
Oleksiuk Dmytro (aka Cr4sh)

 What do you think when you hear this term?

 What do you think when you hear this term?

 Rustock

 TDSS/Alureon

 ZeroAccess

 Carberp

 What do you think when you hear this term?

 Rustock

 TDSS/Alureon

 ZeroAccess

 Carberp

 My talk about another: rootkits for the target

attacks

 The purpose of malicious code puts certain requirements over it

 In general, the requirements are persistence and activity hiding, but

also there is some special cases

 Case #1: rootkits for the mass-spreading malware

 Prevent active infection curing by the popular anti-virus software

 Case #2: rootkits for the target attacks

 Prevent active infection detection even by the professional during

forensic analysis
 The main subject of this talk

 Specific requirements dictate the necessity of the
specific technical solutions

 All rootkits listed above in the case #1 and all
known «cyber-weapon» stuff are very easy
detectable

 We need to design something fundamentally new
that will be good enough for the case #2

 But first - let's look at the common rootkit detection

scenarios for better understanding of the task

 In order to be working the malicious code must get execution
somehow

 System service installation or using of the less obvious auto-run

capabilities (documented or not) of OS

▪ TDL 2, Rustock, Srizbi, Stuxnet, Duqu

 Infection of the existing executable file

▪ TDL 3, ZeroAccess, Virut

 OS booting control (modification of the boot code, partition table or
playing with the UEFI boot drivers and services)

▪ TDL 4, Mebroot, Olmarik, Rovnix, UEFI rootkit by @snare

http://twitter.com/snare

 Apart from getting the execution rootkits also have
to hide the evidences of their work (we're still
talking about rootkits?)

 Hidden objects and resources of the operating
system make the rootkit detection more easy

 How exactly?

 Step 1: collect the database (like name/path + hash) of interesting
resources (files, system registry, boot sectors) inside the environment
of presumably infected by rootkit OS

 Step 2: collect the same database but with the mounting of the target
OS system volume inside the environment of clear and trusted OS

 Step 3: diff of the two databases will show us the resources that were

hidden or locked by the rootkit inside the environment of the target OS

 Reliability is close to 100% in the absence of implementation errors
 Very hard for to bypass such detection

 I'm using this method successfully in the different practical cases

 Rootkit sample: Trojan.Srizbi.cx

 Rootkit sample: Win32.TDSS.aa

 Rootkit sample: Rootkit.Win32.Agent.aibm

 The malicious code also can have nothing to hide (because not
only rootkits are useful)

 Developers can masquerade the malicious module as a legitimate

program component (from OS or 3-rd party software)
 Actually, such case is much more harder for investigation and

detection than “true rootkit”, that hides any files/processes/registry
keys/etc.

 But we still can compare collected resources database with the
some reference

 Good system administrator always knows, exactly what software

and drivers are installed on his servers and workstations. Find
something extraneous among known components and data is a
much than possible

 So, for these reasons our ideal rootkit for target attacks is strictly
prohibited to use:

 All the regular ways of auto-run
 Existing files modification and new files creation
 Interfere in the process of OS booting with the modification of MBR, VBR,

NTFS $Boot and so on.

 But where should we store the malicious code and how to pass
execution into it?

 Maybe, firmware infection is the most obvious way?

 Yes: that’s a powerful technology and it can solve our tasks
 No: in practice – very expensive, depends on the specific hardware and

have a lot of other limitations

 Let’s store malicious code inside some REG_BINARY
or REG_SZ system registry value!

 The main goal: Windows system registry – is the millions of keys and
values

 There is no any complete documentation on all of these
 Usually, the forensic analysis is limited by checking only a small part of

registry keys (that stores critical system settings and known auto-run
locations)

 The main problem: how to execute a code, that located inside a

system registry value?

 Of course, the Windows haven’t any regular capabilities for that
 But some registry keys can contain the data that very interesting and

sensitive itself
 Also, there are a lot of code and program components that read something

from the system registry, and, of course, such code can have vulnerabilities

 What interesting is kept in the system registry?

 Settings, users password hashes, certificates and secret/public keys

 Maybe, anything else?

 Windows ACPI driver stores a copy of the DSDT table (that was read
from the firmware) inside a system registry

 sometimes this feature is used by enthusiasts to fix the hardware vendor

bugs

 DSDT – is the part of ACPI specification, this table stores machine-
independent subprograms, that are interpreting by ACPI driver in the
occurrence of different power events

 ACPI spec 4.0a, «5.2 ACPI System Description Tables»

 DSDT had already got under the attention of researchers

 «Implementing and Detecting an ACPI BIOS Rootkit» (John Heasman, Black

Hat 2006)
 I propose to modify the copy of DSDT inside the system registry, but not

inside the firmware

http://www.blackhat.com/presentations/bh-europe-06/bh-eu-06-Heasman.pdf

 DSDT can contain data objects and control methods

 They forming a hierarchical ACPI namespace

 Control methods are represented in the form of an AML byte-
code (ACPI Machine Language), in which compiles the programs
written in ASL (ACPI Source Language)

 Compilers and disassemblers are available in toolkits from Intel and

Microsoft

 It’s possible to browse ACPI namespace and debug the AML code
with the acpikd extension for WinDbg

 AML byte-code interpreter located inside the operating system
ACPI driver (ACPI.sys on Windows)

http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://www.acpi.info/toolkit.htm
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx
http://msdn.microsoft.com/en-us/library/windows/hardware/ff538158(v=vs.85).aspx

 ASL provides a lot of capabilities for working with the hardware
resources

 OperationRegion directive (ACPI spec 4.0a, «18.5.89 Declare Operation

Region») can give the access to the different memory regions

 Example: ASL code that writes 0x1337 into the
physical memory at 0x80000000

 Write ASL program, that generates the malicious machine code
directly into the physical memory, and then – patches OS kernel
for redirecting control flow to the generated code

 Read DSDT contents from the system registry

 Add written program into the code of some control method, that
will be called during OS startup

 Write modified DSDT back into the system registry

 PROFFIT!

 At the next reboot modified control method code will be interpreted

by ACPI driver and after that – our malicious code will be generated
and executed

 ASL code can work only with the physical memory, so, for accessing to
the virtual memory we need to make the address translation manually

 Windows stores PDE/PTE tables at the constant virtual addresses

0xC0300000/0xC0000000 (for x86)

 Then we should find the address of the some kernel mode code to
patch, the using of hardcoded address is possible
 Will work on NT 5.x
 Will not work NT 6.x because there is a kernel-mode ASLR

 … but it’s better to modify the code, that located in the SystemCallPad

field of the _KUSER_SHARED_DATA structure

 This structure located at the executable memory page with the constant

address 0xffdf0000 (at least – up to NT 6.1 including)
 The end of this page can be used to store the malicious code

DEMO:
vimeo.com/56595256

https://vimeo.com/56595256

 Unfortunately, considered DSDT modification works
fine only on the NT 5.x and gives the strange BSoD
on the NT 6.x:

 The reason – KeBugCheckEx call inside the ACPI.sys

 ACPI!MapPhysMem calls the
AmlpValidateFirmwareMemoryAddress function, that checks the
physical address from the OperationRegion for belonging to the I/O
ports addresses ranges

 If the control method code trying to read or write something different

(executable images that mapped to the memory, kernel structures and so
on) – ACPI.sys drops the system into the BSoD

 ACPI.sys reads the information about the allowed memory regions
from the special keys of the system registry, that located in
HARDWARE\DESCRIPTION\System\MultifunctionAdapter

 This key is not a permanent – it’s creating during the operating system

startup
 PnP driver puts I/O memory information inside it during the hardware

resources enumeration and initialization

 Well… we can try to put fake I/O memory information into the
system registry and corrupt the hive binary structure somehow
to prevent the system to modify data

 Also, the possible way is exploring the other ACPI features

 Already done by Alex Ionescu: «ACPI 5.0 Rootkit Attacks Against

Windows 8»

 One more variant: to find the vulnerability in the AML byte-code
interpreter code

 But stop, out primary task – is executing of the code, that is
located inside the system registry. Let’s leave ACPI and find
some different way

http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip
http://www.syscan.org/index.php/download/get/9c75ca8882fda96b7d9c663bf4300cdf/Day2-6Alex_Ionescu.zip

 Do you remember the local privileges escalation
vulnerability CVE-2010-4398 (MS11-010)?

 The another one vulnerability in the win32k.sys

 Incorrect usage of the RtlQueryRegistryValues kernel
function causes stack-based buffer overflow during
reading the registry value contents

 Because the RtlQueryRegistryValues – is really
overcomplicated

 Seems that even the Windows developers don’t know all

the documented features of the some kernel functions

http://technet.microsoft.com/en-us/security/Bulletin/MS11-011
http://technet.microsoft.com/en-us/security/Bulletin/MS11-011
http://technet.microsoft.com/en-us/security/Bulletin/MS11-011
http://msdn.microsoft.com/en-us/library/ff562046(v=VS.85).aspx

 The RtlQueryRegistryValues has a lot of options and different
data reading modes

 The most interesting stuff located in the

RTL_QUERY_REGISTRY_TABLE structure, that must be passed
to the RtlQueryRegistryValues as an argument

 The Flags field can contain the RTL_QUERY_REGISTRY_DIRECT flag:

 The MSDN quote about this flag: «The QueryRoutine member is not used

(and must be NULL), and the EntryContext points to the buffer to store the
value»

 From the type of the value, that you’re reading, depends on how
exactly the data will be written into the buffer

 REG_SZ, REG_EXPAND_SZ: «EntryContext must point to an initialized

UNICODE_STRING structure»
 Non-string data with size <=sizeof(ULONG): «The value is stored in the

memory location specified by EntryContext»
 Non-string data with size >sizeof(ULONG): «The buffer pointed to

by EntryContext must begin with a signed LONG value. The magnitude of
the value must specify the size, in bytes, of the buffer»

 The usage of the RtlQueryRegistryValues causes the BoF when:

 The code is trying to read REG_DWORD or REG_SZ value with the

RTL_QUERY_REGISTRY_DIRECT flag but without the correct type
value in the DefaultType field

 … and buffer, that pointed by the EntryContext field, has a non-zero
DWORD at the beginning (for example – when the EntryContext
points to the initialized UNICODE_STRING structure)

 … and attacker can replace the reading value (REG_DWORD or
REG_SZ) by malicious one, that has a REG_BINARY type

 Result –100% controllable overflow with the trivial

exploitation!

 Number of overwritten bytes – is the first DWORD value from the

EntryContext pointed buffer

 Simple PoC for the CVE-2010-4398 as a .REG file:

 The vulnerable code fragment in win32k.sys:

 Of course, Microsoft has released a path for the CVE-2011-4398

 That patch also adds some improvements and mitigations for the
RtlQueryRegistryValues function:

 The RTL_QUERY_REGISTRY_TYPECHECK flag has been added, if it is

specified – the RtlQueryRegistryValues will return an error in case of the
zero DefaultType field

 In Windows 8 the RTL_QUERY_REGISTRY_DIRECT flag works only for the
trusted registry keys (that can’t be overwritten under limited user account)

 But these improvements will not make the already written code more

secure

 On Windows 7 we still have a good LPE vector
 … and local-admin-to-ring0 on Windows 8

 Even reverse engineering of the vulnerabilities that
were already fixed can give you a valuable
experience

 As a result of the patched vulnerabilities discovery
it’s possible to obtain a new attack vector and a
"template" of the vulnerable code, that can be used
to find new zero-day vulnerabilities

 Let’s try to find zero-day vulnerabilities that are
similar to the CVE-2010-4398

 Fuzzing? Static dataflow analysis? Symbolic execution?

 Fuzzing? Static dataflow analysis? Symbolic execution?

 Keep it simple. IDA, win32k.sys and one hour of the time!

 Some interesting piece of code in win32k.sys:

 The win32!bInitializeEUDC function unsafely reading the
«FontLink» value (REG_DWORD) of the
«Software\Microsoft\Windows NT\CurrentVersion» key

 No DefaultType specified, EntryContext pointed buffer – is

uninitialized stack variable with the non-zero value

 We can trigger the vulnerability by replacing these values with
the REG_BINARY one

 Yes, it drops a system into the BSoD and we can
control the EIP value

 Vulnerable function takes the execution from the NtUserInitialize
system call handler. Windows kernel is using this system call for the
per-session initialization of the Win32 subsystem

 So, the vulnerability can be triggered during the system boot, all that we

need – is just put the malicious value into the system registry

 There is a DEP and ASLR in the NT 6.x kernels, and we need to bypass
them absolutely blindly without any pre-interaction with the OS

 Good thing – there is no stack cookies in win32!bInitializeEUDC

 Exploit should not violate the normal execution flow and global state

of the OS kernel, if it will – BSoD and unbootable OS

 Need to restore overwritten stack frames and correctly pass the execution

from the shellcode back to the win32k.sys

 Overflow happens too close to the bottom of the stack, we have only
about 70 bytes for the shellcode

 It’s not possible to do the spray or something, because we can’t interact

with the OS at the exploitation stage, all that we have – is the data that
overwrites the stack

 A little fail: I haven’t got the ROP chain with the short enough length
for DEP/ASLR bypass inside the Windows kernel environment (and it
seems that nobody has)

 The shortest what I know – has a 68 bytes length without the shellcode
 See the «Bypassing Windows 7 kernel ASLR» by Stéfan LE BERRE

 Compromise solution – to disable the DEP inside the Windows boot
loader configuration

 … and enable it for the user-mode processes back when the shellcode has

been successfully executed

 There is no way to disable ASLR

 But it seems that it’s not a very critical for the vulnerability that I’m talking

about

http://dl.packetstormsecurity.net/papers/bypass/NES-BypassWin7KernelAslr.pdf

 I’m using the JMP ESP that is located at the constant address
inside the KUSER_SHARED_DATA for defeating the kernel ASLR

 70 bytes is a pretty enough for the egg-hunting stage 1
shellcode, that locates and executes stage 2 shellcode in the
kernel-space virtual memory by the binary signature lookup

 Stage 2 shellcode is originally located inside some another registry

value – Windows kernel maps the big parts of the registry hives in
the virtual memory

 Also, in stage 1 shellcode I’m finding an address of the
MmIsAddressValid kernel function

 Stage 1 shellcode is obtaining the kernel image base from the _KPCR

structure (we can access it via FS segment register)

 Whole stage 1 assembly code:

 For the OS code execution state normalization the stage 2
shellcode must perform some operations, that weren’t executed
in the win32k.sys code because of the buffer overflow

 It sets the WIN32_PROCESS_FLAGS flag inside the Win32 Process

Information structure (W32PROCESS) for the current process
 It finds the address of the non-exportable function

win32k!UserInitialize and calls it manually

 Then, the stage 2 shellcode loads, initializes and runs the ring 0
payload

 After that, the stage 2 shellcode sets the return address and ESP

values in order to return the execution of the current system
call back to the system calls manager (nt!_KiFastCallEntry) with
the STATUS_SUCCESS return value

 Regular Windows kernel mode driver PE image

 Is also stored inside the system registry value

 It hides itself from the modern anti-rootkits

 In order to avoid unknown executable code detection it moves itself in the

memory over discardable sections of some default Windows drivers

 It installs the kernel mode network backdoor

 Undetectable NDIS miniport level hooks allows to monitor the incoming

network traffic on all of the interfaces
 When network backdoor finds the magic sequence in the traffic – it injects

meterpreter/bind_tcp payload (from the Metasploit framework) for
execution into the WINLOGON.EXE user mode process

http://www.metasploit.com/modules/payload/windows/meterpreter/bind_tcp

DEMO:
vimeo.com/56625551

https://vimeo.com/56625551

Check out the rootkit source code on GitHub!
github.com/Cr4sh/WindowsRegistryRootkit

https://github.com/Cr4sh/WindowsRegistryRootkit
https://github.com/Cr4sh/WindowsRegistryRootkit

 I’m not reported about these win32k.sys vulnerability into the
Microsoft

 Not very critical vulnerability because of the strange practical use-cases

 Vulnerable systems – all the NT 6.x (up to the Windows 8), for x86 and

x64

 Seems that stable exploitation of vulnerability in the
win32!bInitializeEUDC function is impossible on the x64 Windows
version

 The win32k!bInitializeEUDC function have the stack cookies on

Windows x64 because of the stack frames elimination
 Impossible to exploit such cases completely blindly, without the pre-

interaction with the OS

root@cr4.sh
@d_olex

http://twitter.com/d_olex

