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ABSTRACT This study presents a groundbreaking model for forecasting long-term financial time series,
termed the Enhanced LFTSformer. The model distinguishes itself through several significant innovations:

1) VMD-MIC+FE Feature Engineering: The incorporation of sophisticated feature engineering tech-
niques, specifically through the integration of Variational Mode Decomposition (VMD), Maximal
Information Coefficient (MIC), and feature engineering (FE) methods, enables comprehensive per-
ception and extraction of deep-level features from complex and variable financial datasets.

2) DS Encoder Informer: The architecture of the original Informer has been modified by adopting a
Stacked Informer structure in the encoder, and an innovative introduction of a multi-head decentral-
ized sparse attention mechanism, referred to as the Distributed Informer. This modification has led
to a reduction in the number of attention blocks, thereby enhancing both the training accuracy and
speed.

3) GC Enhanced Adam & Dynamic Loss Function: The deployment of a Gradient Clipping-enhanced
Adam optimization algorithm and a dynamic loss function represents a pioneering approach within
the domain of financial time series prediction. This novel methodology optimizes model performance
and adapts more dynamically to evolving data patterns.

Systematic experimentation on a range of benchmark stock market datasets demonstrates that the Enhanced
LFTSformer outperforms traditional machine learning models and other Informer-based architectures in
terms of prediction accuracy, adaptability, and generality. Furthermore, the paper identifies potential avenues
for future enhancements, with a particular focus on the identification and quantification of pivotal impacting
events and news. This is aimed at further refining the predictive efficacy of the model.

INDEX TERMS Feature Engineering, Financial Time Series, Integrated Models, Stacked Informants,
Variational Mode Decomposition.

I. INTRODUCTION
A. RESEARCH BACKGROUND

The financial market constitutes a pivotal foundation for the
sustenance of global economic endeavors, with its opera-
tions and dynamical shifts intricately intertwined with a con-
fluence of complex determinants, encompassing economic

structuration, seasonal variabilities, and the international mi-
lieu [1] [2]. Concomitant with economic progression and the
burgeonment of financial markets, the adoption of time series
analysis has emerged as an indispensable instrumentality
within the finance domain. [3] This analytical paradigm has
markedly enhanced the comprehension of market dynamics,
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augmented the intelligence of decision-making processes,
and facilitated the prognostication of investment returns. [2]
[4] Consequently, time series analysis has garnered extensive
scholarly interest, engendering a copious corpus of research
findings and advancing the academic discourse on financial
market analysis. [5] [6]

The domain of long-term time series forecasting, increas-
ingly pivotal across an array of disciplines, encapsulates
several quintessential applications including the temporal
allocation mechanisms pivotal for wind energy integration
[7], the granular dissection of protracted energy consumption
patterns within architectural edifices [8], and the nuanced
prognostication of load dynamics within thermal infrastruc-
tures [9], among others. In marked divergence from the
traditional paradigms of time series forecasting, the arena of
financial time series forecasting is imbued with pronounced
complexity and a heightened degree of unpredictability. This
complexity is particularly accentuated in scenarios where
prognostications are extended towards long-term horizons or
when the forecasts are subjected to unforeseen exogenous
perturbations [10] [11].

Research on financial time series forecasting has continu-
ously evolved since the 1950s, despite numerous challenges.
Initially, the field predominantly employed pure statistical
and mathematical methodologies. Over time, it incorporated
machine learning and deep learning techniques. Contem-
porary research focuses on the refinement of these models
through the integration of advanced attention mechanisms
and sophisticated feature engineering strategies, representing
the cutting edge in financial time series analysis.

B. FINANCIAL TIME-SERIES PREDICTION: A REVIEW
1) Classical Theories in Financial Time Series Analysis
Within the domains of finance and macroeconomics, the
inaugural application of mathematical models, anchored in
the principles of econometrics and statistical theory, has
pioneered the analytical and prognostic assessment of time
series data. Notably, Robert Engel’s seminal introduction
of the Autoregressive Conditional Heteroskedasticity (ACH)
framework, while examining the volatility of UK inflation
rates, has emerged as a significant landmark in the evolution
of financial market volatility forecasting methodologies [12].
This foundational work was subsequently advanced by Tim
Boleslef, who refined it into the Generalized Autoregressive
Conditional Heteroskedasticity (GARCH) model, thereby
significantly broadening the analytical precision and appli-
cability of this approach within the realm of financial time
series analysis [13]. Complementing these developments,
David A. Shea’s exploration into the volatility of five ma-
jor foreign exchange rates, through the employment of a
sophisticated statistical model that accounts for time-variant
mean and variance, has further augmented the repertoire of
financial market forecasting methodologies [14]. Part of this
era’s research is distinguished by the strategic amalgamation
of diverse financial time series datasets, fostering a multidi-
mensional analytical perspective [15].

In the 21st century’s dynamic financial landscape, marked
by burgeoning economic activities and market expansion,
there has been a proliferation of statistical models for fi-
nancial time series forecasting. The most remarkable is RG
Brown’s introduction of the ARIMA model in 2004 [16]
has catalyzed its adoption for predicting stock and futures
market trends, alongside its variants like AR, VAR, ARDL,
ARCH, GARCH, and MIDAS [17]. These models excel in
linear stock price scenarios, effectively assessing prediction
risks [18] and forecasting returns [19]. Nonetheless, their
predictive power for highly volatile stocks influenced by mul-
tifarious factors remains debated. To address this challenge,
a large number of fundamental machine learning models
and methods have been progressively incorporated into the
forecasting of financial and stock time series under the rise
of the artificial intelligence field.

2) Introduction of machine learning to financial time series
prediction
The utilization of machine learning techniques in forecasting
financial time series marks the advent of sophisticated analyt-
ical methodologies. The introduction of temporal difference
learning by Sutton signals a pivotal shift, utilizing historical
data to enhance predictive accuracy while maximizing com-
putational resourcefulness [20]. The deployment of genetic
algorithms by Mahfoud and Mani, along with Kim and Han,
has refined the processes of network training and feature
selection [21] [22]. Additionally, the integration of Support
Vector Machines (SVM) by Trafalis and Ince, enriched by
Lee, has notably augmented the precision of stock trend
predictions, underscoring the utility of composite feature
selection techniques [23] [24].

Deep learning, a significant evolution within machine
learning, has revolutionized financial forecasting with
marked improvements in precision and the ability to generate
deep insights. Chen et al.’s employment of LSTM for the
prediction of returns in China’s stock market illustrates a con-
siderable leap over traditional methodologies, adeptly nav-
igating market unpredictability [25]. The CNN-GA model
developed by Li et al. for short-term pork price prediction
showcases deep learning’s adaptability, yielding high preci-
sion and underscoring its value in the analysis of commodity
markets [26]. Ding et al.’s model for event-driven forecasting,
which leverages deep convolutional neural networks, offers
an intricate analysis of how events influence stock prices,
providing a profound augmentation over existing baselines
[27].

3) Improvement of machine learning based financial time
series Prediction
In the context of the rapidly growing volume of data in
today’s financial markets, machine learning and deep learn-
ing algorithms have demonstrated superior performance in
time series forecasting compared to traditional forecasting
methods. However, these advanced algorithms are not with-
out limitations [28]. A particularly prominent challenge is
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that financial time series data is too complex and variable,
resulting in an inability to adequately extract salient fea-
tures [29]. In addition, the fidelity of predictions tends to
decrease over time, with RNNs and LSTMs being examples
of decreasing predictive effectiveness [30]. To address these
challenges, a large body of academic work has been devoted
to the design of sophisticated feature engineering, as well as
the introduction and optimisation of attentional mechanisms
suitable for long time-series forecasting, which has yielded
promising results in the field of financial forecasting.

Our research focuses primarily on attention mechanisms
and the Informer model. Since Vaswani et al. established the
fully attention-based Transformer model in 2016, which does
not rely on recurrence and convolution [31], it has triggered
a paradigm shift in the fields of machine translation and
computer vision [32] [33], and has been widely recognized
for its outstanding performance in areas such as time series
prediction [34]. Following this, Zhou et al [35]. introduced
Informer, aimed at addressing the complexities of long-
sequence time series forecasting (LSTF) by incorporating an
efficient attention mechanism that notably diminishes time
complexity and memory consumption while preserving long-
term dependencies with remarkable precision. This advance-
ment, alongside further enhancements and innovations in the
Transformer architecture, was promptly integrated into the
domain of long-term financial time series forecasting.

As for Feature Engineering and other aspects, it merits at-
tention that additional significant optimizations and inquiries
into long-term time series forecasting have been explored,
including stacking-based ensemble methodologies [36], and
innovations in network structure fusion [37] [38], grounded
in comprehensive parameter pruning strategies. Additionally,
the decomposition-reconstruction approach, utilizing Vari-
ational Mode Decomposition (VMD) and Empirical Mode
Decomposition (EMD) [39] [40] [41], has been identified as
another pivotal research area. These optimization techniques,
serving as integral components of our study, will also mani-
fest in the context of feature engineering, thereby augmenting
the efficacy and applicability of our research.

C. OUR RESEARCH CENTRE AND ARTICLE
STRUCTURE
In summary, in the context of adequate feature extraction
and accurate prediction for long time series, we combine
the latest advances with the introduction of the pioneering
Enhanced LFTS Informer, which combines the advantages of
VMD-MIC/FE in the feature engineering stage, and through
the mechanisms of Encoder Stacking/Decentralisation, cou-
pled with the GC-enhanced Adam Optimisation as well as
the Dynamic The introduction of Loss Function achieves
excellent results in long term financial time series prediction
(this time stocks are selected).

The rest of this article will be developed and discussed in
the following order

1) Section II: A review of the progress and shortcomings
of informer-based modules in financial time series and

other time series forecasting in recent years.
2) Section III: Describes the overall architecture of the

article’s research, including data preprocessing before
feature engineering, feature engineering methods, DS
Encoder Informer architecture, etc.

3) Section IV: Demonstrates the process of feature engi-
neering and results of ablation experiments / compari-
son experiments / stability experiments

4) Section V: Summarize the conclusions of this article
and critically proposes potential improvement direc-
tions for this method.

II. RELATED WORKS
A. INFORMER-BASED MODEL IN FINANCIAL TIME
SERIES PREDICTION
In the current research field of financial time series forecast-
ing, studies based on Informer models are not only scarce in
number, but also of varying quality. Despite these challenges,
some representative studies demonstrate the potential and
effectiveness of Informer models when dealing with complex
financial data. By analysing these studies, we can gain a
deeper understanding of the application of Informer models
in stock price forecasting and market trend analysis.

First, one category of research focuses on improving the
accuracy of stock price forecasting. For example, Ren et
al. developed a hybrid model combining Encoder Forest
and Informer, which significantly improves the forecasting
ability through the decomposition and reconstruction ap-
proach [42].Ding et al. then optimised intraday stock price
forecasting using the Informer model, demonstrating its su-
periority in capturing long-range dependencies [43]. These
studies highlight the ability of Informer models in accurately
capturing market dynamics.

Secondly, another class of studies focuses on the im-
provement of long-term forecasting.Liu et al. employed the
Informer model optimised by the PSO algorithm to provide
more accurate forecasts for long-term stock price trends,
overcoming the shortcomings of the traditional model in long
series forecasting [44]. In addition, Sababipour Asl used the
Informer model to improve the prediction accuracy of stock
market volatility, demonstrating its potential application in
financial risk management [45].

Finally, there are also studies focusing on the versatil-
ity and integrated application of models. For example, Ab-
dulsahib and Ghaderi demonstrated the advantages of the
Informer encoder in capturing global and local market dy-
namics, proposing a new financial market prediction model
[46]. In addition, Fei Xiong and Yuhao Feng’s master’s
thesis investigated quantitative trading strategies based on the
Informer mechanism, verifying the applicability and effec-
tiveness of the model in real financial trading [47] [48].

B. INFORMER-BASED MODEL IN OTHER TIME SERIES
PREDICTION
Informer-based models have not been widely studied in
the field of financial time series. Therefore, for analysis
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and reference, several representative Informer-based models
from other time-series prediction domains are selected for
this review. These models mainly focus on three aspects,
namely structural improvement, performance optimisation
and application-specific customisation, in order to improve
prediction accuracy, processing power and application adapt-
ability. Thus, they provide possible insights and directions for
financial time series prediction

In terms of the underlying structural optimisation of the
model structure, the MSRN-Informer model enhances the
ability to extract features from time-series data by integrat-
ing the multi-scale structure and residual network, reduces
information loss, and effectively improves the limitations of
the traditional deep network in processing time-series data
[49]. In addition, the Enformer model employs a simplified
Transformer structure that uses only the encoder and omits
the decoder, which reduces the computational complexity by
introducing a sparse periodic attention mechanism, and at
the same time enhances the model’s ability to capture the
periodic dependence of the sequence [56]

In terms of performance optimisation, the MTS-Informer
model enhances the model’s ability to handle complex multi-
variate data by introducing causal convolution and a sparse
self-attention mechanism, and improves the handling of
unstable sequences [51]. Literature [52] demonstrates the
application of Informer in the prediction of motor bearing
vibration, which optimises the temporal and spatial complex-
ity and improves the prediction accuracy and reliability of
the model by employing ProbSparse self-attention and self-
attention distillation techniques.

In terms of customised tuning for specific application sce-
narios, the improved stacked Informer network is designed
for power line fault prediction, optimising the network’s
generalisation capability and training speed by incorporating
gradient concentration techniques [53]. Whereas the model in
literature [54] combines the integration of Empirical Modal
Decomposition (EEMD) with Particle Swarm Optimisation
algorithm (PSO) tuning of Informer, specifically designed for
multi-step prediction of building energy consumption to cope
with non-linear and non-smooth energy consumption data.

III. METHODOLOGY
A. DATA PREPROCESSING
1) Raw Data

In this study, we adopt stocks, the most common and
widespread financial time series, as the object of study. Based
on this, we collect the stocks of 22 large enterprises listed
on the two major stock exchanges in China (Shanghai Stock
Exchange and Shenzhen Stock Exchange) as the research
object, and the basic information is shown in Table 1.

For the raw data collected, the basic paradigm and At-
tributes are shown in Table 2. As for the complete initial data,
please refer to this link. One thing to note is that all data
related to transaction volume are in RMB.

TABLE 1. Data Collected and Used in This Study

Stock Code Volume Interval Start Date End Date
SHA: 601398 190225 30min 2006/10/30 2023/03/17
SHE: 002415 146833 30min 2010/05/28 2023/03/21
SHA: 600007 269429 30min 1999/10/28 2023/03/21
SHA: 601628 188545 30min 2007/01/10 2023/03/21
SHA: 601857 179041 30min 2007/11/06 2023/03/21
SHA: 600654 244903 30min 1999/10/28 2023/03/21
SHA: 600004 229681 30min 2003/04/29 2023/03/21
SHE: 300059 148609 30min 2010/03/19 2023/03/21
SHA: 600006 266793 30min 1999/10/28 2023/03/21
SHE: 000004 255569 30min 1999/10/28 2023/03/21
SHA: 600009 269384 30min 1999/10/28 2023/03/21
SHE: 000938 248423 30min 1999/11/11 2023/03/21
SHE: 600653 258001 30min 1999/10/28 2023/03/21
SHA: 600601 268896 30min 1999/10/28 2023/03/21
SHA: 601800 128689 30min 2012/03/09 2023/03/21
SHA: 600000 265010 30min 1999/12/07 2023/03/17
SHE: 000001 262608 30min 1999/12/21 2023/03/21
SHA: 600602 255553 30min 1999/10/28 2023/03/21
SHE: 000089 268902 30min 1999/10/27 2023/03/21
SHA: 600028 249217 30min 2001/08/08 2023/03/21
SHE: 000063 264673 30min 1999/10/27 2023/03/21
SHA: 600065 251770 30min 1999/10/28 2023/03/21

TABLE 2. Stock Raw Data Format Example

Time Open High Low Close Volume Amount
199910280950 6.3 6.33 6.3 6.32 62700 395321
199910280955 6.32 6.32 6.3 6.32 84400 532593
199910281000 6.31 6.33 6.31 6.31 37600 237544
199910281005 6.3 6.31 6.3 6.31 37700 237674

············ ··· ··· ··· ···· ····· ······

2) Data Indexing

To fully reflect the inherent patterns in the data, we extracted
29 features from the original dataset. This includes 8 basic
indicators as shown in Table 3. Building on the studies
by Achelis [55], Kara et al. [56], and Guresen et al. [57],
we identified an additional 21 advanced features for this
research, as listed in Table 4. While the calculation methods
for all advanced features are comprehensively discussed in
Achelis [55].

TABLE 3. Basic Features

Feature name Window size Number of features

Open, Close, High, Low 1 4

Weighted Price 1 1

Volume(Stock), Volume(RMB) 1 2

High - Low 1 1

Due to space constraints, we only explain the following
specific indicators here.
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TABLE 4. Advanced Features

Feature name Window size Number of features

Return 1, . . . , 6 6

Correlation MA5 and MA30 1 1

Sum3, Sum5 5,3 2

Sum5 - Sum3 1 1

|Sum5 - Sum3| 1 1√
(Sum5)2 − (Sum3)2 1 1

RSI(6, 14) 6,14 2

Rate of change 9,14 2

Williams R 1 1

ATR 5,10 2

CCI 1 1

DEMA 1 1

1) Return: Refers to returns at 6 different lag levels (from
1 to 6 lag length)

2) Average True Range (ATR): Calculated by the fol-
lowing formula:

ART = MA(TR,N) (1)

Where MA(TR,N) represents the moving average of
TR over N time units, i.e., the average price over the
past N time periods. The true range TRt for the tth

time period is computed as:

TRt = max


 Hight

Hight
Closet−1

−

 Lowt

Closet−1

Lowt


(2)

where High, Low, and Close are the highest, lowest,
and closing prices respectively.

3) Relative Strength Index (RSI): Calculated as:

RSI = 100−
100

1 +
MA(U,N)

MA(D,N)

(3)

When the price increases, we have:

Ut = Closet − Closet−1, D = 0 (4)

and when it decreases, we have:

Dt = Closet−1 − Closet, U = 0 (5)

4) Price Return: Calculated with the following formula:

Returnit = Closet − Closet−i (6)

5) Rate of Change (ROC): Calculated as:

ROCit = 100 ·

(
Closet

Closet−i
− 1

)
(7)

6) Stochastic Oscillator: Reflects the momentum effect
in the Bitcoin price, and its calculation formula is as
follows:

K = 100 ·
Close − Low
High − Low

(8)

↓

Stochastic oscillator = MA(K, N) (9)

7) Commodity Channel Index (CCI): Reflects the aver-
age price deviation, calculated as:

TP =
High + Low + Close

3

MC = MA(Close,N)

MD = MA(MC − Close,N)

(10)

↓

CCI =
TP − MC
0.015MD

(11)

3) Data Manipulation
Given the heightened complexity inherent to stock prices, the
natural logarithm of the terminal prices was extracted, fol-
lowed by first-order differencing. The corresponding formula
is presented as:

new closei = log(
closei

closei−1
) (12)

To enhance the efficiency of our neural network model, we
standardized the 29 indicators. The calculation formula is:

new valuei =
valuei − E(value)

√
D(value)

(13)

Where E(value) and D(value) represent the expected value
and variance of the indicator, respectively.

B. FEATURE ENGINEERING
1) VMD Model
Variance Mode Decomposition (VMD) is a sophisticated
data decomposition technique, facilitates the transformation
of time-domain financial sequences into the frequency do-
main [58]. This transformation yields a set of K intrinsic
mode functions (IMFs). The foundational step in this proce-
dure entails formulating the variational constraint equation:



min


K∑

K=1

∥∥∥∥∥∂t
[(

δ(t) +
i

πt

)
∗ uK(t)

]
e−iwKt

∥∥∥∥∥
2

2


s.t.

K∑
K=1

uK = x(t)

(14)
Here, x(t) denotes the financial data sequence. The terms

wK and uK respectively represent the central frequency and
band components of the k-th IMF. The impulse function is
represented by δ(t), while ∂t indicates the derivative with
respect to time. The convolution operation (*) signifies the
convolution computation in this context.
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For a more tractable representation, the variational con-
straint equation is restructured using the Lagrange function
λ(t) and the penalty factor α:



TDR = α

K∑
K=1

∥∥∥∥∥∂t
[(

δ(t) +
i

πt

)
∗ uK(t)

]
e−iwKt

∥∥∥∥∥
2

2

DAE =

∥∥∥∥∥x(t)−
K∑

K=1

uK(t)

∥∥∥∥∥
2

2

LM =

〈
λ(t), x(t)−

K∑
K=1

uK(t)

〉
(15)

↓

L = ({uK}, {ωK}, λ) = TDR + DAE + LM (16)

This reformulation alleviates the constraints, rendering the
problem more manageable. The optimal solution is then
determined using the Alternating Direction Method of Mul-
tipliers (ADMM), a renowned optimization technique. The
iterative steps are as follows:

ûn+1
K (w) =

x̂(w)−
∑
i ̸=K

ûj(w) +
λ̂(w)

2

1 + 2α (w − wK)
2

(17)

↓

wn+1
K =

∞∫
0

w
∣∣ûn+1

K (w)
∣∣2 dw

∞∫
0

∣∣ûn+1
K (w)

∣∣2 dw (18)

Following this sequence, the primary financial data se-
quence is decomposed into K distinct sub-series.

2) VMD-MIC Framework
While VMD is underpinned by a robust mathematical frame-
work and adept at disentangling complex signal components,
it’s constrained by the need for predetermined decomposition
parameters. This requirement can compromise the fidelity of
the decomposition. To address these limitations, this study
proposes an amalgamation of VMD with the Mutual Infor-
mation Coefficient (MIC) [59]. This integration determines
the optimal number of decompositions, K, enhancing the
decomposition’s adaptability.

The Mutual Information Criterion (MIC) is a statistical
measure used to quantify the dependency between two vari-
ables, indicating the amount of information shared between
them. As for the Calculation of the Mutual Information

Criterion (MIC), when given two variables, X and Y , their
mutual information I(X;Y ) is defined as:

I(X;Y) =
∑
x∈X

∑
y∈Y

p(x, y) log
p(x, y)

p(x)p(y)
(19)

Here, p(x, y) represents the joint probability distribution of
X and Y , while p(x) and p(y) are the marginal probability
distributions of X and Y , respectively.

The Mutual Information Criterion (MIC) is a normalized
form of mutual information, calculated as follows:

MIC(X;Y) =
I(X;Y)√
H(X)H(Y)

(20)

In this equation, H(X) and H(Y ) represent the entropy of X
and Y respectively, used to normalize the mutual information
such that the values of MIC range from 0 to 1.

In the context of Variational Mode Decomposition (VMD),
the Mutual Information Criterion (MIC) serves as a robust
measure for quantifying the accuracy and effectiveness of the
decomposition process. This criterion is instrumental in de-
termining the optimal number of modal components k, which
is critical for achieving high fidelity in the reconstruction
of the original signal. The methodology can be outlined in
several systematic steps:

1) Decomposition: Initially, the original signal y is de-
composed into various modal components using VMD
for different potential values of k. This step is essential
to explore the range of possible decompositions and to
prepare for subsequent analysis.

2) Reconstruction: Following the decomposition, these
modal components are reassembled to form the recon-
structed signal y0. This step tests the completeness of
the original decomposition by attempting to recreate
the initial signal using the modal components derived.

3) Evaluate MIC: The Mutual Information Criterion
(MIC) is then calculated to assess the degree of similar-
ity between the original signal y and the reconstructed
signal y0. The MIC, denoted as MICyy0, evaluates
the mutual information, providing a statistical measure
of how well the reconstructed signal represents the
original.

4) Optimization: The final step involves selecting the
value of k that yields the maximum MIC value. An
MIC value approaching 1 signifies minimal informa-
tion loss during the reconstruction process, indicating
that the decomposition has been optimally performed
with that particular number of modal components.

By utilizing the MIC in this manner, VMD can be fine-
tuned to ensure minimal information loss and optimal re-
construction quality. This approach not only enhances the
analytical capabilities of VMD but also ensures that the
signal processing is both precise and efficient, leading to
more accurate interpretations and outcomes in practical ap-
plications.
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3) Fuzzy Entropy Approach
Fuzzy Entropy (FE) serves as a prominent technique tailored
for assessing the complexity inherent in temporal series,
offering a profound insight into the intricacies of the data
structure [60]. A salient feature of FE is its adaptive na-
ture, which allows for a seamless evolution in accordance
with changes in its prescribed parameters. This adaptability
confers upon FE a robust defense mechanism against noise-
induced perturbations, ensuring its integrity even in the pres-
ence of external disturbances.

For a time series of length n, the FE algorithm is seam-
lessly integrated within the framework governed by fuzzy
membership functions. This methodological integration re-
sults in the subsequent formulation:

lnD(x) = − ln(2)

(
x

r

)2

(21)

Here, r represents the similarity tolerance, and x is equated
to dmij , the distance between vectors that reconstruct the
time series in an m-dimensional phase space. For i, j =
1, 2, . . . , n − m + 1, taking an average over each i in Dm

ij

produces the average similarity function:

ϕm(r) =
1

N −m+ 1

N−m+1∫
i=1

 1

N −m

N−m+1∫
j=1,j ̸=i

Dm
ij

 (22)

↓

FE(m, r, n) = ln

(
Φm(r)

Φm+1(r)

)
(23)

C. DS ENCODER INFORMER: ENCODER-BASED
OPTIMIZED INFORMER
In our research on long-term financial time series predic-
tion, we’ve established a rolling prediction setting with fixed
window sizes, linking input at time t with its correspond-
ing sequence prediction output. This model supports output
lengths that exceed the length of previous inputs and is
not limited to univariate feature dimensions. At the core of
many popular models, including our proposed DS Encoder
Informer Architecture, is the encoder-decoder architecture
designed to encode the input representation Xt into a hidden
state Ht, and then decode this state to produce the output Yt.
This involves a process known as "dynamic decoding," where
the decoder iteratively infers by calculating a new hidden
state ht(k+1) from the previous state htk and the required
outputs at step k, and predicts the next sequence yt(k+1). For
an overview of this architecture and more details, please refer
to our framework diagram.

1) Temporal Feature Embedding Mechanism
In the context of financial time series forecasting, the inte-
gration of hierarchical timestamps (like weeks, months, and
years, as well as holidays and significant events) is vital
for improving predictive accuracy. Traditional self-attention

mechanisms often struggle with effectively processing this
rich temporal information, which can degrade the interaction
between query and key in encoder-decoder architectures.

To address these challenges, our study introduces a so-
phisticated input representation that blends both local and
global temporal information. Here’s how we’ve refined the
methodology:

1) Local Context Encoding: Each point in the time se-
ries, denoted as X t, retains its local temporal context
through fixed positional embeddings. These embed-
dings are formulated as follows for any position ’pos’
within the sequence:

Scalej,x = (2Lx)

2j

dmodel (24)

↓

PE(pos,2j) = sin

[
pos

Scalej,x

]

PE(pos,2j+1) = cos

[
pos

Scalej,x

] (25)

where j is an index from 0 to ⌊dmodel/2⌋.
2) Global Timestamp Embedding: We utilize a set of

learnable embeddings for global timestamps. These
embeddings account for a variety of significant tempo-
ral markers, with a vocabulary designed to recognize
60 unique timestamps up to minute-level precision
SE(pos) tailored to capture broader temporal dynamics.

3) Feature Vector Transformation and Integration:
Each feature xt

i at time t and position i is trans-
formed into a higher dimensional space using a one-
dimensional convolutional operation, producing ut

i.
The complete input vector for the model is constructed
by combining these transformed feature vectors with
both local and global embeddings:

X t
feed[i] = αut

i + PE(i) +
∑
p

SE(i,p), (26)

where α is a scaling factor set to 1 to maintain balance
between the original features and the embedded repre-
sentations.

The visualisation of this process is visible mainly in Fig
1, This new approach not only ensures effective encoding
of both local and global temporal details but also enhances
the model’s capability to forecast with higher accuracy and
computational efficiency.

2) Multi-head Distributed Sparse Attention Mechanism
(Distributed Informer)
In this study, which explores new dimensions beyond tradi-
tional time series forecasting methods such as wind or power
forecasting, financial time series forecasting leverages a dual-
feature framework. The primary types of features include
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FIGURE 1. The input embedding for the Informer model consists of three
distinct components: scalar projection, local timestamp embeddings
(positional), and global timestamp embeddings.

Note: The figure is quoted from the literature [35]

economically significant indicators, such as trend indices
and oscillation indicators. These are formally represented as
follows: 

X t =
{
xt
1, . . . ,x

t
Lx

| xt
i ∈ Rdx × 1

}
Yt =

{
yt
1, . . . ,y

t
Ly

| yt
i ∈ Rdy×1

} (27)

The secondary type involves features extracted directly from
the time series through advanced computational techniques
such as Fourier transformations. This approach diverges from
prior models that typically merged these features without
considering their inter-relationships. Our findings highlight
that understanding the intricate correlations between these
types of indicators is pivotal for enhancing the accuracy of
financial forecasts.

During the initial stages of our modeling process, we
incorporate three core components: the ’key’, ’query’, and
’value’. These elements are integrated as follows:

[kL×dk , qL×dq , vL×dv ] (28)

where L represents the sequence length, and dK , dQ, and dV
denote the dimensions of the key, query, and value features,
respectively. The alignment and integration with the learn-
able weight matrices are detailed in:

[ωdk×d
k , ωdq×d

a , ωdv×d
v ] →



KL×d = kwk

QL×d = qwa

V L×d = vwv

(29)

This integration fosters a dense and structured data repre-
sentation, essential for the efficiency of the Distributed In-

former, our advanced adaptation of the traditional multi-head
attention mechanism. This model excels in processing sparse
datasets and enhances predictive performance significantly.
The attention dynamics are quantitatively defined as:

A (qi,K,V) =
∑
j

k (qi,kj)∑
l

k (qi,kl)
vj = Ep(kj |qi) [vj ] (30)

where

p(kj | qi) =
k(qi,kj)∑
l

k(qi,kl)
(31)

utilizes an asymmetric exponential kernel, enhancing the
model’s sensitivity to critical features. Furthermore, the com-
putational complexity is also addressed:

KL(q∥p) = ln

L∑
l=1

e
qik

⊤
l

√
d

−
1

L

LK∑
j=1

qik
⊤
j√
d

− lnLK (32)

The self-attention mechanism refines the model’s predic-
tions by evaluating output probabilities, thereby enhancing
forecasting accuracy through an optimized attention distribu-
tion in sparsely populated data environments.

3) Stacked Informer Structure
The Stacked Informer architecture, as depicted in Fig 2, is an
advanced, tiered variant of the multi-layer Informer network
specifically engineered for long-term time series forecasting.
This structure begins with the original long time-series data,
denoted as L. Initially, L is halved to L/2, and then quartered
to L/4. The sequence L is processed through three attention
blocks and two convolution layers, while the L/2 sequence
goes through two attention blocks and one convolution layer.
The L/4 sequence is handled by a single attention block.
Subsequently, features extracted from all sequences at the
L/8 scale are consolidated into a unified feature map, which
is then transmitted to the decoding module.

This Stacked Informer design effectively addresses several
critical aspects of long-term forecasting. First, it focuses
on efficiently distilling intrinsic temporal features from ex-
tensive time-series data. Second, it enhances the robustness
and resilience of the forecasts produced. Additionally, the
architecture supports parallel processing, thereby improv-
ing prediction efficiency. The design utilizes a multi-scale
input representation, wherein different temporal scales are
processed through distinct pathways. This strategy ensures
that the model captures a broad spectrum of features across
varying time scales, thereby enriching the informational
content essential for long-term forecasting tasks. Moreover,
by integrating features from diverse scales into a coherent
feature map, the model effectively accounts for interactions
and dependencies across these scales.

Each scale within the Stacked Informer employs atten-
tion blocks, based on the Transformer architecture, to cap-
ture long-distance dependencies within the input sequences.
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FIGURE 2. Stacked Informer Structure with 4 Layers.

Furthermore, convolutional layers are used to extract local
features, which are then integrated with the outputs from the
attention blocks to enhance the predictive capabilities of the
model.

Overall, the Stacked Informer architecture, with its layered
and multi-scale approach, is adept at capturing complex
patterns and dependencies within long time series, leading
to more precise predictions. This structured design not only
reduces the number of attention blocks needed—halving
them from four to two for reducing L to 1/32L—but also
shifts the computation from serial to parallel, optimizing for
GPU computations. This enhances computational efficiency,
integrates global attention mechanisms with local informa-
tion processing, and minimizes the introduction of noise, thus
reducing model complexity and the risk of overfitting. These
enhancements allow the Stacked Informer to deliver superior
performance in long-term time series forecasting.

D. OTHER METHODS AND OPTIMISATION

1) GC-Enhanced Adam Optimizer

Optimization strategies are of paramount importance in the
effective and efficient training of Deep Neural Networks
(DNNs). While traditional optimizers such as Stochastic Gra-
dient Descent (SGD) and Adam have been widely adopted

in DNNs, this work incorporates the novel Gradient Central-
ization (GC) technique into the Adam optimizer, aiming to
further enhance its efficacy.

The GC technique was pioneered by Yong et al. in 2020
[61]. Unlike other methods that modify the learning rates
or adaptively adjust weights, GC directly acts upon the gra-
dients by centralizing them, effectively making their mean
values zero. One can draw parallels between GC and pro-
jected gradient descent, though the former operates within the
constraints of a specific loss function. This centralization is
believed to foster a more stable and efficient training process.

Given a weight vector w, with corresponding gradients
denoted as ∇wiL (where i spans from 1 to N), the GC
operator, ϕGC, is formally defined as:

µ∇wiL =
1

M

M∑
j=1

Wi,jL (33)

↓

ϕGC (∇wiL) = ∇wiL − µ∇wiL (34)

Where M denotes the dimensionality, and L is the objective
function. The essence of this formulation is the subtraction
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of the computed mean of column vectors in the weight ma-
trix from each individual column vector, achieving gradient
centralization.

For a more matrix-oriented representation, one can express
the aforementioned operation as:

P = I − eeT (35)

↓

ϕGC (∇WL) = P∇WL (36)

In this formulation, W is the weight matrix, P is the pro-
jection matrix that lies within the hyperplane defined by
a normal vector in the weight space, and P∇WL is the
gradient projected onto said hyperplane. Once the centralized
gradient ϕGC(∇WL) is obtained, it can be seamlessly used
for weight matrix updates.

One potential enhancement to consider when employing
GC with Adam or other adaptive optimizers is the careful
tuning of hyperparameters. While GC aims to stabilize the
training process, the adaptive nature of optimizers like Adam
means that they adjust learning rates based on past gradient
moments. Combining these two methodologies might neces-
sitate a recalibration of hyperparameters to achieve optimal
results.

2) Dynamic Loss Function
The adaptive loss function, a novel approach to loss function
formulation, was pioneered in the work of Barron [62].
This approach integrates a continuous parameter signifying
robustness into the traditional loss function. Throughout the
optimization phase of model training, this dynamic loss func-
tion refines the robustness parameters in tandem with the loss
minimization procedure, enhancing prediction precision. The
generalized loss function is mathematically described as:

f(z, β, c) =
|β − 2|

β


(

z2

|β − 2|c2
+ 1

)β

2
− 1

 (37)

In this formulation, the variable z quantifies the residual
between observed and predicted values. The positive scalar
c > 0 adjusts the curvature of the quadratic component at
x = 0, while β serves as the adaptable parameter steering
robustness.

A detailed examination of the equation reveals that the
behavior of the adaptive loss function is intricately tied to
variations in β. Different settings of β manifest in the loss
function as in the Table 9

It is noteworthy that this adaptive loss function is versa-
tile, enveloping a spectrum of loss functions such as Mean
Squared Error (MSE), Cauchy, Charbonnier, and Welsch.
This versatility is attributed to the modulation of the β
parameter, which grants the flexibility to customize the loss
function per specific modeling needs.

TABLE 5. Loss Function Value with ℵ =
1

2

(
z

c

)2

f(z, β, c) Value Condition

ℵ β = 2

log (ℵ+ 1) β = 0

√
2ℵ+ 1− 1 β = 1

1− e−ℵ β = −∞

|β − 2|
β

( 2ℵ
|β − 2|

+ 1

)β

2 − 1

 Otherwise

Incorporating such a loss function into long-term time
series forecasting models can be advantageous. Its adaptabil-
ity allows for nuanced error handling, potentially leading to
improved model robustness and sensitivity to various data
patterns, especially in scenarios with non-Gaussian noise or
outliers.

3) Evaluation Indicators
The mean absolute error (MAE), mean square error (MSE),
root mean square error (RMSE), and coefficient of deter-
mination (R2) are used as indicators for the prediction per-
formance of our Enhanced LFTSformer and all the other
models. The formulas of each indicators are as follow in the
Table 6:

TABLE 6. Evaluation indicators

Indicator Formula

MAE
1

N

N∑
t=1

∣∣qtrue(t)− qpred(t)
∣∣

MSE
1

N

N∑
t=1

(
qtrue (t)− qpred (t)

)2
RMSE

√√√√ 1

N

N∑
t=1

(
qtrue (t)− qpred (t)

)2

R2 1−

N∑
t=1

(
qtrue (t)− qpred (t)

)2
N∑
t=1

(qtrue (t)− q̄)2

In addition, in order to be able to analyse and compare the
advantages and disadvantages of the models more intuitively,
we will draw a total of three heat maps for MSE, RMSE, and
R2 respectively. When MSE, RMSE is smaller or R2 is larger,
the colour of the heat map will be darker. We will also blend
the three heatmaps by colour, and the darker the colour of
the resulting blended heatmap means that the corresponding
model/stock forecast is better.
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IV. EXPERIMENT PROCESS AND RESULTS
A. EXPERIMENT CONDITIONS & CONFIGURATION
1) Experiment Environment
Regarding the experimental configuration, our comprehen-
sive investigations are carried out utilizing a computer system
endowed with dual NVIDIA GeForce RTX 4090 GPUs, ac-
companied by an Intel13th Gen Intel(R)Core(TM)i9-13900K
CPU and a robust 128GB RAM.

The operational environment is Wiundows 11 23H2 oper-
ating system, while the deep learning framework employed
throughout our endeavors remains to be PyTorch.

2) Experiment Data
For the data used in the experiment, we have a few points to
note

1) Data Selection: Our ablation experiments as well as
the comparison experiments are conducted on the data
of Pudong Development Bank stock (SHA: 600000).
After completing the training of the model, we will
conduct stability experiments on the remaining 21
stocks.

2) Data Segmentation: For all stock data, we set the first
90% of the data as the training set and the last 10% as
the test set. As shown in Fig 3.

3) Parameters of prediction: For all stocks and different
models, we are predicting the Close parameter, while
the other parameters are Indexing and Manipulation as
described in Section III-A.

4) Time Scaling: Since there are some differences in the
time span of different stocks, for the sake of conve-
nience, we set the start time as 0 time unit, the end time
as 5000 time unit, and the other data are scaled to the
corresponding time unit.

3) Training Parameter Configuration
After rigorous experimentation and meticulous debugging,
we have judiciously chosen a set of parameters that optimally
enhances the predictive capabilities of our model. The salient
parameters integral to our model’s architecture are delineated
in Table 7.

B. PROCESS OF FEATURE ENGINEERING
1) Determination of K Value and Decomposition of Features
The VMD-MIC method enhances the conventional VMD
approach by utilizing the computation of the MICyy0 metric.
When the original stock dataset of Open/Close/High/Low is
input into the VMD-MIC framework, it is decomposed into
K intrinsic mode functions (IMFs). Figure 4 illustrates the
relationship between various K values and their correspond-
ing MICyy0 results.We can determine the optimum k when
the histogram reaches a steady state.

Notably, the MICyy0 metric remains relatively stable for
K = 8, 10, 12 and 15. Based on this observation, we make
the following selection of K values as shown in the Table8:

TABLE 7. Model Parameters Configuration

Parameter Value

Input sequence length 256
Prediction sequence length 64-128

Num of encoder layers 8
Num of decoder layers 10
Input size of encoder 5-1
Input size of decoder 5-1

Num of heads 2
Dimension of model 512

Probsparse attention factor 3.8
Early stopping patience 10

Dropout 0.2
Epochs 200

TABLE 8. Selection of K Values

Indicator Selection of K for Corresponding Indicator

Open 15
High 10
Close 12
Low 8

Based on this premise, we have delineated the IMF values
for the four features: close, high, low, and open prices, post-
decomposition at varying k values as depicted in Fig5. Cor-
respondingly, we also present their associated Power Spectral
Density (PSD) values in Fig6. It is discerned that with
the incremental growth of k values, their respective trends
largely converge. By conducting an in-depth evaluation of
the dominant frequencies in these IMF curves, we can discern
the efficiency of the VMD-MIC technique in ensuring precise
IMF separation.

2) Dimensionality Reduction of Features

The original stock dataset was decomposed into intrinsic
mode functions (IMFs) with allocations of 10 for close, 12
for high, 8 for low, and 15 for open values. Direct integration
of these sub-sequences into the predictive model could exac-
erbate computational overhead. To address this, we employed
Feature Extraction (FE) to quantitatively assess the intricacy
of the IMFs, subsequently reconstituting them based on their
complexity profiles. Through rigorous research, parameters
m = 3 and r = 0.3std were delineated as optimal, striking
a balance between model accuracy and computational effi-
ciency. The corresponding visualization in Fig 7 elucidates
the FE values for each IMF.

Upon categorization of IMFs by FE value intervals (e.g.,
0.0-0.1, 0.1-0.2, etc.), we crafted new composite elements
founded on these FE metrics as shown in the Table 9.
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FIGURE 3. Close Data of SHA: 600000, Split Training and Test Sets at 90% Ratio

FIGURE 4. Relationship Between Different Ks and Their Corresponding MICyy.

TABLE 9. New Composite Elements Founded FE Metrics

New Feature Grouping FE Value Range Selection of IMFN (value of N)

New Feature 1 [0.0,0.1] 3,43
New Feature 2 (0.1,0.2] 2,8,40
New Feature 3 (0.2,0.3] 6,16,21,26,38,39
New Feature 4 (0.3,0.4] 4,5,11,28,30,34,44,45
New Feature 5 (0.4,0.5] 9,42
New Feature 6 (0.5,0.6] 1,7,12,18,19,24,31,32,41
New Feature 7 (0.6,0.7] 13,17,27,29
New Feature 8 (0.7,0.8] 10,14,37
New Feature 9 (0.8,0.9] 15,25,33,35
New Feature 10 (0.9,1.0] 20,22,23,36

Note: New Feature N =

∑
Selected N

IMFN

V
, (V=Number of IMFs selected).

3) Correlation-Based Feature Extraction and Selection

In our endeavor to efficiently extract the residual 25 indicator
features, we discerned that the computational efficacy and
generalizability of the model could be enhanced by excluding
certain irrelevant or redundant attributes from the primary
dataset. Consequently, we adopted the Maximal Information

Coefficient (MIC) methodology to scrutinize the interrela-
tions between the remaining 25 stock features and each
component, extracting quintessential characteristics of each
element through their MIC values. The confusion matrix for
MIC is depicted in the subsequent Heatmap of Features (Fig
8).

From the ensuing visualization, it’s palpable that each el-
ement manifests distinct influential characteristics, encapsu-
lating both holistic correlations and nuanced local attributes.
In pursuit of curating features that bear the utmost correlation
with the input variables, we instituted an MIC threshold of
0.5 for each component. The outcomes of this selective input
feature determination are delineated in the Table 10 below.

C. RESULTS
In this section, in order to assess the superiority of each mod-
ule in the model and its overall performance, we conduct and
present ablation experiments and comparison experiments on
SHA: 600000 stocks and their results. In addition, to assess
the generality and robustness of the model, we also conduct
stability tests on all other 21 stocks to test our model.

1) Ablation Experiment
The purpose of the ablation study is to assess whether
complex hybrid models can enhance prediction accuracy
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FIGURE 5. The Decomposition Results For Each Feature: IMFs Values for Each K.

over simpler composite and standalone models. We selected
benchmark models including the GC-Enhanced Adam+DS
Encoder Informer (also referred to as the Enhanced LFTS-
former), the Adam+DS Encoder Informer, and the DS En-
coder Informer. Parameter optimization was conducted using
a grid search method, where the robustness parameter β is
adaptively adjusted by the Adam Optimiser. The specific
parameters are detailed in Table 7. The sizes of the encoder
and decoder inputs are aligned with the number of input
variables for the model.

As illustrated in Figure 9, the training results for the four
models are presented. It is evident that the GC-Enhanced
Adam+DS Encoder Informer achieves stability more quickly
and exhibits the lowest error rates in both training and testing
phases, aligning with our initial expectations.

Figure 10 depicts the results of our ablation experiment.
In the top half, we present the predicted outcomes and trends
over 500 time units for the bottom 10% of the dataset. To
effectively compare the performance between models and to
showcase the performance of individual models, we include

integrated prediction plots for all models as well as separate
prediction plots for each model. For the micro-scale analysis,
as illustrated in the bottom half of Figure 10, we have selected
a smaller time scale (highlighted by the red box in the figure).
This particular segment was chosen because the prediction
ranges of the models are most closely aligned during this
period, covering a total range of 30 minutes × 200 data points
for analysis.

In terms of error quantification, we have employed a
paradigm incorporating both heatmaps and blended heatmaps
to visualize the values of MAE/MSE and R2, as depicted on
the right side of Fig11. Furthermore, to articulate the absolute
error, Box Plots are utilized to delineate the distribution
and range of the residuals—predicted values subtracted from
actual values—and their outliers, as demonstrated on the
right side of Fig12. Synthesizing the above, the following
analysis can be articulated:

1) Comprehensive Assessment of Model Performance:
Empirical evidence suggests that the Enhanced LFTS-
former model attains a predictive accuracy exceed-
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FIGURE 6. The Dcomposition Results For Each Feature: Power Spectral Density (PSD) for Each Corresponding IMFs.

FIGURE 7. FE Values for 45 IMFs.

ing 90% on a holistic scale. Notwithstanding a dis-
cernible decrement in accuracy during the transition
from macroscopic to microscopic scale analysis, the
model’s utility and contribution to the field cannot be
overstated.

2) Merits of the Adaptive Function in Prediction: The
volatile nature of financial markets, often accentuated
by inflection points, poses significant predictive chal-
lenges. The incorporation of GC-Enhanced method-
ology has demonstrably augmented the model’s pre-
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FIGURE 8. Heatmap For Features.

FIGURE 9. Traning Results For Each Model in Ablation Experiments.

cision. Furthermore, it substantiates the efficacy of
adaptive functions in mitigating the impact of market
volatilities, thereby reducing predictive errors and un-
certainties.

3) Efficiency of Training and the Role of Loss Func-
tion: The pivotal role of a tailored loss function in op-
timizing both the efficiency and the veracity of model
training is incontrovertible. The deployment of our
novel adaptive loss function has appreciably curtailed
the temporal expenditure required for training the En-
hanced LFTSformer model, simultaneously fortifying
its robustness and predictive verisimilitude.

Upon contrasting various models, it becomes evident that
the Enhanced LFTSformer model possesses the capability
to decompose raw stock data into finer granules, thereby
delving deeper into the intrinsic dynamics and features of

stocks. This intricate exploration furnishes financial decision-
makers with predictions that are both precise and timely.

2) Comparison Experiment
To rigorously assess the overall superiority of the proposed
model, comparative experiments were conducted. The selec-
tion of benchmark models includes not only the classical
CNN and LSTM and the foundational Informer but also
other state-of-the-art long temporal series forecasting models
based on modifications of the Informer/Transformer, such as
Autoformer [63] and Pyraformer [64]. Training was carried
out on the SHA: 600000 dataset, with all models, includ-
ing the Enhanced LFTSformer, sharing an identical set of
training parameters. The forecast outcomes are presented in
Fig13.

For the comparative analysis of errors across different
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FIGURE 10. Results of Ablation Experiments for the Whole Test Set and Partial Test Set

models, the same methodologies were employed—heatmaps,
blended heatmaps, and Boxplots—as shown on the left side
of Figs11 and 12. From this, we can draw the following
conclusions:

1) Outstanding Performance: Across all metrics, the
Enhanced LFTSformer demonstrates improvements
over traditional models and basic informer constructs
in long-term financial time series forecasting. Although

on certain metrics such as MAE/MSE, the perfor-
mance of Enhanced LFTSformer is marginally lower
compared to Pyraformer and Autoformer, the blended
heatmap analysis indicates that the Enhanced LFTS-
former exhibits deeper colors, signifying superior out-
comes within a more holistic evaluation framework.

2) Decomposition Capability: Curve analysis under sim-
ilar data processing conditions reveals that the VMD
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FIGURE 11. Heat Map for MAE/MSE, R2 and Their Mix for Different Models in Ablation Experiments and Comparison Experiments. (Darker colours in the blend
heat map represent a better combination of predicted performance)

FIGURE 12. Box Plot of qreal − qprediction for Different Models in Ablation Experiments and Comparison Experiments

algorithm exhibits enhanced data decomposition capa-
bilities over conventional algorithms like EMD. This
is evidenced by its effectiveness in attenuating non-
smooth features within the original data, thus improv-
ing the accuracy of stock predictions.

3) Long-Term Predictive Proficiency: Further data ex-
amination indicates divergences in curve fitting among
different models as the temporal scale of prediction
extends. While most curves initially maintain a high

degree of fit, they begin to deviate from actual values
over time. However, the Enhanced LFTSformer main-
tains its predictive accuracy, underscoring its capacity
to address the challenges of long-term sequential fore-
casting.

In conclusion, Enhanced LFTSformer represents a supe-
rior predictive combination model, holding significant prac-
tical implications, especially in domains like long-term in-
vestment decisions, risk management, and asset allocation.
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FIGURE 13. Results of Comparison Experiments for the Whole Test Set

3) Stability Experiment

Previous experimental outcomes have established that the
Enhanced LFTSformer delivers superior performance on the
SHA: 600000 dataset compared to other benchmark mod-
els, demonstrating its formidable capacity for long-term se-
quence prediction. Nevertheless, stock prices, as intricately
complex financial time series indices, exhibit unpredictabil-
ity due to shifts in industrial domains, unforeseen events,
fluctuations in market sentiment, and the interplay of chaotic
factors.

To further ascertain the model’s stability and adaptability,

it was retrained and its predictions reassessed on an addi-
tional 21 stocks listed on the Shenzhen or Shanghai Stock
Exchanges, with all training configurations and parameters
remaining consistent. The results are illustrated in Fig14 (due
to space constraints, only 16 out of 21 are randomly show-
cased). Error heatmaps and blended heatmaps are displayed
in Fig15.

Analysis of the tabulated results indicates that the En-
hanced LFTSformer achieved commendable predictive out-
comes across various stocks in different industry sectors.
Nonetheless, it is imperative to acknowledge that our model
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FIGURE 14. Results of Stability experiments for the whole test set

FIGURE 15. Heat Map for MAE/MSE, R2 and Their Mix for Different Stocks in Stability Experiments. (Darker colours in the blend heat map represent a better
combination of predicted performance)
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TABLE 10. Reconstructed Feature Values Based On Heatmap

Reconstruct Features Included Remaining Feature M (M value)

Reconstruct Feature 1 1, 8, 11, 22
Reconstruct Feature 2 2, 3, 6, 9, 10, 12, 14, 16
Reconstruct Feature 3 3, 5, 8, 9, 13, 17, 18
Reconstruct Feature 4 2, 4, 5, 10, 11, 13
Reconstruct Feature 5 3, 7, 15, 21, 25
Reconstruct Feature 6 9, 11, 14, 15, 18, 22
Reconstruct Feature 7 1, 2, 3, 12, 20, 25
Reconstruct Feature 8 5, 10, 15, 20
Reconstruct Feature 9 3, 12, 13, 14, 22
Reconstruct Feature 10 1, 3, 9, 13, 24

Note 1: The features corresponding to all areas greater than 0.5 in the
heatmap are selected into the corresponding group.

Note 2: RCFN = NFN ∗
( ∏

Included M

RMFM ∗ CNM

)

Abbreviation Meaning

RCFN Reconstruct Feature N
NFN New Feature N

RMFM Remaining Feature M
CNM Correlation Between NFN and RMFM

exhibited significant predictive performance declines in cer-
tain stocks, such as SHE: 000089 (Shenzhen Airport) and
SHA: 600009 (Shanghai Airport), which are characterized
by market capitalizations not exceeding 100 billion RMB and
are more susceptible to singular factors.

V. CONCLUSIONS & FUTURE WORK
A. CONCLUSIONS
The operation of stock markets is influenced by a plethora
of factors, including economic conditions, seasonal changes,
and the global financial climate. These factors may introduce
a multitude of anomalies and non-smooth characteristics
into the data of stock markets, posing substantial challenges
to improving the accuracy and performance of stock price
forecasts. Consequently, this paper proposes an adaptive
hybrid model for stock prediction, leveraging an enhanced
VMD, Feature Engineering (FE), Stacked & Distributed
(DS) Informer, and an adaptive loss function. The Enhanced
LFTSformer model, as a promising hybrid model, is capable
of adaptively predicting inherently volatile stock data. The
primary advantages of this methodology are summarized as
follows:

1) Hybrid Integration: The Enhanced LFTSformer rep-
resents a comprehensive model that integrates ad-
vanced feature engineering, an improved encoder in the
Informer, and GC-Enhanced optimization. It amalga-
mates the strengths of various techniques, delivering
superior accuracy and robustness. This superiority is
especially prominent in long-term time series forecast-

ing.
2) Data Decomposition: Compared to conventional de-

composition methods, the MIC-enhanced VMD excels
at extracting non-linear features from raw data, effec-
tively augmenting data quality and streamlining the
forecasting process.

3) Adaptive Response: A comprehensive analysis of ex-
perimental results illustrates the adaptive loss func-
tion’s rapid response to volatile financial time series
data, skillfully managing anomalies and predicting
evolutionary trends.

4) Generalization Capability: Experiments on addi-
tional stock datasets highlight the exemplary predic-
tive performance of our proposed model, confirming
the Enhanced LFTSformer’s significant generalization
capability and its promising prospects in stock data
forecasting.

In conclusion, hybrid stock prediction models that in-
tegrate the advantages of multiple algorithms demonstrate
increased predictive accuracy and robustness. Notably, their
effectiveness is sustained in long-term time series forecast-
ing.

B. FUTURE WORK
While this study has made preliminary advancements, several
areas warrant further investigation to deepen our understand-
ing and enhance the practical applications of stock market
prediction models. The following research directions are
proposed:

1) Predictive Modeling for Small Enterprises: A no-
table limitation of this study is its focus predominantly
on large-scale enterprise stocks. The stock prices of
smaller firms, however, may exhibit greater sensitivity
and vulnerability to unforeseen events. Future research
should explore the integration of natural language pro-
cessing and real-time event analysis to more accu-
rately forecast stock price fluctuations of these smaller
entities. It is crucial to develop specific parameters
or variables that can effectively capture the nonlinear
impacts of such events on stock prices.

2) Non-linear Optimization in Feature Engineering:
Another limitation identified in this study is the pri-
marily linear methodology employed in our feature
engineering. Future research could investigate non-
linear techniques, such as activation functions in neural
networks or dynamically adjusted weight coefficients,
to perpetually optimize the generation of feature values
during iterative learning. Such approaches are antici-
pated to enhance model performance and adaptability.

3) Further Optimizations and Refinements: This study
has highlighted two main areas for potential enhance-
ment. First, our feature selection was limited to corre-
lation factors, overlooking important metrics such as
the F-score and sensitivity. Subsequent studies should
incorporate these metrics to evaluate the relationships
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between variables and stock characteristics more thor-
oughly, aiming to reduce data redundancy. Second, the
selection of parameters in our models may lack pre-
cision and comprehensiveness. Future studies should
consider the application of optimization algorithms to
address the sensitivity issues inherent in the parameter
selection of deep learning networks.

By exploring these proposed avenues, we anticipate further
improvements in the precision, utility, and comprehensive-
ness of stock market prediction models. These advancements
will not only propel academic research in the financial
domain but also provide practitioners with more accurate
decision-support tools, facilitating navigation through the
complex challenges of financial markets.
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