Back to Basics:

Exceptions

Klaus Iglberger, CppCon 2020
klaus.iglberger@gmx.de

C++ Trainer since 2016
Author of the bif}ze C++ math library
(Co-)Organizer of the Munich C++ user group

Regular presenter at C++ conferences

Email: klaus.iglberger@gmx.de

Klaus Iglberger

Content

¢ The Exception Situation

¢ How Do Exceptions Work

¢ Best Practices of Exception Handling

When to Use Exceptions (And When Not)
How to Use Exceptions

The Exception Safety Guarantees

How to Write Exception-Safe Code

How to Refactor Non-Exception-Safe Code

(

(

(

(

(

Content

¢ The Exception Situation

< How Do Exceptions Work

¢ Best Practices of Exception Handling

When to Use Exceptions (And When Not)
How to Use Exceptions

The Exception Safety Guarantees

How to Write Exception-Safe Code

How to Refactor Non-Exception-Safe Code

(

(

(

(

(

Why Another Talk on Exception Safety?
@I: pcon |2019

The C++ Conference Cppcon.org

Exception Handling and
Exception Safety

Ben Saks
Saks & Associates
www.benjaminsaks.com

Exception Handling
and Exception Safety

Copyright © 2019 by Dan and Ben Saks

ship

Hls 1t/
o) 033/101:29 @ & (@ OC0] 0

https://wg21.link/p0709

Zero-overhead deterministic exceptions: Throwing values

Document Number: P0709 R4 Date: 2019-08-04
Reply-to: Herb Sutter (hsutter@microsoft.com) Audience: EWG, LEWG

R4: All sections, but esp. the design in §4.3 (allocation failure), are updated with LEWG+EWG Cologne feedback.

Abstract

Divergent error handling has fractured the C++ community into incompatible dialects, because of long-standing
unresolved problems in C++ exception handling. This paper enumerates four interrelated problems in C++ error
handling. Although these could be four papers, | believe it is important to consider them together.

§4.1: “C++” projects commonly ban exceptions, because today’s dynamic exception types violate the zero-
overhead principle, and do not have statically boundable space and time costs. In particular, throw requires
dynamic allocation and catch of a type requires RTTI. — We must at minimum enable all C++ projects to ena-
ble exception handling and to use the standard language and library. This paper proposes extending C++’s ex-
ception handling to let functions declare that they throw a statically known type by value, so that the implemen-
tation can opt into an efficient implementation (a compatible ABI extension). Code that uses only this efficient
exception handling has zero space and time overhead compared to returning error codes.

§4.2: Programs bugs are not recoverable run-time errors and so should not be reported as exceptions or error
codes. — We must express preconditions, but using a tool other than exceptions. This paper supports the
change, already in progress, to migrate std: : away from throwing exceptions for precondition violations.

§4.3: Allocation failure is not like other recoverable run-time errors and should be treated separately. — We

must be able to write allocation failure-hardened code, but we cannot do it portably by trying to report all failed
memaorv reatiecte Thic naner nronacec each allacatar decidec whether to fail-fact ar +to renaort an error/excen-

https://wg21.link/p0709

Z VWNy ao sometning: Froblem description, and root causes

2.1 Exceptions have not replaced error codes, and vice versa

“There are still people who argue against all use of exceptions and people who claim
that exceptions should be used consistently instead of error codes.” — [PO939R0]

Exceptions are the error handling model that is required by key parts of the language (for constructors and oper-
ators) and by the standard library, but are widely banned. This means that a large fraction of the C++ community
is not actually using ‘real’ C++, but are using a language dialect, and either a nonstandard library or none at all.

Even though exceptions are required, and have been available for some 25 years, they have not replaced error
codes for error handling in C++. Therefore, they never will unless they are changed in some way to address the
reasons they cannot be used universally (see §2.5, “Root causes”). The community are voting with their feet:

e Major coding guidelines ban exceptions, including common modern guidelines endorsed by the world’s
top advocates of C++ exceptions. For example, the Google C++ Style Guide [GSG] bans exceptions. The
Joint Strike Fighter Air Vehicle C++ Coding Standards (JSF++) [JSF++ 2005] was produced by a group that
included Bjarne Stroustrup and is published on Stroustrup’s personal website, and bans exceptions.

e Many projects ban exceptions. In [SC++F 2018], 52% of C++ developers reported that exceptions were
banned in part or all of their project code — i.e., most are not allowed to freely use C++’s primary recom-
mended error handling model that is required to use the C++ standard language and library.

e Committee papers such as [P0829R2] and [P0941R0] embrace standard support for disabling exceptions.

e The C++ Core Guidelines’ Guidelines Support Library [GSL] requires exceptions, and cannot be used in
such projects. We are already getting requests for a nonthrowing version of GSL, which changes some of
its interfaces (e.g., narrow reports errors by throwing narrowing_error and would have to change).

e Non-throwing dialects of the STL and the rest of the standard library proliferate, and C++ implementa-
tion vendors continue to receive requests to support those nonstandard dialects.

e Every C++ compiler supports a mode that disables exception handling (e.g., -fno-exceptions).

This is an intolerable rift: Large numbers of “C++” projects are not actually using standard C++.

But switching to error codes isn’t the answer either — error codes cannot be used in constructors and opera-
tors, are ignored by default, and make it difficult to separate error handling from normal control flow.

2.2 Instead, we’re actively proliferating dual interfaces that do both

“Filesystem library functions often provide two overloads, one that throws an excep-
tion to report file system errors, and another that sets an error_code.” — [N3239]

https://wg21.link/p0709

Z VWNy ao sometning: Froblem description, and root causes

2.1 Exceptions have not replaced error codes, and vice versa

“There are still people who argue against all use of exceptions and people who claim
that exceptions should be used consistently instead of error codes.” — [PO939R0]

Exceptions are the error handling model that is required by key parts of the language (for constructors and oper-
ators) and by the standard library, but are widely banned. This means that a large fraction of the C++ community
is not actually using ‘real’ C++, but are using a language dialect, and either a nonstandard library or none at all.

Even though exceptions are required, and have been available for some 25 years, they have not replaced error
codes for error handling in C++. Therefore, they never will unless they are changed in some way to address the
reasons they cannot be used universally (see §2.5, “Root causes”). The community are voting with their feet:

e Major coding guidelines ban exceptions, including common modern guidelines endorsed by the world’s
top advocates of C++ exceptions. For example, the Google C++ Style Guide [GSG] bans exceptions. The
Joint Strike Fighter Air Vehicle C++ Coding Standards (JSF++) [JSF++ 2005] was produced by a group that
included Bjarne Stroustrup and is published on Stroustrup’s personal website, and bans exceptions.

e Many projects ban exceptions. In [SC++F 2018], 52% of C++ developers reported that exceptions were
banned in part or all of their project code — i.e., most are not allowed to freely use C++’s primary recom-
mended error handling model that is required to use the C++ standard language and library.

e Committee papers such as [P0829R2] and [P0941R0] embrace standard support for disabling exceptions.

e The C++ Core Guidelines’ Guidelines Support Library [GSL] requires exceptions, and cannot be used in
such projects. We are already getting requests for a nonthrowing version of GSL, which changes some of
its interfaces (e.g., narrow reports errors by throwing narrowing_error and would have to change).

e Non-throwing dialects of the STL and the rest of the standard library proliferate, and C++ implementa-
tion vendors continue to receive requests to support those nonstandard dialects.

e Every C++ compiler supports a mode that disables exception handling (e.g., -fno-exceptions).

This is an intolerable rift: Large numbers of “C++” projects are not actually using standard C++.

But switching to error codes isn’t the answer either — error codes cannot be used in constructors and opera-
tors, are ignored by default, and make it difficult to separate error handling from normal control flow.

2.2 Instead, we’re actively proliferating dual interfaces that do both

“Filesystem library functions often provide two overloads, one that throws an excep-
tion to report file system errors, and another that sets an error_code.” — [N3239]

https://wg21.link/p0709

Z VWNy ao sometning: Froblem description, and root causes

2.1 Exceptions have not replaced error codes, and vice versa

“There are still people who argue against all use of exceptions and people who claim
that exceptions should be used consistently instead of error codes.” — [PO939R0]

Exceptions are the error handling model that is required by key parts of the language (for constructors and oper-
ators) and by the standard library, but are widely banned. This means that a large fraction of the C++ community
is not actually using ‘real’ C++, but are using a language dialect, and either a nonstandard library or none at all.

Even though exceptions are required, and have been available for some 25 years, they have not replaced error
codes for error handling in C++. Therefore, they never will unless they are changed in some way to address the
reasons they cannot be used universally (see §2.5, “Root causes”). The community are voting with their feet:

e Major coding guidelines ban exceptions, including common modern guidelines endorsed by the world’s
top advocates of C++ exceptions. For example, the Google C++ Style Guide [GSG] bans exceptions. The
Joint Strike Fighter Air Vehicle C++ Coding Standards (JSF++) [JSF++ 2005] was produced by a group that
included Bjarne Stroustrup and is published on Stroustrup’s personal website, and bans exceptions.

e Many projects ban exceptions. In [SC++F 2018], 52% of C++ developers reported that exceptions were
banned in part or all of their project code — i.e., most are not allowed to freely use C++’s primary recom-
mended error handling model that is required to use the C++ standard language and library.

e Committee papers such as [P0829R2] and [P0941R0] embrace standard support for disabling exceptions.

e The C++ Core Guidelines’ Guidelines Support Library [GSL] requires exceptions, and cannot be used in
such projects. We are already getting requests for a nonthrowing version of GSL, which changes some of
its interfaces (e.g., narrow reports errors by throwing narrowing_error and would have to change).

e Non-throwing dialects of the STL and the rest of the standard library proliferate, and C++ implementa-
tion vendors continue to receive requests to support those nonstandard dialects.

e Every C++ compiler supports a mode that disables exception handling (e.g., -fno-exceptions).

This is an intolerable rift: Large numbers of “C++” projects are not actually using standard C++.

But switching to error codes isn’t the answer either — error codes cannot be used in constructors and opera-
tors, are ignored by default, and make it difficult to separate error handling from normal control flow.

2.2 Instead, we’re actively proliferating dual interfaces that do both

“Filesystem library functions often provide two overloads, one that throws an excep-
tion to report file system errors, and another that sets an error_code.” — [N3239]

https://wg21.link/p0709

Rating Exceptions

cppcon | 2018

THE C++ CONFERENCE + BELLEVUE, WASHINGTON

exceptions

void create_dir(std::string const& name); unmarked

try {

create_dir("images"); overhead - happy path 9 a

/ happy path overhead - error path v
} safety 6
catch(std::exception& ex) { noise 8

What Could Possibly // error path separate paths
Go Wrong?: } reasonability
A Tale of Expectations composability
and Exceptions message

What is the Problem?

©

Exceptions incur an extreme performance overhead in the failure case
Exceptions make it harder to reason about functions

©

Exceptions rely on dynamic memory
Exceptions make the binary size grow (not zero overhead)

©

©

11

Performance of Exceptions

Meeting C++ 2017
Niall Douglas

Introduction
to proposed
std::expected<T E>

Introduction to proposed
..expected<T, >

Niall Douglas

> »l o) 001/1:36:43

Performance of Exceptions

Cost of returning error up ten stack frames on x64

100000

10000
]

< 1000
>
o
-
a
o
©

=4 100
=

10

1 : T T T
X Q X
& & ol & & s> & &
e¥ % {,\ \’b(\ e* AQ"\’ 'Q’ O
"y & C O S N +©
3 P & C
AV v &
°oél {}?’ &
o
N

M integer-returns result-error-value M result-error-error exception-throw

13

What is the Problem?

Exceptions incur an extreme performance overhead in the failure case
Exceptions make it harder to reason about functions

[(3

€

14

What is the Problem?

Exceptions incur an extreme performance overhead in the failure case
Exceptions make it harder to reason about functions

(3

Exceptions rely on dynamic memory

(3

15

What is the Problem?

P

Exceptions incur an extreme performance overhead in the failure case
Exceptions make it harder to reason about functions

©

Exceptions rely on dynamic memory
Exceptions make the binary size grow (not zero overhead)

P

©

16

https://wg21.link/p0709

Zero-overhead deterministic exceptions: Throwing values

Document Number: P0709 R4 Date: 2019-08-04
Reply-to: Herb Sutter (hsutter@microsoft.com) Audience: EWG, LEWG

R4: All sections, but esp. the design in §4.3 (allocation failure), are updated with LEWG+EWG Cologne feedback.

Abstract

Divergent error handling has fractured the C++ community into incompatible dialects, because of long-standing
unresolved problems in C++ exception handling. This paper enumerates four interrelated problems in C++ error
handling. Although these could be four papers, | believe it is important to consider them together.

§4.1: “C++” projects commonly ban exceptions, because today’s dynamic exception types violate the zero-
overhead principle, and do not have statically boundable space and time costs. In particular, throw requires
dynamic allocation and catch of a type requires RTTI. — We must at minimum enable all C++ projects to ena-
ble exception handling and to use the standard language and library. This paper proposes extending C++’s ex-
ception handling to let functions declare that they throw a statically known type by value, so that the implemen-
tation can opt into an efficient implementation (a compatible ABI extension). Code that uses only this efficient
exception handling has zero space and time overhead compared to returning error codes.

§4.2: Programs bugs are not recoverable run-time errors and so should not be reported as exceptions or error
codes. — We must express preconditions, but using a tool other than exceptions. This paper supports the
change, already in progress, to migrate std: : away from throwing exceptions for precondition violations.

§4.3: Allocation failure is not like other recoverable run-time errors and should be treated separately. — We

must be able to write allocation failure-hardened code, but we cannot do it portably by trying to report all failed
memaorv reatiecte Thic naner nronacec each allacatar decidec whether to fail-fact ar +to renaort an error/excen-

17

https://wg21.link/p0709

Rating Exceptions

cppcon | 2018

THE C++ CONFERENCE » BELLEVUE, WASHINGTON

auto divide(int numerator, int denominator) throws -> double {

if(denominator == 0) K
throw std::error("divide by zero"); marked + checked by compiler,

else ... static values
return (double)numerator/ denominator;

score card

overhead - happy path 10
overhead - error path 10 a
safety 10

noise 9

: std::cout << result << std::endl;
What Could Possibly } separate paths 10
Go Wrong?: catch(std::error err) { reasonability

A Tale of Expectations std::cerr << err << std::end|; composability
: message
and Exceptions } | g

auto i = try to_int(“12");
auto d = try divide(42, i);
auto result = d*2;

The Goal

The goal

»l

) 443/131:46

Make exceptions useflit foor eenyomne.

2019

C++ now MAY 6-10

cppnow.org

Andreas Weis

Exceptions Demystified

JET
BRAINS

@ & [« 0] I3

19

The Goal

¢ Make exceptions useful for everyone (technically)

EXCEPTIONS UNDER THE SPOTLIGHT
INBAL LEVI

< Teach how to work with exceptions properly
© ... how to write good code
¢ This talk

20

This Talk

Cannot Use Exceptions

Can Use Exceptions

21

This Talk

22

Content

¢ The Exception Situation

¢ How Do Exceptions Work

¢ Best Practices of Exception Handling

When to Use Exceptions (And When Not)
How to Use Exceptions

The Exception Safety Guarantees

How to Write Exception-Safe Code

How to Refactor Non-Exception-Safe Code

(

(

(

(

(

23

How Do Exceptions Work

void £() .
{ -
std::string s{ “Some default initializer” };

/1 .

if(/* some condition */) {
throw std::runtime_error(“..”);

}

// ..
}

void g()

e

-

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
// ..

£O;
/] .. e

int main()
{
try {
a();
h();

catch(std::exception const& ex) {
/¥ Handle exception */

}

Three keywords
e throw

e try

e catch

Stack unwinding
@ Objects on the stack are destroyed
@ Destruction happens in reverse order

Unhandled exceptions result in a call to
std: :terminate()

@ No stack unwinding
@ No destructors are called
@ Resources are potentially leaked

24

How Do Exceptions Work

void £()
{

std::string s{ “Some default initializer” };

/..

if(/* some condition */) {
throw std::runtime_error(“..”);

}
/1 .
}

void g()

std::vector<int> v{ 1, 2, 3, 4, 5, 6 };
// .

£0);
/] ..

int main()
{
try {
a();
hQ);

catch(std::exception const& ex) {
/¥ Handle exception */

}

©

©

©

Three keywords
¢ throw

e try
¢ catch

Stack unwinding
@ Objects on the stack are destroyed
¢ Destruction happens in reverse order

Unhandled exceptions result in a call to
std: :terminate()

©

No stack unwinding

©

No destructors are called

©

Resources are potentially leaked

25

How Do Exceptions Work

id £ N
‘{'01 © ¢ Three keywords
std::string s{ “Some default initializer” }; ¢ throw
/. \ \
if(/* some condition ¥/) { < try
throw std::runtime_error(“..”); ¢ catch
}
// ..
} . s
¢ Stack unwinding
void g()

¢ Objects on the stack are destroyed

std: :vector<int> v{ 1, 2, 3, 4, 5, 6 };

¢ Destruction happens in reverse order

<

©

Unhandled exceptions result in a call to
std: :terminate()

©

No stack unwinding

©

No destructors are called

©

int mainC) Resources are potentially leaked

{
try {
9();
h(Q);
catch(std::exception const& ex) {
/¥ Handle exception */
}
}

26

How Do Exceptions Work

void £()
{

std: :string s{ “Some default initializer” };

// ..

if(/* some condition */) {
throw std::runtime_error(“..”);

}

/] ..
3

void g()

{
std: :vector<int> v{ 1, 2, 3, 4, 5, 6 };
// ..

£0);
/] ..

int main()

{

aQ);
hQ);

Three keywords
¢ throw

S try

¢ catch

Stack unwinding
¢ Objects on the stack are destroyed
¢ Destruction happens in reverse order

Unhandled exceptions result in a call to
std: :terminate()

¢ No stack unwinding
¢ No destructors are called
¢ Resources are potentially leaked

27

How Do

void £()
{

Exceptions Work

std: :string s{ “Some default initializer” };

// ..

if(/* some condition */) {
throw std::runtime_error(“..”);

}

/] ..
3

void g()
{

std: :vector<int> v{ 1, 2, 3, 4, 5, 6 };

// ..

£0);
/] ..

int main()
{
try {
a();
hQ);

catch(..
/* ..
}

.) { // CGatch-all handler
*/

Three keywords
¢ throw

S try

¢ catch

Stack unwinding
¢ Objects on the stack are destroyed
¢ Destruction happens in reverse order

Unhandled exceptions result in a call to
std: :terminate()

¢ No stack unwinding
¢ No destructors are called
¢ Resources are potentially leaked

28

Questions?

29

Content

¢ The Exception Situation
¢ How Do Exceptions Work
¢ Best Practices of Exception Handling
¢ When to Use Exceptions (And When Not)
How to Use Exceptions
The Exception Safety Guarantees
How to Write Exception-Safe Code
How to Refactor Non-Exception-Safe Code

€

©

€

©

30

When to Use Exceptions (And When Not)

Use exceptions ...

¢ ... for errors that are expected to occur rarely
¢ ... for “exceptional cases” that cannot be dealt with locally (I/0 errors)
< File not found
¢ Can’t find key in map
¢ ... for operators and constructors (i.e. where few other mechanism works)

31

Dealing with Failing Constructors

cppcon | 2018

A first attempt to fix this. ..

class Foo {
private:
std: :unique_ptr<InternalState> m_state;
Foo() noexcept
:m_state()
€ T
public:
static expected<Foo> create(Arg n_arg) noexcept {
Foo ret{};
ret.m_state = make_unique_nothrow(n_arg);
if(!ret.m_state) { return unexpected(my_errc::error); }

return ret; Fixing Two-Phase
Initialization

Pl o) 203/501

When to Use Exceptions (And When Not)

Use exceptions ...

¢ ... for errors that are expected to occur rarely

¢ ... for “exceptional cases” that cannot be dealt with locally (I/0 errors)
¢ File not found
¢ Can’t find key in map

¢ ... for operators and constructors (i.e. where no other mechanism works)

Don’t use exceptions ...

¢ ... for errors that are expected to occur frequently
¢ ... for functions that are expected to fail

33

Dealing with Frequently Failing Functions

auto to_int(std::string const& s) -> std::optional<int>

auto to_int(std::string const& s) -> std::expected<int>

34

Dealing with Frequently Failing Functions

auto to_int(std::string const& s) -> std::optional<int>

auto to_int(std::string const& s) -> boost::outcome<int>

< Easier to comprehend
< Doesn’t pretend that all strings can be converted into an int

35

When to Use Exceptions (And When Not)

Use exceptions ...

< ... for errors that are expected to occur rarely

¢ ... for “exceptional cases” that cannot be dealt with locally (1/0 errors)
¢ File not found
¢ Can’t find key in map

¢ ... for operators and constructors (i.e. where no other mechanism works)

Don’t use exceptions ...

... for errors that are expected to occur frequently

... for functions that are expected to fail
... if you have to guarantee certain response times, even in the error case

... for things that should never happen

€

< Dereferencing nullptrs
¢ Qut-of-range access
¢ Use after free

36

Questions?

37

Content

¢ The Exception Situation

¢ How Do Exceptions Work

¢ Best Practices of Exception Handling

When to Use Exceptions (And When Not)
How to Use Exceptions

The Exception Safety Guarantees

How to Write Exception-Safe Code

How to Refactor Non-Exception-Safe Code

«

«

38

How to Use Exceptions

¢ Build on the std: :exception hierarchy

' Throw by rvalue
' Catch by reference

©

©

39

Build on the std: :exception Hierarchy

std::invalid_argument std::domain_error std::length_error std::out_of_range std::future_error
1 1 I I Y

k-

std::bad_optional_access std::logic_error

std::bad_weak_ptr

std::bad_typeid

std::bad_function_call

K—

std::bad_cast D' std::exception IG std::bad_variant_access

std::bad_exception

—

std::bad_alloc |Q' std::bad_array_new_length

std::runtime_error

std::regex_error

std::range_error

S

std::format_error

std::overflow_error

std::nonexistent_local_time p— std::system_error

A

std::ambiguous_local_time | |

std::underflow_error

filesystem::filesystem_error ios_base::failure

How to Use Exceptions

¢ Build on the std: :exception hierarchy
¢ Throw by rvalue

s
-

41

Throw By Rvalue

void £(/* ... ¥/)

{
/] ...

if(/* some condition */) {
std: :runtime_error error(“Error message”);
throw error;

}
/] ...

< Don’t throw by pointer or reference (bad semantics)
¢ throw makes a copy of the value to throw

42

Throw By Rvalue

void £C /% ... ¥/)

{
/] ...

if(/* some condition */) {

throw std::runtime_error(“Error message”);

3

/] ...
3

< Don’t throw by pointer or reference (bad semantics)
¢ throw makes a copy of the value to throw
¢ throw by rvalue

43

How to Use Exceptions

¢ Build on the std: :exception hierarchy
¢ Throw by rvalue
¢ Catch by reference

44

Catch By Reference

void £(/* ... ¥/)

{
/...

try {
/¥ ... ¥/
}

catch(std::exception ex) {
/*¥ ... ¥/
3

// ...

< Don’t catch by value, it ...
¢ ... creates an unnecessary copy

< ... potentially slices the exception

45

Catch By Reference

void £(/* ... ¥/)

{
/...

try {
VA Y
}

catch(std::exception const& ex) {
/¥ ... ¥/
3

// ...

< Don’t catch by value, it ...
¢ ... creates an unnecessary copy

¢ ... potentially slices the exception
¢ Catch by reference (to const)

46

Questions?

47

Content

¢ The Exception Situation
¢ How Do Exceptions Work
¢ Best Practices of Exception Handling
¢ When to Use Exceptions (And When Not)
How to Use Exceptions
The Exception Safety Guarantees
How to Write Exception-Safe Code
How to Refactor Non-Exception-Safe Code

€

€

€

€

48

The Exception Safety Guarantees

¢ Basic Exception Safety Guarantee
¢ Invariants are preserved
2 No resources are leaked

¢ Strong Exception Safety Guarantee
Invariants are preserved

No resources are leaked

No state change (commit-or-rollback)

(3

(3

Not always possible (e.g. sockets, streams, etc.)

¢ No-Throw Guarantee
¢ The operation cannot fail
¢ Expressed in code with noexcept

49

Content

¢ The Exception Situation
¢ How Do Exceptions Work
¢ Best Practices of Exception Handling
¢ When to Use Exceptions (And When Not)
How to Use Exceptions
The Exception Safety Guarantees
How to Write Exception-Safe Code
How to Refactor Non-Exception-Safe Code

€

€

€

€

50

Content

¢ The Exception Situation

¢ How Do Exceptions Work

¢ Best Practices of Exception Handling

When to Use Exceptions (And When Not)
How to Use Exceptions

The Exception Safety Guarantees

How to Write Good Code

How to Refactor Non-Exception-Safe Code

€

€

€

€

€

51

How to Write Exception-Safe Code

The Promise

® Easier to Read

Easier to Understand and
Maintain

® Easier to Write
® No time penalty
® 100% Robust

EXCEPTION-SAFE CODE, PART |

Jon-Kalb
» » o) 207/1:00:30 @ (=] O] L2

How to Write Exception-Safe Code

class Widget {
private:
int i{ 0 };
std: :string s{};
Resource* pr{}; // May be nullptr

public:
!/l ..

ONOUVT A WNBR

32 // ..

53

How to Write Exception-Safe Code

ONOUVT A WNBR

class Widget {
private:
int i{ 0 };
std: :string s{};
Resource* pr{}; // May be nullptr

public:
// ..
// Copy constructor
Widget(Widget const& w)
i {w.i}
, S {w.s}

if(w.pr) pr = new Resource(*w.pr);

// ..
};

54

How to Write Exception-Safe Code

1 class Widget {

2 private:

3 int i{ 0 };

4 std: :string s{};

5 Resource* pr{}; // May be nullptr
6

7 public:

8 /1l ..

9 // Copy constructor

10 Widget(Widget const& w)
11 i {w.i}

12 , S {w.s}

13

14 if(w.pr) pr = new Resource(*w.pr);
15 }

16

17 // Copy assignment operator
18 Widget& operator=(Widget const& w)
19 {

20

21

22

23

24

25

26

27

28

29

30 }

31

32 // ..

EERE

W
N

How to Write Exception-Safe Code

1 class Widget {

2 private:

3 int i{ 0 };

4 std: :string s{};

5 Resource* pr{}; // May be nullptr
6

7 public:

8 // ..

9 // Copy constructor

10 Widget(Widget const& w)
11 i {w.i}

12 , S {w.s}

13

14 if(w.pr) pr = new Resource(*w.pr);
15 }

16

17 // Copy assignment operator
18 Widget& operator=(Widget const& w)
19 {

20

21

22

23

24

25

26

27

28

29 return *this;

30 }

31

32 // ..

EERE

34

56

How to Write Exception-Safe Code

1 class Widget {

2 private:

3 int i{ 0 };

4 std: :string s{};

5 Resource* pr{}; // May be nullptr
6

7 public:

8 // ..

9 // Copy constructor

10 Widget(Widget const& w)
11 i {w.i}

12 , S {w.s}

13

14 if(w.pr) pr = new Resource(*w.pr);
15 }

16

17 // Copy assignment operator
18 Widget& operator=(Widget const& w)
19 {

20

21

22 i=w.i;

23

24

25

26

27

28

29 return *this;

30 }

31

32 // ..

EERE

W
N

How to Write Exception-Safe Code

1 class Widget {

2 private:

3 int i{ 0 };

4 std: :string s{};

5 Resource* pr{}; // May be nullptr
6

7 public:

8 // ..

9 // Copy constructor

10 Widget(Widget const& w)
11 i {w.i}

12 , S {w.s}

13

14 if(w.pr) pr = new Resource(*w.pr);
15 }

16

17 // Copy assignment operator
18 Widget& operator=(Widget const& w)
19 {

20

21

22 i=w.i;

23 S = W.s;

24

25

26

27

28

29 return *this;

30 }

31

32 // ..

EERE

34

58

How to Write Exception-Safe Code

1 class Widget {

2 private:

3 int i{ 0 };

4 std: :string s{};

5 Resource* pr{}; // May be nullptr
6

7 public:

8 // ..

9 // Copy constructor

10 Widget(Widget const& w)

11 i {w.i}

12 , S {w.s}

13

14 if(w.pr) pr = new Resource(*w.pr);
15 }

16

17 // Copy assignment operator

18 Widget& operator=(Widget const& w)
19 {

20

21

22 i=w.i;

23 S = W.s;

24

25

26 pr = new Resource(*w.pr);
27

28

29 return *this;

30 }

31

32 // ..

EERE

34

59

How to Write Exception-Safe Code

1 class Widget {

2 private:

3 int i{ 0 };

4 std: :string s{};

5 Resource* pr{}; // May be nullptr
6

7 public:

8 // ..

9 // Copy constructor

10 Widget(Widget const& w)

11 i {w.i}

12 , S {w.s}

13

14 if(w.pr) pr = new Resource(*w.pr);
15 }

16

17 // Copy assignment operator

18 Widget& operator=(Widget const& w)
19 {

20

21

22 i=w.i;

23 S = W.s;

24

25

26 if(w.pr) pr = new Resource(*w.pr);
27

28

29 return *this;

30 }

31

32 // ..

EERE

W
N

How to Write Exception-Safe Code

1 class Widget {

2 private:

3 int i{ 0 };

4 std: :string s{};

5 Resource* pr{}; // May be nullptr
6

7 public:

8 // ..

9 // Copy constructor

10 Widget(Widget const& w)

11 i {w.i}

12 , S {w.s}

13

14 if(w.pr) pr = new Resource(*w.pr);
15 }

16

17 // Copy assignment operator

18 Widget& operator=(Widget const& w)
19 {

20

21

22 i=w.i;

23 S = W.s;

24 delete pr;

25

26 if(w.pr) pr = new Resource(*w.pr);
27

28

29 return *this;

30 }

31

32 // ..

EERE

W
N

How to Write Exception-Safe Code

1 class Widget {

2 private:

3 int i{ 0 };

4 std: :string s{};

5 Resource* pr{}; // May be nullptr
6

7 public:

8 // ..

9 // Copy constructor

10 Widget(Widget const& w)

11 i {w.i}

12 , S {w.s}

13

14 if(w.pr) pr = new Resource(*w.pr);
15 }

16

17 // Copy assignment operator

18 Widget& operator=(Widget const& w)
19 {

20

21

22 i=w.i;

23 S = W.s;

24 delete pr;

25

26 if(w.pr) pr = new Resource(*w.pr);
27 else pr = nullptr;

28

29 return *this;

30 }

31

32 // ..

EERE

34

62

How to Write Exception-Safe Code

ONOUVTA,WNEPER

W W WWWNNNMNMNNNNNNNPRERPRPPRPPRPPRPRPRPRPRERER
P WNEFEPO OVOONOGOOCULPAPWNPRPROVONOOULPL WNE OV

class Widget {
private:

int i{ 0 };
std: :string s{};
Resource* pr{}; // May be nullptr

public:

15

// ..
// Copy constructor
Widget(Widget const& w)
i {w.i}
, S {w.s}

if(w.pr) pr = new Resource(*w.pr);

3

// Copy assignment operator
Widget& operator=(Widget const& w)
{

if(this == &) return *this;

i=w.i;
S = W.S;
delete pr;

if(w.pr) pr = new Resource(*w.pr);
else pr = nullptr;

return *this;

/1 ..

63

How to Write Exception-Safe Code

ONOUVTA,WNEPER

W W WWWNNNMNMNNNNNNNPRERPRPPRPPRPPRPRPRPRPRERER
P WNEFEPO OVOONOGOOCULPAPWNPRPROVONOOULPL WNE OV

class Widget {
private:

int i{ 0 };
std: :string s{};
Resource* pr{}; // May be nullptr

public:

15

// ..
// Copy constructor
Widget(Widget const& w)
i {w.i}
, S {w.s}

if(w.pr) pr = new Resource(*w.pr);

3

// Copy assignment operator
Widget& operator=(Widget const& w)
{

if(this == &) return *this;

i=w.i;
S = W.S;
delete pr;

if(w.pr) pr = new Resource(*w.pr);
else pr = nullptr;

return *this;

/1 ..

64

How to Write Exception-Safe Code

OV 0O NGOV, WNPR

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

class Widget {
private:
int i{ 0 };
std: :string s{};
Resource* pr{}; // May be nullptr

public:
// ..
// Copy constructor
Widget(Widget const& w)
i {w.i}
, S {w.s}

if(w.pr) pr = new Resource(*w.pr);

3

// Copy assignment operator
Widget& operator=(Widget const& w)

if(w.pr) pr = new Resource(*w.pr); // Both new and the Resource constructor could throw!

‘ if(this == &w) return *this;
i=w.i;
Ze:e:és;r;“r"" Dangling pointer, invariant violated!
else pr = nullptr;
return *this;
3
/1l ..

15

65

How to Write Exception-Safe Code

How to Write Exception-Safe Code

class BankAccount {

// ..

void withdrawMoney(int amount)

{
/1] ..

reduceBalance(amount);

prepareCash();

releaseCash();

// ..

/] ..
};

How to Write Exception-Safe Code

class BankAccount {

/..

void withdrawMoney(int amount)

{
/] ..

reduceBalance(amount); 4 —~Balance already reduced

prepareCash(); 4 — Throws an exception

releaseCash();

/..

// ..
};

How to Write Exception-Safe Code

class BankAccount {

// ..
void withdrawMoney(int amount)
{
// ..
reduceBalance(amount);
try {
prepareCash();
3
catch(std::exception const&) { {Eg?
increaseBalance(amount);
3
releaseCash();
// ..
}
// ..

13

69

72

“There is no try.”
(Yoda, Star Wars, & Jon Kalb, CppCon 2014)

73

How to Write Exception-Safe Code

OV 0O NGOV, WNPR

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

class Widget {
private:
int i{ 0 };
std: :string s{};
Resource* pr{}; // May be nullptr

public:
// ..
// Copy constructor
Widget(Widget const& w)
i {w.i}
, S {w.s}

if(w.pr) pr = new Resource(*w.pr);

3

// Copy assignment operator
Widget& operator=(Widget const& w)

if(w.pr) pr = new Resource(*w.pr); // Both new and the Resource constructor could throw!

‘ if(this == &w) return *this;
i=w.i;
Ze:e:és;r;“r"" Dangling pointer, invariant violated!
else pr = nullptr;
return *this;
3
/1l ..

15

74

How to Write Exception-Safe Code

1 Wi .

: C;::f,at:‘_lget { ¢ Exception unsafe

i 2:‘;1;::139 03 ¢ No guarantees with respect to

6

7 public:

2 x i cruct e Basic Exception Safety Guarantee
opy constructor

10 Widget(Widget const& w) @ |nvariants are preserved

11 i1 {w.i}

12 , s { w.s } e No resources are leaked

13

14 if(w.pr) pr = new Resource(*w.pr);

- ¥ @ Strong Exception Safety Guarantee

17 // Copy assignment operator Q :

18 Widget& operator=(Widget const& w) Invariants are preserved

19 { £ th t e e No resources are leaked

20 i this == &w return *this;

21 @ No state change (commit-or-rollback)

22 i=w.i; .

53 s = w.s; ¢ Not always possible

24 delete pr;

25
if . = R * . 5 ~

i‘;’ :lge”pzr=)nzflpt:?” esource(*w.pr); @ No-Throw Guarantee

28 ¢ The operation cannot fail

29 return *this;

30 }

31

32 // ..

33}

75

How to Write Exception-Safe Code

1 Wi .

: C;::f,at:‘_lget { ¢ Exception unsafe

i 2:‘;1;::139 03 ¢ No guarantees with respect to

6

7 public:

2 x i cruct e Basic Exception Safety Guarantee
opy constructor

10 Widget(Widget const& w) € Invariants are preserved

11 i1 {w.i}

12 , s { w.s } e No resources are leaked

13

14 if(w.pr) pr = new Resource(*w.pr);

- ¥ @ Strong Exception Safety Guarantee

17 // Copy assignment operator Q :

18 Widget& operator=(Widget const& w) Invariants are preserved

19 { £ th t e e No resources are leaked

20 i this == &w return *this;

21 @ No state change (commit-or-rollback)

22 i=w.i; .

53 s = w.s; ¢ Not always possible

24 delete pr;

25 pr = nullptr;
- = * . .

;5, if(w.pr) pr = new Resource(*w.pr); @ No-Throw Guarantee

28 ¢ The operation cannot fail

29 return *this;

30 }

31

32 // ..

33}

76

How to Write Exception-Safe Code

class Widget {
private:

int i{ 0 };
std: :string s{};
Resource* pr{}; // May be nullptr

public:

15

// ..
// Copy constructor
Widget(Widget const& w)
i {w.i}
, S {w.s}

if(w.pr) pr = new Resource(*w.pr);

3

// Copy assignment operator
Widget& operator=(Widget const& w)
{

if(this == &) return *this;

i w.ij;
S = w.s;
delete pr;

pr = nullptr;

if(w.pr) pr = new Resource(*w.pr);
return *this;

/1 ..

©

©

Exception unsafe

¢ No guarantees with respect to
invariants and resources

Basic Exception Safety Guarantee
¢ Invariants are preserved
No resources are leaked

©

77

How to Write Exception-Safe Code

; cézzjat‘,iget { ¢ Exception unsafe

; Z:;lgtglgg 03 ¢ No guarantees with respect to

5 std: :unique_ptr<Resource> pr{}; // May be nullptr invariants and resources

6

7 public:

; ; ; p cruct ¢ Basic Exception Safety Guarantee
opy constructor

10 Widget(Widget const& w) ¢ Invariants are preserved

11 i {w.i} ,

12 , s { w.s } ¢ No resources are leaked

13

14 if(w.pr) pr = std::make_unique<Resource>(*w.pr);

- } @ Strong Exception Safety Guarantee

17 // Copy assignment operator e :

18 Widget& operator=(Widget const& w) Invariants are preserved

19 { £ th t) vet e ¢ No resources are leaked

20 i is == &w return is;

21 ¢ No state change (commit-or-rollback)

22 i=w.i; R .

23 s = w.s; ¢ Not always possible

24

25
5 . = [i < > *w. 5 Q)

;3 if(w.pr) pr std: :make_unique<Resource>(*w.pr); @ No-Throw Guarantee

28) ¢ The operation cannot fail

29 return *this;

30 }

31

32 // ..

33}

W
N

78

Resource Acquisition Is Initialization (RAIl)

RAII

(Resource Acquisition Is Initialization)

79

Resource Acquisition Is Initialization (RAIl)

@Cppcun

The C++ Conference

‘ 2019

Cppcon.org

Back to Basics:
RAIl and the Rule of Zero

Back to Basics: RAIl

Arthur O'Dwyer and the Rule of Zero

2019-09-17

ideo Sponsorship Provided By
ansatz
@ & @Ol

80

Resource Acquisition Is Initialization (RAIl)

”Keep your resources on a short leash to not go leaking wherever they
want.”

(Jon Kalb, “Exception-Safe Code”, CppCon 2014)

81

How to Write Exception-Safe Code

class Widget { Exception unsafe

“

private:
z‘nggtgiﬁ; 0 ¢ No guarantees with respect to
std: :unique_ptréResource> pr{}; invariants and resources
public:
- ¢ Basic Exception Safety Guarantee
// Copy constructor
Widget(Widget const& w) ¢ Invariants are preserved

s i { w.i}

, s { w.s } No resources are leaked

if(w.pr) pr = std::make_unique<Resource>(*w.pr);

} 1

// Copy assignment operator
Widget& operator=(Widget const& w)

{

if(this == &) return *this;

w.ij; Can still fail ‘
w.s; “f’— =

if(w.pr) pr = std::make_unique<Resource>(*w.pr);

i
s

return *this;

3

/1 ..

s .

How to Write Exception-Safe Code

; cézzjat‘,iget { ¢ Exception unsafe

’ int 1{ 0 }; ¢ No guarantees with respect to

4 std::string s{}; . .

5 std: :unique_ptr<Resource> pr{}; invariants and resources

6

7 public:

; ; ; p cruct ¢ Basic Exception Safety Guarantee
opy constructor

10 Widget(Widget const& w) ¢ Invariants are preserved

11 i {w.i}

12 , s { w.s } ¢ No resources are leaked

13

14 if(w.pr) pr = std::make_unique<Resource>(*w.pr);

- ¥ @ Strong Exception Safety Guarantee

17 // Copy assignment operator Q .

18 Widget& operator=(Widget const& w) Invariants are preserved

19 { £ th t) vet e ¢ No resources are leaked

20 i is == &w return is;

21 ¢ No state change (commit-or-rollback)

22 i=w.i; R .

23 s = w.s; ¢ Not always possible

24

25 if(w.pr) pr = std::make_unique<Resource>(*w.pr);

;g’ return *this; @ No-Throw Guarantee

;2 } ¢ The operation cannot fail

30

31

32

33 // ..

34 3};

83

How to Write Exception-Safe Code

; cézzjat‘,iget { ¢ Exception unsafe

’ int 1{ 0 }; ¢ No guarantees with respect to

4 std::string s{}; . .

5 std: :unique_ptr<Resource> pr{}; invariants and resources

6

7 public:

; ; ; p cruct ¢ Basic Exception Safety Guarantee
opy constructor

10 Widget(Widget const& w) ¢ Invariants are preserved

11 i {w.i}

12 , s { w.s } ¢ No resources are leaked

13

14 if(w.pr) pr = std::make_unique<Resource>(*w.pr);

- } @ Strong Exception Safety Guarantee

17 // Copy assignment operator Q .

18 Widget& operator=(Widget const& w) Invariants are preserved

19 { £ th t) vet e ¢ No resources are leaked

20 i is == &w return is;

21 ¢ No state change (commit-or-rollback)

22 i=w.i; R .

23 s = w.s; e Not always possible

24

25 if(w.pr) pr = std::make_unique<Resource>(*w.pr);

;j return *this; @ No-Throw Guarantee

;2 } ¢ The operation cannot fail

30

31

32

33 // ..

34 3};

84

How to Write Exception-Safe Code

class Widget {
private:

int i{ 0 };
std: :string s{};
std: :unique_ptr<Resource> pr{};

public:

15

// ..
// Copy constructor
Widget(Widget const& w)
i {w.i}
, S {w.s}

if(w.pr) pr = std::make_unique<Resource>(*w.pr);

3

// Copy assignment operator
Widget& operator=(Widget const& w)

{

if(this == &) return *this;

// RAII-based approach
Widget tmp(w);

return *this;

H

/1 ..

“

©

Exception unsafe

(®
-

No guarantees with respect to
invariants and resources

Basic Exception Safety Guarantee

@
-

Invariants are preserved
No resources are leaked

85

How to Write Exception-Safe Code

; cézzjat‘,iget { ¢ Exception unsafe

: int i{ @ }; ¢ No guarantees with respect to

4 std::string s{}; . .

5 std: :unique_ptr<Resource> pr{}; invariants and resources

6

7 public:

; ; ; p ceuct ¢ Basic Exception Safety Guarantee
opy constructor

10 Widget(Widget const& w) ¢ Invariants are preserved

11 i {w.i} 7

12 , s { w.s } ¢ No resources are leaked

13

14 if(w.pr) pr = std::make_unique<Resource>(*w.pr);

- ¥ @ Strong Exception Safety Guarantee

17 // Copy assignment operator Q .

18 Widget& operator=(Widget const& w) Invariants are preserved

19 { e No resources are leaked

20 if(this == &w) return *this;)

21 ¢ No state change (commit-or-rollback)

22 // RAII-based approach -)

23 Widget tmp(w); // Temporary-move idiom ¢ Not always p0551ble

24 *this = move(tmp);

25

- ceturn *this-: e No-Throw Guarantee

;2 } ¢ The operation cannot fail

30

31

32

33 // ..

34}

86

How to Write Exception-Safe Code

; cézzjat‘,iget { ¢ Exception unsafe

’ int 1{ 0 }; ¢ No guarantees with respect to

4 std::string s{}; . .

5 std: :unique_ptr<Resource> pr{}; invariants and resources

6

7 public:

; ; ; p cruct ¢ Basic Exception Safety Guarantee
opy constructor

10 Widget(Widget const& w) ¢ Invariants are preserved

11 i {w.i} ,

12 , s { w.s } ¢ No resources are leaked

13

14 if(w.pr) pr = std::make_unique<Resource>(*w.pr);

- } @ Strong Exception Safety Guarantee

17 // Copy assignment operator e :

18 Widget& operator=(Widget const& w) Invariants are preserved

19 { ¢ No resources are leaked

20 if(this == &w) return *this;)

21 ¢ No state change (commit-or-rollback)

22 // RAII-based approach -)

23 Widget tmp(w); // Temporary-move idiom ¢ Not always p0551ble

24 *this = move(tmp);

25

- eturn *this: @ No-Throw Guarantee

;2 } ¢ The operation cannot fail

30 // Move assignment operator

31 Widget& operator=(Widget&& w) noexcept;

32

33 // ..

34 };

87

How to Write Exception-Safe Code

class Widget { Exception unsafe

L (3

private:
int 1{ 0 }; ¢ No guarantees with respect to
std::string s{}; . .
std: :unique_ptr<Resource> pr{}; invariants and resources
public:
/11 - ¢ Basic Exception Safety Guarantee
// Copy constructor
Widget(Widget const& w) ¢ Invariants are preserved
s i { w.i}
, s { w.s } ¢ No resources are leaked

if(w.pr) pr = std::make_unique<Resource>(*w.pr);

} ¢ Strong Exception Safety Guarantee
// Copy assignment operator e :
Widget& operator=(Widget const& w) Invariants are preserved
{ ¢ No resources are leaked
if(this == &) return *this;)
¢ No state change (commit-or-rollback)
// RAII-based approach .
Widget tmp(w); // Temporary-move idiom ¢ Not always pOSSlble
*this = move(tmp);
return *this; N
}

// Move assignment operator
Widget& operator=(Widget&& w) noexcept;

/1 ..

s 08

How to Write Exception-Safe Code

class Widget { ¢ Exception unsafe

private:
int i{ @ }; ¢ No guarantees with respect to
std::string s{}; . .
std: :unique_ptr<Resource> pr{}; invariants and resources
public:
/11 - ¢ Basic Exception Safety Guarantee
// Copy constructor
Widget(Widget const& w) ¢ Invariants are preserved
s i { w.i}
, s { w.s } ¢ No resources are leaked

if(w.pr) pr = std::make_unique<Resource>(*w.pr);

¥ ¢ Strong Exception Safety Guarantee
// Copy assignment operator e :
Widget& operator=(Widget const& w) Invariants are preserved
{ ¢ No resources are leaked
if(this == &) return *this; .
¢ No state change (commit-or-rollback)
// RAII-based approach .
Widget tmp(w); // Temporary-move idiom ¢ Not always pOSSlble
*this = move(tmp);
return *this: ¢ No-Throw Guarantee
} ¢ The operation cannot fail

// Move assignment operator
Widget& operator=(Widget&& w) noexcept;

/1 ..

s %9

Functions That Should Never Fail

¢ Destructors
Are called during stack unwinding

«

If an exception is thrown while another one is flying, terminate() is called
Are implicitly marked as noexcept since C++11
Cleanup must be safe!

«

«

«

¢ Move Operations
¢ Should be implemented by means of non-failing operations

Core Guideline C.66: Make move operations noexcept.

¢ swap Operations
¢ Can usually be implemented in terms of non-failing (basic) operations

90

The Benefits of noexcept

¢ noexcept makes the promise to never throw visible in the code

¢ noexcept can lead to (slightly) faster code

2 If an exception leaves a function marked with noexcept, terminate() is called
¢ The compiler does not check this promise

¢ Anoexcept promise cannot not be taken back
¢ Only few functions should be marked with noexcept

< Destructors are implicitly marked with noexcept

91

How to Write Exception-Safe Code

class Widget { ¢ Exception unsafe

private:
int i{ @ }; ¢ No guarantees with respect to
std::string s{}; . .
std: :unique_ptr<Resource> pr{}; invariants and resources
public:
/11 - ¢ Basic Exception Safety Guarantee
// Copy constructor
Widget(Widget const& w) ¢ Invariants are preserved
s i { w.i}
, s { w.s } ¢ No resources are leaked

if(w.pr) pr = std::make_unique<Resource>(*w.pr);

¥ ¢ Strong Exception Safety Guarantee
// Copy assignment operator e :
Widget& operator=(Widget const& w) Invariants are preserved
{ ¢ No resources are leaked
if(this == &) return *this; .
¢ No state change (commit-or-rollback)
// RAII-based approach .
Widget tmp(w); // Temporary-move idiom ¢ Not always pOSSlble
*this = move(tmp);
return *this: ¢ No-Throw Guarantee
} ¢ The operation cannot fail

// Move assignment operator
Widget& operator=(Widget&& w) noexcept;

/1 ..

s .

How to Write Exception-Safe Code

class Widget { ¢ Exception unsafe

private:
int i{ @ }; ¢ No guarantees with respect to
std::string s{}; . .
std: :unique_ptr<Resource> pr{}; invariants and resources
public:
/11 - ¢ Basic Exception Safety Guarantee
// Copy constructor
Widget(Widget const& w) ¢ Invariants are preserved
s i { w.i}
, s { w.s } ¢ No resources are leaked

if(w.pr) pr = std::make_unique<Resource>(*w.pr);

¥ ¢ Strong Exception Safety Guarantee
// Copy assignment operator e :
Widget& operator=(Widget const& w) Invariants are preserved
{ ¢ No resources are leaked
if(this == &w) return *this; .
¢ No state change (commit-or-rollback)
// RAII-based approach .
Widget tmp(w); // Temporary-move idiom ¢ Not always pOSSlble
*this = move(tmp);
return *this: ¢ No-Throw Guarantee
} ¢ The operation cannot fail

// Move assignment operator
Widget& operator=(Widget&& w) noexcept;

/1 ..

s .

How to Write Exception-Safe Code

class Widget {
private:
int i{ 0 };
std: :string s{};
std: :unique_ptr<Resource> pr{};

public:
// ..
// Copy constructor
Widget(Widget const& w)
i {w.i}
, S {w.s}

if(w.pr) pr = std::make_unique<Resource>(*w.pr);

3

// Copy assignment operator
Widget& operator=(Widget const& w)

{
/*¥ if(this == &w) return *this; */ // Optional

// RAII-based approach
Widget tmp(w); // Temporary-move idiom
*this = move(tmp);

return *this;

H

// Move assignment operator
Widget& operator=(Widget&& w) noexcept;

// ..
}s

¢ Exception unsafe

¢ No guarantees with respect to
invariants and resources

¢ Basic Exception Safety Guarantee
¢ Invariants are preserved
¢ No resources are leaked

¢ Strong Exception Safety Guarantee
¢ Invariants are preserved
¢ No resources are leaked
¢ No state change (commit-or-rollback)
< Not always possible

¢ No-Throw Guarantee
¢ The operation cannot fail

94

How to Write Exception-Safe Code

The Promise

® Easier to Read

Easier to Understand and
Maintain and More Correct

® Easier to Write
® No time penalty
® 100% Robust

EXCEPTION-SAFE CODE, PART |

Jon-Kalb
» » o) 207/1:00:30 @ (=] O] L2

Guidelines

Guideline: RAIl is the single most important idiom of the C++
programming language. Use it!

~

Guideline: All functions should at least provide the basic exception
safety guarantee, if possible and reasonable the strong guarantee.

J

~

Guideline: Consider the no-throw guarantee, but only provide it if you
can guarantee it even for possible future changes.

J

96

How to Deal With Failing Cleanup Functions

How to Deal With Failing Cleanup Functions

¢ Destructors must not throw

¢ But what if a function called in a destructor can fail?

class File {
public:
/..

~File()
{

fclose(pf); // fclose returns an error code; may fail

3
/1 ..

private:
std: :FILE* pf;
s

98

How to Deal With Failing Cleanup Functions

¢ Destructors must not throw
¢ But what if a function called in a destructor can fail?

class File {
public:
/..

~File()
{

int const result = fclose(pf);

if(!result) {
/* Deal with the error, but don’t throw! */

H
}

/..

private:
std: :FILE* pf;
s

¢ std::ofstream ignores failure during closing the file
¢ For handling the error case differently, write your own RAIl class

99

Questions?

100

Content

¢ The Exception Situation
¢ How Do Exceptions Work
¢ Best Practices of Exception Handling
¢ When to Use Exceptions (And When Not)
How to Use Exceptions
The Exception Safety Guarantees
How to Write Good Code
How to Refactor Non-Exception-Safe Code

©

P

©

P

101

How to Refactor Non-Exception Safe Code

¢ Transition from pre-exception/exception-unsafe legacy code (which
doesn’t handle code path disruption gracefully) to exception-safe code

< Sean Parent’s Iron Law of Legacy Refactoring:

Existing contracts cannot be broken!

102

Sean’s Rules

< All new code is written to be exception safe

< Any new interfaces are free to throw an exception

< When working on existing code the interface to that code must be followed
- if it wasn’t throwing exceptions before, it can’t start now.

¢ Consider implementing a new function and re-implementing the old in terms
of the new

103

Refactoring Steps

1. Implement a new function following exception safety guidelines

2. Legacy function now calls new function wrapped in try/catch(...)
¢ Legacy API unchanged / doesn’t throw

3. New code can always safely call throwing code

4. Retire wrapper functions as appropriate

104

Refactoring Example

bool FileReader: :LoadFile(ByteStream& input)
{
fileSizeType aSize;
IOError iErr;
File f£(m_FileName, GENERIC_READ, FILE_SHARE_READ, OPEN_EXISTING);
iErr = f£.0pen();
if (iErr == IOE_OK)
{
iErr = f.GetSize(&aSize);
if (iErr == IOE_OK)
{
uintlé6_t inBufferSize = (uintlé6_t) aSize + 1U;
uint32_t bytesRead = 0U;
input.SetSize(inBufferSize);
iErr = f.Read(&input[0], inBufferSize, &bytesRead);

3
f.Close();

}
return (iErr == IOE _OK);

105

Refactoring Assumptions

¢ The File class follows RAIl

¢ Constructor opens, throws on error
< Destructor calls Close() when necessary

¢ File: :GetSize() returns value, throws on error
¢ File: :Read() returns bytes read, throws on error

106

Refactoring Example

ByteStream const load_file(char const¥* filename)
{
File f(filename, GENERIC_READ, FILE_SHARE_READ, OPEN_EXISTING);
ByteStream input(f.GetSize() + 1);
f.Read(input.data(), input.size());
return input;

bool FileReader: :LoadFile(ByteStream& input)

{
try {
input = load_file(m_FileName);
return true;
}
catch(...) {}
return false;

107

Refactoring Steps

«

Moving a large code base is still a big chore
Can be done in small bites

No need to swallow an elephant

Part of regular maintenance

Can move forward with confidence

Code base is never at risk!

«

«

«

«

«

108

How to Write Exception-Safe Code

The Promise

® Easier to Read

Easier to Understand and
Maintain and More Correct

® Easier to Write
® No time penalty
® 100% Robust

EXCEPTION-SAFE CODE, PART |

Jon-Kalb
» » o) 207/1:00:30 @ (=] O] L2

109

Questions?

110

Back to Basics:

Exceptions

Klaus Iglberger, CppCon 2020
klaus.iglberger@gmx.de

