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ABSTRACT
Predicting new and urgent trends in epidemiological data is an
important problem for public health, and has attracted increasing
attention in the data mining and machine learning communities.
The temporal nature of epidemiology data and the need for real-time
prediction by the system makes the problem residing in the cate-
gory of time-series forecasting or prediction. While traditional au-
toregressive (AR) methods and Gaussian Process Regression (GPR)
have been actively studied for solving this problem, deep learning
techniques have not been explored in this domain. In this paper,
we develop a deep learning framework, for the first time, to pre-
dict epidemiology profiles in the time-series perspective. We adopt
Recurrent Neural Networks (RNNs) to capture the long-term corre-
lation in the data and Convolutional Neural Networks (CNNs) to
fuse information from data of different sources. A residual structure
is also applied to prevent overfitting issues in the training process.
We compared our model with the most widely used AR models on
USA and Japan datasets. Our approach provides consistently better
results than these baseline methods.
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1 INTRODUCTION
Epidemic prediction over the world is an important problem for
public health. Timely detection, tracking and forecasting of key
information of epidemics such as peak intensity and outbreak time
are crucial for effective health intervention. Classic work in com-
putational epidemiology mainly focused on compartmental models
where the whole population is divided into different groups (of sus-
ceptible, infective and recovered), and the transition among groups
are modeled by differential equations[5]. While being intuitive
and popular, such models have limited prediction power due to the
rather narrow function space, lack of the ability to model individual-
level information, and do not embrace new developments in recent
machine learning and data mining technologies.

A recent interdisciplinary effort is to approach this problem from
a time-series perspective, as the temporal nature of epidemic obser-
vations and the need for real-time alerts makes the problem residing
in the scope of time-series prediction. Autoregressive (AR) models
and their variants (e.g., VAR), as the representing approaches, have
been widely used to capture spatio-temporal patterns [1, 6]. AR
models use history data to make a (usually linear) prediction about
the future, and adapt the model parameters using updated history
over time. Gaussian Process Regression (GPR) [7] is another repre-
senting method, which extends the prediction power by utilizing a
non-linear kernel (e.g. radial basis function) for modeling complex
temporal patterns. The adaptive nature of time-series models is a
major departure from classic compartment models, which fix the
model parameters in the entire process. Both AR and GPR require a
relative small number of parameters due to their simplicity (relying
on linear combination or predefined kernels). This makes them
popular in epidemiology prediction as weekly sampled epidemic
statistics usually provide limited training instances. However, such
simplicity also limits the expressiveness of those models. How to
further enhance the prediction power for epidemic prediction with
restricted training data is an open question for research.

In this paper we propose a deep learning approach1 for the
epidemic prediction problem from a time-series forecasting per-
spective. Deep neural networks have not been studied for epidemic
modeling so far, to our best knowledge. With a non-trivial adap-
tation of deep learning methods from other application domains
to computational epidemiology, and more specifically by using ad-
jacent graph convolution and a recurrent module, our proposed
method shows significant and consistent performance improvement
over other representative baseline methods on multiple real-world
datasets in our evaluation. Furthermore, our ablation test shows

1Code available at https://github.com/CrickWu/DL4Epi.

https://doi.org/10.1145/3209978.3210077
https://doi.org/10.1145/3209978.3210077


SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA Y. Wu et al.

that we can effectively address the overfitting issue which is general
in deep learning, by introducing densely-connected residual links
in our networks.

2 BACKGROUND
2.1 Task Definition
Let us define the epidemic prediction problem precisely as a time
series forecasting task. Denote by xt ∈ Rm the multi-variate epi-
demiology profile, whose elements are the observations from m
different sources/signals at time stamp t , e.g., the influenza patient
counts per week (t ) in m states of the U.S.. Further denote by
X = [x1,x2, . . . ,xT ] the available training data in a time-span
of sizeT . The task then is to predict epidemiology profile at a future
time point T + h where h is refer to the horizon of the prediction.

2.2 Autoregressive Methods
Autoregressive (AR) models have been most popular for time series
forecasting [6, 8]. The basic idea is to model the future state as
a linear combination of past data points. For example, the basic
order-p autoregressive model can be formalized as:

x̃
(i)
t+h =

w−1∑
p=0

α
(i)
p x

(i)
t−p + εt+h + c

(i) (1)

where the prediction for the i-th signal of epidemiology profile x
is the weighted sum of the data points in past window of size w ,
and εt+h is a small random noise which is used to explain the devi-
ation between the linear sum and the true value; c is the intercept
term. When training data are limited and the signals from different
sources exhibit similar patterns, we may train the system with only
one set of {αp } and c for all the sources; such a model is called
Global Autoregression (GAR) in the literature.

A potential shortcoming of AR models is that the signal sources
are treated independently from each other during the training pro-
cess, which would be too simplistic. A direct extension of AR is to
model cross-signal dependencies via Vector Autoregression (VAR).
It predicts the future profile as:

x̃t+h =
w−1∑
p=0

Apxt−p + εt+h + c (2)

where the signal-wise αp in AR is replaced with matrix Ap to cap-
ture the correlation information. Notably, the number of parameters
for {Ap } is O(m2w) which is far larger than that of AR (O(mw)).
Thus VAR models are more expressive than AR models in general,
with a higher chance of overfitting as potential trade-off.

2.3 Gaussian Process Regression
Both AR and VAR methods rely on the linear combination of past
signals in making predictions, which may not be sufficiently ex-
pressive for some complicated real-world scenarios. A common
approach to go beyond is to apply kernel tricks in a Gaussian Pro-
cess Regression (GPR) [7]. Specifically, GPR assumes that the future
predicting profiles altogether are sampled from a Gaussian distribu-
tion, where the variance is specified by its past history. For the clar-
ity of explanation, consider a dataset with one-dimension signals.

Figure 1: The proposed deep learning framework where the
top portion is the temporal sequence of epidemiology pro-
files (input vectors), the middle portion consists of the CNN
modules, and the bottom portion consists of the RNN mod-
ules with residual links in-between.

Suppose the future profiles are {y1, . . . ,yn } and their past histories
are {z1, . . . ,zn } correspondingly where yi ∈ R and zi ∈ RT . Then,

©«
y1
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yn

ª®®¬ ∼ N
©«0,

©«
K(z1,z1) . . . K(z1,zn )

. . .

K(zn ,z1) . . . K(zn ,zn )

ª®®¬
ª®®¬ (3)

where K is a kernel function (e.g. radial basis function) computing
the covariance of two past histories. Non-linearity, thus, appears
along with this function as long as the kernel is beyond dot product.
Such non-linear design would yield more accurate predictions than
linear models when the dependency patterns are complex.

3 PROPOSED METHOD
Our model framework is shown in Figure 1. The overall structure
is composed of 3 parts: a CNN for capturing correlation between
signals, a RNN for linking up the dependencies in the temporal
dimension and the residual links for fast training and overfitting
prevention. We carefully restrain the parameter space, making the
total model have a similar size as AR.

3.1 CNN Module
We use a convolutional Neural Network (CNN) module to fuse the
information across different sources. In the deep learning literature,
CNN modules are known to be small in the number of parameters
and effective in capturing local dependency patterns. However, di-
rect application of CNNs in our framework would not work well as
conventional CNNs are designed for a grid structure of neighbor-
hood in data (such as in images), but in our data the grid-structure
assumption does not hold. In order to preserve the ability to model
local feature, we propose a new structure. Precisely, we utilize a
given adjacent nearest neighbor matrixG to regularize the number
of parameters while mimicking the convolution behavior. Let

ht = σ (ΦGxt ) (4)

where ht is the transformed feature map and ΦG is the parameter
matrix. ΦG ’s entries can only be non-zero if and only if the corre-
sponding entry in G is non-zero. σ is an activation function (e.g.
sigmoid) making the transformation nonlinear.

Comparing to the image CNN, the grid filters are replaced by the
adjacent parameter graph, enlarging the parameter number from
O(1) toO(km)where k is the number of nearest neighbors kept inG .
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Figure 2: Left: Image CNN filter, a uniform grid filter is ap-
plied on each node; the filter is computed over each node
one-by-one. Right: Adjacency CNN filter, a one-time node-
specific filter defined on the whole irregular graph is ap-
plied; the filter is computed over all nodes at once.

This number is only of comparable size of AR which is well within
the acceptable range, and we could gain more flexible non-linear
representing power by stacking multiple CNNs hierarchically. Be-
sides, as adjacent convolution gets more node-specific parameters
than grid convolution, it is possible to use just one filter (i.e. one
ΦG ) to represent complex patterns which can only be captured by
multiple filters in the grid form.

3.2 RNN Module
We employ an recurrent neural network (RNN) module to capture
the temporal dependencies in the data. Specifically, we utilize an
Gated Recurrent Unit (GRU) [2] in our framework. The input data
are passed through a gate, which is then used to compute the new
state in the memory cell of GRU given the old value. This process
is repeatedly carried out along with new inputs. Compared to the
traditional Long-Short Time Machine (LSTM) where there are 3
gates, an GRU has fewer parameters (2 gates) to be trained and thus
is more suitable in the data-deficient case. Moreover, as each gate
links to the hidden memory, by effectively constraining its size to
a small number q, the parameter number can be limited to O(qm)

which is still of a similar size as AR.

3.3 Residual Module
For deep neural networks, it is well-known that overfitting issues
arise when the amount of data does not scale accordingly with the
number of parameters. Therefore, we utilize the residual links to
let the training process bypass some of the intermediate layers,
which can effectively mitigate the overfitting issue. Instead of using
the standard residual links that each layer may only connect to its
neighbors within 2-4 layers [3], we use a similar structure where
the final layer “densely” links to nearly all previous layers [4]. The
benefits of such design are two-fold: such design alleviates the
gradient vanishing phenomenon during training which stabilizes
the process; also the links may possibly introduce highly relevant
long-jump data information to the final output (e.g. the annual
epidemiology patterns), thus giving out a more accurate predictor.
Similarly, to regularize the parameter number, we only introduce
one scaling factor for each residual link, contributing to at most
O(w) parameters, which is smaller than AR.

4 EMPIRICAL EVALUATION
4.1 Datasets
We prepared three real-world datasets for experiments.

• Japan-PrefecturesThis dataset contains theweekly influenza-
like-illness statistics (patient counts) from 47 prefectures in
Japan, ranging from 2009 to 2015.

• US-Regions This dataset, collected from the CDC FluView
website2, contains the weekly influenza activity levels (from
1 to 10) for all the states in U.S. from 2009 to 2016After
removing the states with missing data we kept 29 states
remaining in this dataset.

• US-HHS This dataset is the ILINet portion of the US-HHS
dataset 3, consisting of the weekly influenza activity levels
for the 10 districts of the mainland U.S. for the period of 2009
to 2016 measured using the weighted ILI metric4.

Dataset Size Min Max Mean SD

Japan-Prefectures 47×312 0 18939 503.54 1368.31
US-Regions 29×451 1 10 2.17 2.39
US-HHS 10×364 0.05 10.62 1.52 1.17

Table 1: Dataset statistics include min, max, mean and stan-
dard deviation (SD) of patient counts or activity levels;
dataset size means # of regions multiplied by # of weeks.

4.2 Experiment Setup
For comparative evaluation we include GAR, AR and VAR as rep-
resentative baselines of the autoregressive family, GPR as a repre-
sentative of non-linear models. For all datasets, we split them into
three sets: training (60%), validation (20%) and test (20%) in chrono-
logical order. We tune the window size for all methods from the
set {2, 8, 32, 64, 128}. To make GAR, AR and VAR more robust, we
adopt a L2-regularization term during training, where its coefficient
is searched from the set {0.01, 0.1, 1}. For GPR, we use the radial
basis function (RBF) as its kernel function. The kernel bandwidth
hyper-parameter for RBF is chosen from {2−5, 2−4, . . . , 22}. For our
method (CNNRNN-Res), we tune the hidden dimension for GRU
from {5, 10, 20, 40}. The number of residual links are searched from
set {4, 8, 16}. We construct the adjacency matrix G based on the
real-world location of signals.

We adopt two evaluation metrics for comparison: Root Mean
Squared Error (RMSE) and Pearson’s Correlation Coefficient (CORR).
Denote the prediction and true values to be {ŷ1, . . . , ŷn } and {y1, . . . ,
yn } respectively. The calculation for these metrics are defined as:

RMSE =
√

1
n

∑
i
(ŷi − yi )2 (5)

CORR =
∑
i (ŷi −mean(ŷ))(yi −mean(y))√∑

i (ŷi −mean(ŷ))2
√∑

i (yi −mean(y))2
(6)

4.3 Results
Table 2 summarizes the results of all the methods, where the pro-
posed CNNRNN-Res has the dominating performance. Notice that
CNNRNN-Res has similar number of model parameters as AR does,
but a much better performance; VAR has the largest number of
model parameters but the worst results on two out of the three
datasets. This suggests the importance of controlling the model
2https://gis.cdc.gov/grasp/fluview/main.html
3https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
4https://www.cdc.gov/flu/pdf/weekly/overview.pdf
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Japan-Prefectures US-Regions US-HHS

Horizon Horizon Horizon

Methods Metrics 1 2 4 8 1 2 4 8 1 2 4 8

GAR (3)
RMSE 584 786 932 949 1.2883 1.7513 2.1967 2.2538 0.2596 0.3798 0.5217 0.603
CORR 0.9127 0.8393 0.7655 0.7582 0.7917 0.6542 0.4692 0.5 0.9422 0.8813 0.7722 0.729

AR (2)
RMSE 652 839 1061 1061 1.3533 1.7685 2.3414 2.4983 0.2597 0.3667 0.472 0.5816
CORR 0.8725 0.7426 0.5779 0.5861 0.7655 0.6157 0.3311 0.3539 0.9438 0.892 0.8226 0.7277

VAR (0)
RMSE 627 754 1014 1007 1.6158 1.9144 2.3455 2.4417 0.3 0.4134 0.5039 0.5712
CORR 0.9212 0.8715 0.6538 0.6721 0.7461 0.6433 0.4528 0.3136 0.9318 0.868 0.8072 0.7441

GP (1)
RMSE 573 676 857 1022 1.3599 1.7279 2.2834 2.4084 0.2648 0.3736 0.4659 0.5719
CORR 0.9423 0.9043 0.7714 0.6237 0.7614 0.6312 0.3516 0.3465 0.9396 0.8921 0.8536 0.8096

CNNRNN-Res (18)
RMSE 500 561 691 644 1.3147 1.6783 2.1613 2.3465 0.259 0.3717 0.4451 0.4638
CORR 0.9461 0.9254 0.9095 0.9236 0.8033 0.6942 0.5564 0.4298 0.9466 0.8919 0.8509 0.8538

Table 2: Results summary. Bold face indicates the best result of each column in a particular metric and the total number of
bold-faced results of each method is listed after the method name within parentheses.

complexity (the effective number of model parameters) for data
insufficient problems. Also notice that on the Japan-Prefectures
dataset, which has the largest standard deviation and hence a hard
dataset, our method has the strongest results in terms of relative
improvements over other methods on average. This suggest that
our method can successfully capture nonlinear features with deep
learning, outperforming non-linear GP.

4.4 Ablation Tests
To analyze the effect of each component in our framework, we per-
form the ablation tests on all the datasets with the follow settings:

• RNN (GRU): Only keeping the RNN layer but removing the
CNN layer and the residual links among the RNN modules;

• CNNRNN: Keeping both the CNN and RNN layers but re-
moving the residual links among the RNN modules;

• CNNRNN-Res: this is the full model.
The results are measured in RMSE in Fig. 3. It is interesting to
see that CNNRNN does not consistently improve the performance
of using RNN only. Besides, adding both the CNN layer and the
residualmodules improve the robustness. Notice that all the datasets
are of a relative small size (hundreds of training samples) which
means that adding more parameters (the consequence of adding
the CNN modules) would hurt the performance due to overfitting.
The CNNRNN-Res (the full model) offers a remedy for this issue.
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Figure 3: Ablation test results in RMSE – lower scores mean
better performance.

5 CONCLUSION
In this paper, we presented the first study on deep learning to the
epidemic prediction problem from a time-series prediction perspec-
tive. Our method combines the strengths of CNN, RNN and residual
links for enhanced model expressiveness and robust prediction. Our
experimental results showed the consistent performance improve-
ments by the proposed approach over representative linear and
non-linear methods on multiple real-world datasets.
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