: a way to describe the amount of

uncertainty associated with a sample of a population.

• Constructed from three pieces of information:

– Confidence level (𝑟) - e.g. 90%, 95%, 99%.

– Statistical data, including sample size (𝑛).

– Uncertainty for the data (𝜎).

𝐶𝐼 =
𝑧𝜎

𝑛

• 𝑧 is the critical value. For large sample sizes, you can look this

up in a table. For small sample sizes, use the Student's t inverse

cumulative distribution function:

z = 𝑇𝑖𝑛𝑣(1 − 𝑟, 𝑛 − 1)

36Copyright (C) 2015 Bryce Adelstein lelbach

Confidence Intervals

One of the useful things you can do with confidence

intervals is determine the correct sample size, based on

an initial “pilot” set of samples.

• Given a margin of error 𝑒𝑚, a critical value 𝑧, an uncertainty 𝜎,

and a mean 𝜇:

𝑛 =
𝑧𝜎
𝑒𝑚
2
𝜇

2

• If this calculation indicates an unreasonable large sample size is

needed, the experiment may need to be redesigned.

• Typically, if your uncertainties are big relative to your data (mean

and standard deviation have the same magnitude), there is too

much noise to get meaningful results from your data.

37Copyright (C) 2015 Bryce Adelstein lelbach

Confidence Intervals

Meaning of confidence intervals

• If the true performance lies outside of the 95% confidence

interval, then an event occurred which had a probability of 5% or

less of happening.

• A 95% confidence interval does not mean that 95% of the data

lies within the interval.

• A confidence interval isn’t a range of plausible values for a

sample mean. It can be interpreted as an estimate of plausible

values for the population.

38Copyright (C) 2015 Bryce Adelstein lelbach

Confidence Intervals

39Copyright (C) 2015 Bryce Adelstein lelbach

Statistical Best Practices

Case Study: HPX CS Overhead

40

Case Study: HPX CS Overhead

41

Context Switching Overhead (95% CI), Intel Sandybridge

Copyright (C) 2015 Bryce Adelstein lelbach

Case Study: HPX CS Overhead

42

Context Switching Overhead (UNC), Intel Sandybridge

Copyright (C) 2015 Bryce Adelstein lelbach

Mean-Median Test

Normality test: Tests to determine if a data-set fits a

normal distribution well.

• There are graphical (QQ plot), informal/back-of-the-envelope and

rigorous normality tests.

The mean (μ), median (m) and mode of normally

distributed data should be the same, so…

𝜇−𝑚

max(𝜇,𝑚)

• This will give you the relative difference between the mean and

median (a percentage represented as a decimal). If this is larger

than 1%, your data is probably not normally distributed.

43Copyright (C) 2015 Bryce Adelstein lelbach

Case Study: HPX CS Overhead

44

Context Switching Overhead (Mean-Median Test), Intel Sandybridge

Copyright (C) 2015 Bryce Adelstein lelbach

Case Study: HPX CS Overhead

45

Context Switching Overhead (Scatter), Intel Sandybridge

Copyright (C) 2015 Bryce Adelstein lelbach

Time-Based Benchmarking

46

Time-Based Benchmarking

We have access to a few different clocksources for

benchmarking on modern (x86) CPUS:

• System-wide high-resolution clock:

– Monotonic, frequency-stable, higher latency and overhead.

– Resolution is in nanoseconds.

– Times can be passed between threads.

– *nix, this is accessed via clock_gettime reading CLOCK_MONOTONIC.

– Windows, this is accessed via QueryPerformanceCounter/Frequency.

– Suitable for measuring most events (microseconds and up).

47Copyright (C) 2015 Bryce Adelstein lelbach

Time-Based Benchmarking

We have access to three different clocksources for

benchmarking on modern (x86) CPUS:

• Timestamp Counter (TSC):

– Monotonic, lower latency and overhead.

– Resolution is in CPU cycles (with caveats), tick is in base clock cycles.

 All newer (4-5 year old) CPUs guarantee a constant TSC frequency, even if

the CPU frequency changes (e.g. frequency scaling, Intel Turbo mode).

 Constant TSC frequency == timing data is not representative of # of cycles

executed.

 Ticks with the base clock, which runs at 100 or 133 Mhz (depending on

microarchitecture).

– Assembly instruction(s) for reading this counter.

– Cycle counts are thread-specific.

– Suitable for measuring short events (cycles to minutes).

48Copyright (C) 2015 Bryce Adelstein lelbach

<chrono>

Standard facilities for manipulating dates and times,

introduced in C++11

• Three types:

– Duration: A span of time, defined as some number of ticks of some

time unit.

– Time Point: A duration of time that has passed since the epoch of

specific clock.

– Clocks: An object with a starting point and a tick rate, which can be

queried for the current time.

<chrono> is the best way to measure durations that are

microsecond magnitude or large.

49

Source: cppreference.com

Copyright (C) 2015 Bryce Adelstein lelbach

<chrono>

Clock Description

system_clock Wall clock time from the system-

wide realtime clock.

steady_clock Monotonic clock that will never be

adjusted.

high_resolution_clock The clock with the shortest tick

period available.

50Copyright (C) 2015 Bryce Adelstein lelbach

Time-Based Benchmarking

Example: high_resolution_timer

51

Example: high_resolution_timer

struct high_resolution_timer

{

high_resolution_timer() : start_time_(take_time_stamp()) {}

void restart()

{ start_time_ = take_time_stamp(); }

double elapsed() const // Return elapsed time in seconds.

{ return double(take_time_stamp() - start_time_) * 1e-9; }

std::uint64_t elapsed_nanoseconds() const

{ return take_time_stamp() - start_time_; }

protected:

static std::uint64_t take_time_stamp()

{

return std::chrono::duration_cast<std::chrono::nanoseconds>

(std::chrono::steady_clock::now().time_since_epoch()).count();

}

private:

std::uint64_t start_time_;

};

52Copyright (C) 2015 Bryce Adelstein lelbach

Non-Time-Based Benchmarking

53

Memory Benchmarking

Approaches to instrumenting memory allocation:

• What do we want to look at?

– Objects (allocated/deallocated)

– Memory (total, per object size, per object type)

• External tools:

– googleperftools/TCMalloc (MALLOCSTATS)

– MemTrack

• Overload operator new/delete

– Writing a member operator new/delete is a great technique for tracking

memory performance for a specific object.

– I suggest a static member variable to store the performance data; if

you need thread safety, use thread-local storage and accumulate

afterwards.

54Copyright (C) 2015 Bryce Adelstein lelbach

Non-Time-Based Benchmarking

Example: Instrumenting operator new

55

Example: Instrumenting operator new

struct A {

static std::size_t allocated;

static void* operator new(std::size_t sz)

{

allocated += sz/sizeof(A);

return ::operator new(sz);

}

static void* operator new[](std::size_t sz)

{

allocated += sz/sizeof(A);

return ::operator new(sz);

}

};

std::size_t A::allocated = 0;

56Copyright (C) 2015 Bryce Adelstein lelbach

Counting Copies/Moves

When we started transition the HPX codebase to

support move semantics a few years ago, we wrote

some tests to make sure we got it right.

• We passed mock objects that count copies/moves through our

framework and looked at the results.

• Once we were confident our interfaces were doing things right

(minimizing the number of copies, etc), we wrote unit tests to

verify the move/copy counts wouldn’t change.

• Especially important for us – HPX is an asynchronous

programming framework, so there are places where we duplicate

data to facilitate asynchrony.

– We wanted to ensure we only copied async() arguments once.

57Copyright (C) 2015 Bryce Adelstein lelbach

Hardware Performance Counters

X86 processors have a diverse set of hardware

performance counters.

• Pros:

– Low overhead.

– Very diverse and descriptive information.

• Cons:

– Microarchitecture specific.

– Some counters are estimations, or suffer from inaccuracies

(overcounting, etc).

– You need very specialized knowledge to use these for performance

analysis.

 Fortunately, there’s an awesome tool which has this knowledge baked into it.

58Copyright (C) 2015 Bryce Adelstein lelbach

Hardware Performance Counters

Low-level frameworks for accessing hardware counters

from within your code:

• Linux: PAPI framework

• Windows: Performance Counter framework

• Mac: kpc.h

There are some external sampling-based profiling tools

that provide access to this information.

• Ex: Intel VTune Amplifier.

59Copyright (C) 2015 Bryce Adelstein lelbach

Performance Analysis Tools

60

Intel VTune Amplifier

Sampling-based profiling tool: runs your application,

and collects “snapshots” of performance metrics while

your program is running.

• Works on Intel processors, Windows/Linux/Mac OS X/Android,

not tied to any particular compiler.

• Requires no code changes to use.

• Multiple data sources: timers, hardware performance counters

and operating system metrics.

• Performance data can be viewed per function or at

assembly/source code granularity.

• Analyzes everything: kernel calls, sub-processes, threads, etc.

61Copyright (C) 2015 Bryce Adelstein lelbach

Intel VTune Amplifier

Sampling-based profiling tool: runs your application,

and collects “snapshots” of performance metrics while

your program is running.

• Provides built-in analysis passes which derive useful, higher-

level performance metrics from micro-architecture specific raw

hardware counters.

• Also supports user-defined analysis passes.

• Support for instrumenting parallel and distributed code.

– Built-in support for OS-threading frameworks.

– Built-in support for OpenMP, MPI and Intel TBB.

– Provides an instrumentation API which parallel programming

frameworks can use to inform the profiler about their threading and

concurrency data structures.

62Copyright (C) 2015 Bryce Adelstein lelbach

Intel VTune Amplifier

Sampling-based profiling tool: runs your application,

and collects “snapshots” of performance metrics while

your program is running.

• Powerful GUI.

– Standalone Windows/Linux/Mac GUI as well as integration with Visual

Studio and Eclipse.

– Data can be collected remotely via the command line interface and

then fed into the GUI.

– Great interface for filtering data (e.g. focusing in on just one section of

the program’s execution).

– Built-in analysis passes contain a lot of information about how to

interpret results.

63Copyright (C) 2015 Bryce Adelstein lelbach

Intel VTune Amplifier

64Copyright (C) 2015 Bryce Adelstein lelbach

Intel VTune Amplifier

65Copyright (C) 2015 Bryce Adelstein lelbach

Intel VTune Amplifier

66Copyright (C) 2015 Bryce Adelstein lelbach

Intel VTune Amplifier

67Copyright (C) 2015 Bryce Adelstein lelbach

Intel Vectorization Adviser

New tool in Intel Parallel Studio XE 2016: Vectorization

Adviser.

• Integrates the Intel compiler’s vectorization reports into the GUI

performance profiling framework.

68

Source: https://software.intel.com/en-us/intel-advisor-xe/

Copyright (C) 2015 Bryce Adelstein lelbach

Intel Vectorization Adviser

69

SSE4.1 SSE4.2 AVX AVX2

Source: https://software.intel.com/en-us/intel-advisor-xe/

Copyright (C) 2015 Bryce Adelstein lelbach

Write Performance Tests

70

Write Performance Tests

Idea: Let’s write unit and regression tests for

performance, just like we do for correctness.

Challenges:

• Implementing automated performance testing that follow the kind

of best practices we’ve been talking about requires a lot of

machinery.

• If your performance tests are stateful (rely on the results of

previous automated tests), you need even more machinery.

• You need more than just the machinery to run the tests - you

also need automated analysis to determine whether the test has

failed.

71Copyright (C) 2015 Bryce Adelstein lelbach

Write Performance Tests

72

Test

ImplementAnalyze

Debuggers and tools

are used to learn more

about the problem.

The test is executed to

see if the problem has

been solved.

A potential fix is

implemented. Prior

fixes may be reverted.

Debugging

Copyright (C) 2015 Bryce Adelstein lelbach

Write Performance Tests

73

The test is executed,

and statistical data is

recorded.

Test

ImplementAnalyze

Statistical data is

analyzed to determine

if the test passed.

A potential fix is

implemented. Prior

fixes may be reverted.

Optimization

Copyright (C) 2015 Bryce Adelstein lelbach

Stateful Performance Tests

Stateful performance tests: performance benchmarks

which yield results that cannot be interpreted without

contextual information.

• Output: absolute values.

• Most of your existing benchmarks are already stateful.

• To automate these tests, the current performance (e.g. trunk)

needs to be compared against some prior results. There’s two

options for doing this:

– Automated build system stores prior results for comparison. Requires

more machinery, but allows you to track performance over time.

– Automated build system checks out and builds an older version of the

code to compare against.

74Copyright (C) 2015 Bryce Adelstein lelbach

Stateful Performance Tests

75Copyright (C) 2015 Bryce Adelstein lelbach

Stateless Performance Tests

Stateless performance tests: performance benchmarks

which test for a performance “failure”, and can provide a

“yes/no” answer without external data.

• Output: relative values.

The idea is to compare different implementation options

which you believe to have a performance impact.

• Ex: Lockfree queue vs lock-based queue.

• Ex: Recomputing data locally vs overhead for sharing.

• Ex: Algorithmic complexity testing.

76Copyright (C) 2015 Bryce Adelstein lelbach

Stateless Performance Tests

Whenever you face a design trade-off

with performance implications,

write a stateless test!

77Copyright (C) 2015 Bryce Adelstein lelbach

Summary

• Take a scientific approach to performance benchmarking.

– Hypothesize, design a test, run the test, analyze, draw conclusions.

• Manage and test your assumptions about your tests.

• Collect a statistically significant quantity of data.

• Measure and propagate error.

• Develop unit and regression tests for performance.

78Copyright (C) 2015 Bryce Adelstein lelbach

UNIVERSITY OF

CALIFORNIA

