
WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 1

Type Punning in C++17
Avoiding Pun-defined Behavior

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 2

Type Punning in C++17

Avoiding Pun-defined Behavior
By Scott Schurr for Ripple - September 2017

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 3

Type Punning …a common term
for any programming technique
that subverts or circumvents the
type system of a programming
language…

—Wikipedia August 2017

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

• Quotes from “The C++17 Standard” are actually
from N4660, not from the final standard.

• Quotes from “The C11 Standard” are actually from
N1570, not from the final standard.

• Code samples were compiled and executed with

Clang and occasionally GCC.
4

… In C++17

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

Topics

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

1. Motivations

2. Definitions

3. Casting Away Const

4. Pointers

5. Unions

6. Unrelated Object Types

7. Arrays

8. Summary

5

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 6

Motivations

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 7

Why Type Pun?

• Endian conversions
• Serializing between structs and unsigned char[]

• Bit manipulations in pointers

• Testing alignment
• Storing bits in unused portions of pointers

• Operating on internals of floating point numbers

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 8

Type Punning Dangers?
• Not portable: Relies on platform

dependent representation
• Fragile: Changing compilers or compiler

flags can produce different results
• Hard to maintain: Unusual techniques

surprise maintainers
• Bug prone: Often run afoul of undefined

behavior

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 9

Focus: Trivially Copyable Types
Type punning non-trivially copyable types is

• Seldom smart

• Usually buggy

Let’s not even go there

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

Topics

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

1. Motivations

2. Definitions

3. Casting Away Const

4. Pointers

5. Unions

6. Unrelated Object Types

7. Arrays

8. Summary

10

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 11

Definitions: Trivially Copyable Types

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 12

Value Representation

The object representation of an object of type T is the
sequence of N unsigned char objects taken up by the
object of type T, where N equals sizeof(T).

The value representation of an object is the set of bits
that hold the value of type T.

[basic.types] § 4

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 13

Trivially Copyable Type

For trivially copyable types, the value representation is a
set of bits in the object representation that determines a
value, which is one discrete element of an
implementation-defined set of values.

[basic.types] § 4

Use static_assert(std::is_trivially_copyable<T>::value)

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 14

Trivially Copyable Type Rules
• Every copy and move constructor is trivial or deleted

• Every copy and move assignment operator is trivial
or deleted

• At least one copy and/or move is not deleted

• Trivial non-deleted destructor
• No virtual members

• No virtual base classes
• Every subobject must be trivially copyable

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 15

Trivially Copyable Examples
char a;
char b[5];
struct s1 {char c[5]; int d;};
class c1 : public s1 {
 protected:
 int a;
 public:
 c1():a(7){}
};
union u1 {s1 s; c1 c;};
c1 a1[7];

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 16

Not Trivially Copyable

char& r1(a); // Reference

struct s2 { // User supplied copy ctor
 s2 (s2 const& s):ch('q') {}
 char ch;
};

class c2 {
 virtual void f() {} // Virtual member
};

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 17

Definitions:
Types Of Behavior

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 18

Implementation-Defined Behavior
[defns.impl.defined]

behavior, for a well-formed program construct and
correct data, that depends on the implementation and
that each implementation documents

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 19

Implementation-Defined Behavior
Examples

— Number of bits in a byte. See [intro.memory] § 1

— Which (if any) atomics are alway lock free. See
[atomic.types.generic] § 4

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 20

Unspecified Behavior
[defns.unspecified]

behavior, for a well-formed program construct and
correct data, that depends on the implementation [Note:
The implementation is not required to document which
behavior occurs. The range of possible behaviors is
usually delineated by this International Standard. — end
note]

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 21

Unspecified Behavior Examples

— Order of evaluation of function arguments when using
function call syntax. See [expr.call] § 5

— How the memory for an exception object is allocated.
See [except.throw] § 4

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 22

Undefined Behavior
[defns.undefined]

Behavior for which this International Standard imposes
no requirements [Note: Undefined behavior may be
expected when

— this International Standard omits any explicit
definition of behavior or…

— when a program uses an erroneous construct or
erroneous data...

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 23

Undefined Behavior Examples
— Consequences of overflow of a signed integer. See

[expr] § 4

— Any race condition. See [intro.races] § 20

— Accessing the non-active member of a union. Implied
by [class.union] § 1

Caution: Exhibited behavior can change based on
compiler flags or compiler version

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 24

Compilers Handling Undefined Behavior
[defns.undefined]

— behave during translation or program execution in a
documented manner characteristic of the environment

— terminate either translation or execution

— ignore the situation completely with unpredictable
results.

Optimizers specifically take that last item as an
opportunity to generate faster and / or smaller code!

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 25

Compilers Will Generally Not…
• Intentionally reformat your hard drive
• Make demons fly out your nose

• Make your cat have puppies

Why Not?
• No economic incentive

• People who write compilers and optimizers want
you to use their products

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 26

C++ Programs With Undefined Behavior?
• Probably most of them
• Undefined behavior is everywhere

Example
• How many multi-threaded programs have no race

conditions?

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 27

Stop Worrying And Love
Undefined Behavior?

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 28

No
• Do your best to keep undefined

behavior out of anticipated and

potential code paths

• Undefined behavior makes

bugs difficult to solve

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

Topics

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

1. Motivations

2. Definitions

3. Casting Away Const

4. Pointers

5. Unions

6. Unrelated Object Types

7. Arrays

8. Summary

29

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 30

Casting Away Const

const

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 31

Casting Const to Non-Const
[dcl.type.cv] § 4

Except that any class member declared mutable can be
modified, any attempt to modify a const object during its
lifetime results in undefined behavior.

• Casting away const is fine

• Modifying a non-mutable const is undefined behavior

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 32

Example of Modifying Const

// initialized as required
const int* ciq = new const int (3);

// cast required
int* iq = const_cast<int*>(ciq);

// undefined: modifies a const object
*iq = 4;

[dcl.type.cv] § 4

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 33

Compiler Caching of Const Values

• If the optimizer sees a value is const…

• … the optimizer is allowed to assume the value does
not change

If you change a const value you are violating the
optimizer’s assumption.

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 34

std::launder() [ptr.launder]
Example from P0532R0 by Nicolai Josuttis

struct X {
 const int n;
 const double d;
};
X* p = new X{7, 8.8};
new (p) X{42, 9.9}; // place new value into p
int b = p->n; // undefined behavior!
int c = p->n; // undefined behavior!
double d = p->d; // undefined behavior!

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 35

std::launder() to the Rescue
Example from P0532R0 by Nicolai Josuttis

struct X {
 const int n;
 const double d;
};
X* p = new X{7, 8.8};
new (p) X{42, 9.9}; // place new value into p
int b = std::launder(p)->n; // OK, b is 42
int c = p->n; // undefined behavior!
double d = p->d; // undefined behavior!

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 36

std::launder() Caveats
• Only operates on pointers (not values or references)

• Access questionable value…

• Directly through std::launder or
• Through a saved pointer returned by std::launder

• Only works with placement new
Result: std::launder is hard to use correctly

Guidance: Don’t modify non-mutable const values

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

Topics

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

1. Motivations

2. Definitions

3. Casting Away Const

4. Pointers

5. Unions

6. Unrelated Object Types

7. Arrays

8. Summary

37

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 38

Pointers

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 39

Using an Invalid Pointer is Undefined
[basic.stc.dynamic.safety] § 4

…[Note: The effect of using an invalid pointer value
(including passing it to a deallocation function) is
undefined…

So manipulate pointers carefully

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 40

Pointer to Integer Conversions
[expr.reinterpret.cast] § 4 and § 5

A pointer can be explicitly converted to any integral type
large enough to hold it. The mapping function is
implementation-defined…

A value of integral type or enumeration type can be
explicitly converted to a pointer. A pointer converted to
an integer of sufficient size … and back to the same pointer
type will have its original value; mappings between
pointers and integers are otherwise implementation defined.

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 41

Math on uintptr_t
[basic.stc.dynamic.safety] § 3.4

An integer value is an integer representation of a safely
derived pointer only if … it is … [amongst other things] …

— the result of an additive or bitwise operation, one of
whose operands is an integer representation of a safely-
derived pointer value P, if that result converted by
reinterpret_cast<void*> would compare equal to a
safely-derived pointer computable from
reinterpret_cast<void*>(P).

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 42

std::uintptr_t Example
double const d[] {0.1, 0.2, 0.3, 0.4, 0.5, 0.6};
double const* p = &d[0];
auto ip = reinterpret_cast<std::uintptr_t>(p);

for (auto i = 0u; i < sizeof d; i += sizeof d[0])
{ // Not portable! Assuming Clang and Intel
 p = reinterpret_cast<double const*>(ip + i);
 std::cout << *p << " ";
}
std::cout << std::endl;

0.1 0.2 0.3 0.4 0.5 0.6

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 43

std::intptr_t and uintptr_t Caveats
• std::intptr_t and std:uintptr_t are optional types
• If no integer type is big enough to hold the bit

representation of a pointer, conversion may not be
supported

• Integer representation of a pointer might not be the
same bit sequence as the pointer itself

• Math is allowed if you are careful. Implementation
defined results.

• Consider: are you comfortable with a signed pointer?

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

If a program attempts to access the stored value of an
object through a glvalue of other than one of the following
types the behavior is undefined:

— the dynamic type of the object,

— …

— a char, unsigned char, or std::byte type.

44

Accessing Initialized Value Representations
[basic.lval] § 8

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 45

Indeterminate Value Definition

If no initializer is specified for an object, the object is
default-initialized. When storage for an object with
automatic or dynamic storage duration is obtained, the
object has an indeterminate value, and if no
initialization is performed for the object, that object
retains an indeterminate value until that value is
replaced.

[dcl.init] § 12

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 46

Indeterminate Value Examples
void test_function ()
{
 char a1;
 char b1[5];
 struct s {char c1[5]; int d1;};
 class c : public s {
 protected:
 int i1;
 };
 union u {s s1; c c1;};
 u u1;
 ...

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 47

Accessing Indeterminate Values
[dcl.init] § 12 loose paraphrase

When accessing an indeterminate value, the result is
undefined unless that access is through either

— an unsigned char* or

— std::byte*.

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

The representation of any trivially copyable type, either
• initialized or

• unitialized

may be accessed using either
• unsigned char* or

• std::byte*
without introducing undefined behavior.

Caveat: be careful how the pointer is obtained!

Accessing Any Value Representation

48

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 49

Accessing the LSBs of a Pointer
char const test[] {"abcdefg"};
char const* char_ptr {&test[0]};

unsigned char const* const ptr_to_ptr {
 reinterpret_cast<unsigned char*>(&char_ptr)};

do { // Not portable! Assuming Clang and Intel
 std::cout << int (ptr_to_ptr[0] & 0x3) << " ";
 ++char_ptr;
} while (char_ptr < &(test[sizeof test]));
std::cout << std::endl;
0 1 2 3 0 1 2 3

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

An object pointer can be explicitly converted to an object
pointer of a different type.

But, accessing through that pointer may be undefined:

• Is the punned representation valid?

• Is the punned representation properly aligned?

• Are the strict aliasing rules being followed?

50

General reinterpret_cast of Pointers
[expr.reinterpret.cast] § 7

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 51

Pointer Aliasing
int sum_twice (int* a, int* b) {
 *a += *b;
 *a += *b;
 return *a;
}

void alias_example () {
 int c[] {2, 2}; // a and b are different
 cout << sum_twice (&c[0], &c[1]) << endl; // 6

 int d {2}; // a and b are the same
 cout << sum_twice (&d , &d) << endl; // 8
}

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 52

Is Aliasing a Problem?
1. Code runs fastest in registers, not memory.

2. Pointers (and references) operate on memory.
3. If a memory location might be aliased, the compiler

must write value changes to memory before reads
through the possible alias.

4. If a memory location might be aliased, the compiler

must re-read the value from memory if the possible
alias is written through.

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

If a program attempts to access the stored value of an object
through a glvalue of other than one of the following types
the behavior is undefined:

— the dynamic type of the object,

— a cv-qualified version of the dynamic type of the object,

— a type that is the signed or unsigned type corresponding
to a cv-qualified version of the dynamic type of the
object,

53

Strict Aliasing Rules
[basic.lval] § 8

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

— an aggregate or union type that includes one of the
aforementioned types among its elements or non-static
data members (including, recursively, an element or
non-static data member of a subaggregate or contained
union),

— a type that is a (possibly cv-qualified) base class type
of the dynamic type of the object,

— a char, unsigned char, or std::byte type 54

Strict Aliasing Rules Continued
[basic.lval] § 8

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

The Strict Aliasing Rules reduce the number of pointers

and references the compiler thinks might be aliases.

So your program runs faster

55

Reason for the Strict Aliasing Rules

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

std::uint32_t swap_halves (std::uint32_t arg)
{
 auto sp = reinterpret_cast<std::uint16_t*>(&arg);
 auto hi = sp[0];
 auto lo = sp[1];

 sp[1] = hi;
 sp[0] = lo;

 return arg;
}

56

Strict Aliasing Violation Example

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 57

Disabling Strict Aliasing Rules
Most compilers have a flag to turn off strict aliasing rules

• GCC: -fno-strict-aliasing

• Clang: -fno-strict-aliasing

• Visual C++: Doesn’t rely on strict aliasing rules

Consequence: your code will probably run slower!

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

Your compiler generates faster code if there is no aliasing.

In C, “restrict” is a promise from the programmer that
aliases to a certain pointer don’t matter. Absent from C++.

Many C++ compilers support variations on “restrict”.

Lie to the compiler at your peril!
58

FYI: Strict Aliasing Compiler Extensions

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 59

Punning Pointers Guidance
Be wary of pointer conversions requiring reinterpret_cast

to types other than:

• signed / unsigned change
• std::uintptr_t or std::intptr_t

• std::byte* or unsigned char*

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

Topics

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

1. Motivations

2. Definitions

3. Casting Away Const

4. Pointers

5. Unions

6. Unrelated Object Types

7. Arrays

8. Summary

60

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 61

Unions

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

… If a standard-layout union contains several standard-
layout structs that share a common initial sequence, and if
a non-static data member of an object of this standard-
layout union type is active and is one of the standard-
layout structs, it is permitted to inspect the common
initial sequence of any of the standard-layout struct
members…

62

Union Common Initial Sequence
[class.union] § 1

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 63

Standard Layout Struct

• For definition see [class] § 7. Too long to show here.

• More constrained than trivially copyable types
… useful for communicating with code written in other
programming languages … See [class] § 9.

Use static_assert(std::is_standard_layout<T>::value)

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

void common_initial_sequence ()
{
 enum class type {nil, bus, car};
 struct nil {type t;};
 struct bus {type t; int max_people;};
 struct car {type t; float fuel_econ;};

 union vehicle {nil t; bus b; car c;};

 vehicle v1 {{type::nil}};
 v1.b = {type::bus, 32};
 assert (v1.t.t == type::bus); // Defined
} 64

Common Initial Sequence Example

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

In a union, a non-static data member is active if its name
refers to an object who’s lifetime has begun and not
ended. At most one of the non-static data members of an
object of union type can be active at any time, that is, the
value of at most one of the non-static data members can
be stored in a union at any time.

65

Union Access
[class.union] § 1

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

• Accessing a union’s active member is defined behavior

• For a union containing standard layout structs, access to
a common initial sequence can be defined behavior

• In C++17 any other non-active union member access is
undefined behavior

66

C++17 Union Undefined Access

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

95) If the member used to read the contents of a union
object is not the same as the member last used to
store a value in the object, the appropriate part of the
object representation of the value is reinterpreted as
an object representation in the new type as described
in 6.2.6 (a process sometimes called “type punning”).
This might be a trap representation.

67

Meanwhile in C11 (N1570)…
6.5.2.3 Structure and union members § 3 footnote 95

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

• In C11 non-active union member access is well defined
(in non-normative text).

• Any compiler that supports both C11 and C++17 is likely
to exhibit C11 behavior in both cases.

• No guarantees…

68

C11 Non-active Union Member Access

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

Topics

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

1. Motivations

2. Definitions

3. Casting Away Const

4. Pointers

5. Unions

6. Unrelated Object Types

7. Arrays

8. Summary

69

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 70

Unrelated Object Types

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 71

Background: float NaN Payload
The bit-wise representation of an IEEE 754 float NaN is:

s111 1111 1xxx xxxx xxxx xxxx xxxx xxxx

 s: sign bit

 x: payload

Payload not allowed to be all zeros

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 72

Type Punning Exercise

Given a payload, return a float NaN

float mk_nan (std::uint32_t cargo, bool pos = true)
{
 ...
}

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 73

Strict Aliasing Violation
float mk_nan (std::uint32_t cargo, bool pos = true)
{
 assert ((cargo & 0x007F'FFFF) != 0);
 assert ((cargo & 0xFF80'0000) == 0);

 cargo |= pos ? 0x7F80'0000 : 0xFF80'0000;

 // Setup for Strict Aliasing Rules violation.
 auto p_ret = reinterpret_cast<float*>(&cargo);

 // Access violates Strict Aliasing Rules.
 return *p_ret;
}

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 74

Using a Union
float mk_nan (std::uint32_t cargo, bool pos = true)
{
 assert ((cargo & 0x007F'FFFF) != 0);
 assert ((cargo & 0xFF80'0000) == 0);
 union uint_float {
 std::uint32_t i;
 float f;
 } ret {pos ? 0x7F80'0000 : 0xFF80'0000};

 ret.i |= cargo;
 // Undefined behavior accessing non-active member
 return ret.f;
}

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 75

Using std::memcpy
float mk_nan (std::uint32_t cargo, bool pos = true)
{
 assert ((cargo & 0x007F'FFFF) != 0);
 assert ((cargo & 0xFF80'0000) == 0);

 cargo |= pos ? 0x7F80'0000 : 0xFF80'0000;
 float ret;
 std::memcpy (&ret, &cargo, sizeof ret);

 return ret;
}

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

• Most widely recommended C++ type punning technique

• Standard defines copying underlying bytes for the same
trivially copyable type T. See [basic.types] § 2 and § 3

• memcpy() between unrelated types is undefined behavior

• … or not undefined since memcpy() uses unsigned char*
76

memcpy() For Type Punning?

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 77

Access Through unsigned char*
float mk_nan (std::uint32_t cargo, bool pos = true)
{
 assert ((cargo & 0x007F'FFFF) != 0);
 assert ((cargo & 0xFF80'0000) == 0);
 float ret {0};
 auto const p_ret =
 reinterpret_cast<unsigned char*>(&ret);
 p_ret[0] = cargo & 0xFF; cargo >>= 8;
 p_ret[1] = cargo & 0xFF; cargo >>= 8;
 p_ret[2] = (cargo & 0xFF) | 0x80;
 p_ret[3] = pos ? 0x7F : 0xFF;
 return ret;
}

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 78

Type Punning Technique Costs
Technique Assembly Instruction Count

Clang Mac OS -O3
unsigned char* 9

memcpy() *8

union *8

strict aliasing violation *8

* Identical code generated

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 79

Punning Unrelated Objects Guidance

1. Punning through unsigned char* should always work

2. memcpy() punning almost certainly works

3. Union punning likely works due to C11 compatibility

4. Strict aliasing violations are the riskiest

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 80

All of the identified techniques apply equally well to
trivially copyable…

• Scalars
• Structs
• Classes and
• Arrays of Trivially Copyable Types

Punning Trivially Copyable Types

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

Topics

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

1. Motivations

2. Definitions

3. Casting Away Const

4. Pointers

5. Unions

6. Unrelated Object Types

7. Arrays

8. Summary

81

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 82

Arrays

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 83

Array Striding

From https://en.wikipedia.org.wiki/Stride_of_an_Array

Given the strides of arrays…

…can we extract pieces of the arrays?

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 84

Can We Make This Work?
int main ()
{
 int ints[] = {1,2,3};
 struct record { char const* text; int value; };
 record rcrd[] {{"a", 10},{"b", 11},{"c",12}};

 print_some_ints (&ints[0],
 sizeof ints / sizeof ints[0], sizeof ints[0]);
 std::cout << std::endl;

 print_some_ints (&rcrd[0].value,
 sizeof rcrd / sizeof rcrd[0], sizeof rcrd[0]);
}

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 85

Desired Output
$./print_some_ints
Addr: 0x7fff598737c8; value: 1
Addr: 0x7fff598737cc; value: 2
Addr: 0x7fff598737d0; value: 3

Addr: 0x7fff59873798; value: 10
Addr: 0x7fff598737a8; value: 11
Addr: 0x7fff598737b8; value: 12
$

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 86

print_some_ints Rev 1
void print_some_ints (
 int const* arr, int count, size_t stride)
{
 for (int i = 0; i < count; ++i) {
 std::cout << "Addr: " << arr
 << "; value: " << arr[0] << std::endl;
 arr = reinterpret_cast<int const*>(
 reinterpret_cast<unsigned char const*>(
 arr) + stride);
 }
}

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

When an expression that has integral type is added to or
subtracted from a pointer, the result has the type of the
pointer operand. If the expression P points to element x[i]
of an array object x with n elements, the expressions P +
J and J + P (where J has the value j) point to the
(possibly-hypothetical) x[i + j] if 0 ≤ i + j ≤ n; otherwise
the behavior is undefined.

87

Pointer Math
[expr.add] § 4

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 88

Rev 1 Has Undefined Behavior
• Pointer addition is defined if the pointer points to an

array.

• Our unsigned char const* points into a struct, not to an
array.

• Therefore addition to the unsigned char const* is
undefined.

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 89

print_some_ints Rev 1
void print_some_ints (
 int const* arr, int count, size_t stride)
{
 for (int i = 0; i < count; ++i) {
 std::cout << "Addr: " << arr
 << "; value: " << arr[0] << std::endl;
 arr = reinterpret_cast<int const*>(
 reinterpret_cast<unsigned char const*>(
 arr) + stride);
 }
}

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

void print_some_ints (
 int const* arr, int count, size_t stride)
{
 for (int i = 0; i < count; ++i) {
 std::cout << "Addr: " << arr
 << "; value: " << arr[0] << std::endl;
 arr = reinterpret_cast<int const*>(
 reinterpret_cast< std::uintptr_t >(
 arr) + stride);
 }
}

90

print_some_ints Rev 2

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

Topics

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U

1. Motivations

2. Definitions

3. Casting Away Const

4. Pointers

5. Unions

6. Unrelated Object Types

7. Arrays

8. Summary

91

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 92

⎲⎳
m = 0

n

m(ary)

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 93

Punning Guidance
• Avoid modifying non-mutable const values

• Consider the effects of possible pointer aliasing
• Be aware of the strict aliasing rules

• When punning with pointers prefer…

std::byte* or unsigned char*
• For punned pointer math, consider std::uintptr_t

• Avoiding undefined behavior is hard

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 94

Thanks and Acknowledgements
• Hubert Tong: Master of dark corners
• Howard Hinnant: Expertise and guidance

• Mike Miller: Nudge
• Patrick Horgan:

http://dbp-consulting.com/tutorials/StrictAliasing.html

• Brian Schiller: Fonts
• : Encouragement and employment

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 95

All errors are the sole property of
Scott Schurr

WKEGKJJD6ITW3SPXJHEP
MKFEX6ANMB7U 96

Questions?

Thanks for attending

